@article{PMIHES_1964__22__61_0, author = {Bass, Hyman and Heller, Alex and Swan, Richard G.}, title = {The {Whitehead} group of a polynomial extension}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {61--79}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {22}, year = {1964}, mrnumber = {174605}, zbl = {0248.18026}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1964__22__61_0/} }
TY - JOUR AU - Bass, Hyman AU - Heller, Alex AU - Swan, Richard G. TI - The Whitehead group of a polynomial extension JO - Publications Mathématiques de l'IHÉS PY - 1964 SP - 61 EP - 79 VL - 22 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1964__22__61_0/ LA - en ID - PMIHES_1964__22__61_0 ER -
%0 Journal Article %A Bass, Hyman %A Heller, Alex %A Swan, Richard G. %T The Whitehead group of a polynomial extension %J Publications Mathématiques de l'IHÉS %D 1964 %P 61-79 %V 22 %I Institut des Hautes Études Scientifiques %U http://archive.numdam.org/item/PMIHES_1964__22__61_0/ %G en %F PMIHES_1964__22__61_0
Bass, Hyman; Heller, Alex; Swan, Richard G. The Whitehead group of a polynomial extension. Publications Mathématiques de l'IHÉS, Tome 22 (1964), pp. 61-79. http://archive.numdam.org/item/PMIHES_1964__22__61_0/
[1] K-theory and Stable Algebra, Publ. math. I.H.E.S., n° 22 (1964). | Numdam | MR | Zbl
,[2] Le théorème de Riemann-Roch (d'après Grothendieck), Bull. Soc. Math. France, 86 (1959), 97-136. | Numdam | MR | Zbl
et ,[3] Les déterminants sur un corps non-commutatif, Bull. Soc. Math. France, 71 (1943), 27-45. | Numdam | MR | Zbl
,[4] Units in group rings, Proc. London Math. Soc. (2), 46 (1940), 231-248. | JFM | MR | Zbl
,[5] Homological Dimension of Rings and Modules (mimeo. notes), University of Chicago, 1959.
,[6] Modules projectifs et espaces fibrés à fibre vectorielle, Sém. Dubreil, Paris, 1958. | Numdam | MR | Zbl
,[7] Simple homotopy types, Amer. Jour. Math., 72 (1950), 1-57. | MR | Zbl
,[8] An elementary proof of the periodicity theorem for the complex linear group (to appear).
and ,[9] Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Amer. Math. Soc., vol. 3 (1961), 7-38. | MR | Zbl
and ,