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I N T R O D U C T I O N 

1) This work belongs to the direction initiated by K.Mackenzie in 
[20; Chap. III.§§2.5.7, Ch. IV], [21] and developed by the author in [17], and concerns 
the "clean" theory of Lie algebroids. [These works isolate this theory from the common 
theory of Lie groupoids and Lie algebroids]. 

Originally, the notion of a Lie algebroid was invented by J.Pradines [28], [29] 
(1967) in connection with the study of differential groupoids, generalizing the 
construction of the Lie algebra of a Lie group. Since every principal bundle P 
determines a Lie groupoid PP 1 of Ehresmann [6], therefore - in an indirect manner -
determines a Lie algebroid A(P). The construction of this object with the omission of 
the indirect step of Lie groupoids (with the use of the vector bundle TP/G) was made 
independently by K.Mackenzie [20] and by the author [15]. In [15] there is also a third 
manner of constructing a Lie algebroid of a principal bundle P(M,G) as an associated 
bundle W1 {P) x x ((Rnxg) with the first-order prolongation of P. 

Since 1977 another source of transitive Lie algebroids (discovered by P.Molino 
[23]) has been known, namely, the theory of transversally complete foliations. On this 
ground R.Almeida and P.Molino discovered in 1985 [3] (see also [24]) non-integrable 
transitive Lie algebroids (i.e. ones which do not come from principal bundles), 
refuting an assertion of J.Pradines concerning the non-existence of such objects [30]. 
More precisely, they proved that a TC-foliation ^ has an integrable Lie algebroid if 
and only if ? is developable. Since the fact that any TC-foliation with nonclosed 
leaves on a simply connected manifold is not developable is obvious, therefore its Lie 
algebroid is not integrable. A more concrete example is the foliation of left cosets of 
a connected and simply connected Lie group by a nonclosed Lie subgroup. In [16] the 
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author gives a direct definition of the Lie algebroid of such a TC-foliation (without 
using Molino* s theory) and develops the method of a Lie algebroid on this ground. 

Differential geometry of the last five years has revealed new objects which 
determine Lie algebroids: Poisson manifolds (A.Coste, P.Dazord, A.Weinstein [5], 1987) 
and some complete closed pseudogroups (A.Silva [32], 1988). To sum up, the method of a 
Lie algebroid in differential geometry has acquired weight. 

2) Can the characteristic classes known on the ground of principal bundles 
[Pontryagin classes, the classes of flat or of partially flat principad bundles] be 
constructed on the level of Lie algebroids ? - was the problem the author posed some 
five years ago. 

The first result in this direction concerns the Chern-Weil homomorphism of 
principal bundles. In [15] the author observed that the Chern-Weil homomorphism of 
principal bundles is an invariant of Lie algebroids of these bundles in the case of 
connected structure Lie groups [the troubles refer only to the domain of this 
homomorphism]. The full answer to this question is included in work [17] which is based 
on 

(a) the author's observation that the Chern-Weil homomorphism of a connected 
principal bundle is an invariant of the Lie algebroid of this bundle [this forced the 
initiation of the notion of a representation of a principal bundle on a vector bundle 
and the obtaining of some related results], 

(b) the construction of an equivalent of this homomorphism for the class of 
regular Lie algebroids over foliated manifolds [containing the class of transitive 
ones] (in [17] the author initiated the theory of connections in nontransitive Lie 
algebroids), 

(c) the discovery of a class of transitive non-integrable Lie algebroids having 
the nontrivial Chern-Weil homomorphism. 

Due to (b) and (c), the technique of characteristic classes can be applied to the 
investigation of the objects different than principal bundles but possessing Lie 
algebroids, such as TC-foliations, nonclosed Lie subgroups, Poisson manifolds, some 
pseudogroups, or vector bundles over foliated manifolds. 

As to (c), the author calculated the Chern-Weil homomorphism of the Lie algebroid 
A{G\U) of the foliation of left cosets of a Lie group G by a nonclosed Lie subgroup H. 
The superposition 

h t :V(í ) / f ) )*> >(VÍ)*) — ^ f f (G/H) 
A(G;H) ' I dR ' 

_ # 
serves as this homomorphism, where h : (Vf) ) ——>H (G/H) is the Chern-Weil 

P I dR ' 
homomorphism of the //-principal bundle P=(G >G///). Next, it was noticed that the 
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case of a compact and semisimple Lie group G is a case in which h is not trivial 
( 2 ) A{ G ; H) 

(more precisely, h . r n * 0 ) - Adding the simple connectedness of G , we obtain a 
non-integrable Lie algebroid. 

Some version of Bott's phenomenon on the ground of regular Lie algebroids is the 
aim of work [18]. There, this Vanishing Theorem is interpreted for TC-foliations, 
especially, for nonclosed Lie subgroups, and used to the proving of the nonexistence of 
Lie subalgebras of some types. 

3) The present work has 3 parts and concerns the construction of the 
characteristic homomorphisms for flat and for partially flat regular Lie algebroids. 
The first part is devoted to the investigation of some properties of regular Lie 
algebroids over Euclidean spaces, needed in the sequel, such as, for example: 

— Any regular Lie algebroid over the foliated manifold (Rpx\Rq, TRpxO) possesses a 

globally determined flat connect ion and is trivial in the sense that it is isomorpic to 

the pullback of an entirely nontransitive Lie algebroid over Rq via the projection 

RvxR« >R« 

Next, the invariant cross-sections with respect to a representation of the trivial 
transitive Lie algebroid TlRpxg and of a regular Lie algebroid over the foliated 
manifold {RxM,TRxE) are studied. The results obtained here are used further, for 
example, in the proofs of the homotopic invariance of the characteristic homomorphisms 
with respect to subalgebroids. These results are elementary but with the use of a 
theorem about some system of partial differential equations with parameters (given here 
together with the proof). Some of them are known from works of R.Almeida and P.Molino 
[3] or K.Mackenzie [20 ] (but with other proofs, more sketchy or less algebraic). 

The second part is devoted to the characteristic homomorphism of a flat regular 
Lie algebroid. This part has 7 chapters. In Chap. 1 the author introduces the theory of 
cohomology with coefficients for arbitrary Lie algebroids, defining three operators c^, 
9^, dT and proving their fundamental properties [given in K.Mackenzie [20] with the 
proof "standard"]. The characteristic homomorphism of a flat regular Lie algebroid 
equipped with some subalgebroid is constructed in Chap. 3. Chaps. 4 and 5 concern its 
properties: the functoriality and the dependence on a subalgebroid. In 5 we introduce 
the notion of a homotopy between Lie subalgebroids (Def. 5.2) and prove the equivalence 
of the characteristic homomorphisms for homotopic Lie subalgebroids. We add that 
[Prop. 5.5.3] two homotopic //-reductions P , t=0, 1, of a principal bundle P(M,G) 

determine homotopic subalgebroids, and that the converse thorem is not true unless P^ 
and G are connected. The homomorphism constructed agrees with a suitable one for a flat 
principal bundle with a given reduction if the flat regular Lie algebroid comes from 
such a bundle. According to the above, these homomorphisms are equivalent not only for 
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two homotopic reductions but also, more, for two reductions having homotopic Lie 
subalgebroids. In Sec. 6.2 it is pointed out that the so-called foliated bundle 
(P,P',w) where P' is a reduction of P and u) is a connection in P flat over an 
involutive distribution F gives a flat regular Lie algebroid (A(P),A{P'),X\F) over the 
foliated manifold (M,F) and then, the characteristic homomorphism 

&F:H(g;A(P' )F) >// (M) 

(having the values in the tangential cohomology algebra Hf(M) of (M,F)). The 
"tangential characteristic classes" of (P,P',w) - the cohomology classes from the image 
of - measure the independence of to and P' , i.e. they do exactly the same as the 
exotic characteristic classes. 

An interpretation of the homomorphism introduced, on the ground of TC-foliations, 
especially, for nonclosed Lie subgroups, is given in Chap.7. There are obtained some 
examples on the ground of nonclosed Lie subgroups (in transitive and in non-transitive 
cases) having nontrivial the characteristic homomorphism. 

Part III concerns the characteristic homomorphism of partially flat regular Lie 
algebroids, generalizing this notion from the theory of Kamber-Tondeur [10]. Here, some 
idea of G. Andrzejczak (unpublished) of a change of variables in the Weil algebra 
[offering facilities for the operating on it] is used in the construction of the Weil 
algebra for a bundle of Lie algebras. 
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P A R T I 

L O C A L P R O P E R T I E S O F R E G U L A R L I E A L G E B R O I D S O V E R F O L I A T E D M A N I F O L D S 

1 . T R I V I A L R E G U L A R L I E A L G E B R O I D S 

oo 

We assume that in our work all the manifolds considered, are of the C -class and 
Hausdorff, and that the manifolds My M' ,... over which we have Lie algebroids are, in 
addition, connected. By Q°(N) we denote the ring of C°° functions on a manifold Mf by 
KM) the Lie algebra of C°° vector fields on Af, and by Sec A the Q° (AO-module of all C°° 
global cross-sections of a given vector bundle A (over W). 

We recall [17] that by a regular Lie algebroid over a foliated manifold {MtE) [E 

is a constant dimensional C°° involutive distribution on M) we mean a system 
A = {Ay I • , • B, j) consisting of (a) a vector bundle A over M for which there is defined 
an (R-Lie algebra structure I • , * 1 in the space Sec A of global C°° cross-sections, (b) a 
homomorphism of vector bundles f:A ^Ttl (called an anchor) such that Imy = E, 

SecyiSecA >3f(M) is a homomorphism of Lie algebras and the following equality 
- T ) ] = f 'l^fVH + (f)-T), f € Q ° W ) , £>T)<sSeCi4, holds. 
If E = 0, then A is called [20] completely intransitive. It is simply a bundle of 

Lie algebras (Lie algebras A and A , x,y<=M, need not be isomorphic, although the 
v i x i y 

bracket [£,TJ] of C cross-sections of A - defined point by point: [£,TJ] x = f ^ x ' ^ x ^ ~ * s 

C°°, too). 
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One of the most important constructions of the building of a new regular Lie 
algebroid is the inverse-image fAA by a homomorphism of foliated manifolds 
f: (M' ,£' ) > (M,£) [17] : 

fAi4 = £'x A = l(v,w) eE'xA; f Jv) = y (w)\c E' ef *A, 

E ( X , y f J - ? o f ) , ( y , £ g % o f ) J = ([x,y],fJ.gk.|[^ ,r) J o f + X(gk)-r> o f - y ( f J ) . £ o f ) 
j ) j k J k k J 

for f ,g € Q (AT ) , *; , T ) €SeCi4. The projection onto the first component 
j k 

pr1:fA>4 = E'x i4 > £ ' 

serves as the anchor. 
A nonstrong homomorphism H:A' >A of regular Lie algebroids (over 

M A JC 
f:(#',£') >(M,£)) [17] can be defined smartly as a superposition A' >f A >A 

of some strong homomorphism H and the canonical one K-pr^. 

Here we write the basic (easy to prove) properties of the operation of the 
inverse-image: 

a) ( g o f ) A , 4 s fA(gAA), 

b) if i :{x> c >M is the inclusion, then iv

AA = q (q: = Kery and g is a 
bundle of Lie algebras; Lie algebras g and g are isomorphic provided that x and y 

i * i y 
lie on the same leaf of the foliation £) . 

Definition 1.1. By a trivial regular Lie algebroid over (M,£) we shall mean each 
algebroid isomorphic to fAA for any completely intransitive Lie algebroid A. 

Example 1.2. Transitive trivial Lie algebroid. Let a trivial Lie algebroid fAA 

(where A is a completely intransitive Lie algebroid A on a manifold N) be transitive 
(this means that it is over (M,TM)) . Then f is a constant mapping, say, f(x) =y. Put 
y:M >{y},xi >y, and let iy:{y} c >N be an inclusion. Then 

fAA*yAUy

AA) =y A(g) = T M x 9 U = 3 | y ) -

Clearly, y A(g) is a usual trivial transitive Lie algebroid [26], [17]. 

Example 1.3. Consider two manifolds M and Nf the projection pr^-.MxN >N and a 
vector bundle of Lie algebras f on N considered as a completely intransitive Lie 
algebroid. Of course, pr : (MxWJWxO) >(Af,0) is a homomorphism of foliated 

2 A * 
manifolds. We see that the inverse-image pr (f) is equal to (TMxO)epr (f). Each 
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cross-section of pr A ( f ) is a sum of cross-sections of the form (X,f-cropr ) for 
2 2 

XeSec(TMxO)y f € ft (MxN)t cr e Sec f. Therefore the structure of a Lie algebra in 
Sec pr^A(f) is determined uniquely by demanding that 

C ( X , f - £ o p r 2 ) , ( y , g - 7 > o P r 2 ) l = ( [ X t Y ] , f - g - | [ € , T | ] | o p r + X ( g ) ' T » o p r - 7 ( f ) - ^ o p r ) . 

Example 1.4. Each C°° constant dimensional and completely integrable distribution E 
on a manifold M is a regular Lie algebroid being, of course, trivial. 

The fundamental role in the proof of some structural theorems on a local shape of 
regular Lie algebroids and their properties is played by some theorem concerning global 
solutions of some system of differential equations, see below. 

2 . G L O B A L S M O O T H S O L U T I O N O F S O M E S Y S T E M O F D I F F E R E N T I A L E Q U A T I O N S 

W I T H P A R A M E T E R S 

Denote the canonical coordinates on Rmx(Rn by (x\ . . . 9xm

9y1

9 . . . ,y n). 

Theorem 2.1. Let C°° functions bk, a k :(Rmx(Rn >(R, r,k<q, i < m, be given. 
1 r i 

Consider a system of partial differential equations 

dzk k q k r 

(x, y) - - b (x,y) + £ a (x,y)*z k<q i < m (1) 
ax1 1 r = i r i 

sat isfying the condit ions of local i ntegrabi1ity: 
k k 

db db Q Q 

_ L - _ ^ = - v a
k -b" + f a k -b u 

d x * d x * „ = 1 « ' s u = l u s 1 

i, s < m, r < q. 
k k da da Q Q r i r s Z k u A k u 

= \ a • a - ) a • a 
_ S i ~- US li - Ul r s 
dx dx u = 1 " 1 

Then, for an arbitrarily taken G°° mapping g:(Rn— >(Rq, there exists exactly one 
globally defined C°° solution z:(RmxRn >IRq such that z(0,y)=g(y), y€(R n 

Remark. The simple classical theorem asserts the existence and the uniqueness of 
some C°° solution determined in some neighbourhood of an arbitrarily taken point of the 
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form (О,у). 

Proof of Th. 2.1. In this proof we use some elementary facts concerning the theory 
of foliations and the global existence of a solution of some system of ordinary 
differential equations without parameters. 

Put Af = (Rmx(Rnx(Rq with coordinates (x\y^,zk) and define 1-forms o)k on M by 

k k ^ / k ^ к r \ i 
0) = dz + £ (b (x,y) - £ a (x,y)-z Jdx . 

i = l 1 r=l r i 

00 

Consider the following system of linearly independent С 1-forms on M: 

(w1, . . . ,o)q,dy1, . . . ,dy n). 

1) The distribuí ion E generated by this system of 1-forms is integrable. 

This results from the following (easy to obtain) equations: 

d(dy J) = 0 , 

do)k = Г / A W 1 1 + 7 3 kAdy j 

u U J J 

к к 
m дЬ я да 

к от к i к " 1 / - i * r i Г\ i in which a = Г a -dx , p = Г ( + V -z ]-dx . £ has the dimension 
u i = i u i J 1 = 1 a y

j r = i a y
j 

equal to m. 
2) A C°° mapping z;IRmx(Rn >(Rq is a solution of (1) if and only if, for each 

point y o€lR n, the manifold Ly (z):={(x,yc,z(x,yo)); x€(R m} is an integral of E. 

Indeed, L v (z) is an m-dimensional C°° manifold with the global trivialization 
z :(Rm >(Rmx R nx IRq, xi >(x,y .z(x,y )). Therefore the tangent space to L v (z) 

y о о о jr 0 3 3 д ^ Э at x: = z v (x) is spanned by the vectors v : = d{zv ) ( — , ) = — • + V——, • . . The 

equalities 

dy J(i/)=0 and 

к i ^ Z ^ к ^ к г 
и) Ы ) = — - (x,y o)+b (x,yo) - a (x,yo)-z (x,y o)=0 

ax r=i 
demonstrate our assertion. 

3) The space E lies on the plane OXZ. Besides, for 
I ( X у у , Z ) 

y-^a1 --^- + Yj°r'~~ > w e have: w k iv) = c k + J] (fok - £ a k -z r)-a l, which implies 
i Эх 1 г az r i 1 r=l r i 
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that 

w k(v)=0 c
k = -£(b k- J a -z'J-a1. (2) 

i 1 r=l r l 

As a simple corollary we obtain: if a i = 0 for all j, then v = 0. 

4) Let L be the leaf of the distribution E, passing through a point (x o,y o,z o) and 
take the projection prx : L >Rm. Since pr a * (J]a1--^- + £cr- — - ) ^ T a ^ ' —- » 3 ) above 

ax1 az r ax 1 

gives that pr^ * is an isomorphism, therefore prx is a local diffeomorphism. According 
to the simple connectedness of lRm, to see that prx is a diffeomorphism, we only need 
notice the surjectivity of this projection. For the purpose, take arbitrarily a point 
Xj €(Rm and choose A: = Xj - x o . Define the embedding 

^:(Rx[Rq >(Rmx(Rnx(Rq, ( t , z ) I > (xo + t-A,yo,z) 

* i i * k k /-"-k ^ -~k i 
and calculate: <p (dx)=Ad£, <p u) =dz + E(k ~ E a - z j - A d t , k<g, where 
~k ~ k 1 r= 1 r ^ ^ ^ 
b ,a :IR >IR are defined by the formulae b (t)=b (x o + t-A,y o), 
~k r k * k ^ * 
a ^(t)=a (x o + t*A fy o). The 1-forms <p to correspond to the system of ordinary 
differential equations of the first order, being linear nonhomogeneous 

l ^ - E ^ m - A 1 * f; (Ea\(t)-A l)-z r. 
o t i 1 r = l i r l 

k k r -| Consider the initial condition z (0 ) = z . The well-known classical theorem [27\ states 
o 

that there exists exactly one globally determined (on the whole space (R) solution 
z = (z1,.. . ,zq) of this system, satisfying the initial condition. As previously, 
L = {(t, z( t)); t <= IR} is a maximal integral of the one dimensional distribution 
determined by the system of 1-forms {<p o)1, . . . y<p w q). K:IR >L, ti »(t,z(t)), is a 
global trivialization of L. Now, we prove that <p[L] is an integral manifold of the 
distribution E. To this end, we notice that the tangent space to the manifold L at a 

d ~k a ~k ~k i point (t,z(t)) is spanned by the vector ;xr + E c * where c =-£6 (£)-A + 
d t k az k 1 1 

+ E ( E * * (t)-Al)-zr(t). It is easy to obtain that <p„ (J* + £c k- — ) = EA* — + 
r = i i r l d t k az k i ax 1 

+ £ c k . — and c k = - E(b k(x o + t-A,yo) - E a k (x c + t • A, y o ) • z r (t)) • A 1. Therefore, 
k az k * 1 r r l 

i a ~k a 
according to step 3) above, the vector E * " + E C * lies in the space 

» ax 1 k az k 

E , which is the reason why w[L] is contained in the maximal integral of 

E passing through U 0 , y 0 , z 0 ) . Then x t = pr t (xt ,y o, z( 1)) = prx (<p{l, z( 1))) = 
= prt o p o j c d ) € prj [L] . 
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5) Take into consideration a function g:IRn >R q and a submanifold 
N = {(O.y.g(y)); y <=Rn} of M. It is a transverse manifold of the foliation E. Indeed, 
let vzT NnE . Then v = £ b J • — + Y ck- — = 7 a 1 • — + £ c k • — 

( o , y , , ( y ) ) . ( o , y f J ? ( y ) ) ^ a y J £ a z * t ax 1 k az k 

for some reals a*, b J, c k, c k, therefore a l = b J = 0 and, by step 3) above, v = 0. 

Denote by Ly the leaf of the foliation E, passing through (0,y,g(y)), and define 

L is, of course, an embedding submanifold of M. We prove that 

pr: = pr \L:L >(RmxIRn 

1 , 2 ' 

(being clearly a smooth bisection, see the previous step of the proof) is a 
dif f eomorphism. Take a point (x o,y o,z o)€L* and a vector vzT L such that 
pr^(vr)=0. The equality u = 0 is what we need to assert. v is of the form 

k d 
v = V c . Consider two complete transversals T and T of E determined by the 

i az k 0 

equations x = 0 and x = x o, respectively, and a diffeomorphism (p:T >T such that 
x o 

the points (xo,y,z) and <p(xo,y,z) lie on one of the leaves of E. (p is, clearly, 
uniquely determined. The vector v is tangent to T . Since <p is of the form 

x o 
^)(xo,y,z) = (0,y,^)(y,z)) for some function <p, therefore w: = ̂p (v) is of the form 

~ k d d w = £c- , i.e. its coordinates with respect to the vectors are zero. On the 
k az k _ _ ayJ _ 

other hand, veT LnT T -T {Lr\T ) [Lr\T is equal 
{ x o ^ y o ^ z o ) ixo>yo>zo) xo ixo>yo*zo) x o Xo 

to <p 1 [N] and is a submanifold) and ^ ( x
0 >yo»z

0 ) = №*yo »£^o ̂  » then 
v/€T However, # is the image of the mapping 0:(Rn >IRmx (Rnx Rq, 

( 0 > y o > i ? < y o ) ) 
V I >(0,y,g(y)), so, w = (w) for some w € l ERn. Therefore 

*y0 y 0 

0 = pr (w) = pr (w))=w, which implies w = 0 and, next, \/ = 0. 
^ O 

6) Let pr^:Rmx (Rnx R q >[Rq denote the projection onto the last factor. The 
mapping z;IRmxlRn »(Rq equal to z: = pr^>(pr) 1 is, according to step 2) of our 
proof, the sought-for solution of system of differential equations (1). • 
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3 . A R E G U L A R L I E A L G E B R O I D O V E R ( R p x R q , T R p x O ) P O S S E S S E S A F L A T C O N N E C T I O N 

The following theorem generalizes the result of K.Mackenzie [20] concerning 
transitive Lie algebroids (see also [3]). 

Theorem 3.1. Every regular Lie algebroid over (Rpx lRq, TIRpx 0) possesses a flat 

connection. 

We recall [17] that by a connection in a regular Lie algebroid A = (A, I • , • J, y) 
over a foliated manifold (M,E) we mean a splitting of the following Atiyah sequence of 

If 

A: 0 > g c >A >E »0, i.e. a homomorphism of vector bundles X:E >A 

such that y<>A= id^. A connection A is flat if SecXiSecE >SecA, X i »A°X, is a 
homomorphism of Lie algebras. 

Proof of Theorem 3.1. Consider any regular Lie algebroid B over (IRpx IRq, 7TRpx 0) 
and its Atiyah sequence 

0 > g c > b TIRpx 0 > 0 . 

•4' 

(Rp xR q 

Assume that on (RpxlRq we have the canonical coordinates (y1, . . . ,y P,y P + 1, . . . , y P + q ) . 
We prove, by induction with respect to n=l,2,...,p, that 

(*) there exist linearly independent cross-sections Y , . . . , Y " of B such that 
1 n 

(a) f°Y = — i < n, 
d y i (3) 

(b) [Y | fy ] = 0, i, j <n. 

Of course, the cross-sections Y ,...,7 fulfilling (a) and (b) for n = p give rise 
I D Q 

to the connection A:7TRpx0 >B defined uniquely by demanding that \o—: = y> 
dyl 

i < p. Clearly, X is flat. 
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(*) is evidently valid for n=l. Let assertion (*) be valid for some number 

me {1, . . . ,p-l}. We prove that it is true for m+1. For the purpose, take linearly 

independent cross-sections X,...,X,,Y,...,Y of B such that X , . . . ,X , form a basis 
l q l m 1 _ q 

of g and Y , . . . , Y fulfil (a) and (b) from (*) for n = /n. Let Y be an arbitrary 
d 00 

cross-section of B for which r°Y = . We shall find C functions 
o m+l 

i ' q . 
z,...,z q €Q°(IRpxIRq) such that IY,Y 3 = 0, i < mt where Y := }~z -X + Y. To 

, i m+l , m+l , _ 1 i 
q q 

this end, put IY ,YI= £ b -X , i < m9 and [X ,X ] = £ a -X , i, j < <l' - Then the 
1 k = i 1 k 1 J k = l l J k 

equations IY ,Y 1 = 0, i < my are all equivalent to the following system of 

differential equations with parameters y m + 1, . . . ,y p + q: 

^(..y 1..,y m + 1,... (y
p + q)=-^(..y 1.. )y

m + 1

)...,y
p + q) + I a k

| ( . . y l . . . y " * 1 . . . . . y P * , ) ' 2 r 

ay1 1 r l 

k < q' , i < ¿fe. 

The system like this is always uniquely integrable and is locally integrable if 

and only if the following conditions of local integrability are satisfied: 

dbk dbk q ' q ' 

i s ~ k u ^ k , u 
„ s _ i 1 u i s 1 us i 
dy dy Ur=1 u = 1 

i, s < m, r < q' . 
da da q ' q ' 

r i r s k u k u 
= V a -a V a -a 

dy* a y

l « = i u s r i « = i u l r s * 

However, these conditions hold by the Jacobi identities EEY „Yl,Y 3 + c y c J = 0 
s 1 

and EIX ,Y 3,Y I + cyci=0. According to Theorem 2.1, the system has a global solution 
l r ' 8 o 

(z ,...z q ) €Q°((RpxlRq, (Rq ) fulfilling an arbitrarily taken initial condition. To prove 

our theorem, take the system (Y ,...,Y ,Y ) of vector fields where 
, 1 m m+l 

Y = Y z -X + Y. • 
m+l ^ 1 

i = l 

4 . A R E G U L A R L I E A L G E B R O I D OVER ( R p x R q , T R p x O ) IS T R I V I A L 

Theorem 4.1. Every regular Lie algebroid B over (ÍRPx IRq, T(Rpx 0) is trivial; more 

precisely, it is of the form pr A(f) for the projection pr^:RpxRq >IRq and some 
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vector bundle f over IRq of Lie algebras. 

We begin with two lemmas. 

Lemma 4.2. (cf. [3]) Let Y^,...,Y^ be cross-sections of B satisfying conditions 
(3) (for n = p). Then there exists a basis {X^, . . . ,X ,) of g such that 

[ y ^ X 1 = 0 , i < p , j < g ' - ( 4 ) 

Proof, g being over (Rpx(Rq is trivial, therefore it possesses a global basis 
(X , . . . ,X , ) of cross-sections. We find C°° functions f r, j, r <q' , such that 

1 <* j 

( 1 ° ) detff^x)] * 0 for all x€lRpxlRq, 
( 2 ° ) the cross-sections X =Yfr-X satisfy (4) above. 

( 2 ° ) is equivalent to the following condition: 

0 = 17 ,X ] = [Y ,Yfr'X 3=yf r-ly ,X ] ]+-A_(f r).X . 
i j * p J r p J i r j r 

q

 k _ Since yo|[y ,x 3 = 0 , therefore EY ,X IsSecg, thus lY ,X 1 = £ a -X for some 
i r i r i r . _ - r i k 

lc 00 D d O — function a €C (OR x (R ). The refore (2 ) is further equivalent to 
r i 

k r S y 1 J k 

6 k q r k 

i.e. to the conditions (f )+F f *a = 0 , i < p, k, j < q'. Consider the 
following system of partial differential equations (with parameters (y p + 1, . ..,y P + q)) 

a
 k «' 

OZ , i p+1 p+q , _ k , i p+1 p+q . r , , , 
— - ( . .y . . ,yK , . . . ,yF M ) =- £ a {. .y .. ,yv y F M)-z , k<g' , i < p . (5) 
ay 1 r=i r l 

The following equations 

da^ da^ q' q' 
—-- = £ a a - £ a -a i,s<p, r<q 

~ s i ui rs us r i dy dy u = 1 u = 1 

are conditions of its local integrability. They are equivalent to the true equality: 
IFX , IY ,Y 13 = 0 . Take into consideration q' initial conditions of the form: 

r i s 

z k ( 0,y)=S* , k=l q', y€lRq, 

indexed by J=l,...,q'. Let f*,...,fq be the solution of (5) defined on RpxlRq and 
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satisfying condition (the existence is obtained by Th . 2.l). It remains to show 
condition (1°) above. Assume to the contrary that, at some point (x c, yo) € IRP x IRq, 
det[f^(xo,y0)] =0. This means that the vectors [f ̂ (x0 , yo ) , . . . , f q ^xo9yQ)]f j < q' , are 
linearly dependent. Changing, if necessary, the numeration of the initial conditions, 

we may assume that [f (x0,y ),...,fq (x ,y )]= J] C- [f .(x ,y ), . . . ,f q U c,y o)] Fix 
i J = 2 -* 

in equations (5) the parameters (yp* , . . . ,y P + q) by putting yo instead of them. In the 
equations just obtained (without parameters) consider the initial condition: 

z k(x o)= I C}-f\x0,yo), k<q'. 
j = 2 J 

It is clearly fulfilled by the solution (f (•,yQ),...,fq (*>yo)) and, simultaneously, 
k q 1 k 

by the family g = £ C -f (*,yo), k <q' , which is also a solution of the system of 
J = 2 j 

differential equations obtained . By the uniqueness of solutions of this system, 
k k k k 
^ 1('.y o)=g for k < q'. In particular, we have f i(0,y o)=g (0), which means that the 

l ' l ' vector [f^(0,yo),...,fq (0,yo)] is a linear combination of [f ̂ (0,yo),...,fq (0,y o)], 
2<J < q' , which is not possible. • 

Lemma 4.3. Le/; cross-sect ions ( X , . . . , X , , Y , . . . , Y ) of B satisfy conditions (3) 
1 q 1 k p k and (4) above. Then fhe structure functions c such that I X , X 1 = T c - X are 

i j i j ^ i j k 
constant on plaques of the f o1i at ion i.e. on the submani folds lRPx{*}. 

Proof. Since I Y , I X , X JIH + eye 1 =0, we have 
i j 

0 = l Y , I X , X 1 1 +IX , I X , Y 1 1 + l X , I Y , X 1 1 = I Y , I X , X 1 1 = lY ,£c k -X 1 
s i j i J s j s i s i j s £ i j k 

= V c k - I Y , X 1 + 6 (ek ) - X =-~(e k )-X , 
k »J s k 3ys l J k a y

s l j k 

which asserts our lemma. • 

Proof of Theorem 4.1. Assume that the cross-sections ( X , . . . , X , , Y , . . . , Y ) 
i q a 1 P 

satisfy conditions (3) and (4). The mapping A:TIRPxO given by A° - = Y is a 
dyl 1 

flat connection. Take the embedding i : (Rq >IRPx(Rq y\ *(0,y), and put 
x 

f = j g. 

The system ( X X , ) of cross-sections given by X ( y ) = X (0,y) serves as a basis of 
1 q i i 

f. Consider the projection pr^:fRpx(Rq >(Rq and an isomorphism of vector bundles 

VP1'? { f ) ~ 
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such that <P{{x y ) ( Е а * ' ^ j i ° » y ) ) " E * * ( x t y ) • Next, we shall treat f as a completely 
nontransitive Lie algebroid over ( ( R q , 0 ) . Our aim is to prove that the mapping 

F : p r 2

A ( f ) = (7TR pxO) e p r * ( f ) >Bf (vfw) i >A(v) +p(nr)f 

is an isomorphism of regular Lie algebroids. Of course, F is an isomorphism of vector 
bundles. It is sufficient to check that 

(pol^yVj = E<po£,<pol7]| ( 5 ) 

for i> € Sec pr^A{f) of the form f; = ( X , f -cropr ) and i> = ( У , g • 7 ) ° p r ) for 
X , У € Sec (7TRpx 0 ) , <r, T) € Sec f and f, g € C°°([R px R 4 ) . From the definition (see also 
Ex.1.3) we have 

l€,vl*l(X,f-cropr ), ( y , g - T ) o p r )1= ( [ X , y ] , f - g-[cr , T > ] | o p r • + X ( g ) - 7 ) o p r 2 - y(f)-cropr ). 

Therefore 

Fo[^fvl = Xo[X f y ] +<po(f-g-Icr^iilopr + Х(^)-т)о Рг 2 -T(f)-cropr ) 
= [ [ A o X , A o y i | + f ( O . T j J o p r ) + X ( g ) • í p o d í o p ^ ) - Y ( f ) ч р © ( с г о р г 2 ) . 

On the other hand, 

E F o ? , F o y I = | [ F o ( X , f - o - e p r ) , F o ( y f g - - o o p r ) I 

= 1Л°Х + f -0)o (<Г°рГ ) , Л о У + g-^)o ( T ) o p r 2 ) J 

= 1ЛоХ ,ЛоУ] | + I f - < p o ( ( r o p r ) ,ЛоУ1 + E A o X , g - < p o (i)opr )J + I f '(po ( c r o p r ), g • <p* (i) opr ) I 
2 2 2 2 

= 1ЛоХ ,ЛоУ]] + f - g - l < p o { < T o p r )t(po{1)opr )1 + ! A o X , g - ( / ) o ( T j o p r ) I ~ I X o y , f - ^ ) o ( (Торг ) J . 
2 2 2 2 

In order to get ( 5 ) , it will be necessary to observe that 

(a) (po (1 (Г ,Т) ] |орГ 2 ) = l<f° ( ( T o p r 2 ) ,0>o (т ) о р г 2 ) ] | , 

(b) X(g) -<p° ( i j o p r ) = lAoX,g-<p<> ( t | o p r 2 ) ] | . 

To see (a), write <r and TJ in the form о ^ Е ^ * * ^ , r? = £ T/ J-X , ( Г 1 , 7) J €Q°(IR q), 
and calculate 

*>o([cr,7>Jopr ) = r ( [ E ^ ' t E V ' X l o p r ) = < p o ( J] ( Л р Г - T i J o Pr • [ X X ] opr ) 
2 i j 2 i , j <2 1 J ¿ 

= * ' ° ( E o - l o p r 2 - r )

J o p r 2 - ( a ,; j-X k ) o p r 2 ) = i I j C r 1 o p r 2 - V ° p r 2 - a; j-X k 

- E <rf»pr -N J«pr 2- [X,X ] = i E < r 1 o p r 2-x i , E V o p r 2-x 11 
1 > J 

= I^)o ( ( Г о р Г 2 ) ,^)o ( 7 ) o p r 2 ) I . 

To see (b), write additionally X= [ a -, а €П°(К Р + Ч). Then 
k=i д / 

ÍXoX,g-<po{-nopr )l = [Xo(j;ak- —),g-í»o((j;V.x )opr )1 
2 a y

k J 
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= I E a k - Y , g - E V o p r -X 1= E a k - ^ ( g V < > p r )-X 
k k » j ay J 

= E a k - - ^ - ( g ) - T )

J o p r -X = X (g ) V » p r -X 

k , j a y

k 2 j 

= x ( g ) - » > o ( ( E V - x ) o p r 2 ) = x ( g ) T ( w r 2 ) . • 

Corollary 4.4. j4ny transitive Lie algebroid over (Rn is* isomorphic to the trivial 
algebroid 7TRnxg for some Lie algebra q. m 

Because of the trivial fact that each point of a given n-dimensional manifold M 
possesses a neighbourhood U diffeomorphic to (Rn (0Rn ^ >U c — — * M ) , any transitive Lie 
algebroid A over M is locally isomorphic to the trivial algebroid T!Rnxg (̂  <pA{i A{A))) 

for some Lie algebra g. 

5 . R E P R E S E N T A T I O N S O F T H E T R I V I A L L I E A L G E B R O I D T R Nx© O N A V E C T O R B U N D L E 

With a real vector bundle f over M there is associated a transitive Lie algebroid 
A{{) (over M) [17; Sec.1.2] whose fibre over x <= M consists of all {-vectors at x, i.e. 
linear homomorphisms 1: Sec f >f^ for which there exists a vector ueTxM such that 
1 (f • v) = f (x) • 1 (v) + u(f) • vix), f€Q°(W) and v e Sec f . The vector u is determined by 
1 uniquely and serves as its anchor. A local trivialization of A{f) gives the mapping 
ij):TU x EndiV) >A(f) (V is the typical fibre of f) defined for a given local 
trivialization \b:U xV > f of f by the formula: 

^(v ,a)(i>)=0 (v(v t ) + a(v t (x))) 
I x ^ 0 

where, for v^Sed, y :(/ >(R is a function xi >0 1(vv) [17; Lemma 5.4.4]. 
^ I X x 

A cross-section ^^SecAif) determines a covariant differential operator 
£ :Sec(f) >Sec (f) by the formula £ (v) (x) = £ (i>). The correspondence £i 
is 1-1. The bracket I * , - I is defined classically (from the point of view of 
differential operators). The Lie algebra bundle adjoint of A{i) can be identified with 
the vector bundle End(l). Lem.5.4.4 from [17] mentioned above asserts also that 0 is an 
isomorphism of Lie algebroids. In particular, taking ^r=id we assert that the 
Lie algebroid A{JRnxV) of the trivial vector bundle f = R nxK is isomorphic to the 
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trivial algebroid T\Rnx End(V) via the canonical isomorphism 

£:TRnx EndiV) >A{RnxV) 

defined by the formula: £ (v, a) = v{v) + a (v „). Denote by X the differential 
i x * J (X,<r) 

operator determined by the cross-section #<>(x,<r) of A{RnxV), where X € J ( R n ) and 
<ren°URn,End(V)). Clearly, 

2 :Q°(IRn,^) -—>Q°(IR n , l / ) , v i >X(i>) + cr(y). (6) 
( X,<t) 

By a representation of a regular Lie algebroid ^ on f (both over M) we mean a 
strong homomorphism T:A > >4(f) of Lie algebroids. T induces a linear homomorphism 
7+:g »£nd(f) of vector bundles of Lie algebras [17]. 

Let T:A >A{f) be any representation of a regular Lie algebroid A on f. A 
cross-section veSec(f) is called T-invariant [17] if T(v)(v)=0 for all V€A. The 
space of all T-invariant cross-sections is denoted by (Sec(f)) ̂ c ( ^ (or, briefly, by 
(Sec(f)) / C). 

Theorem 5.1. (cf. [20]) Let f:7TRnx8 >A{f) be any representation of the 

trivial Lie algebroid TRnx q on f. Then, for each f+ -invariant vector v€f , there 
I X I x 

exists exactly one T-invariant cross-section veSecif) (determined globally /) such 
that vx - v. 

Proof. A vector bundle f over (Rn is trivial, therefore we may assume that 
f = IRnxK. f determines a homomorphism 

r:TIRnx g >T\RnxEnd(V) 

such that £oT = f. A mapping v:Rn >V (understood as a cross-section of lRnx If) is 
f-invariant if and only if 

£ (v)=0 for X€ KIR11), i>€=Q°(IRn;£). 
To(X,<r ) 

T can be written in the form 

To(X,(r) =ro(X,0) +T(0,cr) - (X,w(X)) + (0,T+o(r) = (X,w(X) + T*o(r) 

for a 1-form o> € Q 1 (DRn; End(If)). u and T + satisfy the following (easy to verify) 
identities (cf. [20; p.102]): 
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-dw(X,y) = [w(X),w(y)] (7) 
X(r+<xr) -r+o(X(cr)) + [w(X) , r + ocr] =0. (8) 

v is T-invariant if and only if 

(a) £ , % =0, 

( b ) S x ( v ) =0. 
T<>( 0 ,<r) 

(a) is equivalent to the condition of the invariance of v with respect to the "reduced 
representation" 

TRn < >TIRnxEnd(K) _I_>ii(|Rnxin> 

whereas (b) says that, for each x € (Rn, the vector v is f + -invariant. Condition (a) 
x I X 

yields that 

T o ( X , 0 ) ( X , w ( X ) w ( X ) 

i.e. that the following differential equation 

X{v) =-£ , x iv), (9) 
o>( X) 

called the differential equation of an invariant cross-section, is satisfied. 
(7) is the condition of the local integrability of this equation. Indeed, taking a 

basis w 1 , . . . , W g of V and writing v=]Tz s-w s, we can equivalently exchange equation (9) 
for the following system of partial differential equations of the first order: 

dz k 2, r , k r 
= - £ a -z , i«n, K<g, C10J 

dxl r= i 1 

r k 6 ^ r k 
where a ' are functions such that w( )= V a :> -u . , u . being the following 

1 ax1 r = i 1 

basis of £nd(y) (=K <8>KJ : u

r , k = w r < 8 > u r k * Here are the conditions of the local 
integrability of (10): 

da da Q Q i s yL u, k r , u X, u, k r , u . ,  + — — = I a -a - £ a -a , i,s<n, r,k<q. 

dxs dxl s 1 «= i 1 

They are equivalent to the equalities: 

0 = ToU — ,0)A — ,0)l (=ETo( -A-,0),ro ( -A,0)]|) 
dxl dxs ax1 dxs 

which say the same as (7) above. 
According to Th.2.1, the initial conditions 
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z 1(0)=z 1 z q(0)=z q, 
o o 

(uniquely) determine a solution (z1,...,zq) of (10) defined on whole lRn. It remains to 

solve the following problem: if the vector p(0)=T]zi-w1 is 
+ o 1 

(T ( ( ):g » End (10)-invariant, then, for each x€(Rn, the vector v(x) = £z (x)'W{ is 
T+ -invariant. The invariance of v{x) means that # A (i> )=0 for all heo. 

I X 

Therefore it is sufficient to show that the function £ A (v) is identically zero for 
t+ on 

all where h denotes the constant function IRn »g always equalling h. Put 

P = ̂ + o R ( i ^ ) and assume that 0(0) =0. All we need to prove is X (0)=O for X€Ï(!Rn). 

Using (8) and (9), we have 

- V o X C 1 l ) . I « X i T . o 1 1 1 ( V ) + V o B

( X ( v ) ) 

- w ( X ) o ( T + o B ) + ( T + o 7 i ) o w ( X ) T + o 7 i 

= 2 + (lO * (2 ( V ) + X( l>)) 
- w ( X) o( T + ofi) T+ oB W ( X) 

The linear first order differential equation just obtained X ( 0 ) = # (0) is, 
- w ( x) 

clearly, fulfilled by the function identically equal to zero. On account of the 

uniqueness of solutions, we have the conclusion: 0=0, which ends the proof. • 

As a corollary we obtain 

5.2. For an arbitrary représentât ion T:A >A{f) of a transitive Lie algebroid A 

on f, each invariant cross-sect ion of f [defined locally on a connected subset) is 

uniquely determined by the value at one point. Particularly, if such a cross-section is 

zero at one point, then it is zero globally. m 

Remark 5.3. The above theorem can also be checked in a different way, somewhat 

exceeding the clean theory of Lie algebroids, by proving firstly the following 

auxiliary theorem 5.3.1 and, secondly, by using Propositions 5.5.2-3 from [20]. These 

propositions assert that, in the case when a homomorphism T of Lie algebroids is the 

differential of a /i-homomorphism F:P >L(f) of principal bundles (i.e. 

¡1: G >GL{V) is a homomorphism of Lie groups, L(f) is the GL (10-principal bundle of 

repers V > f and E(z * a) = F (z) • j i ( a ) ) , P is assumed to be connected, a 
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cross-section v of f is T-invariant if and only if there exists a ^-invariant vector 
weV such that v = F(z)(w) for all z€P. (Since F(z) is an isomorphism, we have 

n z v 

y = 0 provided v is zero at at least one point). 

Theorem 5.3.1. A homomorphism r:7(Rnxg >TlRnx End(V) of Lie algebroids is the 

differential of some homomorphism F:RnxG >RnxGUV) of principal bundles, where 

G is the connected and simply connected Lie group having g as its Lie algebra. 

To prove this, we can give some proposition (auxiliary in this place, but 
essential in itself). 

Proposition 5.3.2. If A' c A{P) is a transitive Lie subalgebroid of the Lie 

algebroid A{P) of a principal bundle P (= (P, tt, M, G, • )), then there exists a reduction 

P' of P having A' as its Lie algebroid. 

A r i 
Proof. Via the canonical projection n :TP > A(P) L13 J , we pullback A' to some 

C°° right-invariant involutive distribution A on TP \h„:=(nA ) 1[A' ] , Z € P ] . Let P' & z i z \ n z 

be a connected maximal integral manifold of A. Analogously to part (a) of the proof of 
Th.1.1 in [12], we assert that n\P':P' >M is a coregular surjection. Take the 
subgroup G'={a€G;P [P']cP'}, Ra being the right translation by a. By the 
equalities 

G'={azG\R[P' ]cP' l = ja€G; z-asP' \~A~\p' ], 

where A :G >P, a\ >zrt-a, (x'zM and z eP' are arbitrarily taken elements), 
z ° * v o ° \ x J } 

o o 
we assert that G' is an immersed submanifold of G. According to the fact that P' is a 
weak submanifold of P, we easily notice that G' is an immersed Lie subgroup of G with a 

oo 
countable base, and that the induced action P' xG1 >PX is C . Consequently, 
(P' ,7i|P' ,M,G' , • ) is a reduction of P to G' whose Lie algebroid equals A' . • 

Proof of Th.5.3.1. Let A = (T(Rnx g) x (T(Rnx End{V)) be the Whitney product of 
the Lie algebroids 7TRnxg and T(Rnx End(V) [ll] (see also [20; p.108]). A is the Lie 
algebroid of the Whitney product (Rnx G) e (IRnx GUV)) ( = (Rnx {GxGLiV))) of 
principal bundles (R nxG) and (Rnx GL{V)). The subbundle 
c = {(v,T(v)) €A; V€TR xg> fo rms, of course, a Lie subalgebroid and, by 
Prop.5.5.2, determines a reduction Q c (Rnx (GxGL{V)). There is no problem in seeing 
that the superposition 
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k:Q c >(Rn
x {GxGL(V)) >IRnxG 

is a local diffeomorphism onto a simply connected manifold IRnxG; in consequence, k is 
a diffeomorphism. The mapping 

-l 
F: (Rnx G — — > Q < >(Rnx (GxGL (V)) (Rnx GL (V) 

is the required homomorphism of principal bundles. • 

6 . I N V A R I A N T C R O S S - S E C T I O N S O V E R R * M 

Using the previous theorems, we prove that the space of global cross-sections of a 
vector bundle f over (RxAf, invariant with respect to the representation of a regular 
Lie algebroid B over ((Rx W, TIRx E), is canonically isomorphic to the space of 
cross-sections of the vector bundle f , invariant with respect to the suitable 

iit q}xm * 

"restricted" representation. 
First, we recall the expression: "restricting" - and more precisely, the 

"inverse-image" - of a representation [17]. Let A be any regular Lie algebroid over 
(M,E) and f any vector bundle over M, whereas f:(#',£') > (M,E) - any morphism of 
foliated manifolds. By the inverse-image of a representation T:A >A{f) over f we 
mean the representation f*T:fA{A) >A{f*f) defined as the superposition 

f*T:fA(A) A f A ( y l ( f ) )-*L+Alf*f) 

where (a) fAT is a homomorphism of Lie algebroids defined by: f AT(u, v) = (u, T{v)), 
a e E 7 , v<=A (f^(u) =y(v)), 

(b) cf is the canonical strong isomorphism of Lie algebroids such that, for 
(u, 1) € f A{A{f)) , w: = cf(u,l) has u as its anchor and satisfies the relation: 
w(v°f) = l(v) for veSec(f). Obviously, appears as the canonical isomorphism of 
vector bundles f*(End(f)) = End(f*f), and, furthermore, we can write (f D * = 

I X I f ( x ) 
for X € M # . 

Identifying g A(f A i 4 ) with ( f o g ) A / l and g * ( f * f ) with ( f o g ) * f we can write 
g*if*T) = ( f o g ) * T . 

In [17; 2.4.4] the following property of the inverse-image of a representation is 
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given: 

— the linear mapping f :Sec(f) >Sec{f f), vy >v<>f, can be restricted to the 

space of cross-sect ions invariant under T and f T, respectively: 

f*Q: (Sec(f)) / C ( t ) >(Sec(f*f)) / 0 ( f* T )• 

We shall use this notion to the representation T of a regular Lie algebroid B over 
(IRxM,nRx£) and the mapping f :M >(RxM, xi ->U o,x). In this situation, the 

* t o 
mapping (f ) 0 turns out to be an isomorphism, however, its monomorphy has a more 

* o 1 

general nature: 

* r Lemma 6.1. If the saturating of f[M'] equals h, then f 0 is a monomorphism. [The 

saturating is taken with respect to the foliation of M determined by £]. 

Proof. Assume that f^ o(y)=0 for an invariant cross-section v. This means that, 
for an arbitrary point x € M' , we have y(f(x))=0. Let L be the leaf of the foliation 
of M passing through f(x), and let i:Lc >N be the inclusion. According to Th.2.4.4 
from [17] mentioned above, we have that y|L(=i i>) is invariant with respect to the 
"restricted" representation i T: i A >A(i f). Since i A is transitive, v\L = 0 on 
account of 5 . 2 above. Our assumption concerning the saturation of f[M'] implies now the 
equality i> = 0. • 

Here is the aim of this section: 

Theorem 6.2. Let B be any regular Lie algebroid over (IRx W,7lRx E) and 

T:B >i4(f) any representation of B on a vector bundle f (oi/er IRxW). Take an 

arbitrary point tQ€\R and the mapping f :M >RxMy xi > ( t o , x ) . Then ( f ) 0 is 
* o * o ' 

an isomorphism of vector spaces. 

Proof. On account of Lemma 6.1, it is sufficient to show the surjectivity of 
(f ) c. Let aeSecif f) be an invariant cross-section. Then, for each xeMf the 

* o * o 
vector <r(x)€f j is invariant with respect to the representation 
T + :g >End(f ). Consider the embedding f :IR >0RxM, 

i ( t Q f x ) * i ( t 0 , x ) i ( t 0 , x ) * 

t\ > ( t , x ) . Since Im(f ) = IRx {x} is contained in some leaf of TIRxE, therefore 
f x

A(B) is a transitive and, by Cor.4.4, trivial Lie algebroid. Th.5.1 yields that the 
vector (r(x) can be uniquely extended to some C™ cross-section <rx of the vector bundle 
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fx f, invariant with respect to the representation f T:f (£) > A(f f) (cr(x) is 
* + * + + invariant under (f T) because (f T) ~T ). The family {<rv;x€M} determines 

X \ X x \ x \ f { x ) x 

a global cross-section cr :Rx M > f by the formula: cr (t, x) = <r x (t). It is evident 
* i 

that f (cr )=<r. To end the proof, all we need is to show 
(a) the smoothness of cr1, 

(b) the T~ invar iance of cr1. 

First, we check (a). For the purpose, take arbitrarily a point xQeM and a simple 
distinguished open neighbourhood UcM of x q [the domain of some distinguished chart of 
the foliation ^ having E as its tangent bundle]. The foliation <3'u has a global 
connected transversal manifold, say N, and its leaves are diffeomorphic to a Euclidean 
space. Then N':={to}xN is a transversal manifold of the distribution TflRxE, see 
Figure 1 below. 

/ * — 
A ^ 

J 

/ , • ; 7 7 7 • • • j . " s / / / j 7 7 " 7 7 ' 7 y 7 ! 

7 " r r - " 7 7 I t ( t " o ?',' ~ ,•- I \ i 

j j j , \ the leaf of 
j j j TRxE through 

! / j " ExU j / " " { t o > x o ) 

Figure 1 . 

The cross-sect ion 
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<ro:N' > I I 7 / , » ^ o » x ^ 1 »<r(x), 

is C°° and invariant with respect to the representation j T, 

j:N' c > M" : = DRx U c (Rx M being the inclusion, moreover, cr' : = <r1\M' is some 
extension of <r . 

o 

Let B': = B|AT. B' is a regular Lie algebroid over (R x Uy TOR x (E | )). Leaves of 
the foliation having TRx (E ) as its tangent bundle are of the form (RxL where L is 
a leaf of ^ { /. They are diffeomorphic to a Euclidean space and proper; N' is a global 
transversal manifold of TIRx (£ ) which cuts each leaf at exactly one point. 

It is obvious that, without loss of generality, we may assume that 
(1°) W =IRpx(Rq, 
(2°) B' is over (RpxlRq,T[RpxO). 

(in the context considered above, p is equal to the dimension of the foliation 7TRx£). 
By the proof of Th.3.1, we assert the existence of global cross-sections 

Y , . . . ,7 €Sec(B' ) such that y<>Y=— and [Y,Y]=09 i,J<p. Moreover, in the 
* ay1 1 J 

sequel of the proof of our theorem, we can assume that N' = 0 x Rq, f = ((RpxlRq) x V and 
4 ( f) = T(lRpxlRq) x EndiV). In our context, a C * cross-section tr :Ox(Rq > f a , 

such that (ro(0,y) is invariant with respect to the representation 
T + :Q >End(Vr), is given, and we know that there exists a cross-section 

1 ( 0 , y ) 3 l ( 0 , y ) 

cr':[Rpx(Rq > f (whose smoothness we are proving) extending (tq and such that cr' \\Rpx{y°} 

is, for each y°€(Rq, of the class C°° and invariant with respect to the representation 
T n „ of the transitive Lie algebroid B' D on f D fthe cutting 
...|lRpx{y0} is understood as the inverse-image by the suitable inclusion). 

Let Toy = ( J L c

l ) for some cl:(Rpx[Rq >£nd(l/r), i < p. The fact that T is a 
1 ay1 

representation means, particularly, that 

0 = TlY ,Y T\=ITY ,TY J = IT ( — , c 1 ), ( - — , c') 3 
ac ac r y 

= (0,—i- — + tc ,c ]), 
ay1 ayJ 1 J 

i.e. that 

[c ,c ] = ' - j, 1 , /< p. (11) 
1 ' a y' a y

! 

n k p q 
Let w , . . . , w be a basis of K; write c (x)(w )= £ c (x)*w , x € (R xIR . It 

I n i s k _ | si k 
follows immediately that (11) is e q u i v a l e n t to the following conditions: 
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k k 
ri rs " U k a u k . r i o x = \ c . c - ) c • C , i, s < p, k, r < n. (12) 

^ s i 1 r i us „ 1 rs ui dy dy u = 1 u = 1 

The invariance of a cross-section xeSec ( f ) ( = Q° ((RpxlRq, V) ) with respect to the 
representation T:B' >T((RpxlRq) xEnd(V) means that £ (x) = 0 for ail X€Sec(£'), 
in particular, that £ (x)=0, i<p. According to (6) above, the last condition 

T o y }

 r ° 
says that 

+ c (x) = 0, I < p, 
a i i ^ ' 

or, equivalently, 

dx k £ k r . r . — - = - £ c -T , i < p. (13) 
ay1 r= i " 

System (13) of differential equations is of the first order with the parameters 
(y p + 1, . . . , y P + q ) . It is easy to notice that (12) forms conditions of the local 
integrability of (13). From Th.2.1 it follows that there exists exactly one (globally 
defined) C cross-section cf:IRpxlRq ->f be ing a solution of (13) and satisfying the 
given initial condition or(0,y) = <ro (0,y), y€{Rq. Of course, <r = cr'9 which confirms the 
smoothness of <r' . 

(b) follows now trivially. • 
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P A R T I I 

T H E C H A R A C T E R I S T I C C L A S S E S O F F L A T R E G U L A R L I E A L G E B R O I D S 

1 . C O H O M O L O G Y W I T H C O E F F I C I E N T S 

Let A and f be a Lie algebroid and a vector bundle, both over the same manifold, 
say M. Each element of 

Q (M;f) = q e V ( M ; f ) , 
A A 

where Q q {M; f) = Sec{/\qA ®f), will be called a (C°°) form on the Lie algebroid A, with 
A 

values in f; while, for the trivial vector bundle f = MxlR, briefly: a (C ) form on 

the Lie algebroid A. A O-form on A is simply a cross-section of f. In the case A-TMt 

the space of forms with values in f (analogously, of the space of real forms) will be 
denoted traditionally by ft(M;f) (ft(Af), respectively). For an involutive C°° constant 
dimensional distribution E on M, Q (Af;f) consists of the so-called tangential 

differential forms on (M,£) [17], [25]. 
Q (M;() is a graded module over Q°{M) and a module over the algebra Q {M) 

A A 
( : = n (W;Mx(R)) of forms on A. The structure of the Q (M)-module in Q (M;f) is 
v A J A A 
conventionally given under the skew-product of forms, \peQ (W), (M;f), 

A A 
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defined (for the degrees p and q, respectively) by 

1 p+q , v , <r(l) <r(p) <r(p+l ) <r(p+q) 
<r (1) < . . . « r ( p ) 

cr (p + 1) < . . . <<x (p+q) 

€ €Sec4. 
m 

1 k Let f , . . . , f ,f be vector bundles over M. An arbitrary k-linear homomorphism of 
1 k 

vector bundles <p:f x...xf >f determines the mapping 
<p:Q (W;f1)x...xQ (W;fk) >Q (M;f) 

* 4̂ i4 A 
defined by the standard formula 

<p„(* ,...,* ) ( £ , . . . , € ) = — 1

 r-I>gner-<p(# • ) , . . . )) (2) 
* 1 k 1 m q ! * . . . * q ! ^ 1 <r (1) k <r (m) 

1 k <r 
in which m = Yq , q = the degree of ̂  €Q (Af; f 1). 

Definition 1.1. For a given representation T:y4 >/4(f) of a Lie algebroid A on a 
vector bundle f, we define three operators 

t , 6 T, d T:Q (tf;f) >Q («;f), £eSec4, 

called the substitution operator, the Lie derivative (with respect to £), and the 
exterior derivative, respectively, by the formulae 

(1°) (t€*)(Ci,...,?q_i)=«(€.€i,....€q.l). 

12°) ( E J * ) ^ € q ) = * T o € ( * ( € 1 . . . . . € q ) ) - j ! : i * ( C 1 . . . . . I ^ J l . . . . . € , ) • 

(3°) ( d T * ) ( C £ ) = E ( - i ) J £ tf (* (? ) ) + 
i j=o t o ? j ° q 

+ J ( - i ) 1 + J * ( i £ . e i e t j e ) 
. . 1 J ° 3 

where *€flq(M;f) and £ *=Seci4. >i i 
If T(: = v):A >i4(Wx!R) is the trivial representation, i.e. the one for which 

jg (f ) = (?<>£) (f) for f<=Q°(M) and £ € Sec >4 (under the canonical identification 
To? v 

i4(Mx(R) *TMxEnd{R) this means that 7(v) = (y(v),0)), then the operators of the Lie 
A A 

derivative and the exterior derivative, denoted by 6^ and d , are given by 

(4°) ( e > ) ( £ ) = > ) - E I C . ^ . l . • - - . € ) . 
£ 1 q 1 q J = 1 1 J q 
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(5°) (d^)(? )= E (-i)j(*<>€ )) + 
o q J = 0 j o q 

+ E ( - n ^ d c ^ c i c e ) . 
i<J ° q 

Remark 1.2. Definitions (1°), (4°) and (5°) were first given by L.Maxim-Rai1eanu 
in 1976 [22]. Formulae (1°)*(3°) were obtained by the author [13] in some natural 
manner for Lie algebroids of Pradines-type groupoids. Independently, they were given 
(as axioms) by K.Mackenzie [20]. 

T T 
The fundamental properties of the operators i , 9 , and d are given underneath. 

We first recall that a single representation T determines a number of new ones, for 
k k r i 

example, Horn (D of A on the space of /c-linear homomorphisms Horn (f;IR) [1'7;2.2.2J. 
This representation can be generalized as follows: 

Let T1,... ,Tk,T denote fixed representations of A on vector bundles f1,...,fk,f, 
respectively. They define a representation HonfiT1, . . . , Tk; T) (briefly, Horn) of A on 

k 1 k Horn (f x...xf ;f) as the one for which 

* U ) ( i > \ . . . , i / ) = £ J ^ 1 ^ J - ^ d ; 1 i S . c i > \ . . . , i / ) , 

l k i i 
for any k-linear homomorphism <p:f x . . . x f > f and for v eSec ( f ) , ^eSecA. 

Theorem 1.3. (cf. [20]) (i) t =9 Toi -t ° o [ , 

(ii) e T = e T o e T - e T o e T , 
ff?,7)ll £ T) 17 ? 

(ni) 9^ = t^od +d ©t , 

(iv) d T o d T = 0 , 

(v) d °G =e od . 

1 k 
For arbitrarily taken vector bundles f ,...,f ,f over M and a k-linear 

homomorphism p;f1x...xfk >f and forms ^ € J (M; f J), we haue 
(vi) t . ( » ( * . . . . , * ) ) = E (-i) q i + • • ' q j - 1 ^ ( * . . . . , t ) . 

Let now 71,... ,Tk,7 denote fixed representations of A on f1,...,fk,f, 
respectively, and assume that (p is Horn-invariant. Then 

(vii) 9^(» ( * , . . . , * ) ) = E <pj* el** ) , 
£ * 1 k * 1 £ j k 
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( v i i i ) d T ( » ( * ))= 1 ( - l ) q i * - * - * q J - i » ( * d T J * ) . 
* 1 k 

In particular, [taking <p = •: (M x IR) x f >f, the multiplication of vectors by 

reals, being Homiv;T)~invariant)y we have, for i/)€Qq(M) and VeQ (tf;f), the following 
A A 

formulae: 

(vi') t ( 0 A ¥ ) = C ^ A ^ + ( - I ) V A I 

(vii7 ) 0 T ( 0 A * ) = 9^0 A ^ + 0 A 9 T^, 
? € ? 

(viii') d T ( ^ A ^ ) = d ^ A ^ + ( - l ) V A d T * . 

Remark 1.4. These properties were proved by the author [13] for Lie algebroids of 
Pradines-type groupoids (not all Lie algebroids being taken into account, of course). 
In all generality, properties (ii)*(iv) can be found in K.Mackenzie [ 2 0 , p.200] with 
the proof "Standard". Now, we give a full proof of this important theorem. 

1.5. Proof of Theorem 1.3. For arbitrary IR-vector spaces 9 and g, by Q q ( 9;g) we 
denote here the IR-vector space of q-linear (over IR) skew-symmetric mappings 
9 x.. .x a — > g . 

q t imes 
Take a sequence 9 , ĝ ,... ,g^, g °f vector spaces and a Jc-linear mapping 

•:g x...xg >g. By the formula analogous to ( 2 ) , we define the skew-symmetric 
1 k 

product * A. . . A * €0(9; g) of mappings * €n q ,(3 ;S i ) 

* A . . . A » ( f C ) = 1 . %Zsgn(T-9 (g . . ) » . . . - t t ( . . . , g ) ) . 
1 k 1 m q ! * . . . ' q %. 1 < r ( l ) k <r (m) 

1 k <r 

^ : ? x — • x 9 >^ D e a fixed m-linear mapping, m > 0 . For an arbitrary vector 
m t imes 

space g and # € Q q ( 9 ; g ) , qr > 1, we define the q+/n-l-l inear mapping 6^:3x...x3 »g 
by the formula 

1 q+m-1 1 m m+1 q+m-1 

and next, G * # € Q q + m * ( 9;g) as its "skewing" 

1 q + m - l <MD (q+m-1) 
H ( T ( l ) < . . . «r (m) 

<r ( m + l ) < . . . « r (q+m-1) 

Of course, for m = 0 and G = £ ; € 9 , £*(•) is the substitution operator t . By 
arduous, but classical, combinatorial calculations we prove the following lemma (cf. 
R.Sikorski [31]). 
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Lemma 1.5.1. (1) If m>l, then 6 * (6 * *) = (6 * 6) * *. 

(2) If j i>0, then, for * e n q j ( a ; g ) , 

6 * ( * A . . . A * ) = f (-l) ql + - - ' q J-l* A...A ( 6 * * )A...A* . 
1 k j=l 1 j k 

(3) If m = Z, then, for 

( 6 * ( € * * ) ( 6 * * ) ) ( € ) = E * ( € , . - . . . 6 ( € , £ ) C ) • • 
1 q j = l 1 J q 

Fix now m = 2 and assume that 

(Al) 6:9x21 >9 is skew-symmetric. 

Take two vector spaces g, g', a 2-linear mapping * : g ' x g » g a^d S e C ^ O j g ' ) . 

For ? € 9 , we define three operators 

t 9 d:Q (9;g) > Q ( 9 ; g ) 

by the formulae 

(•) t ?* = C**, 

( . . ) e ? * = 3(?) A * - (6* (£**) + £ * (6**)), 

(• • • ) d* = 3 A # - G * * . 

Lemma 1.5.2. (1) 9 ©t -i <>0 = c r ̂  

(2) 9 = d©t ? + t^od. 

Proof. (1) follows immediately from the definitions. 

(2): By 1.5.1(2) [for k = 2, 6 = ?, * =3 and * we have 
(doc + c o d ) ( ¥ ) = d(t *) +c (d*) 

= 3 A ( £ * * ) - 6* (£* *)+ £ * (3A * ) - £ * ( 6 * * ) 

= - 6 * (£* *} + (£ *3) A * ) - £ * ( 6 * * ) = e * . • 

Assume additionally that a 2-linear mapping *:g' x g' >g' such that 

(A2) (v'-v' )-u = v' • (v'-a) , v',w '€g ' , u e g , 

is given. Then it is easy to see that 

3 A (3A * ) = (3A3) A * . (3) 
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Lemma 1.5.3. If 

(A3) 6*6 = 0, 

(A4) 3 A 3 = 6 * 3 , 

then 

(1) d2 = o , (2) e od = d o e , (3) e og -e <>e = 9~ 
€ £ € ^ ^ S 6 ( ^ , 1 7 ) 

Proof. (1): By 1.5.1(2), (2) and 1.5.1(1), we have 
d 2^ = d(3A^-6*^)=3A(3A^-G*^)-6*(3A^-6*^) 

= ( 3 a 3 ) a * - ( 6 * 3 ) a * + ( 6 * G ) * * = 0 . 

(2): Simple by (1) above and 1.5.2(2). 
(3): Trivial calculations after using 1.5.1(3), (3) and the fact that the 

condition 6*6 = 0 is equivalent to the fulfilling of the Jacobi identity for G. • 

In the end, we assume additionally that k systems of vector spaces and mappings 

g } , g ; , e n 1 O i g ; ) , • : s ; x g i — » 3 i f - : g ; x g ; — > g ; , i<k, 

are given, and that, for each i < k , the mapping g ^ x 3 j , > 3 t fulfils ( A 2 ) , and, for 
a given mapping 3 x - - - > < 3 > 3 , (v ,... ,v ) i > v *... -v , the following axiom 
is satisfied: 

1 k 1 j j k j j 

Then we have 

3 ( £ ) A ( * A . . . A * ) = Y * A . . . A ( 3 ( ? ) A * ) A . . . A * , 
1 k j _ a 1 J J k 

k " > ( 4 ) 

3 A ( ¥ A . . . A * ) = f ( - l ) q l * ' * * + C , J - 1 ^ A . . . A ( 3 A # ) A . . . A * . 
1 k J= l 1 j J k 

Denote by 9^, d J the operators in Q O j g ^ ) built via 3^- Then, thanks to (4) and 
1.5.1(2), we notice the following 

k < 
Lemma 1.5.4. (1) 9 (¥ a . . . a * ) = Y * A . . . A 9 > a . . . a * , 

£ l k j t ^ l ? J k 

(2) d ( * A . . . A * ) = £ ( - l ) q l * " - + q J - l * A . . . A d J ^ A . . . A * . • 
1 k 1 j k 
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To prove Theorem 1.3, we must put 9 = S e c i 4 , G ( £ , T ? ) = E£;,T)]I for 7)€SecA, 

g = Sec(f), g' =Hom^ (g; g), g' x g >g, (u,<r) i >u(cr) - the natural substitute 
operator, S H ^ H ^ ) 5 5 ^ for creg. Then definitions (•)*(•••) agree with (1 )+(3") 
from 1.1. Next, put g =Sec(f ), j < k, g' =//oro (g ;g ), g' x g >g as above, 

^ j J J k j j J j j j 
and take the mappings -:g x...xg >g and 3 defined by 

l k j cr -...-cr : = a>o(cr x...xcr ) and $ ( f ) ( c r ) = # . (<r), cr € g . Then all assumptions A1*A5 
1 k 1 k j T J o £ u ) r 

are satisfied. Assertions (i)-Mviii) of our theorem follow successively from 
1.5.2(1), 1.5.3(3), 1.5.2(2), 1.5.3(1), 1.5.3(2), 1.5.1(2) for /n = 0, 1.5.4(1) and 
1.5.4(2). • 

T 1.6. According to 1.3(iv), (ft (A/;f),d ) is a complex; its cohomology spaces will 
A 

be denoted by H (M,T,f), n>0. They generalize the Chevalley-Eilenberg cohomology 
A 

spaces of a finite-dimensional real Lie algebra q (for 4 = g) [also those with 
coefficients, see, for example, [9]J and the de Rham cohomology spaces of a manifold 
(for A = TM). 

1.7. tf° W , r,f) =Kerd T ,° = {cr€Sec(f); d\ = 0> 
A 

= {cr€Sec(f); V [i£ (cr) = o] \ = (Sec f) 

and, by 1.5.2, this space, in the case of a transitive Lie algebroid, is 
finite-dimensional [see also Mackenzie [20, pp.195 and 210]]. 

For the trivial vector bundle f=AfxlR, the cohomology spaces of the complex 
A n (ft (W),d ) will be briefly denoted by H (W), n = 0, 1, ... It is a standard calculation 

A A 

to obtain that H (M,T,f) is a module over the algebra H (M) under the multiplication 
A A 

W A [ * ] = [0A¥] . 

Definition 1.8. A form # € ft (M;f) will be called a horizontal form if t ^ = 0 for 
A v 

all veSecg. The space of horizontal forms will be denoted by ft #(M;f). Each C 
A , l 

cross-section cr€Sec(f) is a horizontal 0~form on A. By ft (M) we denote the space of 
A , / 

horizontal forms on the Lie algebroid Ay with real values. According to Th.l.3(vi'), 
ft (Af;f) is a module over the algebra ft . (M). 
A , i A , i 

Lemma 1.9. (1) e \ = 0 for * € Q (M), veSecg. 
v A , i 

(2) ft {M) is stable under d*. m 
A , / 
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1.10. For an arbitrary vector bundle f , we set 

ft . (W;f)={*€ft .(M;f); 9 T* = 0 for veSecg}. 
A , i , 9 /4, i v ^ 

By 1.7, we see that ft (Af)=ft (A/). 
i4 , i , 0 v4 , i 

2 . H 0 M 0 M 0 R P H I S M S " A , n v , A N D ( < * W ) V . 

Let i4 = ( i4 ,1 • , • 3, t) be an arbitrary regular Lie algebroid over a foliated manifold 
(M,£), and A:£ > A any connection in A, i.e. any splitting of its Atiyah sequence 
[17; 3.1.1]: 

0 >g < > A E » 0 . 

A 

Since y | g = 0 , the linear homomorphism of graded vector spaces 

* :ft (M;f) >ft (M;f) 

defined by the formula ^ (6) (x; ... v ... ) = 8 (x; ... yv ... ), v €A , maps 
isomorphically ft (Af; f) onto the space of horizontal forms ft .(M;f). The inverse 

£ A y i 
mapping is 

A -ft .(W;f) >ft (ff;f) 
^ A T i E 

defined by A (#)(x;...,w ,...)= tf(x;Aw , . . . ) , w €£ 
' * i i i l x 

For the trivial vector bundle f = AfxlR, one can easily obtain the equality 
E A 

d =A^o<j oy which is equivalent to the commutativity of the diagram: 
ft (M) —^—> ft (M) 

E E 

# # 

~ * ~ 7 (5) 
A 

ft ( t f ) > ft ( f f ) . 
A , i A , i 

Let w:>4 >g be the connection form of A (i.e. w | g = id and w|I/nA = 0 ) . w is 
also treated as a 1-form on the Lie algebroid A, with values at g, w€ft^(W;g). The 
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mapping H=id^-w:A A is to be the horizontal projection of vectors from A. It 
determines the horizontal projection of forms 

H :Q W ; f ) >Q ( W ; f ) 
* A A 

b y H J t K x ; v,...)=t(x;...>,...), v eA, . 
* 1 i i I X 
In [17; 3.1.1] there is defined the curvature tensor Q €fi (M;g) of A by 

b E 
Q ( X , X ) = - w ( | [ A o X ,\oX J ) , X €SecE. Now, we define - needed in the sequel - the 

b 1 2 1 2 i 
so-called curvature form of A as a horizontal 2-form on the Lie algebroid At with 

2 
values in g, fl€ft (M ;g ) , by the formula 

^ 1 * ^ 2 1 2 M 

Below, the exterior derivative of forms on the Lie algebroid A, with values in g, 

[also in the associated vector bundles A g , . „ „ J with respect to the adjoint 
representation ad :A > A(g), (# (v)=l£>fvl) [17; 2.1.2] [or induced ones] will 

A v a d ^ ° £ 
be shortly denoted by d 9. 

Proposition 2.1 (The Maurer-Cartan equation). 

Q = d 9w - |[w, w]. 

{The form [o)>o>] is defined via formula (2) for the 2-linear homomorphism 

[ • > • 1 • g x g > g ) . 

(Remark: The difference here, in comparison with the classical formula for 
principal bundles- see, for example, [8] - [the sign " - " before the second 
component], has its roots in the fact that the Lie algebra of the structure Lie group 
in the principal bundle considered there is taken left, not right). 

Proof. Without difficulties we can easily prove (in analogy to [8]) that two forms 
2 * €fi (M;f), i = l,2, are equal to each other if and only if (a) i* = i*. veSecg, 

i A v 1 v 2 
(b) /T (* ) = tf (* ). 

* 1 * 2 

(a) i Q = 0 for veSecg by the horizontality of Q; on the other hand, for 
v € Sec g and t j € Sec A, 

i (d9w - w]) (TJ) =dqu)(v,i)) -|[w,w ] ( i>,T) ) 

= I v f w(n)]-[D , w ( v ) l - c « ) ( I v , T | ] | ) - Iw(v ) ,w(7 ) )J = 0. 

(b) For £ € S e c i 4 , 
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1 2 2 1 1 2 1 2 

= - C i ) ( [ f f o ^ , t fo£ J) = Q ( / /o£ ,//o<~ ) = (// Q)(£ ). • 
1 2 1 2 * 1 2 

A) Homomorphism w A 

For each point xeM, the mapping 
# # j # # 

p : g ^ = A >4 cAi4 
I X I X \ X \ X 

W I > W °0) 
I X 

is linear and keeps the property 

p{w ) A p ( w )=0 for w €g 

AA is an associative algebra with unit element, therefore, by the universal property 
1 x * of the exterior algebra , see [7; p. 103], we obtain the existence and the 

uniqueness of a homomorphism of algebras of degree 0 
A * * 0) :AA >/\A 
X \ X I X 

extending p and such that wA(l)=l. Using the canonical duality between the exterior 
algebra over a vector space and over its dual l[7; p.104] we have that 

<o>A(0) , w A . . . A W > = <0,W ( X ; W ) A . . . A O ) ( X ; W ) > 
x v l k ^ l k 

k * .k ̂  for i/j € A a and w e A .We notice that if ^ € SecA g , then 
I x i I X 

wA(¥):tf >A k/, xi ><A*(x)), 
x 

is a C°° cross-section of /\kA , i.e. a>A W € Q k (M). 
A 

Of course, 
A k>0 I, # A 

w : e (SecA g ) >Q (tf), *i >o> (*), 
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k>0 k * 
is a homomorphism of algebras where the space © (SecA g ) is equipped with the 
structure ) i A # for which # A $ is defined point by point. 

1 2 1 2 1 2 
oo 

Define a C 2-linear homomorphism of vector bundles 
< • , - > : A k g * x A k g >ir 

(being, in fact, a duality) via the family of the canonical dualities 
<-,->:Akg* xA k g , >R. 

I X I X 

Looking at definition (2) above and treating as a 0-form on A, with values in 
k * 

A g , we can easily assert: 

A 1 k * 2.2. o) ( ¥ ) = — •<¥ ,<<> A . . . A w> if ty€Sec/\g where W A , , . A U is defined by formula k! v v ' k t i m e s 
k 

(2) for the k-linear homomorphism A : g x . . . x g >A g, whereas <^ ,W A . . . A W > - for the 
duality <•,•>. • 

Lemma 2.3. t (oAtO = c o A ( t ^ ) if veSecg. 
V V 

Proof. In view of the obvious equality i u) = v, of Th.l.3(vi) and of 2.2 above, we 
k * 

have, for ̂  € SecA g , 

L { u ) \ ) = L f ~ ' < i W A . . . A W ) ] = ~ < < i t ( W A . . . A W ) > 
v vv k! J k! 

1 k 1-1 1 = —-<ty, Y (~1) U A . . . A I W A . . . A t t ) > = — ' < ^ , k ' t 0 ) A W A . . . A 0 ) > k! v k! v 

= — . < C ^ , W A . . . . A W > = W A ( l • (k-D! x v N y ' v k-1 t i m e s 

V 
B) Homomorphism Q 

Let Q e Q (A/;g) be the curvature form of the connection A under consideration. For 
A 

each point x€M, the mapping 

* 2 * e v ^ 
li:g ->A A cA A 

\ X \ X I X 
W I >W oQ 

is linear and keeps the property 
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X X # ^ # X 
J I ( U ) A f i(v ) = p ( w ) A / l i ( U ) for u , w eg^ . 

AeVi4 is an associative algebra with unit element, therefore, by the universal 
X * symmetric algebra property of Vg Yl\p.\92]y there exists a unique homomorphism of 

algebras of degree 0 

Q V

: V g > A At 

X I X I X 
v extending u and such that Q (1)=1. 
X 

Lemma 2.4. Via the canonical dualities [7; pp. 104, 193], the homomorphism Q V is 

defined by the formula 

v 1 1 <ft ( D , w A . . . A w > = — • — *Y sgncr-<r,Q(x;w A W )v...vQ(x;w A W ) > 
x 1 2k k! k u 6 < r ( l ) <r(2) <r (2k - l ) <r(2k) 

2 <r 
k * for r € V a and w e A 

9 \ X i I X 

Proof. In view of the linearity with respect to T of both sides of the above 
x x x x 

equality, it is sufficient to check it on the simple tensors r = v v...vv , w^eg^ . 

v * # 
<Q ( W V . . . V W ) , W A . . . A W > 

x 1 k 1 2k 
V X v * = <Q (w ) A . . . A f i ( w ) , W A . . . A W > 
x 1 x k 1 2k 

1 X x 
= —-Ysgncr-w (Q(x ;w A W ) ) - . . . - W ( Q ( X ; W A W ) ) 

k u a 1 < r ( l ) <r(2) k <r (2k - l ) <r(2k) 
2 <r 
I 1 * * 

= — . — - y s g n ( r - r w (Q(x ;w A W ) ) - . . . - W ( Q ( X ; W A W , , ) ) 
k! k U S ^ 1 < r ( 2 - T ( l ) - l ) < r ( 2 ' T ( l ) ) k < x ( 2 « T ( k ) - l ) < r ( 2 * T ( k ) ) 

2 or T 
I I * 

= —. — *Y s%ncr'Perm\ < w ,Q(x;w A W )>;i, j<k] 
k! k ^ 6 F L i < r ( 2 j - l ) <r (2j) ^ J 

2 <r 
= -"-Ts£n(r <</v...v/,fi(x;v A W )v...vQ(x;w A W ) > . • 

k! k u S 1 k <r{\) <r(2) <r (2k - l ) <r(2k) 
2 <r 

k * 
Applying the above lemma, we see that, for T € SecV g , the cross-section 

Q V ( r ) : t f > A 2 k / , x i >Q V(T(x)), 
X 

i s C°°, i . e . flV(D e f i 2 k ( t f ) . 
k>0 k x 

The space e {Secy g ) forms an algebra in a standard way, and the mapping 
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w k > 0 i , # „ v 

Q : © (SecV g ) * fi (M) 

r i > Q V (D 

is a homomorphism of algebras. 
By standard calculations, we obtain 

2.5. Q V ( D =^«<r,Qv. . . vQ> for r € SecVkg* (the forms f2v...vQ and 
<r,Qv . . .vn> are defined by (2) for suitable multilinear homomorphisms). • 

2.6. It is well known that, in the vector space Ag , the classical 
I X 

Chevalley-Eilenberg differential works, see, for example, [9; p.107]. For our purpose, 
we must slightly modify it by multiplying it by -1 (cf. Remark next to Prop.2.l), i.e. 
we adopt the following differential: 

8 :Ag. > Ag, 
X I X I X 

<S {\b) yW A. . .AW > = ~ Y ( - l ) i + J <0, [W ,W ] A. . . t . . . " j . . .AW > 
x 0 k i j k 

i < j 

for 0 e A k g * (k>l), w € g , and 6 0 = 0 for 0€A°g* 6 is an antiderivation 
I x v J i I x x I x x 

of degree +1 and, for an arbitrary k>0, the induced homomorphism of vector bundles 
k k * k * 
6 :A g >A g 

00 
is, obviously, of the C class. 

V * * q A * # # 
Proposition 2.7. Q (w ) = <w , d o>> - w (6 (w )) for w € Sec g . 

Proof. Applying the Maurer-Cartan equation, we get 

QV(w*) = <w*, fi> = <w*, d 9 w > - i • <w*, [w, w]>. 

On the other hand, for f , f €Sec>4, 
1 2 

A ^ ^ 
^ 1 2 ^ 1 ^2 

= <w*, , CJ£23> = I • <<w*, [w, w]>, ^ A C 2 > . • 

Definition 2.8. Define the mapping 

k>0 k # 
K: © (SecA g ) >^ (M) 

by the formula 
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K(tf) = — -<#,d9 (w A . . . A d))>- w A(6#) k ! v v ' k t i m e s 

for € SecA g • 

Of course, by Prop.2.7, 
# V * 

K(w ) =Q (w ) (6) 
if w €Secg . 

Proposition 2.9. The fundamental formulae for K: 

# # k 5 ^ # A * A * 
(1) K(w A . . . A W ) = Y (-1) K{W ) A(i) ( W A . . . S . . . A W ) 

1 k

 8 = 1 s i k 
for w eSecg , 

(2) =dA{u)A{*)) - w A(S*) - — -<d9*,w A . . . A w)> k! v v ' k t i m e s 

k * 
for * € SecA g • 

Proof. (1): Applying Th.1.3(viii), we get 

K(w A . . . A W ) = — ' < W A . . . A W , d 9 ( w A . . . A u ) ) - U (5(w A . . . A W ) ) 
1 k k! N 1 k 1 k 

1 * * k « g l A k s l * * * 
= — - < W A . . . A W , f (~1)S~ W A . . . A W A d 9 W A . . . A W > - W ( 7 ("1)S W A . , . A 6V A . . . A W 1 
k! 1 k ^ v v ' v

c _ f l 1 s k y 

s - 1 s - 1 t i mes s - 1 

1 * * k s 1 A * * A *" 
= — - < W A . . . A W ,k* (d9w) A W A . . . A W> - V (~1)S W (6V A W A . . . S . . . A W ) 

k ! 1 k s = l s i k 

= - < W A . . . A W , (d w) A W A . . . A W> - > (~1) W ( Sw J A W (w A . . . A s . . . A W J. 
(k-1)! 1 k s = l s i k 

On the other hand, 

k «5-1 * A * A * k k S . i . * A A , A , * A * ^ 
7 (-1) Kiw ) A W (w A . . . s . . . A W ) = f (-1) ( < W , d 9 W > - W (6V ) ) A W (w A . . . s . . . A W ) . 
8=1 S i k S = l V S 1 k 

Therefore, it is sufficient to prove the equality 

— - < W * A . . . A W * , (d9w) A W A . . . A W> = Y (~1)S 1 <W , d 9 W > A W A ( w A . . . S . . . A W ) . 
(k-1) I N 1 k s = l s 1 k 

For this purpose, take xeM and w , i«k+l. We have 
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— - < W * A . . . A W * , (d90>) A U) A. . . A W ) ( X ; W A . . . A W ) 
( k - 1 ) ! N 1 k ' X 1 k+1 

1 * * q 
< ( w A . . . A W ) (x) , ( (d30>) A (J A . . . A U)) ( X ; W A. ..AW )> 

( k - 1 ) ! 1 k 1 k+1 

= < (w* A . . . A w*) (x), Y + J 1(d 9 w)(x ; w aw ) A O ) ( X ; W ) A . . . f. . . A . . . AW (x; w )> 
1 k ^ i j 1 k+1 i<J 

* q * A A 
w (x; (d*0)) (x; w A V ) ) w (x ;w(x ;w )) ... i ... j ... 

1 i j 1 1 ; ; 

= E ( - i ) i + j _ 1 - I I I I 
1 K ^ * q * A A 

w (x; (d 0)) (x; w aw )) w (x ;w(x ;w )) ... i ... j ... 
k i j l l 

= E (-l)1^"1- i (-l ) S + 1 -w*(x; (d9a>)(x;w A W ) ) • 
« 1 s i j i<J s = 1 

• < ( w * A . . . s . . . A W * ) ( X ) , C c ) ( X ; W ) A . . . f . , . j . . . A w ( x ; v ) > 
1 k 1 k+1 

JS, , - xS+1 * ,q v A , * A * w v 
= ; (-1) * < v ,d W ) A U ( w A . . . s . . . A W )(x;w A . . . A W ) . „ 1 s 1 k 1 k+1 

s= 1 

(2): By Th.l.3(viii) (treating ^ as a O-form on the Lie algebroid A> with values 
in A k g ), we have 

d \ ^ W A . . . A W> = <d 9 ^ , ( J A . . . A W> + <^,d9 ( ( J A . . . A t c ) ) > . 

Therefore, by 2.2, 

= I _ . < # , d 9 ( w A . . . A W ) ) - W A ( ^ ) 

= iy-[k!di4(wA6^) - < d 9 * , w A . . . A W>] -w A(S¥) 

= dJ4((JA6>J') -0)A(6#) -i-'<d 9^,0) A . . . A ( J > . • 
k! 

.k * 
Because of the fact that each cross-section tyeSecftg is locally a sum of 

X X X X 
cross-sections of the form w A . . . A W for w eSecg , we get 

I k s 

Corollary 2.10. If the connection A considered is flat (i.e. £2 = 0), then, 
according to (6) and Prop.2.9(1), we see that K = 0, which means, by definition 2.8 
and Prop.2.9(2), that 
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(/(6*) =i-.<#,d9 ( W A . . . A w ) ) = d % \ ) - ~ - - < d 9 ¥ , W A . . - A 0 ) > . • 

Remarks 2.11. Keep the assumption Q = 0. 
k * 

(1). If ^eSecAg is invariant with respect to the representation ad of A on g 

[i.e. if # € (SecAkg*) o , or, equivalently, if d 9# = 0, see 1.7], then 
d^c/*) =0. 

Indeed, by Cor.2. 10, we have dA io)\) = o)A (<5#); but, for each point x€tf, the 
k * 

tensor \ H x ) € A g | is invariant under the canonical representation of the Lie 
k ^ 

algebra g ^ on ^9]x (induced by the adjoint one) and such a tensor is a cycle 
[9; p.186], so {dty){x)=S )=0. Therefore, there exists a homomorphism of algebras 

X X 

w A: k e ° ( S e c A k g * ) „ >Z (ff)cQ (M), *i -»«A(¥), 
o I A A 

and, next, 
* k>0 k # 
w : e (SecA g ) 0 > Z (M) > H (M) 

/ >4 4̂ 
h > [ W ( $ ) ] 

o 

(2). If A is a transitive Lie algebroid, then, in view of Th.1.5.2, each invariant 
k * 

cross-section $ € (SecA g ) 0 is determined by the value at an arbitrarily taken point 
x eM. Thus, the domain of u> is isomorphic to some subalgebra B c A g • If, 
additionally, A = A { P ) for some connected principal bundle (P,TI,M,G, • ), then, 
according to 5.5.2 from [17], B is isomorphic to the vector space (A9 ) J of invariant 
[with respect to the adjoint representation] vectors. Let w^eQ1 {P;q) be the form of 
the connection on P corresponding to A. Then, the real-valued form on A(P) 6 : = CJA((T ) 

for ve{/\Q ) (for cr̂  , see [17; 5.5.2]) is precisely the one for which the 
corresponding right-invariant form 8 on P is equal to <vtu)^A. . .ACJ^>. Recall that ? 
Q(z;u A . . . A T / ) = 9(nz;nA (v ) A . . . A nA (v )), zeP, v €l P ( 7 / : TP >4(P) is the 

1 k I z 1 I z k i z v 

classical projection [15]). 
(2'). In particular, for an arbitrary Lie algebra 9 (treated as a trivial Lie 

algebroid over a point) and for the only connection A = 0, 
7 

0 -> q = 9 > 0 > 0 
^ < * <  

w=id A=0 
A * * we have 0) : ( A 9 ) c >A9 is an inclusion and 
o / 
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( / : ( A s * ) r — - > / / ( a ) . 

* l — - > [ * ] 

# r 1 

We realize that, for a reductive Lie algebra g, o) is an isomorphism [9; p.189]. 

(3). Consider the case of the foliation (G, {aH; a € H}) of left cosets of a 

connected Lie group G by a connected nonclosed Lie subgroup HcG and let A be the Lie 

algebroid A(G;H) of this foliation, see [17], [16]. The homomorphism w # has the 

following form: there exist isomorphisms of algebras a and ¡3 such that 

k>0 k * 
© (SecA g ) 0 - > H {G/H) 

I A 

a = ¡1 ~ 

A ( I ) / b ) * » W (G/5 )«A ( I>/b)* 
dR 

¥ I > 1 ® ¥ 
(I) is the Lie algebra of the closure H of H) . 

The isomorphism a is built in the following way: via the global trivialization 

(p:G/H xT)/h——>9> see [17; 8.2.4] and [16; 3.2], any cross-section $ of A kg* 

determines some f)/F)-valued function $:G/tf >A k (I) /f)) . Analogously as in the proof of 

Prop.8.4.1 from [17], we assert that # is invariant if and only if \1> is constant. The 

isomorphism a is defined as follows: #i -»$(x), x being an arbitrary point of G/H. 

The isomorphism ft looks as follows: according to [l6;Th.3.3], the Lie algebroid A 

is trivial and an isomorphism of Lie algebroids p: T{G/H) x F)/lf) >i4 is given by the 

formula p(v, [w] ) = X(v) + <p(rn/, [w] ). Therefore, the superposition 

P:H (G/H) -^>H(T(G/H) x b/f)) - = - > / f (G/tf) x A (F)/F)) * 
>4 v 7 dR 

is an isomorphism of algebras. The commutativity of our diagram follows now in a simple 

way. 

C) Homomorphism (dc;)V 

This section will not be needed till Part III. 

d 9w at a point x € M is a 2-linear skew-symmetric tensor (d 9w) : A xA >g 
„ \ x \ x \ x 9 \ x 

? * a 
understood sometimes equivalently as an element of IVA ®g . (d w) defines a linear 

I X I X I X 
mapping 
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2 ^ ^ (dw) :g >A A c /\A 
X I X I X I X 

W I > W o ( d W ) 
I x 

having the property 
# # # # # # (dw) (w ) A (do)) (w ) = (du>) (w ) A (da>) (w ), w e g 

x l x 2 x 2 x l i ^ l x 

* 
Therefore, by the universal property of the symmetric algebra Vg { , see [7; p. J, we 
obtain the existence and the uniqueness of a homomorphism of algebras 

v # # (dw) :Vg >/\A 
X I X I X 

extending (dw) and such that (dw)V(l) = l. 
X X 

1 * 
Lemma 2.12. Let T € V a , then for w , . . . , w € A 

3 l x 1 21 I x 
V 1 q 

<(du)) ( D,w A . . . A W > = 'Y sgncr-<T, (d*w) (w A W )v. . . 
x 1 21 1 u I x cr (1) <r(2) 

1 ! * 2 <r 
. . . V(d9Ct)) (w A W ) > . 

Ix < r ( 2 1 - l ) <r(21) 

Proof. It is sufficient to prove this for a simple tensor r = w^ A . . . A w ^ : 

v # # 
<(dw) ( W A . . . A W ) , W A . . . A W > 

x 1 1 1 21 

= <(dw) ( W ) A . . . A ( d w ) ( W ) , W A . . . A W > 
x 1 x 1 1 21 

= — Y sgn<r- (dw)(w)(w A W ) • . . . • (da>) (w ) (w A W V ) 
1 ^ fe x 1 c r ( l ) <r(2) x 1 <x (21 - l ) <r(21) 

2 cr 

= — -Y sgn<r-<w*, (d9to) (w A W )>•... -<w , (d9d)) (w A W ) > 
1 L B 1 I x cr ( l ) <r(2) I ' Ix <M21-1) <M21) 

2 cr 

= V sgntr-V <w*,(d9w) ( W A W ) > • . . . 
L j

T

 & ^ 1 Ix < r ( 2 ' T ( l ) - l ) <r(2-T(D) 

. . . • < W , (d*0>) ( W A W ) > 
1 I x < r ( 2 ' T ( l ) - l ) < r ( 2 ' T ( l ) ) 

(where I is the set of all permutations of the sequence (1,2, . . . , 21), such that 
cr(l)«r(2), . . . ,cr(22-l)«r(2i), <r(l)«r(3X. . .«r(2i-l)) 

= — L — T s£[n(T'</v. ..v/,(d 9u) (w A W )v...v(d9o>) (w A W , ) > . • 
1 u 6 1 1 Ix < r ( l ) <r(2) I x < r ( 2 1 - l ) <M21) 

1 ! • 2 <r 

1 * 1 * 
According to this lemma and the fact that the canonical duality V g xV g № 

[defined point by point by: ( {w^ v. . . v ), (ŵ  v. . . v w^) J i > perm [ <w^ , w> J J is a C 

2-linear homomorphism of vector bundles, we assert the following 
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1 * 

52 

2.13. For r€SecV g , the cross-sect ion 

(dw) V(D:W >A 2 1/, xi >(dw) V (r ) , 

is a C°° real Zl-fOrm on A, i.e. (dw) V ( D € Q 2 1 (M), a s weii a s it i s defined by 
A 

(dw ) V (r) =--<r >ci gwv. . .vd9(j>. • 
1 ! X X 

3 . A C O N S T R U C T I O N O F T H E C H A R A C T E R I S T I C C L A S S E S O F F L A T R E G U L A R 

L I E A L G E B R O I D S 

Here we construct characteristic classes having the following property: 

— the existence of nontr ivial classes among them is a measure of the 

incompatibility of the flat structure of a given regular Lie algebroid A [over (M,E)) 

with a given subalgebroid B of A [also over (M,£)). 

In the case of an integrable transitive Lie algebroid A = A(P), P being any 
principal bundle, these classes agree with the so-called characteristic classes of the 
flat principal bundle P [10]. 

Consider in a given regular Lie algebroid (4, [[ • , • 3, ) over (W,E) two geometric 
A 

structures: 
(1) a flat connection A:£ >Ay 

(2) a subalgebroid Be A over (M,£), see the following diagram 
*A 0 > Q ( > A E > 0 » < < 

" (i> T A t (7) 
j id 

I I j 
0 > h c > B E > 0 . 

Notice that h = g n £ (h: = Ker y^). 

The system (A, A,P) will then be called an FS-regular Lie algebroid [over (M,£)). 

Examples 3.1. (1) A triad (P,P',w) consisting of a principal bundle P, of an 



//-reduction P' and a flat connection in P with a connection form u) determines an 
FS-transitive Lie algebroid (A(P),A,A{P')) ( A corresponds to a>). For the theory of flat 
principal bundles with given reductions, see [10]. 

(2) We recall that both a transitive Lie algebroid A = (A, [[ • , • 1 , y) on M and an 
involutive distribution FcTM give rise to the regular Lie algebroid over (M,F) of the 
form A =y [F]cA, see [ 17; s. 1. 1.3]. Consider now a triple L d , £ , A ) consisting of a 
transitive Lie algebroid A on My a transitive Lie subalgebroid B of A and a partially 
flat connection A in Ay namely, flat over a given involutive distribution FcTM. The 
triple 

(/,B F ,A|F) 

is an FS-regular Lie algebroid. 
(3) Let now the system (P,P',a>) be given as in Ex.(l) with the difference that o) 

is assumed to be partially flat, say, over an involutive distribution FcTM. Such a 
system (named a foliated bundle) is investigated, for example, in [10]. It determines 

F F 
the (nontransitive) FS-regular Lie algebroid {A{P) ,/4(P') , A|F) written above. 

Examples on the ground of the theory of nonclosed Lie subgroups will be given in 
Ch.7 below. 

We construct some characteristic classes of an FS-regular Lie algebroid ( i 4 , A , B ) , 

measuring the independence of A and B, i.e. how far JOT A is not contained in B . The 
construction has a number of steps. 

A k * 
3.2. Let s:g >g/h D e the canonical projection. The form ^)(^): = 0) (A s °$), 

k * 
where ^€SecA (g/h) » is h-hor izontal, i.e., equivalent ly, its restriction to the 

* A k # 

subalgebroid 8 - j (« (A s - is horizontal. Indeed, for veSech, applying Lemma 
2.3, we get 

i ( t A A k s * o * ) ) = c A t (A ks*o#))=0 

because the fact that : = soy = 0 yields 
k * k * 

< t (As o # ) , i ; A . . . A y > = <A S ofy^vAV A...AV > 
v 1 k-1 1 k-1 

= [ v ] a [ i > ] A . . . A [ l > ]>=0. 
1 k-1 

for v €Secg. 

k 
Therefore (see the previous section) there exists a form A$€ft^(Af) such that 
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j * ( u A ( A k s * o * ) ) = (y 1 (A*). 
B 

Notice that if A is a connection in B (i.e. ImXcB)y then A# = 0 . In fact, for 
X GSecE, 

i 

<A* ,X A . . . A X > = <(r ) (A*),A<>X A. . .AAoX > = < j M c A A k s * o # ) ) , A o X A . . . A A o X > 1 k # * 1 k l k 

k * 
= <A S oty,0>oAoX A . . . A 0)o\oX > = 0 . 

1 k 

3.3. Put 

k>0 k / * 
A: e (SecA ( g / h ) ) >G (H). 

\jr i ->A^ 

A being a superposition of homomorphisms of algebras, see the following diagram 

SecA k(g/h)* ^ — > Qe{H) 

\ </> Q (W) 

\ ^ 
A 

S e c A kg* — > ft (tf) 
>4 , h 

(where ft^ denotes the space of h-horizontal forms on A ) , is itself such a 
homomorphism. 

Directly, A is defined by the formula 

(A*)(x;v A . . . A W ) = <tf ; [w(x;w ) ] A . . . A [w(x;w )]> (8) 1 k x 1 k 

for w eB such that y{w)=wyweE , x^M. 
i I x B i i i I x 

3.4. Define a representation 

ad A :B * i « A k ( g / h ) * ) 

b »g 

by the formula 
<£ . ( * ) , [ v ] A . . . A [v ]> 

ad 1 k 
k = (y„<>C)<*. Il> ] A . . . A ] > - £ < * > 1 A . . . A [1?, V 3] A . . . A [V ]> 

B 1 k 1 j k 

for ^ € S e c A k ( g / h ) ^ , ^eSecB, and p €Secg. 
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The correctness of this definition follows from the fact that if one of v 9s lies 
J 

in h, then lies in h, too. 
Notice that 

A k 

ad = A (ad ) , 

where (a) 

ad :B >i4(g/h) 
# , g 

is a representation given by 
2 ( M ) = [S Av)} ( = [ I C v I ] ) 

ad ad . o ^ v ' 

for ^ € Sec B and i> e Sec g (ad is the adjoint representation of A> see [17; 2.1.2]), t, * 
(b) (•) is the contragredient representation [17; 2.1.3], 

k 
(c) A T , for an arbitrary representation T:A >A(f)9 denotes the skew-symmetric 

product of T defined analogously to the symmetric product [17: 2.2.1]. 

k>o k * 
3.5. In the space e (SecA (g/h) ) of cross-sections invariant with respect to 

ad A , we introduce a differential 8 of degree +1 defined as follows: for 
^€(SecA (g/h) ) ^ 0 and v eSecg, we put 

<<5*, [v ] A . . . A [v ]> = - £ (~l)i+j<*, [Ei> ,v 3] A [i> ] A . . . t . . . j . . . A [v ]>. 
O k ^ i j 0 k 

i < j 

(a). The correctness of this definition. If v eSech for some index j 0 , then 
1 o 

£ (-l)l + J<^, ,I> 1 ] A \ V \ A . . . t . . . J. . - A [ l > f c ] > 
i < J i j 0 

= ("I) 3 0" 1' E [l> 1 A . . . J . . . A [ 0 > ,17 J] A . . . A [l> ]> 
0 0 1 j k 

= 0 

by the invariance of ̂  and the equality VB°v^ =0. 

(b). 6$ is invariant. Indeed, for £ € Sec B and v eSecg, we have, by the 
invariance of ̂ , 

( y <>£)<5tf, [i> ] A . . . A [v ]> 
B 0 k 

= (r E ( - D i + J < * , [ [ V , i ' ] ] A [ H A . . . I . . . J . . . A [ H > ) 
B K i j 0 k 7 

i < J 

= E ( - l ) l + J(<*> ilZ.lvHI] A [ i M A . . . . J . . . A [ V F C ] > + 

K J 
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+ T <*, llv ,V I] A [V ] A . . . A [1%,V J] A . . .t. . . j. . . A [v ]>) 
^ 1 1 0 1 k ' 

= - ! ( E ( - D ' ^ J I l ' ) P ] ] A [ H A . . . A [ [ C , l ' ] ] A . . . i . . . j . . . A [ v ] > + 
v i j 0 I k 

1 l * i < j * l 

+ E (-1)1 + 1(<*, [IV 13] A [V ] A . . .t. . .t. . . A [y ]> + 
^ v 1 1 0 k 

i <1 

+ E (~1)I + J(<*, m,lVx,V H ] A [Vq] A . . . t . . . J. . . A [ V K ] > ) 
1<J 1 j 0 

= £<<5tf, [l> ] A . . . A 3] A . . . A [V ]>. 
1 

(c). It remains to notice that 

(i) 6 2 = 0, 

(ii) 6 is an antiderivation of degree +1. 

For this purpose, firstly, for an arbitrary point xeMt we can define a space of 
k * 

tensors (A (g /. ) ) 0 invariant with respect to the representation of the Lie 
i x j h / 

algebra h , induced on A (g ) by the representation ad of h on (g ) 
l x ^ I x / t l x l x ~ l x/n 

I x l x 

defined as follows: 

<ad*( i>) (0) , [fx]> = - <<p9 [ ]> 
X 

for y€ h , <p€(g /. ) and ¡1 € g 
i x i x/n I x 

' I X 

Secondly, we define an antiderivation 

V ( A ( 9 , * / h > % — * ( A ( 9 , , / h > % 
I X ' \ X 

of degree +1 as the one which on elements 0 of degree +1 equals 

<<5 ( 0 ) , [ i > ] A [ u ] > = < 0 , [ [y,fz] ]>, F , f i e g It can easily be seen that if 
x I x 

( S e c A ^ g / h ) * ) ^ , then 

(2) (5*) =5 (* ). 

X X X 

In consequence, 8 fulfils (i) and (ii) in an evident manner. Of course, these 

properties of 6 can also be checked directly. 
Definition 3.6. The relative cohomology algebra of g with respect to B is defined 

k>o k # 
as the cohomology algebra of the complex ( e (SecA ( g / h ) ) / 0>3): 
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H(g;B): = H ( ® (SecA ( g / h ) ) < > . * ) • 

Proposition 3.7. The mapping A restricted to the invariant cross-sections 

A * ( = A , „ , D J: k®°(SecA k ( g / h ) * ) >QJM), * i >A¥, 

~ E 
commutes with the differentials 6 and d . 

Proof. We need to prove the equality 

A ( 5 ¥ ) =d E(A*) ( 9 ) 

for invariant cross-sections ty. 
The fact that ) is a monomorphism implies that this equality is equivalent to 

b 

(y )jA(3*)) = (y ) „ ( d E(A*)). But, by definition, see 3.2, (y ) (A(Stf)) 
B B B 

= j * ( w A ( A k + 1 s * ° (6^) ) ). On the other hand, applying (5) and the obvious fact 

d B ( = j ^ d * * ) , we get 
(y ) (d^CA*))=d B((* ) fA*)) = d P ( / ( a > A ( A k s * c * ) ) ) = / ( d i , ( w A ( A k s * o * ) ) ) . 

B * B * 

A k+1 * — 

Therefore, to prove (9), it remains to check that the forms cj (A s o(<5#)) and 
dA (o> A (A ks^o^)) agree on the cross-sections of B. 

Let £ €SecB; then (see 2.6 and 3.5) 
< ( J A ( A k + 1 S ^ o ( 6 ^ ) ) , ? O A . . . A ? k > = < A k V o ( 5 > ) , w ( ? o ) A . . .Au(? k)> 

= <5*, [ 0 ) ( € 0 ) 1 A . . . A [ W ( ? k ) ] > = - I (-l)i+J<¥, [ l o K ^ ) , (!>(£) I ] A . . . A . . . J . . . > 

i < j 

= - I (-l) l + J<A ks*o*,|[a)(*~ )3 A . . .t. . .J. . .> = < 6 o A V o t w ( f ) A . . . A W ( £ )> 
i j O k 

K J 

= < W A ( 5 o A k S ^ o * ) , ^ A . • - A ? >. 

On the other hand, by Prop.2 . 9 ( 2 ) and the flatness of A, we have 

c A c A a V o * ) ) =w A(SoA ks*°tf) + — - < d 9 (Aks*°tf) ,u> A. . .A w>. 
k ! v v ' 

k t i m e s 
So, it remains to show that 

j*<d9 (A ks*o*) > W A . . . AW> = 0. 

For £ a s above, by the invariance of ^, we get 
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<<d9 ( A k S * o ^ ) , 0 ) A . . . A W > , € A . . • A ? k

> 

= f ( - l ) J < d 9 ( A V o ^ ) ( C ) , ( t f A . . . A « ) ( ? A . . . J . . . A C ) > 
J=0 j 0 k 

= k ! - £ (-D J<2 r A k «• tf ( A ks^),w(£ ) A . . . ? . . . A W ( ? ) > 

J = 0 ( h K a d A ) o%} 0 k 

= k ! • £ (-l)J((r-€ ) < A V o ^ , a ) ( ^ ) A . . . ) . . . A W ( ? ) > ~ 
J = 0 V J 0 k 

- I < A k S ^ o ^ , W ( ? ) A . . . A I ? )1 A . . . J . . . > ) 

1 * J 0 J 1 

= k ! « £ ) < * , [ * > ( £ ) ] A . . . J . . . A ) I > -
J=0 J 0 k 

" £ < * , ) ] A . . . A [ [ £ ,Ci>(£ )J] A . . . J . . . > ) 

= 0. • 

The above Proposition yields as a corollary 

Theorem 3.8. The mapping 
A :ff(g,B) > ff (ff) 

[#] i -> [Â tf] 

is a correctiy defined homomorphism of algebras. • 

A is called the character ist ic homomorphism of the FS-regular Lie algebroid # 
( i 4 , A , B ) . Its image Jm A c// (M) is a subalgebra of H (M), called the characteristic 
algebra of the FS-regular Lie algebroid {A9XtB)9 whereas its elements - the 
characterist ic classes of that algebroid. 

According to 3.2, the compatibility of A with B implies the vanishing of A [of 
course, already on the level of forms]. A is then a measure of the incompatibility of 

# 
A with B. 

4 . F U N C T O R I A L I T Y 

Definition 4.1. Let M ' , A ' , B ' ) and (71, A , B) be two FS-regular Lie algebroids over 
(M',£') and (M,£), respectively. By a homomorphism 
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H: (A' ,A',B') > (AyA,B) 

between them we mean a homomorphism H:A' >A of regular Lie algebroids, say, over 
f: (W ,£' ) > W , E ) , such that 

(1) H<>\' = Xof^y 

(2) H[B' ] cB. 

Notice that H'=H\B':B' >B is then a homomorphism of regular Lie algebroids, 
too, see the diagram: 

0 0 

h' ^ > h 

9 > g 
R X R 

B' B 
w' / / 

1 / V 1 / *b d o ) 

A' H- >A 

£' > £ 

V V I * V I 

1 ^ 0 i / 0 
£' > £ 

0 0 

By the pullback of an FS-regular Lie algebroid (>4,A,B) over (M,E) via a mapping 
f: (#',£') >(MfE) we mean the FS-regular Lie algebroid (f A 4 , A, f AB) where A is the 
pullback of the connection A, see definition 3.2.1 from [17]. 

Notice that pr :fAA = E'x A >A is a homomorphism of FS-regular Lie 
K 2 < f* ,r> _ 

algebroids, called canonical. In view of the equality #<>A' = A, any homomorphism 
H: {A' y X' ,B' ) >(/l,A,B) of FS-regular Lie algebroids can be represented in the form 
of a superposition of a strong homomorphism with the canonical one: 

{A' yX' yB' ) —?U ifAAyX,fAB) ^ M,A,B). 
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4.2 Let H: (A' , A 7 ) >(A9X9B) be a homomorphism of FS-regular Lie algebroids, 
see diagram (10). We define the pullback 

tf+*:SecAk(g/h)* >SecA k(g 7/h 7 )* 

by the formula 

<H+*{*) , [w7 ] A . . . A [w7 ]> = <* , [H+{w' ) ] A . . . A [tf+(w7 )]> 
x 1 k fix) 1 k 

k / * 
where $ € SecA (g/h) > X G M , w 7 € g 7 ̂  

Proposition 4.2.1. (1). # + /naps the invariant cross-sections into the invariant 

ones. 

(2). H restricted to the invariant cross-sections commutes with the 

differentials S 7 and <5. 

Proof. It is enough to prove the proposition in two cases of H: of a strong 
homomorphism and of the canonical one. 

(a). Assume that H is a strong homomorphism of FS-regular Lie algebroids over 
(MyE). 

(1). Let £ 7 eSecB' and y 7 €Secg 7. Seeing diagram (10), we have 

( y D / ) < # + * * , [V' ] A . . . A [v']> 
d l k 

= ( y otf7 ©£ ' ) < * , [ l / ' o i ; ' ] A . . . A [tf+oi>' ]> 
B 1 k 

= £ <*, [H*ov' ] A . . . A [W 11 A . . . A [H+ov' ]> 
J= l 1 j k 

= £ < / / + * * , [ l / 7 ] A . . . A [C^ 7 , y 7 I ] A . . . A [v' ]>. 
J= l 1 j k 

(2) A very easy proof of the equality 6 7 <>//+*(ty) = H**°S(#) for an invariant ^ will 
be omitted. 

(b). Consider now the canonical homomorphism pr^:{fAA9XyfAB) >(i4,A,B) of 
FS-regular Lie algebroids over f:(M',£7) >(M,£). Identify the vector bundles 
* * +# * 

f (g/h)=f 9/f*Yi' Then, of course, H * = f and, by the standard calculations, we 

assert the following equality (cf. [17; 2.3.2]): 

f*(ad ) =ad - * . (11) 
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(11) and the fact that f*if^T) = Ak(f*f) for any representation T (cf. [17; 2.3.3]) 
yield 

f (adn )=f (A (ad ) ) = A (ad - * ) = a d \ * . 
B , g H , g r B,r g f B,fg 

Proposition (1) follows now from [17; 2.4.4]. 
To prove proposition (2), it is sufficient to show that 

< 5 ( f * * ) , [V o f ] A„ . . A [V o f ] > = <f*(6tf) , [V of ] A . . . A [V of ]> 
0 k 0 k 

for an invariant cross-section # and v^eSecg. 

< 6 ( f % ) , [V of ] A . . . A [V o f ] > 
0 k 

= - Y ( ~ l ) i + J < f \ , HV of , y o f ] ] ] A [v o f ] A . . . . j . . . > 
i < J 

= " E (-l)1 + j < ^ , f l ^ ^ 3] A [V ] A . . . f . . . j . . . > o f 
i < j i j 0 

= <6^, [17 ] A . . . A [V ] > o f = <f*(Stf), [l> °f] A . . . A [l? o f ] > . H O k O k 

+ * 
4.2.2. As a corollary we obtain that H determines a homomorphism of algebras 

//+*:tf(g,B) >tf(g' , B ' ) . 

Proposition 4.3 {The functoriality of A^). 
Let (A',\',B') and M , A , B ) be two FS-regular Lie algebroids over (M',£') and 

( M , E ) , respectively, and let H:(A' , A ' , B ' ) > ( > 4 , A , B ) be a homomorphism between them 

over f : ( # ' , £ ' ) »(A/,£). Then the following diagram 
A 

ff(g,B) — ^ > H (A/) 

* f 
A' 

ff(g',B') — ^ H ,(M') 

co/7wnutes. 

Proof. It is sufficient to show the commutativity of the diagram on the level of 
forms; this means - the equality: 

(y , ) (f*(A *)) = j'*(<y A ( A ks ' * o f / + * * ) ) 
b * * 

for an invariant ty. 
Let xeM' and w € B' .By (7) and seeing diagram (10), we have: 
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(y , ) A f * t & J r ) ) U 9 W A . . . A W ) = (f*(A ) , (w ) A . . . A ^ , ( W ) ) 
B * * 1 k * B 1 B k 

= (A *>(f (x);f (y , (w ) ) A . . . A f J r , (w ))) = (A *)(f(x); (y(ff' (w ) ) A. . . A i i AH' ( v ) ) ) 
* * B 1 * B k * B 1 B k 

= <*, r [w(f (x);W (w ) ) ] A . . . A [w(f (x);//' (w ))]> 
I U J 1 k 

= < * r ,;[ff+(w'(x;w ) ) ] A . . . A [ ff+ (tc)' (x; w ))]> 
I U J 1 k 

= <(ff+*¥)(x); [w' (x;w ) ] A . . . A [o>' (x; w ) ] > = < a V *off +*#(x); w' (x; w ) A . . . A W ' ( X ; V ) > 

l k l k 
A k * + * # A k * + * 

= G)' ( A s 7 off * ) (x;W A . . . A W ) = j' ((*>' ( A s ' off $) ) (x; W A . . . A W ) . • 
1 k 1 k 

5 . T H E D E P E N D E N C E O F \ O N A S U B A L G E B R O I D 

Let (;4, [[• , • 3,y) be a given regular Lie algebroid with the Atiyah sequence 
0 •—-» g c > A — E > 0 and consider the algebroid (71R x A> E 3' , id x - the 
product of the trivial Lie algebroid TTR with A [21]. Its Atiyah sequence is 

0 > 0 x g < > 7TRx A J^l^ TRxE ~ > 0. 

For the mapping ^ t ' ^ •> OR x Af, x^ >U,x), take the pullback f^OTRxA). 

Notice that r~A(71R x A) = { (y (w), 0, w) € E x: (TIR x /1); w € /1}, and that the homomorphism 

F :A » TRx/1, w i > (9 ,w), 
t t 

(0^ being the null tangent vector at t e (R) of regular Lie alge*broids (see the proof of 
Th.4.3.1 in [17]) is represented in the form of the canonical superposition 

F pr 
F :A—UfA(mxA) ~*TRxA (12) 

t t 

(see [17; s.l.l]). It is not difficult to see that 

5.1. f; : A >f A(TIRx/4), w h—-> (y (w), 0,w), is an isomorphism of regular Lie 

algebroids. m 

Definition 5.2. Two Lie algebroids B^yB^cA (both over (M,£)) are said to be 
homotopic if there exists a Lie subalgebroid BcTRxA over {RxM,TRx E) such that 
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the isomorphism F^ maps B^ onto ^(#) f ° r t = 0 , 1 (equivalently, if, for veAt we 
have: v € B <» ( 0 , v O « = B ) . 

t t ' 
B is called joining B to B . 

j ^ o 1 

Remarks 5.3. (1). The Lie algebra bundles adjoint of homotopic Lie subalgebroids 
need not be identical, see the example below. 

(2). Let a Lie subalgebroid BcTRxA join B q to B and let B : = F - 1 [ f \ b ) ] c A 

for t€lR. It turns out that B is not uniquely determined by the family {B^;t €(R}, see 
the following example. 

00 

Example 5.4. Consider a trivial principal bundle P = MxG, a C curve a:M >G 
and a closed nontrivial Lie subgroup // of G, H*G. Let f) and q be the Lie algebras of 
H and G, respectively. Then, for each £<=[R, P^: = Mx ia^-H) cMxG is an //-reduction 
of P whose Lie algebroid - which is easy to obtain - equals B -TMxAd [f)l cTMxQ. 

t a t Consequently, i4 [and also its Lie algebra bundle g = MxAd [J)l] depends on t in 
t t a ̂  

general. Define a vector subbundle B c 7TR x (TM x g) as follows: 
B = {(u,v\R , (a^ (u)) + 4d (w)); u € T (R, veT M, w€f)Y. 

I ( t , x ) v a"1 *t at t x 1 

B is a transitive Lie subalgebroid (of the product of Lie algebroids TJRx(TMxq)} 

joining the family {B^;te\R}. 
If, additionally, G is abelian, then B s const, but B depends on the curve a; 

therefore B is not uniquely determined by the family {B^;t€lR}. 

5.5. We compare the relation of homotopic subbundles of a principal bundle P with 
the relation of homotopic subalgebroids of A(P). 

Let P= (P , t t ,W , G, • ) be a G-principal bundle over a manifold M. It determines a new 
G-principal bundle (RxP = ({RxP,idx7r,IRxAf,G, • ' ) with the action 
it ,z) •' a= (t ,z-a). For an arbitrary t€lR, the mapping 

F :P > /*(R x P) ( = « (RxP)) 
t t v ( f t , i dXTt) ' 

Z I -> (TTZ, ( t , z)) 
is an isomorphism of G-principal bundles. 

Take a Lie subgroup HcG (nonclosed and disconnected in general). Two 
//-reductions P cP, t = 0 , 1, are said to be homotopic [ 1 0 ] if there exists an 
//-reduction PclRxP such that F maps Pfc onto f^(P) for t = 0 , 1. P is called joining 
P to P . o l 
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5.5.1. Notice that P is determined uniquely by the family of //-reductions 
P = F~ [f (P)], £<=IR [which follows from the observation: zeP * ( t , z ) € P ] . 

t t t L t J 

5.5.2. If H is closed and P are defined by C°° cross-sections <^:# >P/H for 
t=0, 1, of the associated bundle P/H > M , then, P q and P are homotopic if and 
only if <r and cr̂  are homotopic in the usual sense (via cross-sections, of course). 

Proposition 5.5.3. If P <-̂ -*-»P, £=0,1, are homotopic H-reductions of P, then 
the Lie subalgebroids B : = di U ( P )] and P : = di [A{P )] of j U P ) are homotopic. The 

b 0 0 0 1 1 1 
converse theorem is not true unless P and G are connected. 

t 

Proof. Let P Q , P ^ P be two //-reductions of P . Assume that they are homotopic, 
and that P c R x P is a joining //-reduction. Then B:-<p[A(P)] c T T R x j U P ) , 

<p:A{RxP) = T{RxP)/G b [(v,w)] i > (v, [w] ) €TRxTP/G = TRxA{P) 

being the canonical isomorphism, is a Lie algebroid joining BQ to B^. Indeed, one can 
easily see that F :A(P) > fA(TRx A(P)) equals the superposition 

dF ^ 
A(P) Alf (RxP)) =fA(A(RxP)) *f A(7TRxil(P)) 

t t t 

and then maps B^ onto £^(#) f ° r 1. 
Conversely, assume that the Lie subalgebroids B q and B are homotopic, say, via a 

joining Lie subalgebroid B of TRx A{P). This means that F^ maps B^ onto fA(B) for 
t=0, 1. Let P c R x P be the arbitrarily taken connected //-reduction corresponding to 
the Lie subalgebroid <p~X [B] c A (R x P), see 1.5.3.2. Put P ̂: = F^1 [f*(P)] , t € R. By its 
construction, {P^,t€R} is a family of homotopic /^-reductions. Of course, P^ and P^ 
are, for t=0, 1, two //-reductions corresponding to the same Lie subalgebroid B^. 

If P is connected, then, according to the fact that P^ and P^ are integral 
manifolds of the same G-right invariant distribution on P (see 1.5.3.2), we notice that 
P = R [P ] for a point g€G. If, additionally, G is connected, g can be joined to the 
unit eeG, say, by a C family g , selR. The family P : = R [P ] , s € OR, determines 

s t , s g g t 
a homotopy between P and P^, £=0, 1. Therefore P q and P are homotopic. • 

5.6. For the further investigations, we fix 
• a regular Lie algebroid A = (A, I • , * 1 , ^r) over (M,£), 
# a flat connection A:£ >A in it, 
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• two Lie subalgebroids B , B cA, both over (Af,£), homotopic to each other via a 
0 1 

joining Lie algebroid Bc71Rxy4 . 

A determines a flat connection in T\RxA of the form idxArTIRxE >71Rxi4. 

This implies that the triad 

(TRx A, id x A,£) (13) 

is an FS-regular Lie algebroid. Besides, we have that 

F :{A,\,B ) > (T(Rx A, id x A,£) 
t t 

is a homomorphism of FS-regular Lie algebroids. 

Proposition 5.7. The characteristic homomorphisms A , t=0, 1, of FS-regular Lie 
algebroids (A9X,B ) are related to each other by the commutativity of the following 
diagram: 

ff(g,B0) 
T \ A 

£ \ 
0 \ 

ff(Oxg.B) H (H) . 

1 X 
/ A 

Proof. By the functoriality of the characteristic homomorphisms of FS-regular Lie 
algebroids, we get the commutative diagram 

A 
H(g,B ) H (M) 

O E 
/K /Is 

E o o 
A 

* T*XE 

1 1 
I & I 

ff(g,B ) — H £ ( M ) 

where A # is the characteristic homomorphism of (13). 
Since f* = f* [see the proof of Th.4.3.1 from [17]) and f # is an isomorphism 

0 1 v « - J / o 
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(because f and f are homotopic in the category of foliated manifolds and each of them 
^ * \ # # -l is a homotopic equivalence in this category] therefore so f = (/ ) , which implies 

our proposition. • 

Notice that if F , t=0, 1, are isomorphisms, then A and A can be 
t o# i# 

interpreted as equivalence homomorphisms in the sense of the following definition. 

Definition 5.8. Let B^B^cA be two Lie subalgebroids of a flat regular Lie 
algebroid A (all the three over (M,£)). We say that the characteristic homomorphisms 
A :i/(g,B ) »#(£), t=0, 1, corresponding to B q and B ^, respectively, are 
equivalent if there exists an isomorphism of algebras a:tf(g,B ) —^->H{g 9B ) such that 

o l A = A oa. o# i# 

Theorem 5.9. If B and B are homotopic, then A and A are equivalent. o i ^ o# i# 

Proof. Recall that F = pr <>F , see (12). F is an isomorphism of FS-regular Lie 
t * 2 t t 

algebroids, therefore 

F + # : / / ( / ( 0 x g ) , f A B ) - - ^ / / ( g , B ) t t ^ t 3 t 

is an isomorphism of algebras. It remains to consider the homomorphism 
pr ://(0xg ,B) >tf(f (Oxg),f B ) . Identifying (via the canonical isomorphism] the 

2 x t ^ vector bundles f ̂ (0 x g ) / ^ - * h - t (0 x g / h ), we get (cf. the proof of Prop. 5 . 2.1) 
' t 

(i) f A(ad A )=ad\ 
t B , 0 X g r t P , r f ( 0 X g ) 

(ii) pr + #: ke°(SecA k(0xg /h )*) 0 > ke° (Sec/ff*(0 x g/h)*) 0 is the usual 
2 ^ / t J 

pullback * i >^ t^-
Theorem 5.9 follows now from Th.1.6.2. n 

6 . C O M P A R I S O N W I T H T H E C H A R A C T E R I S T I C C L A S S E S 

O F A F L A T P R I N C I P A L F I B R E B U N D L E 

Given: 
(a) a G-principal fibre bundle P = (P, n, Af, G, • ), 
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(b) a flat connection in P with a connection form <j, 

( c ) a closed Lie subgroup HcG and an //-reduction P'cP, 
let g and F) denote the Lie algebras of G and //, respectively. Of course, i:P' c >P 
is an iHc—>G)-homomorphism of principal bundles and its differential 
di:A{P') >A{P), see [14], [15], [20; p. 289], is a monomorphism of the corresponding 
transitive Lie algebroids, see the diagram: 

0 > g c > AiP) TM > 0 
/K /TV /|\ 

(di) + di 

0 > h < > AiP' ) > > 0 . 

Identify AiP') with Imidi) and h with Im{di) +. Then, for each zeP' , the 
isomorphism z:g >g , v\ >[A ] (>4 :G >P, ai >za), see [17; s.5.1], 

I x z * v v z ~ 
maps f) onto h and determines an isomorphism [z]:g/F) — — > (g/h) . It is worth 

I X I X 
recalling that 

(**) z is an isomorphism of Lie algebras provided that Q is the right Lie algebra 
of G, 

see [15], [17]. 
According to 3.4 above, we have a representation ad , : AiP' ) >A{q/h) such 

G ^ >!( P ) , g 3 / 

that X. . , ( [î ] ) = [If, yj] , %€SecAiP'), veSecq, and a representation induced 
a a >4 ( P ) , g ° £ 

A k / * by it ad , : AiP' ) >v4(A (g/h) ). Consider auxiliarily the representation Ad , 
y A( ?' ) , g J P ,g 

of the principal bundle P' on the g/f)-vector bundle g/h, defined by 
Ad^, :P' >L(g/h), z\ > [z] , and the representation Ad^, :P' >L(Ak(g/h) ) 
induced by it (cf. [17; 5.3.2]). By the same argument as in the proof of Th.5.4.3 in 
[17], to see that ad , is the differential of Ad , , we must only notice an 
L J Ai p' ) , g P' , g 

analogous fact concerning the representations of Lie algebras and of Lie groups: 
h >£nd(g/b), vi >[ad (v)]9 and H - > G L ( s / I ) ) , h >[Ad{h)]. By this, 

A ^ A 
ad . is the differential of Ad , 

A( P') , g P ,g 
Therefore, according to [17; Props 5.5.2-3], we have a monomorphism 

X cc k > o v , x k > o k , x 
K : ( A ( s / h ) ) — ^ © (SecA (g/h) ) c e (SecA (g/h) ) / 0 

defined by the formula k (0 ) (x) = /tdA, (z)(i/0, z € P' , and being an isomorphism when 
r ,g i f 

P' is connected. 
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H — 
It is needful to verify that k commutes with the differentials d and 6 acting on 

* k> o k # the spaces (A(g/b) ) and © (SecA (g/h) ) ^ 0 , respectively (notice that the spaces of 
cohomology of these are domains of the characteristic homomorphisms). The differential 

k>o k # H 5 in © (SecA (g/h) ) 0 is defined in 3.5 above, whereas, the differential d in 
(A(9 /b) ) ̂  must be defined by the formula 

<d" ( 0 ) , [w ]A...A[W ]>= £ (~l)1 + j<0, [[w ,w ]]A[W ] A . . .t. . . j. . .> 
1 k i l l i<J 

w , . . . ,w € Q; here [ w , w ] is the bracket in the left Lie algebra of G fwe get it 
I k * i j 

following the fact that this differential must be the one for which the canonical 
isomorphism G^* ( ^ = ((A (g/f)) ) ; (also (Ag ) = (A(g/f)) ) /) should be an isomorphism 
of DG-algebras, see [10]]. 

- k k +i H 

Taking account of remark (**) above, the equality 6ok -k °d may now be 
obtained immediately. 

Theorem 6.1. The characteristic homomorphisms A#:tf(g,#) >H^{M) of the triad 

(P,P',w) {see [10]) and A # : H{g, A(P' )) ^ d R

( w ) o f t h e ^transitive Lie algebroid 

{A{P),A, i4(P' )) (A corresponds to w ) are related by the following commutative diagram: 

\ A 

k // (M) 
# dR 

Hig9A(P,)/ * 

Proof. We prove the commutativity of this diagram on the level of forms. For the 
purpose, consider the diagram 

( A ( , q / b ) * ) . \ 
a \ 

\ x 
k Q(M) ) U' ) Q(P') 

= p 

e ibecA ig/nj ) f 0

 Q

M p ' ) , i i M ) C * Q,4< p') ( M ) 

idi) 

Q (tf) 
>*( P) , h 
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in which 

(a) ip№ = (c/)A(Aks*o*) ( = ~-<A ks"o ^ , W

Y , A . . . A W ^ > ) ( o)A:A(P) >g being the 
connection form corresponding to A, 

(b) Q (M) denotes the space of h-horizontal forms on A{P), 
A ( P) , H 

(c) p maps real forms on A{P' ) into right-invariant forms on P 7 , 6 i >0, see 
remark 2.11 ( 2 ) above. 

k # ^ We recall that, for 0e(A (Q/f)) ) , the form A(0)(=Q (M) is defined uniquely in 
such a way that n' *(A0) = —• i*<A*s*,a> A . . . A O>> where i:P / c >P, whereas 

k! 
s:g >9/f) and TT7 :P7 >M are the canonical projections. On the other hand, A(#) 
for € (SecAk(g/h)^) 0 is given as one for which y7 (A(#)) = (di )*(<p(#)). 

Therefore, to end the proof, we need to assert the equality 
* k * * k * A A 

i <A s ( 0 ) , o) A . . . A to> = po (di ) (<A s (Kip)yo) A . . . A W )) only. Thanks to the relation 
a/ » 7 ^ =zoo> [15; Ch.4], [15], we get, for w €7 P 7 cT P, 

I X I z I z i z z 

* , k * A A \ 
po(di) ( < A s ( K 0 ) , O > A . . . A W > J ( Z ; W A . . . A W ) 

k * A A A A = < A s (Kl// ) , 0) A . . . A W > ( TIZ ; 71 ( W ) A . . . A IT (w)) 
I z 1 I z k 

k * >l vl >4 4̂ 
= k! • (A s (k\1i)) (nz;u) (rrz; TT (w ) ) A . . . A W (nz;n (w ) ) 

I z 1 I z k 
k * A A 

= k! • (A s (Kifj)) (nz;z(u){z;w ) ) A . . . A Z ( W ( Z ; V ) ) ) 
1 k 

= k! • < A k [ z ] " ^ ( ^ ) , [z(w(z;v ))] A . . . A [z(w(z;v ))]> 
1 k 

= k! -<0, [w(z;w )] A . . . A [w(z;w )]> 
1 k 

k * 

= <A S (0) , W A . . . A W> (z; W A . . . A W ) 

* k * 
= i <A S (0) , W A . . . A W>(z ;W I A . . . A W ^ ) . • 

6.2. The tangential characteristic classes of a partially flat principal bundle. 

Consider now Ex.3.1 (2 ) , i.e. a triple {A,Bt\) consisting of a transitive Lie 
algebroid ^ on ff, a transitive Lie subalgebroid B of A and a partially flat connection 
A in Ay namely, flat over a given involutive distribution FcTM. The characteristic 

F F F F homomorphism A ://(g,P ) >// (W) of the FS-regular Lie algebroid {A ,B ,A|F) will 
# F 

also be called the tangent ial characterist ic homomorphism of the system (/4,B,A) and the 
cohomology classes from its image - the tangential characteristic classes of the system 
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(Л,В,Л). 
Let now the system (P,P',w) be given as in Ex.3. 1(3). It determines the FS-regular 

Lie algebroid (A(P)F,A(P')F,Л|F), and via this a characteristic homomorphism 

Л Г:Я (д,Л(Р' )F) ># (M), 

called the characteristic homomorphism of the system (P,P',w). The cohomology classes 
f 

from the image of A should be called the tangential characteristic classes of the 
# 

system (P,P',w). By construction, they measure the independence of u> and P' - exactly 
the same as the exotic characteristic classes of a partially flat principal bundle 
[10]. To investigate this more precisely, we shall devote a separate work. 

7. T H E C A S E O F A T C - F O L I A T I O N 

This chapter is devoted to giving a class of the FS-regular Lie algebroids coming 
from TC-f ol iat. i ons (exactly on the ground of the theory of nonclosed Lie subgroups) 
whose characteristic homomorphisms are not trivial. 

Fix an arbitrary TC-f ol iat ion (A/,̂ ) with the basic fibration n :M >W and 
ь 

denote by A{M, %) = {A (M, &), I'• , • H, у) its Lie algebroid; see [l7;Ch.7] for notations and 
terminology. A{M,^) is a transitive Lie algebroid on the basic manifold W. 

A) Interpretations of various objects 

In [18] there are given interpretations of a foliation of the basic manifold W and 
a partial connection in A{M9?F). Namely, any distribution F on the basic manifold W 
determines a subbundle F: = a"1 [p 1 f A (M, ? ) F ] ] [ = n'1[F]) of TM where A{Mt^)F = y"1 [F] 

and 

7.1 [18; 2.1.1] The correspondence F\ —У F establishes a bijection between 

invohitive C°° distribution on W and distributions F on M such that (1) E cF, (2) the 
b 

space Sec(F) n L(A/,f-)) generates at each point xetl the entire tangent space F , (3) 
1 X 

F is involutive. m 
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Each distribution F on M satisfying conditions (1)^(3) above is called an 
involutive ^-distribut ion. 

By a partial connection over F in a transitive Lie algebroid A - (A, I • , • 1, y) over 
Mt F being an involutive distribution on My we mean [18; 1.2.1] any linear homomorphism 

f 

A:F >A such that - id^ , i.e. any connection in the regular Lie algebroid A . 

Assume further that A - A{Hy^) as above. Let F c 7 V be any involutive distribution and 
A : F >A(My$)F - any partial connection in A(M,9) over F. Put : = a'1 [p'1 [Im\]] . 

7.2 [18; 2.1.2] The correspondence Af establishes a bijection between 

partial connections in A(Mt^) over F and distributions CcTM such that (1) E nC = £, 
b 

(2) E +C = F (F = n~l[F], see [l.8;2.1.l]), (3) L(M,$)nSecC generates at each b v b* 7 

point x€M the entire vector space C 
I X 

— 00 

In particular, such a distribut ion C exists and is C . A partial connect ion A is 

flat if and only if the corresponding distribut ion is involut ive. m 

Each distribution C on M satisfying (1)^(3) above is called a partial 

3*-connection over involut ive 3-distribut ion F. 

Now, we give interpretations of Lie subalgebroids, of the Lie algebroid 
TRx A(M,^) and of the relation of homotopy between Lie subalgebroids. 

Consider a transitive Lie subalgebroid BcAiM^). Via the family of canonical 
isomorphisms ft :Q »A _, and epimor phi sms a :T M >Q , xeM, x-n (x), we 

x I x I x x x I x b 
can define a family of vector subspaces 

B : =a~ 1[p" 1 [ B _]] cT M, xeM, 
I X X X I X X 

which constitutes a vector subbundle B of TM. 

Lemma 7.3 (An interpretation of Lie subalgebroids of A{M,cF)). The correspondence 
By > § establishes a bijection between transitive Lie subalgebroids B of AiM,1?) and 

vector subbundles B of TM such that 

(1) EcP, 
(2) E + B = 77f, 

b 
(3) the Lie algebra Sec(B) n L(M f?F) generates, at each point xeM, the entire 

space B 
1 I X 

The very easy proof will be omitted. • 

Each vector subbundle B of 777 satisfying ( 1 ) M 3 ) above will be called an 
subalgebroid. 
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We now assert that the Lie algebroid TRxA(M9cF) is isomorphic to the Lie 
algebroid A(RxM9$) of the foliation (IR x M9 §): = (IR, 9 ) x {M9 9) being the product of 

d 
the discrete foliation ? of 1IR with the given foliation (tf,^). First of all, we notice 

d 

that the tangent bundle E of $ equals E = 0 x E c TR x TN ( = T(RxM)) and the basic 
fibration ft of ^ equals ft = i d x 7 i :RxM -»IRxV. Of course, the leaves of § and 

b b b 
& through {t9x)eRxM are equal to L ={t}xL and L g = {t}xL 

b ( t , x ) x b ( t , x ) bx 
respectively. Finally, we see that Q = T(RxM) ,~ = TTRxQ. 

I E 

Theorem 7 . 4 (An interpretation of the Lie algebroid TRxA{M9&)). If A(RxM9§) 

( = Qj J) is the space of the Lie algebroid of the foliation [RxM99)9 then the mapping 

ip:A(RxM9$) >mxA{M9$)9 [{v9w)] » > {v 9 [w] ) , 

veTR9 weQ9 is an isomorphism of Lie algebroids [for a definition of the equivalence 

relation ~9 see [17; s.7.2]). 
We start with the following 

Lemma 7.5. The canonical equivalence relation ~ in Q is given by 

(v9w) ~ iv' ,w' ) o v-v' and w~w' 

for v, v' € 7TR and w, w' eQ. 

Proof of the Lemma. A real number a € (R and a transverse field ^€i(M,!?) 
determine a cross-section of Q of the form 

Ex Mb (t,x) i > (a-—. ̂ <(x)) eTRxQ = Q. (14) 
ot I t 

Clearly, to prove this lemma, it is sufficient to show that (14) is a transverse 
field for Let < = X for a foliate vector field XeL(M9&). We perceive that the 
vector field (a- — , X ) on RxM is an ^-foliate vector field. For the purpose, take o t 

arbitrarily a field YeKSF). Obviously, Y is tangent to the submanifold {t}xM for 
each t€(R, and Y\{t}xM is tangent to the foliation ({t } x M9 {{t} x L; L € ). Write 

[(a-^,X),Y] = [(0,X,),Y] + [(a-^,0),Y]. 

The field [ (0, X, ), Y] | { t} x ff = [ (0, X) | {t} x M9 Y| {t} x M] is tangent to £ because X is 
foliate. To investigate the second component, take any simply distinguished open set 
UcM equipped with distinguished local coordinates (x1, . . . ,x p,y 1, . . . ,yq) for cF. It is 
evident that (x1,...,xp,t,y1, . . . ,yq) are distinguished local coordinates for ^ on 

i 5 
DRxtf. Therefore Y | IR x U = £ a *(x, t, y) • — # and, by this equality, the field 

» ax1 
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[ (a-^,0) ,Y]\RxU equals [ a - ^ T a ^ x , t,y) ] =a--^ (x,t,y)- — , thus it is 

tangent to & . This gives that [(a- — ,X),Y] is tangent to 3% and that (a- —,X) is 
R XU Ol Ol 

j^-foliate. The fact that (14) is a transverse field is implied now immediately. • 

The lemma above sets up that ip is an isomorphism of vector bundles. 

Proof of Th.7 .4 . Since the anchor y:A{RxM,§) >TRxTW is defined by 
j([(vtw)]) = (v, y ( [w] )), vcTTR, w€Q, we see that the diagram 

A(\RxM,§) ~ > TRxA 

N J S \ S I y^dxy 
TRxW 

commutes. To prove that Sec \p: Sec A{Rx Mr §) >Sec{TRx A{M, cF)) is a homomorphism of 
Lie algebras, it is sufficient to show that the following mapping 

k:L((RxM,£) >Sec{TRx A(My$)) , X h >i/,oC(X) , 

is such a homomorphism (c:i(IRxW,f) > Sec A {R x M, §) is an isomorphism described in 
[ 17; Prop.7.2.2]) . First of all, we observe that a vector field XeXiRxM) is 
^-foliate if and only if x = f-^| + X 0 for an ̂ -basic function f and XoeX(RxM) such 
that X (t,-)(EX{M) is ̂ -foliate. Let x = f-^ + X r t be an ̂ -foliate vector field. Then ° ot ° 

0 o C ( X ) (£,x) =f U,x) ,+c(X ft,-)) (x) 
oi I t u 

(where FeQ°{RxW) is a function such that f = fofr ). Since, for X = f - - ^ + XQ and 
7 = g « — + 7 o belonging to L(Rxtf,?), we have, 

after taking account of the equalities 

[ X e , a 4 ] ( t , x ) = - 5 f < X 0 ( t , * ) ) , 

x7(gy = ( y o ^ o C ( x 7 ) ) ( g ) , 

0 o C ( [ X o , y o ] ) ( t , x ) = Ic ( X T u n ) , c (Y^li; O") 1 (jf), 

we get 
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K([X,y]) =^»c([X,y]) = ( f - | | - g - | | + (yo0oC(Xo)(I) - ( y o ^ o c C y j D C f ) ) - ^ 

-g.^|(^o C(x7) +f-g|(^oc(?7) + i^oc(x;),^oc(y;)]! 

= l 0 o c ( X ) , 0 o c ( y ) ] = |[ic(X),K(y)]|, 

according to the definition of the bracket in the Lie algebra Sec(TRx A(M, 9)) 

[21]. . 

Let B , B C i l(M , y ) be two Lie subalgebroids of A{M9&). Denote by B , B cTM the 
0 1 0 1 

vector subbundles of TM for ? corresponding to B Q , B i , respectively (see Lemma 7.3). We 
recall (Def.5.2) that B q is homotopic to B̂  if and only if there exists a transitive 
Lie subalgebroid BcTRxM{M,$) such that veB^ « (e^vleB for t=0, 1. The 
following proposition is a simple consequence of the definitions. 

Proposition 7.6 (An interpretation of the relation of homotopy between Lie 
subalgebroids). B Q and B^ are homotopic if and only if there exists an involutive 

subbundle B cTRxTN such that 

(1) OxEcB, 

(2) B + (0 x £ ) =7IRx TM, 
b 

(3) the Lie algebra SecB n L(IRx Af ,f) generates at each point {t,x)eRxM the 

entire space B 

(4) veB o (9 , v ) € B for t=0, 1. • 
t t 

B) The characteristic homomorphism of a partially flat Lie algebroid of a 
TC-foliation 

In this section we describe in the language of a TC-foliation {M,?F) the 
characteristic homomorphism of a flat regular [in particular, transitive] Lie algebroid 

F F 

of the form (A(M,^) ,B ,A|F), where, BcA(M,^) is a transitive Lie subalgebroid of A, 
F is an involutive distribution on the basic manifold W, and A is a connection in 

F F 
AiM,^) whose part lying over the distribution F is flat. Denote by y and y the 

F F F 

anchors in A{M,^) and in B , respectively, whereas by o) the connection form of 
X\F:F >A(M,3) , being de facto the restriction of the connection form 
w:i4(tf,3F) >g of A. 

k * k / * By (SecA (g/h) ) 0 we denote the space of cross-sections of A (g/h) invariant 
*F F 

with respect to a suitable representation of the regular Lie algebroid B , see Ch.3; 
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this means that r e (SecA* (g/h)*) c if and only if r € SecA*(g/h)* and 
1F 

(y°€)<r, [ l > l A . . . A [ l > ] > = £ <r, [l> ] A . . .A[IC ,V I ] A . . .A[V ]> 1 k £ t 1 j k 

for £«=Sec(£ ), i^eSecg. 
Now, recall that the characteristic homomorphism of the flat regular Lie algebroid 

F F 
(AiMyty) ,P ,A|F) is - on the level of forms - given by the formula 

F K > 0 k , * A : e (SecA (g/h) ) 0 >Q (W) 
IF F 

<(A*Y)(x;w A . . . A w ) > = <r(x), [</(x;w ) ] A . . . A [(/ (x; w )]> 
* 1 k 1 k 

^ f jr 
where x and w <=F , while w eB are vectors such that (w )=w . Next, we 

i I x i I x 1 i i 
f 

recall that A^ commutes with differentials and gives rise to a homomorphism of algebras 
F F F F 

A#://(g,B ) >H^{W). The homomorphism A # vanishes if the Lie subalgebroid B can be 
homotopically changed to one which contains Im(X\F). 

C) The case of a TC-foliation of left cosets of a Lie group 

Here we give a more detailed description of the examined homomorphism A of the 
Lie algebroid A{G;H) of the TC-foliation (G,^) of a connected Lie group G by left 
cosets of a connected nonclosed Lie subgroup HcG. The Lie algebroid A{G;H) was 
precisely examined in the works by the author [17], [16]. In [ 18] there are given 
interpretations of conditions (3) from 7.1. and 7.2 above to that F and C are 
//-right-invariant. 

Proposition 7.7 (An interpretation of transitive Lie subalgebroids of A{G;H)). A 

necessary and sufficient condition for an involutive C°° distribution B on G to be an 
^-subalgebroid is the realization of the conditions: (1) EcB, (2) E +B = TG, (3) B 

b 
is H-right-invariant [i.e. B = R [B ], g€G, teH]. m 

The proof of this Proposition, being analogous to that for Prop. 7.3.1 from [17], 
will be omitted. 

Example 7.8. Let f), f), g denote, as usual, the Lie algebras of tf, H and G, 
respectively. Let b e g be a Lie subalgebra such that (1) h e b , (2) F) + b = g , then, 
by the same argument as in example 7.4.7 from [17], we assert that the G-left-invariant 
distribution B^cTG determined by b (i.e. the one tangent to the foliation 
{gF;g€G}, F being the connected Lie subgroup with the Lie algebra equalling b ) is a 
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transitive ^-subalgebroid. 

It seems to be interesting that b can be interpreted as a "connection", but in 

another Lie algebroid. Namely, let H be the connected Lie subgroup of G whose Lie 

algebra equals bn i ) . Of course, f ) cbnf )c f ) , therefore HcH^cH, thereby H^H. 

Then, it is clear (see [ 17; Ex. 8.4.7]) that is an 3^-connection where y is the 

foliation of left cosets of G by H . 
J i 

7.9 (An interpretation of the Lie algebroid TRxA{G;H)). Seeing that the foliation 

(RxG,f ):= ((R,^^) x (G,^) is equal to the foliation of the Lie group (RxG (being the 

product of the additive Lie group of reals, with G) by left cosets of a Lie subgroup 

0x#, 0 being the null Lie subgroup 0 = {0} of IR, we assert that the Lie algebroid 

T(Rx A{G\H) is isomorphic - according to Th.7.4 - to the Lie algebroid A (IR x G; 0 x H). 

7.10 (An interpretation of the relation of homotopy between transitive Lie 

subalgebroids of A(G;H)). Assume that B Q , B^cTG are two transitive ^-subalgebroids 

and let BcTTRxTG (=T((RxG)) be a transitive ^-subalgebroid joining B q to B . 

Thanks to Prop. 7.7, we may equivalently change condition (3) from 7.6 above - assuming 
— 00 

that B is a C subbundle - to 

(3') B is 0 x//-right-invariant. 

Definition 7.11. Two Lie subalgebras b^cg , £=0,1, fulfilling 

f)cb^ and í) + b í = g (15) 

for £=0,1 will be called homotopic if the corresponding transitive Lie subalgebroids 

B* and B* are homotopic. 
bo bi 

Exercise 7.12. We present some sufficient conditions for two Lie subalgebras to be 

homotopic. Consider TTRxg as a trivial Lie algebroid on (R. 

(1) Assume that two Lie subalgebras b^cg, £=0, 1, fulfilling (15) for £=0, 1 

are given. If there exists a transitive Lie subalgebroid B cflRxg such that 
o 

(1) its isotropy Lie algebras b^ fulfil (15) for each £€lR, 

(ii) (idxAd(h))[B ]=B forteRandheH, 
ol t ol t 

then b and b are homotopic. 
0 1 
(2) Let two Lie subalgebras b and b of q fulfilling (15) for £=0, 1 be given. 

00 

Then they are homotopic if there exists a C vector subbundle b of the trivial vector 

bundle {Rxg over (R, such that 
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(i) the fibre is a Lie subalgebra of g fulfilling (15) for each telR, 
(i i ) b = b for t = 0, 1, 
(iii) there exists a C mapping v:R >g realizing the conditions: 

(1°) - ^+[fi,v] <=Secb for each ueSecb, o t 
(2°) y i c K M o y - i ^ S e c b for each h €//. 

In spite of these two propositions, the problem of the finding of two different 
but homotopic Lie subalgebras is open. This is, however, a side problem. 

7.13 (The characteristic homomorphism for a transitive case). In this section we 
calculate the characteristic homomorphism of the FS-transitive Lie algebroid 
M(G;//),B,A) in which 

(i) # = #k is the Lie subalgebroid of A{G;H) determined by a Lie subalgebra beg 
fulfilling (1) f)cb, (2) f) + b = g, see Ex.7.8 above, 

(ii) A is the flat connection determined by a Lie subalgebra ccg fulfilling (1) 
c + F) = g, (2) cnf) = f), see Example 7.4.7 from [17]. 
(According to [16] for such a Lie subalgebra c to exist, n^{G) must be infinite). 

Denote by y and y the anchors in A(G\H) and in B, respectively. 
A B 

7.13.A (The domain of the characteristic homomorphism A^). Recall that [17; 8.2.4] 
<p:G/H xb/f) >g , (g,[w])i •» [X (g)], g€7r" 1(g), is a global trivial izat ion of 

w b 

the Lie algebra bundle g of A(G;H), and that the typical fibre f)/f) of this bundle is 
an abelian Lie algebra [X stands for the left-invariant vector field on G generated by 
a vector w], [17:8.1.3]. The equalities h = gnB and dim(T) n b/F)) = rank h yield that 
<p induces a global trivial izat ion <pX: Gj H x F)/F) >h of the bundle h. Next, <p and <p* 
give a global trivial izat ion <p : G/H x h/ (h n b) >g/h of the bundle g/h. Using <p , 
we can modify 

(a) any cross-section veSecg/h to the F)/ (f) nb)-valued function 
v:G/H ^ F)/ (finb) , 

(b) analogously, via the canonically induced global isomorphism 
A k(g/h)* = G/tfx A k(b/ (b nb) )* ~ any cross-section * € S e c A k(g/h)* to the function 
$ : G / / / *A k(b/(bnb))*. 

One can easily see that 

[c(X )] A . . . A fc(X )]>(g) = <*(g), [v ] A . . . A [w ]> 
vi vk 1 k 
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for geG/H and w eh; here [c (X )] denotes the cross-section of g/h determined by 
c ( X )<=Secg, i.e. [c (X )]=s<>c(X ), see 3.1 above. 

Analogously to the proof of Prop.7.4.1 from [17] we assert that: 

— Let V eSecff(g/h)*. Then ¥ is invariant [see 3.3-4 above] if and only if $ i s 

constant. 

As a corollary we obtain that 

^: ke°(SecA k(g/h)") / 0 A(b/(bn b))*, (16) 

0 , \j, (=the value of 

is an isomorphism of algebras. 
Notice also that 

[w ] A . . . A [w ]> = <¥(g), [<M[w ])] A . . . A [^([w ])] (17) 
1 k * 1 * k 

for an arbitrary geG/H. 

k>o k x _ In the space e (SecA (g/h) ) , the differential 6 defined in 3.4 above works. 
# = 

Via x we can carry 8 over to the space A(b/(b^b)) and obtain a differential 8. 

We can easily obtain that 6 = 0 [hence 8 = 0]. For the purpose, take 
Ak(I)/ (finb) )* and let ¥ = for ¥ € (SecAk (g/h)*) 0. For v , el), we 

have, by (17), 

<5#, [w ] A . . . A [w ]> = <(5tf) ,[w ] A . . . A [ W ] > = <8ty, [ c (X ) ] A . . . A [ c ( X )]>(g) 

O k O k VQ 

= - £ (-1)1 + J<*. [|[c(X ) , C(X )J ] A [ C(X ] A . . . I . . . J . . . X I ) 

i < j v « V J 

= - £ ( - l ) l + JoK, [c(Xr ) ] A . . . l . . j . . . X i ) 
K J 1 » v j ) 

= " I (-D1 + J < * . [ [ W , W ] ] A . . . 1 . . . J . . . > 
i J 

i < J 
= 0 

because [w^, ] € b c b n b [b/b is abelian!]. As a corollary we obtain an isomorphism 
of algebras 
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ff(g.B) = //(A(b/(bnb))*,0) = A ( b / ( b n b ) ) * 

and the fact that the forms from I/nÂ  are closed. 

7.13.B (The characteristic homomorphism). Take into account the connection A 
determined by the G-left-invariant distribution BcTG generated by c, see 7.13. Let w 
be its connection form. The conditions c + b = g and c n b = b determine a 
decomposition g /b = b/b © c/b. Define to :g >r)/b as the linear mapping being the 

o 
superposition 

o) :a >A/b = b / b e c / b *f)/b-

o 

Take also the canonical linear homomorphism p : b / b — — » b / ( F ) n b ) and put 

o) =p^w :g — - » b / ( I ) n b ) . 
1 o 

Let L :TG—> TG denote [as usual] the differential of the left translation by 
g 

the element gzG. Since the left translation by g is an automorphism of the foliation 
= {atf;aeG}, therefore L determines an automorphism L of the vector bundle 

b b _ g 
T(G/H). Identify canonically T_(G///) with g /b- In particular, we have a linear 

€ 

isomorphism L : g /b >T (G/H). Without, any substantial difficulties one can obtain 
g r~ g 

the commutativity of the following diagram 

w _ ( ^ ) 
Q < —1* A(G;H) < > B - T (G/H) 
**g *g l g g 
y\ ,'\ /\ /\ 

'* / *b*g 

w T G < > B L 
» g g 1 g g 

/ts /ts 

L L 
g g 

b/ (bob) < — b/b <r—-— A < 5 b e g — - > g/l) 

T I I 
1 J J e p i m o r p h i s r a j 

for an arbitrary element g^G. 

Recall that A ) = A* € Q(G/H) is, for ^ € (SecA* (g/h) *) 0 , defined by formula 
(8) (see 3.2 above). 

Lemma 7.13.B.1. A^(^) is, for V as above, a G-left-invariant form on G/H (i.e. 

A^(*)eQ (G/ff) under the notation of [S]) such that its value A^(*)_ € Ak(g/T)) at e is 
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equal to 

<A (*) , [w ] A . . . A [w ] > = <#,CJ (w ) A . . . AO) [w )> (18) 
* g 1 k 1 1 l k 

where w^ € b are vectors such that [w ] = [w ] (eg/F)). 

Proof. We prove the equality 

<A (#) ,1 ([w ]) A . . . A L ([w ])> = <̂ ,o> (w ) A . . . A W ( W ) > , 

* £ £ 1 # k 1 1 l k 
g€G, which, in particular, implies (18) as well as the equality 
((L ) (A (#))) = A (#) . This last implies, of course, the G-left-invariance of 

g * e * e 
4 ^ ( * ) € Q(G/fl). 

At first, we notice (see the diagram above) that if v~L^{[w]) (eT^{G/H)) for 
w€g, then, for v€B fulfilling )(v)=v, we can put v: = [L (w)], i.e. 
v: =p<>a(L (w)) where web is a vector such that [w] = [w] (eg / I ) ) . Therefore, 
according to the diagram above and equality (17), we have 

<A (*) ,L (lw ] ) A . . . A ! ( [ v ] ) > 
* ? £ 1 £ k 

= <*_, [w(g; [L (v )]] A . . . A [w(g; [L (w )]]> 
g g 1 * k 

= <#,0) ( W ) A . . . A t c ) ( W ) > . • 
1 1 1 k 

Corollary 7.13.B.2. There exists a homomorphism of algebras A^ making the 
following diagram commutative: 

A * 

ff(g,B) = k ® ° ( S e c A k ( g / h ) * ) f 0 > Q^G/H) c Q(G/H) 

= a L 
A * 

A(T)/(bnb) -> ( A ( f l / 1 ) ) ) / • 

(A(g/I)) ) denotes here the DG-algebra of vectors invariant with respect to the adjoint 
^ x * 

representation Ad^:H >GL(A(g/f)) ), see [8;PropXl]. The forms from Imk^ are closed 
and A^ is defined by the equality 

<A (#) , [W ] A . . . A [W ] > = < # , W ( W ) A . . . AO) [W )> (19) 
* 1 k 1 1 1 k 

80 



for A k(r)/ (r) nb)) and w e g , where w € b are vectors such that [w ] = [w ] 
( « f l A ) . • 

Put A^ as the superposition 

A #:A(J)/(bnb))* >z ( ( A ( g/b)*) 7) >f / ( (A(g/b)") /) (-/MG/tf)). 

From the above we obtain the fundamental (for the situation considered) diagram 
A 

ff(g.B) — ~ > HdR(G/H) 

A 

A(b/(bnb))* — / / ( A f g / b ) * ) ^ = H^G/H) . 

If G is compact, then the right arrow is an isomorphism [8]. 

Theorem 7.13.B.3. A^ is trivial if and only if ccb. 

Proof, (a) If ccb, then A # is* trivial. We prove the triviality of Â , provided 

that ccb. The epimorphy of b c >g >9/b, as well as (19), imply that it is 
sufficient to show the equality to^(w)=0 for web. For this purpose, take an 
arbitrary point web and write w = w^+w^ for w^ e Tj and w

2
e c ( c^)* Then 

w =w-w eb, so o> (w)=p(w )=0. 
l 2 1 ^ 1 

(b) If c£b, then A is not trivial. Assume ctfb. Take w€c\b and let web be 

a vector such that [w] = [w] in g/l). Of course, w-web\(f)nb) and 
w = (w - w) + w € I) + c. Take a covector ^ ( l ) / ( I ) n b ) ) such that #( [w - w] ) * 0. 
Then 

A (*) ([w] ) = <*,w (w)> = [w-w]> *0. (20) * l 
Since Z ( (g/b) ) >H ( (A(g/b) ) ) is a monomorphism, (20) implies that 

A (*) *0 . • 

Then, for compact G, each case ctfb is the source of the nontrivial 
characteristic homomorphism of a flat transitive Lie algebroid on the ground of 
TC-foliations. 

Problem 7.13.B.4. The nontriviality of A means the impossibility of the homotopic 
A. 

changing of a Lie subalgebroid to contain the connection. Does the homomorphism A^ 
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possess this property ? 

7.14. The characteristic homomorphism for some nontransitive case 

If F C G is a Lie subalgebra such that B C F , then, [18; 2.3.1] the 
G-left-invariant distribution F ( F )cTG determined by F is an involutive 
^-distribution, i.e. corresponds to some involutive distribution F ( f ) on the 
homogeneous space G/H and then to some foliation § of G/tf. The leaves of § are of the 
form {a-tf;a€L} where L is a leaf of §. F ( F ) is G-left-invariant and generated by 
F/F), besides, codimF(f) = codimf. 

If C C G is a Lie subalgebra such that I) N С = F) and J) + С = F (F as above), then 
[18; 2.3.2] the G-lef t-invariant distribution G(c) on G is a partial ^-connection over 
F ( F ) and, then, determines some partial flat connection A^ in A(G;H) over F ( f ) . 

In this section we calculate the characteristic homomorphism of the FS-regular Lie 
algebroid M(G ; # ) F ( * * , в Г ( i *,A ) in which 

b e 

(1) F ( F ) is the involutive distribution on G/H determined by a Lie subalgebra 
F C G such that B C F , described in [18; 2.3.1], 

(2) B^ is the Lie subalgebroid of A{G;H) determined by a Lie subalgebra B E G such 
that FYCB, r) + B = G, see Example 7.8, 

(3) A^ is a flat partial connection in A(G\H) over F ( F ) , determined by a Lie 
subalgebra C C G such that F)NC = F) and F) + c = F, see [18; 2.3.2]. 

It is simpler to give such examples in comparison with the transitive case. For 
example, F may be the Lie algebra of a maximal torus in G. 

Consider the following diagram: 
0 > g < > A(G;H)Fi{) F ( F ) > 0 

II 
J \j 

0 > h с > в £ ( П — U F ( f ) — > О . 

The FS-regular Lie algebroid considered has the characteristic homomorphism 

А £ ( П : Я ( д ; В ь

Г < П ) >ff m )(G/ff). 

7.14.A). The domain of A . We are interested in the representation 
a d A

r ( f ) ^ : B ^ ( C ) >4(A(g/h) ) defined in 2.3. Of course, this representation is the 
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restriction of ad* to the Lie subalgebroid p f ( f ) and will be denoted here ffor 
B b > g b v 

brevity) by ad\ Let (SecA(g/h) ) / 0 ( r )
 b e t h e space of ad^-invariant cross-sections. By 

the definition, we have: 
(SecA(g/h)*) if and only if 

( y ^ C X * , [ l ^ ] A . . . A [ P k ] > = £ [ v j A . . . A [ I ? , Vjl] A . . . A [ y f c ] > 

F ( I ) 
for any £ € SecB^ and , . . . , € Sec g. 

Consider analogously to 7.13A) the canonical isomorphism of vector bundles 
Ak(g/h) >G/H x A k ( B / ^ n ( ) ^ a n d denote by $ the function on G/ff with values in 
Ak(f)/|)nj)) corresponding to a cross-section ^ <= SecAk(g/h)*. 

Proposition 7.14.A. (SecAk(g/h)*) 0 if and oniy if # = Ff l* for 
w

v y / ( F) i i o k * ~ 
f € ft (W, !F), and # € SecA (g/h) such that ¥ are constant. 

b i i 
k * ~ 

Proof. A cross-section ^€SecA (g/h) for which ^ is constant is invariant with 
respect to ad A (by the same argument as in [17; 7.4.1]) so, thereby, with respect to 
ad^. A cross-section ^ = £f where f and ^ are as in the text of our proposition, 
is adA-invariant because, for v e ) , we have 

F Dl x 
adA(v)(lf1^ )=Yf'l(x)'adA(v){* ) + ( y ( v ) M f 1 ) - * (x)=0. 

F ^ i ^ F i 1 i 
Let V €SecA(g/h) be cross-sections such that $ are constant and their 

1 - k - _ # l k 
values 0 ,...,0 form a basis of A(b/r l) • It is evident that each cross-section 

* i ^ i SecA (g/h) is of the form ¥ = JY for some f eQ°(G/H) and * as above. For 
£ € SecB^f , 

F F 

Therefore, when ^ is invariant, we have <>£) (f1 )\|̂  = 0 for each i; equivalently, 

X(fl)=0 for each X s K ? ) , this means that f * e Q° (ff, 3F). • 
b 

The mapping 
K:(SecA(g/h)*) / 0 ( n > Q ^ W ^ - A t B / ^ ) * 

f 1* h — > f*-0 
i *i 

is a correctly defined isomorphism of vector spaces (identifying these spaces). 
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/ k *\ 
In the space (SecA (g/h) J / o ( F ) the differential 6 defined in 3.4 works. Via k we 

can carry out 6 to the space fi° (M, • A fb/j^) obtaining a differential 5. An 

analogous reasoning as in 7.13A) yields that 6 = 0 [hence 6 = 0]. As a corollary we 
obtain the equality 

ff(g,Bjn=n°(M,y)-A(B/!|nb)*. 

7.14.B). The characteristic homomorphism. Let w be the connection form of the 
connection A^ under consideration. The conditions f ) n b = b and r) + b = f determine a 
decomposition f / b = b / b ® c/b-

Define o) : f >b/b as the superposition 
o 

p rl -
f > f / b = b/r ) e c / b ^ b / f ) 

and put w =poo> where p: f ) / f ) >b / b n b is the canonical linear homomorphism. 
1 o 

Analogously to 7.13B we obtain 

Fit ) Proposition 7.14.B.1. The homomorphism A , on the level of forms, is defined by 
# 

the formula 

^ v iy g 1 # k i l l l k 

for f 1 € fi° (#,30 , i// €Ak(f)/i i ) > w , . . . , w € f , v/here w,...,w e b n f are vectors* b *i 7 F)nb i k l k 
— ^ ^ — x 

such that [w^^lw^] ( c f / b ) . The form A^(^) for i/; € A ( b / j ^ ) is G-left-i nvariant. m 

Define auxiliarily the homomorphism of algebras 

where H (G/H) is the cohomology algebra of the complex Q (G/#) of the 
F ( f ) , J F ( f ) , J 

G-left-invariant tangential forms. Between A and A 1 there is a relation shown in the following diagram # # 
A 

idxA1 

Q°b(M,f)-Mh/-hnb) * - > N ; ( t f , Y ) - f f m ) t / ( G / J n >H F ( t i G / H ) . 

If G is compact, then the canonical inclusion Q (G/tf) c >Q (G/tf) 
r _ F(i) j ' F(f ) ' 

induces a monomorphism on cohomologies H (G/H)> >B (G/H) [19], therefore the 
Fit ) , / ' F ( f ) ' l j » 
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nontriviality of A 1 implies the same for A . One can also formulate the problem 
analogous to 7.13.B.4. 

Proposition 7.14.B.2. A 1 is trivial if and only if ccb. 

Proof, (a) If ccb, then A 1 is trivial. The epimorphy of bnf — >f/h implies 
that it is sufficient to show the equality o> |bnf = 0. We do it in the same way as in 
7. 13.B.3. 

(b) If ctfb, then A* is not trivial. Analogously to 7.13.B.3 we prove the existence 
of \p€ (B/fy^)* such that A*(0)*O. Since the action of G on G/H is transitive, 

Q° (G/H) = IR and B(QX (G/tf)=0, which yields the monomorphism 

Z(Q1 (G/H))> >Hl (G/H). Therefore A 1 (0) ^0. • 
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P A R T I I I 

I I I . T H E C H A R A C T E R I S T I C C L A S S E S OF P A R T I A L L Y F L A T R E G U L A R L I E A L G E B R O I D S 

1. THE W E I L A L G E B R A O F g 

A) Preliminary definitions and properties 

We return to the general consideration of a regular Lie algebroid A over M with 
k 

the Atiyah sequence 0 >g c > A >E >0, equipped with a connection A 
having 0) as its connection form. We have: 

g is a vector bundle of Lie algebras, 
X -X k k X 

Aa is an anticommutative graded algebra; (Ag ) : = A g , XGM, 
I X \ X. I X 
X X 

Vg is an (anti)commutative graded algebra over the graded vector space q with 
I X I X 

21 + 1 
X ?\ \ X X 

elements of degree two only, i.e. (Vg V" ™ V g and (Vg ) =0, 
v i * 7 I X v i * 7 

x x 
: = Ag ®Vg is the anticommutative (bi)graded tensor product of the 

k 21 k * 1 * anticommutative graded algebras. The bidegree (Wg ) , J g ®V g leads one, as 
v 1 x•7 I X I X 

usual, to the total degree (l/ĝ  Y ~ k¥f} (̂ 9, j k> 2 1 ^ a s a n algebra is generated 
x x X X by 1, w «> 1 and l®w , for w eg^ . 
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Put 
(Wg) := A g ®V g , 

( % ) k ' 2 1 := S e c ( l / g ) k ' 2 1 , 

( % ) r := S e c ( y g ) r ( = ̂ Wg)*>21) , 

Wg is a bigraded algebra with the multiplication defined point by point. It is 
called the Weil algebra of the bundle g of Lie algebras. Each element of Wg is locally 
[even globally, which can be proved by using the paracompactness of M] a sum of 
cross-sections of the form \b A . . . A 0 <8>T v. . . v T , I// , T e Sec a , k , 1 > 0 . 

*1 k 1 l i j * 
In the above, k , i, r are nonnegative integers. 

v # # Remark 1.1. Under the gradation considered, the homomorphism (dw) :Vg >f\A 
X \ X \ X 

defined in Chapter 2C is of degree 0. Analogously, introducing the "point by point" 
structure of an algebra in l&°Sec\/lg and the gradation as above, we see that 

(do>)V: ^ S e c V V >Q (W) 
A 

is a homomorphism of algebras of degree 0 . 

Three fundamental operators i,d, 9 in Wg, as well as the mapping k:Wg >Q {M), 
will be introduced in two steps passing through some isomorphisms \b :Wq >Wg , 

X I X I X 

X€M [i.e. some change of variables]. This method, due to G.Andrzejczak [ 2 ] , enables 
us to define and prove the property of these objects in the clear and technically lucid 
manner. The main value is that the differential d is then defined by one simple 
formula. 

We begin with defining some auxiliary objects k , i, d, 9. 
1.2. Without any difficulties we can show that, for each point x€#, there exists 

exactly one homomorphism 

k :Wg >^A* 
X 9\X I X 

— ^ ^ 
of algebras of degree 0 such that k(l) = l, k (w ® 1) =w (w ) and 

X X X 

^ y & X X — 
k (1<8>W ) = (dw) (w ) when w € g . k is directly defined by the formula 
X x I x X 

k ar ) = w A(0 ) A (dw)V(T ) 
X X X X X X X 
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X X — 
for 0 €Ag and r €Vg . The homomorphisms k , xeM, thanks to this formula, give 

X I X x Jl X X 

rise to the homomorphism 

k.Wg »n (tf) 

of algebras of degree 0 defined point by point: k ( ^ < 8>D =k <8> T ), 
X X X X 

e k^°SecA k g , r€ 1^°SecV 1 g . It has the property 
k(**r) = w A(*) a (do>)V(D ( 1 ) 

for # and T as above. 

Lemma 1.3. For each point xeM and for v €g , there exists exactly one 
X I X 

antiderivation i :Wg >Wg of degree - 1 such that 
x , v x I X I X 

— X X 
(1) i {w 91) =<w ,v >, 

x , v x x 
— X X X X 

( 2 ) i (law )=-(w °ad ) <8> 1 , w €g 
*>vx vx , x 

It has the properties 

(i) I |(l/g )°'° = 0 , 

X , V ^ V I x y 

(ii) i (l®/v...vw^)=-y / o a d ®/v...i...v/, i>l, 

(iii) i (* <8>T )=i (* ) <8>T + (-l)k* <8> 1 - i ) when * €A k g* 
x >v X X V x x x x , v , x x x Ix 

and r <=Vg* , 
X I X 

. t rfrt ^k,21^ • xk-1,21 , w \ k + l , 2 (1-1) 

(iv) i X f V J . № X x ) ] C ( W 9 , J * № i x ) 

Proof. Uniqueness. The uniqueness of i is evident because every antiderivation 
x>vx 

is uniquely determined by the values on generators. Properties ( i ) + ( i v ) of each 
antiderivation i fulfilling ( 1 ) and ( 2 ) above are evident. 

x > v x 
Existence. First step. For i > 1 , there exists exactly one linear mapping 

i :V g >g ®V g 

x9vx

 a\x 3 l x 3 l x 

^ 1 X X X * A * 
such that i ( w v . . . v w ) = V w <>ad <8>w v...i...vw . It has the property 

x , v x l l Y 1 vx 1 1 

i m + n ( T vr ) = i m (r M * T + -i n (r ) 
x , v x l x 2x x > v x l x 2 x l x x , l / x 2 x 

for r eV m g* and r e V V • 
l x ^1 x 2x J l x 
Second step. For k > 0 and 1> 1 , there exists exactly one linear mapping 
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T k , 2 1 , ^k,21 , ^k -1 ,21 xk+1 ,2 (1 -1 ) 

such that i k , 2 1 ( * ®r ) = i (* ) ® r + ( - l ) k * sl-i 1 (T ) when * eA k g * and 
^ x ,v x X x u x X X X X ,V X x s l x 

X I X 

Third step. Accept, additionally, 

=0 and i k'° : ( l /g )k'° >(y g ) k ~ 1 > 0 , * « i , >i * ®i, f or k > l . 

-k 2 1 
All the linear mappings i ' , k, i > 0, together define the operator 

i = £ i k , 2 1 : l / g >l/g . 
x , v * > ̂  „ I x I X k ,1>0 x 

Of course, i satisfies (1) and ( 2 ) . 
*>vx 

It remains to show that i is an antiderivation of degree -1, i.e. that 
x X 

i (9 -9 ) = i (0 )-9 +(-l ) r e - i (6 ) for e *(Vg ) r , e eWg , which is 
x,i/x 1 2 1 2 1 ^'^x 2 1 '* 2 I* 

easy to obtain by considering elements 9 j homogeneous with respect to the bigradation 
only. • 

For a cross-section veSecg and for BeWg, the formula 

M b x f •> I (9 ) 
X 

defines an element i (0) of Wg and 
1/ 

i :Jfg >Wg, 6i >i (6), 

is an antiderivation of degree -1. The smoothness of i (6), according to properties 
V 

(i)-s-(iii) from Lemma 1.3, follows from the smoothness in the cases 0 = $ <8> 1 where 
k # # ^ € SecA q , and 9 = 1 ® T where r € Sec g , which is easy to investigate, i has the 

property 

J (*®r) = i + (-1 <8> 1 - i (1«8>D (2) 

k # \ # for ^ € SecA g and T € Secy g . 

Lemma 1.4. For each point x€Af, there exists exactly one antiderivation 

d :Wg >Wg of degree +1 such that 
X I X I X 

— # # (1) d (W <8> 1 ) = 1 <8> W , 
x 
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(2) d (1 <8>w*) =0, v % g ^ . 
X I X 

It has the properties 

(ii) d (w A . . . A W ® 1 ) = V (~1 ) V A . . . 1 . . . A W ®w , k>l, 
x 1 k Y 1 k i 

— — # # 

(iii) d ®r ).= d (tf ®l)-l®r when ¥ € Ag and T € Vg ; in 
x x x x x x x l x x l x 

particular, d )=0, 
X X 

(iv) d [{Va )k'21]c(W9i )k-1'2,1+1,

1 

x v I x y v l x ; 

(v) d is a differential, i.e. d °d =0. 
X X X 

Proof. The uniqueness of d and properties (i)-s-(v) are evident. 
X 

Existence. First step. For k>l, there exists exactly one linear mapping 
~ k k * k - 1 * * 
d :A g > (A g ) ® g such that 

~k * # i + 1 # A # # d (w A . . . A W ) = 7 (-1 ) W A . . . i . . . A W <8> W . 
x 1 k *-* 1 k i 

i 

It has the property d m + n(# A # ) = (d m^ ) • * ® l + ( - l ) m * a l - 3 n ¥ when 
x lx 2x x lx 2x l x x 2x 

* e A V and ¥ €A n g* . 
l x 3 l x 2x 3 l x 

Second step. For k>l and i>l, there exists exactly one linear mapping 
-k ,21 , . r \k>21 %k-l, 2(1 + 1) , . i . T k , 2 1 / T _ . ,~sk T . , _ 
d :(l/g ) >(Wg J such that d * ( $ < 8 > r ) = (d#)-l<8>r for 

x v I x 7 v I x y X X X X X X 
k # 1 * 

¥ €A g and r eV g . 
x I x x I x 

Third step. Add d ° , 0 = 0 and put d = Y dky2l-.Wg >Wg . Of course, d 
x x x l x l x x k,l>0 

satisfies (1) and (2). It remains to show that d is an antiderivation of degree +1 
X 

which is easy to obtain by considering elements homogeneous with respect to the 
bigradation. • 

All homomorphisms d , xeM, define point by point a homomorphism 
X 

d:Wg >1fg 

being an antiderivation of degree +1 and a differential. It has the property 

d ( * a r ) = d ( * a 1) -1 a l \ *eSecAkg*> TeSecV^*. (3) 

Lemma 1.5. For each point xzM and for v € g , there exists exactly one 
X I X 
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derivation 9 :Wg >Wg of degree 0 such that 
X j 1? ^ I X I X 

(1)9 (w ® 1) = - w °ad ® 1, 

— X X 

( 2 ) 9 ( 1 ®w ) = 1 <8> ( - w oad ) . 

It has the property 
( 1 ) 9 (tf ®T ) = ( 9 A ^ )®r + ¥ <s> ( 9 V r ) when ¥ € Ag* and T € Vg* , 

x , v x X X X X X X X X x Ix X " I X 
where QA and 9 V denote the only derivations in the algebras Ag* and T € Vg* , 

* * # x x l x x 1 x 

respectively, induced by -ad :g >g 
V I X I X 

X 

Proof. The uniqueness and property (i) are evident. Formula ( i ) gives the 
sought-for operator. • 

For veSecq and SeWgf the formula Max i >9 ( 0 ) defines an element 
x y v x X 

of Wg and 

9 : Wg- ->Wg, 8 i >9 ( 9 ) , 
V v 

is a derivation of degree 0 . 

The adjoint representation ad : A >v4(g ) , according to 2 . 1 . 3 and 2 . 2 . 1 from 
A 

[17], determines a representation of A on each associated vector bundle such as A g, 
l k * l * 

V g, A g ®V g , etc. It will be denoted - for brevity - by ad. 

Lemma 1.6. (1). The linear operator 

I :Wg >Wg9 

a d o ? » 

^zSecA, is a differentiation of the Weil algebra Wg. 

(2). £ = 9 for veSecg. 
ad°v v 

Proof. Trivial calculations on simple tensors. • 

The relationships between the operators i , d, 9 , £ are the following: 
v i / a d o ? 

1 . 7 . ( 1 ) £ od = d o # 
a do? a d o ? 

( 2 ) I od + do J = 9 . 
V V V 

Indeed, & : = £ °d ~ do£ is an antiderivation, whereas & : = i od + d o j is a 
1 a d o ? a d o ? 2 v v 

derivation, of the Weil algebra Wgy therefore to prove ( 1 ) and ( 2 ) it is sufficient to 
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show that & =0 and & = e on the cross-sections and VeSecg , which 
1 2 i ^ 

is trivial. 

k * 1 * 
Proposition 1.8. For 9 € SecA g <s> V g , 

dAk(S) = k d ( 0 ) + — -<d99, ( W A . . . A W ) « (d9o>v. . . v d 9 w ) > . 
k! • 1 ! 

Lemma 1.8.1. (1) For #€=SecAkg*> 

k d ( * « > 1) = ~ 7 - < ^ , d 9 ( o A . . . A w)>. 

(2) For *€SecA kg* and reSecV^*, 

<d 9 (#<8> D , 0) A . . . A w » d 9 w v . . .v d 9w> 

= < d 9 ^ , w A . . . A w ) A < r , d 9 w v . . .vd 9w>+ (-1 )k<#, o> A . . . A w > A < d 9 r , d 9 w v . . , v d 9 w ) , 

Proof. (1): Thanks to the linearity of both sides with respect to it is 
sufficient to show this on the simple tensor of the form # = 0 A . . . A 0 where 
0^ € Sec g . 

k d ( 0 i A . . .A0 k <8> 1) = k ( £ ("l)l + 1 0 1 A . . . i . . . A 0 k ® 0 i ) 

= V(-l) i + 1 O ) A ( 0 A . . . i . . . A 0 ) A ( d w ) V ( 0 ) . 
j 1 k i 

On the other hand, for xeM a n d v 6i4 (by II. 1.3 and 11.2.2 above), 

— *<0 A . . . A 0 , d 9 ( 0 ) A . . . A 0))>(x; V A...AV ) 
k! 1 k 1 k+1 

= — - < 0 A . . . A 0 , 7(-l) 1 + 1 0) A . . . A C J A d 9 W A . . . A Cj)>(x;V A . . . A V ) 
k! 1 k U * v ' ' 1 k+1 

i i -1 t i mes 

1 ci 
= *<0 A . . . A 0 , d W A W A . . . A W)(x;l/ A . . . A 1/ ) 

( k - D ! 1 k * y >' 1 k+1 
k-1 t imes 

= — \ -V* sgncr < 0 A . . . A 0 ,d9(j(x;i/ A V ) A W ( X ; V ) A . . . A W ( X ; V ) > 
2 ' ( k - l ) ! ^ * ^kx CT(1) (T(2) ' (T(3) ' (T(k+1) 

cr 

< 0 ,d9w(x;\/ A i / ) > . . . < 0 ,d 9w(x;i/ A v ) > 
* l x CT(1) CT(2) ^ k x ' ( M l ) ( T ( 2 ) 

= 1: -Ysgnv < 0 ,c j (x;u )> . . . < 0 ,w(x;i/ )> 
2 M k - l ) ! ^ * * l x (T(3) r k x (T(3 ) 

i j 

< 0 ,w(x;v )> ... < 0 ,w(x;i/ )> 
CT(k+l ) r k x ' ' ( T ( k + 1 ) 
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= i ^ b T ^ ^ - P - 1 ) I + 1 ( D W ) V ^ ) ( ^ V ( 1 , A V ( 2 , ) -
сг 1 

• < « / / Л . . . 1 . . . Л 0 , W A . . . A C J > ( X ; U A . . . A U ) 
1 к ' СГ(3) <Г(к+1) 

= Г (-1)1+1 (dC())V(i// ) АиА{ф A...i...Ai/r )(х;и Л. ..ли ) j i 1 к 1 к+1 

= (У (-1) 1 + 1 C J A ( 0 A...i...A0 ) A ( d w ) V ( 0 ))(x;u л...ли ). V ^ 1 к * i ' ' 1 к+1 i 

(2): For Х € # and и еЛ , we have 
i I x 

<d 9 (Ф®Г) ,а)Л. . . AW(S>d 9a)V. . .vd9w>(x;u л...ли ) 
1 k+21+1 

= <d9^<8>r + ^<8>d 9r,o)A. . .Aw<8>d 9 0)V. . .vd9w>(x;v A . . . A V ) 
1 k+21+1 

= — -Ysgn(T-<ds^(x\v )<8>Г + Ф <8>d9r(x;u ), 
k! • (21) ! U Ь < r ( l ) x x <r(l) 

( W A . . . A O ) ) ( X ; V л. . . ) <8> (d 9wv. . . vd 9w) (x; . . .ли )> <r(2) <r(k+21+l) 

=—_ -Y sgncr<dqy{x;v ), (u> л. . . л и)) (x; u л...ли )>• 
k! • (21) ! U Ь <r (1) <r(2) <r(k+l) 

•<Г , (d9w V . . . vd9(j) (x;u л...ли )> 
x <r(k+2) <r (k+21+1) 

+ — _ . y .sgn(r-<ty , ( W A . . . A W ) ( X ; V A . . . A U ) > • 
k! • (21) ! ^ 6 x ' <r(2) <r(k+l) 

<T 

•<d9r(x;u ),<Г , (d9wv. . .vd9w)(x;u n o л...ли )> 

cr ( l ) x <r(k+2) <r(k+21+l) 

= ( < d 9 # , G J A . . . A C J > A < r , d 9 0 ) V . ..vd9w> t 
+ (-1 )к<Ф,о)Л. . . л w> A<d 9 r,d 9w v. . .vd 9w>) (x;u л...ли ). • 

x * s \ > sj г k+21+1 

к # 
Proof of Prop.1.8. It is sufficient to consider 8 = #<8>Г for # € S e c A g and 

reSecN^g*. According to (1), Th.II.1.3, II.2.2, II.2.13, the lemma above and (3), 
dAk{*®4>) =dA(u)A*A (dw) VD 

= d^(l_.<^ > C t ) A. . .лы» л (do) V D + (-D^^Ad^f— -<r,d 9wv. . .vd 9w» 
к ! 1 ! 

= [<d9^,o>A. . .Aw> + < i d 9 ( w A . . . A O ) ) ) ] A (dtc>)Vr + 

+ ( - i ) k . J .<Ф,а>л. . . A O ) > A < d 9 r , d 9 o ) V . . .vd9w> 
k!• 1! X 

93 



= k d(#«>l ) A k(l< » r ) + j-iTyy-[<d9^,cj A . . . A w ) A < r , d 9 w v . . .vd 9w) + 

+ ( - l ) k - < * , w A . . . . A w > A < d 9 r , d 9 o ) V . . . v d g w > ] 

= kd (¥<8>r) + — - d 9 (^<8>D , W A . . . A w ® d 9 w v . . .vd9w>. • 
k! • 1 ! ' 

Let ( W g ) ^ 2 1 denote the space of cross-sections invariant with respect to the 
"adjoint" representation of A on (Wg) k' 2* ( = A kg*®V*g*). Put 

(Wg)°'0° is equal to Q^CA/,^), of course. 

The following follows easily from 1.6.(1). 

1.9. (1fg)^c is a subalgebra of the Weil algebra Wg. m 

1.7.1 implies 

1.10. d maps invariant elements of Wg into invariant ones, defining an 

antiderivation of algebras 

d Q : ( % ) / 0 > ( % ) / 0 . . 

Whereas 1.8 and II.1.7 yield 

1.11. k restricted to the invariant cross-sect ions 

k o:(Tfg) / 0 > nAM 

— A commutes with the differentials d and d , giving - on cohomologies - a homomorphism 
o 

k o # : f l ( ( i r g ) / 0 , d o ) -^BAIM) 

of algebras. m 

However, k ^ is unimportant because the space H[[Wg) jC , d ) is trivial: 

*((*»),..*,) * (w9)°,<> ( = ( i r g ) ° ; 0 = a ; U R , J ) ) . 

This follows from the fact that some chain homotopy joining id to 0 is defined by the 
family of invariant linear homomorphisms of vector bundles 
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k > ° O Ak * A k + 1 * 
c =0:A g > A g , k> 0, 

and 
k, l Ak * wi * Ak+i * v/i-i * c : A g <s> V g > A g ® V g , i > 0, 

* * ( - l ) k JL * * A 
V A . . . A W <S>T V . . . V T I > • J w A . . . A W A r < 8 > r V . . . S . . . V r . 

1 k 1 1 k+1 sf^ 1 k s 1 1 

B) The change of variables in Wg 

I X 

Proposition 1.12. There exists exactly one isomorphism 

<p :Wg > Wgt 

X I X I X 

of algebras of degree 0 such that 

( 1 ) tp ( 1 ) = 1 , 
(2) <p (w <8>l)=v « 1 , 
(3) <p ( 1 «> w ) = 1 <8> w - 5 w <8> 1 , w € q , 

x x I x 
where 6 denotes the differential in the algebra Ag , defined in 11.2.6. 

X I X 

Proof. The uniqueness is evident. To prove the existence, take two linear mappings 
<p , <p :Vg >Wg satisfying the conditions 
x + x- I x I x 

(1) q> . ( 1 ) = 1, 
X ± 

( 2 ) $ . ( r v...vT ) = rf ( 1 ® r ± 5 ( r ) ® 1 ) , r e g * , 1>1. 
r x ± lx 1 x j j ^ ix x ix ' ix I X 

Such mappings exist and are exactly the only ones. They are homomorphisms of 
algebras of degree 0 [the degree T =2 for r eg^ J and fulfil 

<P J V g J c e (A g <s>V g ) . 

Clearly, there exist two linear mappings <p , <p :Wg >Wg such that 
x+ x- I X I X 

( 4 . ) <p . ( * ® r ) = * ® l - £ , ( r ) , eAg* , r €=Vg* . 
Z X _ X X X XI X X I X X I X 

They are of degree 0, are homomorphisms of algebras (which can be easy to prove by 
considering tensors bihomogeneous only), and fulfil the property 
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( 3 . ) <p . ( 1 ® w*) = 1 ®w* ± 8 w* <g> 1, w*€g* . 
± x ± x I X 

To end the proof, put <p : = <p . To see that (p is an isomorphism, we check the 
x x - X 

equalities w °<p -id, <p °<p = id. Both sides of these are homomorphisms of 
x - x+ x+ x -

algebras, therefore it is sufficient to notice them on the generators, which is 
trivial. • 

All the isomorphisms <p , xeM, establish an isomorphism of algebras 
X 

<p:Wg >Wg, 

<p(B)(x)=(p ( 8 ) , xzM. By the proof above, 
X X 

<p~a(#<8> 1 ) =#<8> 1 and (p'1 ( \ <8>#) = 1 <8># + 6 # « > 1 

hold for VeSecg . 

Besides, <p establish linear homomorphisms of vector bundles 
X 

1 # 1 # £ # 1 * 
<p :Ag <s>V g > Ag ® V g , 

k,21 A k * w l * 1 , A k + 2 ( l - m ) * w m * ^ 
^ : A g ® V g > m e Q ( A g ( / V g | x ) . 

The following equality holds 

< P k , 2 1 o ( # ® R) = l-(<p°'21o(l ® D ) , *€SecA k g*, R E S E C V V * - ( 4 ) 

k 21 
Proposition 1.13. <p y is an invariant homomorphism. 

Proof. It is needed (see Il.Ch.l) to prove only that 

£ ( < p k , 2 1 o 6 ) =<pkf2lo£ e ( 5 ) 

a d ° £ ad<>£ 

k * 1 * 

for £,€SecA and 8 <= SecA g ® V g . As usual, it is sufficient to consider 
8 = i/, A...A\b <8>T v...vT , \b , r <=Secg*. By ( 4 ) and 1 . 6 ( 1 ) , 

v i *k l l r i j 3 

£ (a> k , 2 1 oi// a. . .A\p <8>T V . . . V R ) 

= £ (lA A . . . A 0 <8> 1- ( ^ ° , 2 1 o ( l ®T V . . . V T ) ) ) 

= £ (0 A . . . A 0 ®l)-(<p° , 2 1o(l®r V . . . V T ) ) + 
a d o ? * i *k 1 1 

+ \p A. ..Ail) G l - 2 ( ^ ° , 2 o ( l « 8 > r ) - . . . ' l ® r )) 
* 1 k a d o ^ r 1 1 ' 
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= Y> A . . . A * (0 ) A . . . A 0 <8> l - ^ ° , 2 1 o(l ®r V...VT ) + 
j 1 a d o ? M k 1 1 

+ ^ A . . . A 0 « l T y 0 , 2 o ( u r ) • . . . • £ (> 0 , 2 o(l<8>r ))•... -a>° , 2o(l ®r ). 
1 k j 1 a d < > £ v r i ' 1 

On the other hand, 

k , 2 1 O £ , A . . . A 0 <8>T V...VT ) 
a d o ^ r l *k 1 1 ' 

= (^k , 2 1o(ie (0 A...A\j) )®T V...VT + 0 A . . . A 0 (T V...VT )) 
v a d o ? * i *k 1 1 *1 *k a d o ? 1 1 J 

~<pk>21 °(Y*I> A . . . A # {lb ) A . . . A 0 <8>T V...VT + V 5 1 a d o ? M *k l 1 

+ 0 A . . . A 0 ®y;r v...vie (r )v...vr ) 
* 1 ^k ^ 1 a d o ? i ' l ' 

i 

= Y > A . . . A # (t/f ) A . . . A I Z , <8> 1-a> 0 , 2 1 o (1 <g> T V...VT ) + 
Y 1 a d o ^ M ^k ^ 1 l 

+ A . . . A 0 ^ T / , 2 o ( l » r ) - . . . -^° , 2 o(l<8)ie (r ))-...-»)0,2o(l«r ). 
1 k Y 1 a d o ? i ^ 1 

What lacks here to prove the veracity of (5) is the equality 

£ ( / ' 2 o ( l 0 D ) = y ) O , 2 o ( l ^ r ) for Fe Sec q. (6) 
ad<>? v J a d o ? ^ 

However, 

£ (<p0 , 2o(l «>r)) = l<s># r-2 (6T)®1, 
a d o ? 1 " ' a d o ? a d o ? 

whereas 

<p 0 , 2 o(l®£ D = l®£ T-6(£ D ® 1 , 
a d o ? a d o ? a d o ? 

therefore (6) follows from the following lemma. • 

Lemma 1.14. £ (6T)=6(£ D for TcSecg*. 

a d o ? a d o ? - r 

Proof. For v^y v^eSecg and the Jacobi identity, 

<£ (6T),i> av > = (^o^)<ar,r av >-<6r , I ? , y JAI> >-<6T,i> A E ? , y 3> 
a d o ? 1 2 1 2 1 2 1 2 

= ( r o £ ) < r , I i ^ , vj> - < r , IU, i ^ l , vj> - < r , E v i , I € . v 2 H > 

» ( y o C X r . l v ,v l>-<r,l^,lv.vj = <!e. T,lv vl> 
1 2 1 2 a d o ^ 1 2 

= < S ( £ D yV AV >. • 
a d o ? 1 2 
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Corollaries 1.15. (1). <p :Ag ®V g >Ag ®V g is an invariant isomorphism of 
vector bundles, therefore {(pl) 1 is invariant, too. 

(2). <p(B) is an invariant element of Wg whenever 8€lfg is invariant. 
(3). (p :(Wg) ̂ 0 > (Wg) j 0 , the restriction of <p to invariant cross-sections, is 

an isomorphism of algebras. 

C). Operators i , d, 9 and their properties 
V V 

We define the fundamental operators i , d, 6 in Wg in such a way that the 
following three diagrams commute 

Wg — W g 

i ,d,e J ,d,e 
V V 1 / 1 / 

Wg y > Wg 

Of course, one can execute this procedure on each level of x e M to obtain the 
operators i , d , 0 on Wg with the relations i (8 ) = i (0)(x), etc. 

x yvx x x » ^ x

 , x x * v x x v 

Proposition 1.16. The fundamental properties of the operators i , d, 9 are as 
foiiows: 

( 1 ) 9 = 9 , 

V V 

(2) £ o d = d o j g , 

a d o £ ad<>£ 

(3) i o d + d o i = 9 . 

V V V 

Proof. ( 1 ) : 9 and 9 are derivations, therefore it is sufficient to show the 
V V 

- # equality 9 (8) = 9 (8) for the cross-sections 8 = $<8>1 and 8 = l 8 ¥ , #€Secg : 
V V 

9 ($<8> 1 ) =(p~X oQ o ^ ( # < g » 1 ) =9 A(*) <8> 1 = 9 ( # < 8 > 1 ) , 

v 1/ 1/ 1/ 

9 ( 1 <8>#) = ^ _ 1 o 9 o ^ ) ( l <g>#) ^qTloe ( 1 <8>^ - S*<8> 1 ) 

= ^ ) " 1 ( 1 « > 9 * - 9 A ( S t f ) <8> 1 ) = 1 <8>9 V # + S ( 9 * ) <8) 1 - 9 A ( S ¥ ) <8> 1 ) 

V I / 1 / 1 / 1 / 
= 1 ® 9 V * = 9 ( 1 ® * ) 

V 1/ 
by [9; p.175 (5.3)]. 

(2): Evident because £ commutes with <p, <p 1 and d . 
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(3): i od + d°i - (p 1 o i odo(p + cp 1od<>i o(p = (p 1 o f i od + d°i )°<p 

-1 -
= </) o 0 o(p = 0 . • 

Proposition 1.17. (1). i is an antiderivation of degree -1 defined uniquely by 
the conditions 

(1°) i (¥® 1) = i ¥, 

(2°) i (1»*)=0, * e S e c g * . 

It has the property 

(i) i ( * < 8>r ) = i (¥)®r for *€SecA k g*, r^SecV^g*. 

(2). d is an antiderivation of degree +1 defined uniquely by the conditions 

(1°) d(¥<8> 1) = 1 <8>* + 5tf a 1, . 

(2°) d(l<8>¥) is an element of [Wg)ly2 ( = Secg*<8>g) such that 

i <>d(l <8>#) =6 ¥ for veSecq. 
V V 

Proof. (1) and (2) follow from 1.16(3). The rest is trivial. • 

The families of operators i , d , 9 , indexed by XGM, give rise, for 
x , v x x x , v x 

k, 1 > 0, the linear homomorphisms of vector bundles 

.k,21 A k * w i * A k - i * w i * i : A g ® V g > A g ®V g , 

k,21 A k * w l * A k * w l * . 

o 9 : A g » V g > A g ®V g , 
^k,21 A k * w l * A k+1 * w l * Ak-1 * wl + 1 * 
d ' :A g ®V g > A g «>V g e A g ®V g . 

1.16(2) implies 

1.18. d /naps invariant elements of Wg into invariant ones, defining an 

antiderivation 

do:(W3)i0 > (W9)r. m 

<p :{Wg) © > ( ^ r g ) / o commuting with d and d^ gives an isomorphism 

99 



therefore H((Wg) j 0 ,d ) is trivial according to 1.12. 

1.19. The cross-sections BeWg, for which i 6 = 0 for each veSecg, are called 
horizontal (or more precisely, g-horizontal) . Since i is an antiderivation, all 
horizontal cross-sections form a subalgebra of Wg denoted by (Wg) . . This construction 
can be executed on each level of xeM to obtain the algebra (Wg ) . Of course, 

v I xJ 1 
®€(Wg). * B

x

€iW3\x)j f o r e a c h x e N ' 
Lemma 1.19.1. (Wg) = ll°(Wg)°'21 (= l&°SecVlg*); equivalent ly, (MTg ) =R*Vg* 

for each xeM. In consequence, each nontrivial homogeneous element of (Wg) # has an 
even degree. 

Proof. Let 0 =5> J ®r j € (Wg ) , 0 J€Ag* and HeVg* ; the linear 
X j X x v I x y i x lx x l x 

independence of F can be assumed [ 7; p. 7 J. Since 
x x y v x x ^ x , v x x x 

therefore [7; p. 7], i (0 j)=O for each v eg . But f| Ker i =R 
x , v x x l x 1 1 * > ^ v 

* x 3 I x 
[7; p. 117], then we obtain 0 J =r j €(R c Ag . • 

X I X 

1.6.2, 1.16(l)-(3) yield 

1.20. d /naps invariant and {simultaneously) horizontal elements of Wg into such 

elements, defining the antiderivation 

D) The mapping k 

Put 

k = ko^:lfg >Q (tf). 

It is a homomorphism of algebras. 

1.21. k :(Wg) 0 > ft {M), the restrict ion of k to the invariant cross-sections 
commutes with the differentials d and d . 

o 

Proof. For &€(Wg)i0 we have, by 1.15(2), 
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dAok ( 9 ) = dAok 0 ^ ( 9 ) =k°do<p (9) =k<xp<>d(9) =k °d ( 9 ) . • 
o o o o 

Proposition 1 . 2 2 . k ( * ® * ) = W A ( ^ ) A Q V ( D for * € KL°SecA kg*, r € ^ S E C V V * -

Proof. k ( * « * ) = k ( ^ ® l - l ® r ) = k ( * ® l ) A k ( l ® r ) = w A ( ^ ) A k ( l ® r ) . It 
remains to verify that k(l ® D = Q V ( D . But the mappings Ti >k(l<8>D and 

v 
r i >Q (D are homomorphisms of algebras such that 1 i »1, therefore it is 
sufficient to check the equality for T = ̂ €Secg . 1.6 yields 

k(l ®¥) =ko<p(l = ic(l«8>^-6^<8)l) 
= (dw)V(*) -a>A(S*) =<^,d9w>-o)A(6^) =Q V(*). • 

1 . 2 3 . i <>k = k o i for veSecg. 
V V 

V r 

Proof. By the horizontality of the form from ImQ Lwhich easily follows from the 
horizontality of Q ] , the property Th.II.1.3(vi') of the substitution operator 
i :Q (W) >fi (M), Lemma 11.2.3 and 1.17(1) (i) above, we get, for VeSecAkg* and 

v A W A 

i o k ( * ® * ) = i ( w A ( * ) A f i V ( D ) = i ( u A ( * ) ) A n v ( D + ( - l ) V ( * ) A i ( f i V ( D ) 

= W A U ( * ) ) A f i v ( D = k ( i ( ¥ ) » r ) = k ( J ( ¥ ® r ) ) . 

V V V 

Our proposition now follows from the linearity of k and i . • 

Remark 1 . 2 4 [The Chern-Weil homomorphism of A, revisited). A consequence of 1.22 
is that k maps horizontal elements of Wg into horizontal real forms on A, giving a 
homomorphism of algebras 

k | : ( 1 T g ) 1 — > Q A t , l M ) . 

This mapping is defined by the formula 

k (l*r) = Q V ( D , T€ ll0SecVlg*. 

Consider the further restriction of k, 

where [Wg) 0 . denotes the algebra of elements horizontal and invariant simultaneously. 
We prove that 
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d\{*9),o .=0. (7) 

Let O*0€(lfg) 0 By 1.20, d8e(?fg) c . . But 8 has an even degree (see 
/ , i i , i 

1.19.1), whereas d is an antiderivation of degree +1, therefore d8 has an odd degree. 

Using 1.19.1 once again, we assert that d8 = 0. 

According to 1.21 and (7), the forms from Imk are d -closed. Take into account 
O , J 

A E 
the isomorphism A :Q {N) >Q (AO II. s. 2. It maps d -closed forms into d -closed 

R * A , i E 
forms, see 11.(5). By the above, there exists a homomorphism of algebras 

1 i ° ( S e c V V ) / o > BE(M) . (8) 

r i > [A^(Q V(D] 

However, 

A^(Q V(D) =A^(^--<r,Qv. . .vQ» =l-.<r,A^Qv. . . v A^Q> = ij- <I\ v. . .vQ b>, 

therefore [A (Í2V(D ) ] = [ — -<rfI2 v...vQ>]=h (D according to [l7;Ch.4], which 

" l i b b A 

means that (8) is the Chern-Weil homomorphism of the regular Lie algebroid A. 

2 . R E G U L A R L I E A L G E B R O I D S A N D I D E A L S 

Take two vector bundles F' and F on a (paracompact, for recalling) manifold W, 

such that F' c f , and define (see [l8;s.l.l]), for p^l, 

V r ' : = U V < f ' ) c A F -
x€M I x 

I . , is a vector subbundle of AF and the space of global cross-sections Sec(J v , ) 

sets up an ideal in the algebra Sec(AF); besides, Seed . , ) = (Sec I ,) , k>l. 
A K F F 

oo 

Let E cEcTH be two C constant dimensional distributions on M, and suppose E 

to be integrable. Denote by £ / x the vector subbundle of £* consisting of all covectors 

vanishing on E' . Using the above (for F = F*, F / = E / J - , p = l ) , we obtain an ideal I in 

the algebra Q^(Af) ( = SecA£*) of tangential differential forms, generated by 1-forms 

vanishing on E' . Standard calculations give the following 
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2.1 (The Frobenius Theorem for subdistributions). £' is involutive if and only if 
the ideal I is differential, i.e. d [I]cl. m 

Consider a regular Lie algebroid (AyI•,•3,y) over a foliated manifold (M9E) and an 
involutive subdistribution E'cE. This produces a new regular Lie algebroid 
(A' ,H>, ) in which A' =y" 1[E / ]. 

In the sequel, the symbols A'^ and £ / x are understood with respect to the 
x x 

canonical dualities A xA >(R and E xE >IR (see [18]). Consider the ideal 

Sec(Ik/ ) cQ (tf) ( = SecA4*) 
A K ( A ) A V ' 

being the k-power of the ideal of real forms on the Lie algebroid At vanishing on A' . 
x 

Since V eSec A'± if and only if = y 9 for some 9 € Sec E'x, we obtain that each form 
VeSecil . / J L ) is globally of the form A K ( A ) 

1 * 1 k t= F T (6 A . . . A 9 ) A $ 
1=1 1 1 1 

for an integer 1, 9^€Sec(£ / x) and ty^eQ^iM). This fact, 2.1, and the equalities 
dAv* = y*dE (11.(5)), iy„=v„i 9 \ * = r*0 „ for £ <= Sec X' , make the following 
proposition obvious 

2.2. The ideal Seed . , ± ) is closed with respect to the operators d , i , 8 
A K ( A ) € € 

for 6; € Sec ;4' . • 

x x x The monomorphy of :A£ >AA , the equality 

i (**9)=**i 9 
vi A v / i - k +1 - • A^ vh- k+1 

for 9€fi^(M) and w^eSec^, and theorem 1.1.1 from [18] (see also [l]) imply 

2.3. e € S e c ( I A k ( E / X ) ) ^ ^ e € S e c ( / A k M / ± ) ) . -

Recall that [18; 1.2.1] by a partial connection in A over £'we mean any connection 
y :£' >A' in the regular Lie algebroid A' = y 1 [ £ / ] . 

If A' is flat, then the pair M,A' ) is called a partially flat regular Lie 

algebroid. Any foliated principal bundle [10, p.20], gives in a natural manner, a 
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partially flat regular Lie algebroid. 
A connection A:E >A in A is said to be adapted to A' when A' = A|£' (an 

adapted connection always exists). 

Assume that A is equipped with a connection A and a partial connection A' over E' . 
Let Q and ft' (Q^ and Q^) be the curvature forms (the curvature tensors) of these 
connections [see II.Sec.2 and [17; 3.1.1]]. According to the equality ft = r*flb> 
Prop.1.2.3 from [18] and 2.3 above, we assert 

2.4. If A is adapted to A', then 

(a) A' is flat if and only if <v* ,Q > € / ( f ) for any xeM and v* € g* , 
J I x A 1 ( A x ) J 9 \ x 

I x 
( 2) (b) A is basic if and only if <u*,Q >el 0 for any xeM and v* € g* . • 

J \ x K 2 i A / x ) J a i x 
I x 

Pass to the Weil algebras Wg and Wg. has a standard even decreasing 
filtration by ideals 

F2p(W9i ): = l u P * ( = Ag* ®V > pg* ). 
I x 

These, for all x<=/tf, define an even decreasing filtration by ideals of the Weil 
algebra Wg 

F 2 p ( W g ) : = J 0 € Wg; Vx € », 9^ € F2p(Wg j ̂  )| 

1 in # 1 # 

= lpSec(Ag « V g ). 

The algebras f\A and AF possess decreasing filtrations by ideals 
I X I X 

F P ( A C ) = v < ^ > • F P ( A O = v < . - ) 

I X I X 
which determine decreasing filtrations by ideals of the algebras Q (M) and ft {M) 

A E 

F P(Q (W)) = U € Q (W);VxeW, * e F P(A4 * ) I 
A I A x I x I 

FP(ft (W))=|e <= Q (»); Vx€W, G €F P(AF* )1 £ 1 E x I x J 

= S e c V ( £ ' x ) • 

Proposition 2.5. Let (4,A') be a partially flat regular Lie algebroid and A an 
adapted connection. Then the homomorphism k:Wg >Q^{M) [defined for A) is 
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filtration-preserving in the sense that 

k[F 2 p(Wg)] cQ p(M), p>0. 
A 

Moreover, if A is basic, then 

k [ F 2 p ( % ) ] c Q 2 p ( W ) , p>0. 
A 

X 
Proof. Of course, it is sufficient to verify that k :Wg >hA preserves the 

X I X I X 
filtrations. Since I p * = (I * ) p , therefore F2p(Wg ) = (F2(Wg )) p. On the 

R <8>V g R ®g I x *\ x 
I x \ x 

other hand, k is a homomorphism of algebras, thus we need only to check that 

(a) k [F2(Wg ) ] c F ! ( a / ) , 
X I X I X 

whereas, in the case of a basic connection, that 

(b) k [F2(Vg ) ] c F 2 ( A / ) . 
X I X I X 

F 2(Vg ), F 1 ^ * ) and F 2(A4* ) are ideals and F2(Vg ) equals I * , so it 
* l x Ix I x I x R ®g 

suffices to check that 
X ( 2 ) X X 

(a 7) k (l®w ) € / - . , . , w €g , 
x A A ( A ) J l x 

I x 
* ( 2) * * (b') for a basic connection A, that k (l®w , ± , w eg 

x ( A ) I x 
I X 

x x 
However, k (1<8>W ) = <w ,Q >, thereby (a') and (b') follow from 2 .4(a)-(b). • 

X I X 

Corollary 2.6. Let the situation be as in the previous proposition. If 

q-rankE/ E' [i.e. q equals the codimension of f with respect to and f being 
the foliations determined by E and E' , respectively], then 

k[F 2 p(Wg)] =0 for p>g+l. 

If A is, in addition, basic, then 

k[F 2 p(%)] =0 for p> [g/2] + l. 

Proof. Clearly, q = rank A/A' = dim(A'x ) for each xeM, which gives A P M ' x ) = 0 

for p>q+l and, in consequence, Fp(Q(i4))=0 for p>g+l; then 2.5 implies 
k[F 2 p(Wg)]=0 for such a p. Under the additional assumption concerning A, 
k[F2p(lfg)] =0 for 2p>g+l, i.e. for p > [g/2] + l. • 

The filtration of Wg in the intersection with the subalgebra 1 l°Sec (V 1g ) / C > 
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gives a filtration of this last: 

F ^ T s e c W y ^ o ) : = C^SecW'g*) i0)nF2p(Wg) 

= ^ S e c t v V ) ^ . 

Notice also, see 2.3, that the isomorphism r„:Q (M) >Q . (W) preserves the 
* E A, i 

filtrations. As a corollary we obtain the so-called "Vanishing Bott's Phenomenon" [18] 
because, keeping the assumptions from the previous corollary, we have that the 
homomorphism of algebras 

k A 
ll°(Sec\Jlg) 0

 1 , 0 > Q (N) —^> Q (M), 
3 /0 A, i E 

and further, passing to the cohomology, the Chern-Weil homomorphism [17] 

h : ^ ( S e c V V ) 0 > H (M) 
A I E 

of the Lie algebroid A preserve the filtrations and, then, Pontp(A)=0 for 

p>2-(q+l), whereas if A' extends to a basic connection, then Pont p(A)=0 for 
p > q+1. 

3 . T H E T R U N C A T E D W E I L A L G E B R A 

Definition 3.1. By the symmetric truncated algebra over a vector space 9 we shall 
mean the space V**9 with the canonical even gradation, and with the structure of an 
(anti)commutative graded algebra such that 

x x x x 
( u v...vu vv v. . . v v when k + s < 1, 

T * * \ , * * [ 1 k 1 s 
( u V . . . V U ) • (v v. . . V V ) = 4 

1
 k 1 s 1 ^ t-

v 0 when k + s > 1. 
This algebra can be constructed isomorphically as a quotient algebra (Vp. ) / l >i * of 

x i+i x V s 

the symmetric algebra Vg by the ideal generated by V 9 . The mapping 

V Q > (V9 ) / l y > i » 9 w i >[w ], 

establishes the canonical isomorphism of algebras. The canonical projection 
x ^ i x 

ir^Vp. >V 9 is, of course, a homomorphism of algebras. 
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Denote by 

* < 1 # 
(l/g) : = A g ® V g 

the anticommutative graded tensor product of the anticommutative graded algebras. It is 
called the truncated Weil algebra of the vector space g. 

Return to the consideration of a regular Lie algebroid A over ( M , £ ) , with the 
Atiyah sequence 0 >g c > A— >0. Notice that^ for each xeM9 

( 0 ^ 1 > [ 6 ] establishes the canonical isomorphism) and, by the relation 
, r ,.T .k,2s-i . k+l , 2 s f . k-l , 2 ( s+l) , _. . . _ _ _ d I (Wg ) J c {Wg ) e {Wg ) , d defines a new differential 
X I X I X I X X 

[d ] : (Wg ) > (Wg ) . Writing d = d' + d" where d' [V*' 2 s] c I / * * 1 ' 2 s and 
x 1 I x l I x l X X X X 

, / / r T . k , 2 s - i T / k - l , 2 ( s + l ) d 11/ JcliT we assert that 
x L J ' 

/ d (<p «>r ) when r e\/<lg , 
[d ] („ » r ) = { * * x 

* 1 x * ^ d' (<p ®r ) whem r eV g 
X X X X I X 

Put 

(l/g) := A g ^ V ^ g * and (Ifg) : = Sec ( l / g ) . 

Of course 

(l/g) = ( l / g ) / F 2 ( 1 + 1 ) ( l / g ) 

( © I >[9] establishes the canonical isomorphism). 

(Wg)i will be called the truncated Weil algebra of the vector bundle g. 

The family [d ]^, xeW, determines an endomorphism [d]^:(Wg)^ > (Wg)^ and, 
denoted by the same letter, a differential 

For s* < 1, the projection (Wg) > (Wg) is a homomorphism of algebras commuting with 
1 s 

the differentials [d] and [d] . 
L Ji L s 

Take the canonical adjoint representation ad of /1 on (Wg) and denote by (Wg) 0 

1 1 , 1 
the space (de facto, the subalgebra of (Wg) ) of invariant cross-sections. 

(Wg) 0 is stable under the operator [d] . Indeed, let 9 be a bihomogeneous 
1, / 1 

element of (Wg)^ j0. Then d9 is invariant, in particular, d'9 is invariant; [ d ] ^ , 
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being equal to d B or d'9, is invariant, too. 

Let A be any connection in A and let k : Wg >fi(;4) be the homomorphism of 

algebras determined by A. 

Proposition 3.2. Assume that k [ F 2 ( 1 + 1 ) (Wg) ] = 0. Then 

(1) there exists a homomorphism of algebras [ k ] : {Wg) >fi (M) such that the 
I I A 

following diagram 

[ k ] , 
(Jfq) Q (W) 

3 1 ,4 

tt / k 

% 

commutes (tt being the canonical projection), 

(2) is* equal to the restriction k\(Wg)^t 

(3) [ k ] restricted to the invariant cross-sect ions (Wg) 0 commutes with the 
1

 r t A 1 , 1 

differentials [d]^ and d , defining a homomorphism of algebras 

[ k ] : / / ( ( % ) 0 , [ d ] ) >H («). 

The class [>][©] for 0 € ( S e c A kg* ® V*g* ) f 0 , s •< 1, has the form 

— — • (0,w A , , . A w»Q v. ..v Q) as its représentât ive. 
k ! s ! v v ' v v ' 

k t i m e s s t i m e s 

Proof. (1) and (2) are evident. 

(3): Let Be(Wg) (c (Wg) ) . By 1.21, 

d ^ o f k ] ( 9 ) =d^ok(e) = k o d ( B ) =[k] io| Tod(8) = [ k ] i o [ d ] i < > n ( 9 ) = [ k ] ° [ d ] ( 9 ) . 

The last sentence is a consequence of II.2.2, II.2.5 and 1.22. • 

Example 3.3. Assume that A is equipped with a flat partial connection A 7 over 

£ ' c £ (as in 2.5) and let q = rank(E/£' ). According to Corollary 2.6, 

k [ F 2 ( q + 1 ) ( î f g ) ] =0 for an adapted connection A, and k [ F 2 ( [ q / 2 1 + 1 ) (Wg) ] = 0 for a basic 

connection A. Prop.3.2 produces in these situations the homomorphisms of algebras 

[ k ] , : (Wg) , >Q (M) for q' > q and q' > [q/2] , respectively, and next, the 
q q A 

corresponding homomorphisms on cohomologies. The homomorphism 

[ k ] :H((Wg) , [ d ] ) >H (M) generalizes the w described in II. 2. 11: in the case 
q# v q q' A # 

when £' =£, i.e. when A' is a flat connection in A, we have q = 0 and [ k ] = o)~. 
^ L J o o 
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Let Я : A > be a homomorphism of regular Lie algebroids over 

f:{M,E ) ). Define the pullback 

H+*:W(g2) *W(g ) 

in the standard way: Я + (Ф)(х)=Я* W f (x))), xeW, where Я + = Л Я + ® У Я * . It is 
X X \ X \ X 

clear that Я is a homomorphism of algebras of the bidegree (0,0). 

Proposition 3.4. The pullback H has the following properties: 

(1) i ° Я + * = Я +*°1 + for 1/ € g , x € Af ; 
x, v x x f(x),H(v) 1 I X l 

in consequence, H maps h -horizontal elements into h^-horizontal ones. 

(2) 6оЯ+*(в) = Я +*об(в) for В € SecAg*, where 6* s denote the differentials 

described in 11.2.6. 
(3) <р°Я = Я <></) where </)' s denote the change of variables, see chapter l.B. 
(4) doH+* = H+*°d. 

(5) [d] off** = ff**o[d] for 1 <1 
l l l2 1 * 

+ * 4 * + # (6) (£ оЯ = Я of for t/€>4 ; in consequence, Я /naps invariant 
ad( v) x a d ( / / v ) 1 I x 

elements into invar iant ones. 

Proof. (1): By the homomorphy of Я and the antiderivativity of i s, it is 
X x, V sufficient to check the equality for the elements of Wig ) of the forms 9 ® 1 and 

21 r ( x ) 
# 

1 ® 9, where 9 <= g 

i оЯ+*(9$> 1) = i ( Я + * 9 ® 1) = i (Я +*9) = <9,Я+(и)> = i / л + / ( 9 ) 
x , v x x , v x x, v x f{x),H(v) 

= я + ^ о ! 4 ( e ) . 
x f(x),H(v) 

i он**а ®e) = i (l ® я + * е ) = о = я +*о j + (l <8>o). 
x , v x x , v x x f(x),H ( v) 

(2): 6's are antiderivations, therefore it is sufficient to consider SeSecg^ 
For x € M and w 6 g , 

l i 1 I X 
< ( S o t f + * 9 ) ,w AW > = < ( Я + * ) ,[^,w]> = <9 .#+[w ,w ]> = < 8 , [ Я + Ы ),#+(w )]> 

x 0 1 x 0 1 f ( x ) x 0 1 fix) x 0 x 1 

= < ( 5 8 ) ,H*iw )лЯ+(w )> = <(#+*<>5(в)) , w AW > . 

f ( x ) x 0 x 1 x 0 1 

(3): By (2) above, 
<роЯ +*(1) =Я +*о<р(1), 
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<poH+*{B® i) = p ( j f + * e « > i ) = ff+*e® i =H+*o<p(e® \ ) , 

< p o # + * n (g)9) = p(i #//+*e) = i ®H+*e-d{H+*e) ® i = l <8>// +*9-# +*(S9) ® l 

• = / / * * d ® e - 69«) i) = f / + * o ^ ( i ® e ) . 

+# 
The general formula follows from the homomorphy of <p and H 

+# +# -

(4): Thanks to the previous property, (4) follows from the equality d°H - H od 

which can be checked trivially. 
(5): (4) yields d' o// = // o d ' a n d the two imply (5) immediately. 

x 
(6): First, we show, for 9 € Sec , that 

<£ * (H**B) %v > = <tf+*(jg * 9) , y > 
ad 1 ad o ? 2 1 

where y € Sec ĝ  is a cross-section for which there exists € Sec g^ fulfilling 
/ / + oy^ - y ^ o f . For the purpose, we notice [ 17 j that / / * o [ [ £ ^ , v^Tl = I ? 2 > y

2-"°^• Thus 

<£ •» U/+*9) ,y >=(* ) < f f + * e , i > > ~ <//**9,l[€ ,i> 3> 
ad o ? 1 1 1 M 1 5 1 1 

= (? °£ )<9, i> >of - <B,IT£ ,v I i > o / - < j g * B,y >»f = <H**{£ * B),v > . 
2 2 2 2 2 ad 2 ad o ? 2 1 

Lemma 1.6(1) leads now to the equality 

<^ (//***), u > = <//**(£ # ) , i > > , ( 9 ) 
a d o ^ 1 a d o ? 1 

# € If a , where y , £ are as above. 
2 1 1 

The equality f. {H $) =// ( # ) follows in an evident manner from those ado?t ad<>? 2 

written for a strong homomorphism and for the canonical one. In each of these cases, 
this follows from (9) and the observation which says 

— for a r b i t r a r i l y taken xeM and, v e g , there exist local cross-sections v 

1 1 I X 1 
and v such that i> (x) ~ v and v and v fulfil the required condition H o p = v of. 

2 1 1 2 1 2 

By the analogous reasoning, we assert equality (6). n 

Corollary 3.5. // maps h^-horizontal and invariant elements into h^-horizontal 

and invariant ones, defining, for i , a homomorphism of algebras 

n**--WaJ. h ,* — > w < l \ h , o 

commuting with the differentials [i.e. [d] of/4 =tf+*o[d] ). • 

1 1 0 



Let us assume that in A^ we are given some regular Lie subalgebroid B^ over 
{M,E^), i = l, 2, and that H[B]cB . In the standard way, one can define the pullback 

[HY*:W(g ,h ) -»lf(g ,h ) 
L J *2 2 ^ 1 1 

( [ t f ] + * ( # ) ( x ) = A [ / / + ] % V / / + ( # ( x ) ) where [tf+]*:g/h >g /h is the induced linear 
x x x 1 1 2 2 

homomorphism). Since the diagram 

commutes, we obtain - by the above - that [H]+ commutes with the differentials, i.e. 

H***[d] = [ d ] • [ * * * ] , i 2,h 2 l ^ h j 

giving a homomorphism on cohomologies 

[H]+*:H(W(g ,h ) J > ff(1f(g ,h ) J . 
L J ^2 2 1 2 , / 1 1 1 2 > I 

4 . C H A R A C T E R I S T I C H O M O M O R P H I S M - I T S C O N S T R U C T I O N 

Here we construct some characteristic homomorphism of a partially flat regular Lie 
algebroid, being a generalization of the one constructed in II for a flat regular Lie 
algebroid. 

Consider, in a given regular Lie algebroid A over (M,£), two geometric structures: 
(1) a partial flat connection A' over an involutive subdistribution £' cE, 
(2) a subalgebroid Be A over (M,£), see the following diagram: 
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II 

112 

0 >g < > A' - -—->£' >0 

II F 

0 >g < > A — * E >0 

J II 

0 >g c > B —>E >0. 

The system (4,B,A' ) will be called a PFS-regular Lie algebroid (over (#,£,£')). 

The construction of the characteristic homomorphism of a PFS-regular Lie algebroid 
has, as in the case of an FS-regular Lie algebroid, a number of steps. 

4.1. Let s :g >g/h denote, as in II. 3.1, the canonical projection. Put, for a 
positive integer 1 

V ( g ; h ) := A ( g / h ) * e V**g* and JT(g;h) : = SecV (g ;h ) . 

W ( g ; h ) with the natural structure of an algebra will be called the truncated relative 
Weil algebra. 

The representation ad" of B on A ( g / h ) described in II. 3.3, together with the 
0 , 9 <i * , 

representation ad \B of B on V g (being the restriction to B of the adjoint 
< l *\ 

representation of ^ on V g J, yields the representation of B on W{g;h)^ denoted also -
for brevity - by ad. 

For an arbitrary ^€SecB, the differential operator j? ^^^:W(g;h)^ >W{g;h)^ 

is a differentiation of the truncated relative Weil algebra W{g;h)^ , from which we 
obtain that the space W(g;h)^ ^ 0 of invariant cross-sections is a subalgebra of 
J f ( g ; h ) r 

The monomorphisms 

As : A ( g / h ) >Ag and As 0 id : A ( g / h ) ®V g >Ag ®V g 

of vector bundles are invariant with respect to the representations considered of the 
Lie algebroid B, which is easy to see by the definitions. As a corollary from the above 

* l * l and the monomorphy of As <8> id we obtain that As <& id oty, V€W(g;h)^ , is an 
invariant cross-section if and only if ^ is invariant, and that 



W(g;h) „ ^ A s ^ i d ' o * e W(g) 0 

1 , / 1 , I 

is a homomorphism of algebras. On the other hand, a cross-section of W(g)^ is of the 
image of some cross-section of the bundle W(g;h)^ if and only if V is h-horizontal 
(i.e. if and only if i ty = 0 for veSechy where i is the operator defined in Section 
l.C), so 

)f(g;h)i . > W(g) «i ^ s ^ i d ^ * , 
1 , I 1 , l l , I 

is an isomorphism of algebras. 

4.2. The subspace lf(g) 0 is stable under the differential 
l,h, / 

[d]^:W{g)^ >W(g)^. Indeed, for an invariant element V of W{g)^t we have 
i^odW ) = -d<>i (¥' ) by 1.6(2), 1.16(1), 1.16(3), and, in consequence, 
i od' (#' ) = -d' o i (¥'). Therefore, for a bihomogeneous element ¥ ' € l f ( g ) , 
V V ** 1 

i o[d] (*')=i (d¥')=-d(i ¥')=0 or i o[d] (¥')=i (d'*' )=-d' (i *' )=0, see 
Section 3. This enables us to define the differential d :W{g;h) 0 >W(g;h) 0 

l, h l, / l, / 
in such a way that the following diagram commutes: 

W{g;h) — > W{g) 
1 , J 1 , n , I 

l,h L Jl (10) 

4 . 3 . Consider any connection A:£——> ; 4 in A and let the homomorphism 
k:Wg >Q (M) be constructed for A. The form ?>(¥): = [k] (As* <8> id1 <>*), ¥€W(g;h) , 

i4 1 1 
is h-horizontal, which follows in an easy way from 1.17 and 1.23. Therefore, the form 
j (?>(¥)) eft (Af) is horizontal. Then (see II.2) there exists a form A* € Q (W) such 

B E 

that 

( y ) „ ( A ¥ ) = / ( [ k ] 1 (As*® id1 o * ) ) . 

4.4. Remark. One can easily check that if A is a connection in B, then, for 
# * l * ¥ e SecA(g/h) «>V g , 

r 0 when k>0, 
A¥ = < 

A^(ftV¥) when k = 0. 

4.5. Let q-rank{EJEf ) and let A be adapted to A'. Defined in the above manner, 
the mapping 
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A , :W(g;h) , >Q (M) , I >A#, 
q q E 

q' > q (and q' > [g/2] in the case of a basic connection), is a homomorphism of 
algebras, see Example 3.3, and the diagram 

A , 
W (g;h) , — ? -> Q (M) 

\ Q (A) 

[ k ] , N * 
iw9) ' — q > QA(M) d Qa h(M) 

commutes. 

Proposition 4.6. The mapping A , restricted to the invariant cross-sections 
q 

A :W(g;h) , . >Q (H) 
q * q , / E 

E 
commutes with the differentials d , and d . 

Proof, j and y are homomorphisms of regular Lie algebroids; then, according to 
B * A B 11.(5), the commutativity of j with the differentials d and d , and seeing the last 

diagram and the definition of d , we notice that it is sufficient to have the 
1 ,h 

commuting of [k] ,:W(g) , 0 -—->Q (M) with [d] , and d , but this follows from 
q q ,h, / A q 

3.2(3). • 

Theorem 4 . 7 . The mapping 

A :H[W(3;h) , d , ) »ff(M) 
q # v q > f q > h £ 

[¥] i > [A , *] 
q * 

is a correctly defined homomorphism of algebras. • 

4 . 8 . If A is basic, then the following diagram commutes: 
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ff(!T(g;h) ) 

in which the vertical arrow is a homomorphism of algebras, induced by the projection. 

A (also A r for a basic connection) is called the characteristic 
q# V tq/2]# J 

homomorphism of the PFS-regular Lie algebroid (i4,B,A'). Its image is a subalgebra of 
H (M) called the characteristic algebra of the PFS-regular Lie algebroid (A,B,\'), 

whereas its elements - the characteristic classes of this algebroid. 

5 . T H E F U N C T O R I A L I T Y A N D O T H E R P R O P E R T I E S 

Let (A ,B ,A') and (A ,B ,A') be two PFS-regular Lie algebroids over (ff ,£ ,£') i l l 2 2 2 & & l l l 
and (M^fE^9E^)9 respectively. 

Definition 5.1. By a homomorphism 

H: (A ,B ,A' ) > (A ,B 9\* ) 
1 1 1 2 2 2 

between them we mean a homomorphism H:A >A^ of regular Lie algebroids, say over 
f:(M ,£ ) >(« ,£ ), such that 

1 1 2 2 
( 1 ) f . i r i c r , 

(2) H o X ' = A ' o f | £ ' , 
1 2 1 

(3) H[B ] cB . 
1 2 

In the sequel, the notations of some objects related to A^9 B^ and H will be the 
same as in the following diagram: 

1 1 5 



0 0 
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h » h 

/> 1 o „ 2 

»i ; * g

2 

B > B 
1 2 

N/- ^ ^ ^ ^ ^ \f 

A l r ^ — * A 2 

/ E-/ > E ( 1 2 ) 

/ E > E 

/ 1 / 2 

^ ' f / | 
1 / 2 0 / 0 

A' / A' / 
l / 2 / 

> E' 
1 2 

By the pullback of a PFS-regular Lie algebroid (i4,B,À') over (#,£,£') via a 

mapping f : (M ,£ , £') >(#,£,£'), i.e. a mapping f:M >M such that f [E ]c£ and 
i l l 1 * 1 

f^ i r i c E ' , we mean the PFS-regular Lie algebroid (f A 4 , f A B , À' ) where À 7 : E^ >fA>li 

is the pullback of X' [17; 3.2.1]: X' (v) = ( v, V (f v) ), v€E'. Proposition [17; 3.2.2] 
* i 

gives the flatness of À'. The canonical homomorphism Pr

2

:f A >A is a homomorphism 
of PFS-regular Lie algebroids. 

Each homomorphism H:{A^,B ,\') > {A^>B^y\') of PFS-regular Lie algebroids can 

be represented in the form of a superposition of a strong homomorphism with the 

canonical one: 

77 Pr 

(A ,B yX')-^-*(f
AA ,fAB ,A') ?-+U ,B ,X'). 

I l l 2 2 2 2 2 2 

Theorem 5.2. (The functoriality of à ). 



Let ( i i ^ B ^ A p and (A^B^X^) be two PFS-regular Lie algebroids over {M ,E 9E') 

and (tf ,£ , £ 7 ) , respectively; put q - rank(E /£' ). Let H: {A ,B , A 7 ) > U ,B , A 7 ) be 
2 2 2 i i i 1 1 1 2 2 2 

a homomorphism between them over f: (M ,£ ,£7 ) > (M ,£ ,£ 7 ) . assume that the adapted 
1 1 1 2 2 2 

connections A and A , such that H<>\ = A o f are given. Then the following diagram 
1 2 1 2 * 

A 

max (q^ , q 2 ) # 

a 2 2 I » a x ( q j , q 2 > , / 2 

Iff]** f* 
A 

commutes. 

Proof. From the commutativity of diagrams (10) and (11) it follows that it is 
sufficient to check the same for the diagram 

k 
Wig ) Q (H) 

2 A2 

H H 

k 
W(g ) — » Q (M) 

i ^ 
in which k 2 and k̂  are defined for A ^ and A , respectively. Using the equalities (a) 

= H**u> and (b) tf*Q = tf+ ft and ft being the connection form and the * l 2 * l 2 v i i & 

curvature form of A ^ , i = l,2), one can prove (without any difficulties) the 
commutativity at each point xeM, considering the generators 1, 1®0, 6®1, 
0 € ^ 2 i r ( ) * o n^y* Equality (a) is evident, whereas (b) follows from [17; 3.2.2] and 
the horizontality of the curvature forms. • 

5.3 Theorem (The independence of A / # of an adapted connection). 
For any PFS-regular Lie algebroid (4,B , A 7 ) over ( A f , £ , £ 7 ) , the characteristic 

homomorphism A , :ff(W(g,h) , 0 ) ># (W), g' > rank(E/ E' ), is independent of the 
q # q , J £ 

choice of an adapted connection. 

Proof. Let us consider any two connections A Q , A ^ : £ >>4 adapted to A ' and the 
connection A:T(Rx£ >T(Rxi4 in TRx A defined by 
A (v,w) = (v, A (w) • (1-t) + A (w) • t), (v,w)€f(Rx£ . A is adapted to the flat 

i ( t ,x) o 1 f i x 

partial connection id x A 7 : TIR x £ 7 >TRxA'. Of course, the system 
(7TRxi4,TRxB,idx A 7 ) is a P£S-regular Lie algebroid and A is an adapted connection. 
One can prove that the connection form w.TRxA >0xg of A equals 
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o> (v,w) = (0,0) (w) - (1-t) + o) (w) -1), (v, w) € T IRx , where o> and u> are the 
( t, x ) o l t \ x o l 

connection forms of A q and A^ , respectively. The homomorphisms F^:A >TRxAf 

i=0,l, of regular Lie algebroids (over f^:M ——>\RxM, x\ >(i , x ) ) , defined in 
II.5, give homomorphisms F :(A,B9\' ) > (TIR xA, T\Rx B, id x A ' ) of PFS-regular Lie 
algebroids such that F ^ o A ^ A o f i=0, 1. The principle of f unctoriality (Theorem 
5.2) ensures the commutativity of the diagrams 

A , 

ff(»H0xg,0xh) /) 1-^~> H (Rx") 
3 q TR XE 

[F ] + # f # 

i i 

A , 
H(W(g,h) , ) ^ J L ^ H ( M ) , 

q £ 

i =0, 1. Since f = f ( see the proof of Th.4.3.1 from [17]) and the superposition 
F 

i G A >7TRxj4 >A, G: = pr , of homomorphisms of regular Lie algebroids being equal 
+# +# to id , gives [F ] © [G] = id [G does not determine a PFS-homomorphism, but this is 

A i 
no problem), therefore we have 

A , = A , © [F ] + # o [ G ] + # = f * o A , o [ G ] + # = f # o A , o [ G ] + # 

0q # 0 q ' # 0 0 0 q ' # 1 0 q ' # 

= A , o[F ] + # o [ G ] + * = A , . • 
l q # 1 lq # 

Definition 5.4. Let us consider two PFS-regular Lie algebroids ( 4 ^ , A ' ) , i=0, 1 
(which differ only in subalgebroids) over (#,£,£'). By analogy with definition I I . 5 . 8 , 
we say that the characteristic homomorphisms A , :H(W{g,h ) , c ) >H (M), 

iq # i q , / E 

i=0, 1, q' >rank(E/E'), are equivalent if there exists an isomorphism of algebras 
a:ff(lf(g,h ) , c ) >ff(1f(g,h ) , 0 ) , such that A „ = A , <><x. 

0 q , / l q , / Oq # lq # 

Theorem 5.5. If B and B are homotopic [for definition, see I I . 5 . 2 ) , then A , 

and A , a r e equivalent. 
lq # 

Proof. By the same argument as in the proof of Prop. I I . 5 . 7 , we assert that A q , # 

and A , are related via the commutative diagram: 
lq # 
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H(Jf(g,h ) , ) 
0 q \ 

[F ]+* \ ° q * 
0 N. 

H{W(Oxg,h ) , ) H (W) 
q E 

IF ]+* / 

^ / l q # 
ff(Jf(g,h ) ,) X . 

1 q 

It remains to show that [F ] is an isomorphism of algebras, i=0, 1. We do it 
as in the proof of Th.II.5.9: 

For being equal to the superposition Pr

2*F ( i n which F is an isomorphism), 
the problem reduces to the consideration of the canonical projection 
pr 2: (f\TRx A) yf\B), (idx A' > (7TRx A,By id x A' ), more exactly, to the 
investigation of the homomorphism 

pr**:NaOxg,h) , ^ ( n O x g ) , A ) , 

2 q , 1 I I q , / 

After the canonical identification 

f* ( A(0xg/h ) % V < q(0xg)*) s A ( f * ( O x g ) / A ) % V < q ' / ( O x g ) * f 

according to 11.(11) (see Chapter II.4) and the fact that f* (<8>kT) = <8>k(f*T) for any 
representation T (cf. [17; 2.3.3] and the proof of Prop. 11.4.2. l), we obtain that 
fA{ad)=ad (the ady s denote the canonical representations induced by the adjoint one), 
and that pr**tf = f*#. As in the proof of Th.II.5.9, the rest follows from Prop. 1.6.2. • 

5.6. A comparison with the tangential classes of partially flat principal 
bundles. 

A PFS-regular Lie algebroid [A,Bf\') over (#,£,£') determines an FS-regular Lie 
algebroid {A' yB' yX' ) over (My E' ) in which A' = ̂r"1 [£' ] , B1 - r"1 [£' ] . With these 

A B 
objects we have associated some homomorphisms: A ,„:W(g,h) , 0 >Q (W) and 

q * q , J p r 
A :W(g,h) 0 >fi , W ) (see 4.7 and II.3.7). The indices B and B' at the letter I 
indicate the regular Lie algebroid with respect to which the invariant elements are 
taken. A simple relation between A , and A is described by the following diagram: 

q X x 
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* A '* 
(SecA(g/h) ) 0 c W(g,h) , 0 ^ > Q (W) 

'b q > 7 b E 

(SecA(g/h)*) 0 >Q . 
lB' E 

The problem what the relation looks like on the level of cohomologies will not be 
investigated here. We only notice that each element # <e (SecA(g/h) ) c being a cycle in 

lB 
W{g,h) , 0 (i.e with respect to [d] ,) is a cycle in lf(g,h) (i.e. with respect to 5 ) ; q > i b q o v 

the converse fact is not true in general, which may be the source of the characteristic 
classes (in H^,{M')) measuring the concordance of A' with B, which can not be obtained 
by A,, q 

6 . A C O M P A R I S O N W I T H T H E C H A R A C T E R I S T I C C L A S S E S O F F O L I A T E D B U N D L E S 

Let us be given: 
(a) a G-principal fibre bundle P = (P,TT,M,G. • ), 

(b) a flat partial connection in P over an involutive distribution FcTM, 

(c) a closed Lie subgroup HcG and an //-reduction P' cP. 

In other words, we are given some foliated principal bundle with a reduction, 
considered, for example, in [ 1 0 ] . As usual, let g and F) denote the Lie algebras of G 
and H> respectively. In [ 1 0 ] , to such a bundle there corresponds a characteristic 
homomorphism ^ ,^:H{q,H) ,) >H^{M) (denoted there by A) where q' > codim^, & 

being the foliation determined by F, and 

ff(s.ff) , = ( A a * * V < q Y ) „ « ( A ( 9 / r ) ) % V < q Y ) , 

is the truncated relative Weil algebra constructed isomorphically as the subalgebra of 
the truncated algebra MQ/b) ®V Q , consisting only of those elements which are 
invariant with respect to the representation Adq of H induced by the restriction to H 
of the adjoint representation Ad :G >GL(g). The differential d , in W{q,H) ,, 

G q l q 

defined in the standard way, comes from the differential, denoted here by d , in the 
9 
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X X 
Weil algebra Wq = Ag <8>Vg , defined as follows: we treat 9 as a left Lie algebra of G 
(with the bracket denoted by and dL :Wq >Vg is the antiderivation of total 

J a 
i, X X X l X l X 

degree +1 such that d (w «> 1) = 1 <8> w + d w <8> 1 and i d (l«>w )=0 w for i>€a, 
3 A 1/3 3 

* * * L * * L 
w e g (d is the Chevalley-Eilenberg differential, whereas 0 w = -w ©ad where 
ad (/Li) = , f i € g ) . In the sequel, as opposed to the left Lie algebra, the bracket 

9 R in the right Lie algebra of G will be denoted by [*,*] ; there is a relation 
[v,u]L = ~[v,ii]R, and we recall once again that, for zeP , z :g >fif is an 

I X I X 

isomorphism of Lie algebras when 9 is equipped with the right structure. 
The partial connection in P determines a partial connection X' in the transitive 

Lie algebroid A{P), and the system obtained [A{P),A{P'),X' ) is a PFS-transitive Lie 
algebroid. In 4.. 7 the characteristic homomorphism A , ://()f(g,h) , 0 ) >Q [M) is 

q # q , J dR 

obtained (g and h being the Lie algebra bundles adjoint of A(P) and A{P' ) , 

respectively). We compare *k , with A , . For the purpose, consider the adjoint 
q # q # 

representation Ad^:P >L(g) [17; 5.3.2] and the representation 
Adq\ : P ' >L(V(g,h) , ), Ad\ = AdA, 0V<q' (Ad \ P 1 )" (for Act", see Chapter 
II.6), induced by it. As in Chapter II.6, we notice that the differential of Adq, is 
equal to the representation ad q , :A{P') >i4(l/(g,h) ,) defined by 

M ^ A( ?' ) ,g q 
ad q , =ad A , <8>V<q (ad , U ( P ' ) ) V Propositions 5.5.2-3 from [17] give a 

A( p' ) ,g A{ ?' ) ,g >4 ( F ) ^ 
monomorphism 

K : ( A ( 9 / b ) * ® V < q Y ) r ^ ( S e c A ( g / h ) % V < q ' g * ) , < > (SecA(g/h)*®V < q'g*) , 0 

defined by the formula k(\/)) (x) = Adq, ( z ) ( x ) , z«=P' , i.e. 
F ,g l x 

k(0) ( x ) = ( A t z ] * 1 <8> V < q z * _ 1 ) ( ^ ) , being an isomorphism when P ' is connected. 

Theorem 6.1. k<>s commutes with the differentials d , and d , ̂  , giving the 
q q , h 

commutative diagram 

H(W{Q,H) ,) 
q \ & , \~q * 

(kos) (M) 
# 71 dR 

/ A , 
W ( g , h ) , r o ) q * • 

q , / 

Proof. The evident commuting of the diagram 
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( A a * « v < q Y ) h , - A (A(a / J ) )%v < q /a*) r 

KL K 

( S e c A g W q ' g * ) h / C — ^ ( S e c A ( g / h ) V q V ) / 0 

in which K(0) ( X ) = (Az*"1 «>V<q z* 1) bp), zeP' , and of diagram (10), implies that 
I X 

the commutativity of K°s with the differentials follows from that for K. On the other 
hand, this fact concerning K can be reduced, in an easy way, to the commutativity of 

A^~~1 A ^ — 1 L K :WQ >Wg ( = Az «>Vz ) with d and d . There are two ways to establish this. 
z I x v J 9 x 

The first way. d is the differential for which the following diagram 
9 

dL d 

9 
nU \K 

commutes where <p is the isomorphism of algebras, defined uniquely on the generators by: 
x x x x x 

(p(w ®l)=w <» 1 and <p(l®w ) = l®w -dw <8> 1, whereas d is an antiderivation 
_ * * _ A * 

defined by d ( w ® l ) = l<aw, d(l®w )=0. To see this, we calculate 
_l x x -i x x X r L ^ \ 

<p (w <8> 1) = w <8> 1 and (p (1<8>W ) = l®w + d w <s> 1 ( = d (w <8> 1 ) J ; next, 
A 9 

L ~\ X L * * 
(pod o(p (w ®l)=<pod (w <g>l)=l<8>W , 

a 9 
L -1 * L L * 

(pod o(p (1<8>W )=(pod od (w <8>1)=0. 
9 9 9 

Therefore it remains to show that (1) K <><p = <p OK and (2) K <>d = d<>K . (2) is trivial, 
Z X z z z 

whereas (1) needs the equality 
X X X X 

K (d w )=6(K W ), w € 0 • (13) 

z A z 

To prove this, take v, w€g^ 

X x A - l * A - l A - l L 

K (d w )(v,w)=d w (z (u),z (w))=-w ([z (v),z (w)] ) 
z A A 
= w*( [z 1 (i/) ,z 1 (w) ]*) = v (z 1 ([v,w] )) = (K W*) ([v,w] ) = S{K W*) (vy w). 

z z 
The second way (direct). 

i x X X 
(a) K <>d (w <8>1)=K (l®w +d w ®l) 

z 9 z A 
= 1 ^ K / + K (d w*)<s>l (by (37)) 

z z A v J 
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X X X 
= 1 <8> K W + S(fC W )<8>l=d ok (w <8> 1 ) . 

z z x z 

L. X X 

(b) To prove that K od (l«>w )=d oK (l®w ), take i> € g . Since i o d =-e 
Z 3 x z J l x v x v 

(Prop. 1.17), it is sufficient to verify the equality 
l X X 

i ok. od (l®w ) =-6 ok (1<8>W ). To this end, we immediately notice that 
v z s v z J 

i ok = k o j A and k o e A = - 9 ok . Now, we can calculate 
v z z z~l(v) Z Z 1 ( V ) V z 

X £ X £ x 
i ok od (1<8>W ) = K oj od (1<8>W ) = K (l<g>9. , W ) 

i/ z £ z z 1 ( v ) 9 z z~ 1 ( v ) = -1 <8> 9 ok (w ) = - 9 ok (1<8>W ) . 
v z v z 

At present, we pass to the second part of our theorem. We can write a diagram 
analogous to the one in the proof of Th.II.6.1. Analogously, we assert that we need the 
equality 

j*(k,(w ) ( 9 ) ) =po(di)*[k] ,(K ( 9 ) ) 
q P q 

where K is the superposition 

, >W(g;h) , . >W(g) , 
q q , i q ,ti, / 

while u)^ is the connection form of an adapted connection. We see that the last equality 
is as good as the commuting of the following simple diagram: 

k 

Wq —~^-> AT P 
Z 

TAT a
 * I < 1 4 > K A(TT ) 

z I z 
i k 

Wg — * > A>4 

for any x € M and zeP . In this diagram, k is a homomorphism of algebras 
I X z 

fulfilling (k(w )(6)) =k ( 9 ) ; in other words, k (0®r) = a>A («/OAQV ( D , 0G A9 > 
P z z z I z I z 

X ^ ^ V ^ ^ 
FeVq , where o) : >AT P and Q :Vg ->AT P are homomorphisms of algebras 

r" I z z I z z 

constructed in the classical manner, Q being the connection form of w^. The 
commutativity of (14) can be checked trivially on the generators when one only knows 
the relations o) on* = z < > w , Q of\2nA = z°Q (o) is the connection form in A(P) 

I x l z P\ z l z l z l z v 

corresponding to • 
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