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ON THE STRUCTURE OF THE GL^ OF A RING
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i. Introduction.

The general linear group over a field, its subgroups and automorphisms, have been
studied fairly extensively, even when the field is skew (cf. [8] and the references given
there), but little is known about the general linear groups over an arbitrary ring. Now
in the case of fields, the starting point is the observation that every invertible matrix is
a product of elementary matrices; this suggests that in studying GL^(R) it is best to
confine attention at first to rings which share this property, and we therefore define a
generalised Euclidean ring, or GE-ring for short, as an integral domain (not necessarily
commutative) such that for all n,

GE^: Every invertible nxn matrix is a product of elementary nxn matrices.
Examples of GE-rings are (i) the classical Euclidean rings (cf. [17]), (ii) rings

with a weak algorithm [5], in particular free associative algebras over a commutative
field, and (iii) free products of GE-rings which are also semifirs (cf. [6] and § 3 below) $
this includes in particular the group algebras of free groups and free products of skew
fields.
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6 P. M. C O H N

The present paper is a study ofGLg(R), for various types of rings, and in particular
GE-rings; as in the case of fields, there is a basic difference between the case of dimension 2
and dimension gi eater than 2, so that it is reasonable to begin by concentrating attention
on the former. For most of our results we shall find it enough to assume GE^ for n == 2
only; in fact we can even dispense with GEg by limiting ourselves to the subgroup
of GLg(R) generated by the elementary matrices, and the results will usually be stated
in this form. This more general point of view is actually forced on us when we come to
give examples of rings that are not GE-rings.

Compared with Euclidean rings, GE-rings have a more intrinsic definition, in
that no norm function is involved. But for a closer study ofGL^R) we shall find some
sort of norm function on R of great use. Most of our results will apply to discretely normed
rings, defined in § 5 and to discretely ordered rings defined in § 8. It is the presence of the
norm (or the ordering) which usually enables us to decide whether a given ring
satisfies GEg. As an application we shall show that the ring of polynomials in any
number of indeterminates with integer coefficients, and the ring of polynomials in at
least two indeterminates with coefficients in a field, are not GE-rings (§ 5). Further
it is shown that the ring of algebraic integers in an imaginary quadratic number field
is a GE-ring if and only if the field is Euclidean with respect to the usual norm (§ 6).
In particular (1) taking the integers in Q^(^/—19) we obtain a principal ideal domain
which is not a GE-ring (clearly this says rather more than the usual assertion that this
ring is not Euclidean).

The main tool of the paper is an explicit presentation of GLg(R) for suitable
GE-rings, called universal GE-rings (§ 2). As examples of such rings we have fields or
more generally local rings (§ 4); moreover, any GE-ring which is either discretely
normed or discretely ordered is a universal GE-ring. This presentation brings out in
a particularly clear form the extent to which GLg(R) is independent of the multiplicative
structure of R, and which accounts for the crucial difference between GL^(R) for n == 2
and 7z>2. Thus a generalization of a ring homomorphism, the U-homomorphism,
is introduced in § 11 and it is shown that any U-homomorphism between two universal
GE-rings induces a homomorphism between their GLg-groups. As a rather striking
illustration one has the result that for any free associative algebra A over a commutative
field F on at most countably many free generators, GL^A)^GL^'F[x]). The auto-
morphisms of GLa(F[A:]) constructed by Reiner in [16] can also be obtained very simply
from this point of view.

In the other direction the isomorphisms between the GLg-groups of GE-rings are
studied under the assumption that the rings have a degree function defined on them such
that all the elements of degree zero are units. It is shown that any such isomorphism can
be built up by taking a U-isomorphism (or a U-anti-isomorphism), following it by a cen-

(1) This answers the question raised by various authors (I. Reiner, J.-P. Serre) whether every Dedekind ring,
or more particularly, every principal ideal domain, is a GE-ring.
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ON THE STRUCTURE OF THE GLg OF A RING 7

tral homothety and an inner automorphism (just as in the case of fields, cf. [8], where the
notion of U-(anti-isomorphism reduces to the ordinary (anti-) isomorphism). The proof
is based on the fact that in a ring of the type named, all dihedral subgroups of order eight
are conjugate, in case the characteristic of the underlying field is =t= 2, while in charac-
teristic 2 all subgroups of the type of the symmetric group of degree 3 are conjugate.
This last fact rests on a surprisingly delicate argument (Lemma 12.3) and it would be of
interest to have a simpler proof.

The presentation introduced in § 2 can also be used to study the commutator
quotient structure of GL^R). This is done in § 9 where an analogue of SLg(R)
is defined, denoted by Eg(R) and it is shown that for a universal GE-ring,
GL^R^E^R^l^R)", where U(R) is the group of units of R and for any group G,
G° == G/G' is G made abelian. Further, if R is a discretely normed ring in which U(R)
is commutative, then E^RY^RIM, where M is a certain additive subgroup ofR deter-
mined by the units ofR (for a precise statement see Theorem 9.3). A number of other
applications and generalizations of known results are given in § 10.

2. Elementary matrices over an arbitrary ring.

For a Euclidean ring R it is well known that GLg(R), the group of invertible
2 x 2 matrices over R, is generated by the elementary matrices

/a o\ /i a\ / o l\
\o (B; \o i ) \-i o^

where a, (B, aeR and a, (B are units. Our object is to study, for any ring R, the group
generated by these matrices; we shall denote this group by GEg(R). In particular,
we shall be interested in rings R for which GE2(R)==GL.2(R); such rings will be called
GE^-rings. Clearly they include the GE-rings mentioned in § i.

Let R be any ring (always associative, with i); generally we shall denote arbitrary
elements of R by latin letters and reserve greek letters for invertible elements of R.
The group of units ofR is denoted by U(R) and Uo(R)==U(R)u{o). Further we set

(^.i) [^P]=(^ ^) D(a)=[a,a^] E(.)-(_^ ;)

and denote by D==Dg(R) the group of 2 X 2 invertible diagonal matrices over R and
by E=Eg(R) the group generated by all E(a), aeR. Thus GE^R) is the group
generated by D and E. If we write B,,(a)=I+^., where e^ are the usual matrix
units, then

and
B^)=E(-a)E(o)-1, B^^E^E^),

E(o)==B^(i)B^(-i)B^(i), E(^)=B^(-^)E(o);

these equations show that E^R) is just the group generated by all B^(fl) (<zeR, i+j).
However, we shall mainly keep to the generators E(a), since the defining relations are
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8 P. M. C O H N

expressed rather more easily in terms of them. We have the following relations between
the matrices (2.1):

(2.2) EME(o)EOQ=-E(^+j;),
(2.3) ECo^a-^a^-^a) xs J;eR?

(2.4) EW[a, (B]=[(B, a]E(r^a), a? ̂ W9

Their verification is elementary and is left to the reader. These three relations are basic
for much of what follows, for as we shall see, there are large classes of rings in which
the relations (2.2)-(2.4), together with the relations in Dg(R), form a complete set of
defining relations for GE^R). A ring which has this property is said to be universal
for GEg; of particular interest are the GEg-rings which are universal for GEg, or the
universal GEyrings, as we shall call them. Thus a universal GEg-ring is characterized
by the property that GLg(R) is generated by the matrices (2.1), with (2.2-4) and the
relations of Dg as a complete set of defining relations.

The first task is to derive a number of consequences of (2.2-4): Putting x==jy==o
in (2.2) and a=±i in (2.3)3 we find
(2.5) W=-I, W=-I, E^i)3^!.

Putting j /=—x in (2.2) and using (2.5) we get
(2.6) EW-^E^-^o);

explicitly we have

EM-^0 -I), EW+EW-^^I.\ 1 .1 /

By (2.6) we have

(2.7) EMEOO-^E^-JOE^-^-E^-^O).

From (2.7) we easily obtain the following generalization of (2.2):
(2.8) EMEOO^E^E^-J^).

If a is any unit in R and ;v,j>eR, then by (2.3),

EC^a-^E^^-^^^-^o^a)-^^)
=_E(A;—a)E(o)D(a)E(o)E(j—a)
=E(A;—a)D(a- l)E(J—a),

where we have used (2.3), (2.7), (2.4) and (2.5). Replacing a by «~1, we find

(2.9) E^oOE^E^-a-^oOECy-a-1).

Finally if a, P are any units, and ;c,j'eR, then
E^a+^E^+^EO^E^oOE^E^^E^ECy)

=-EME(a)E(-i)E(p)E(y)
—E^-a-^o^-i-a^-r^D^ECy-r1),
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ON THE STRUCTURE OF THE GLg OF A RING 9

where we have used (2.6), (2.5) and (2.9) in turn. Hence

(2.10) EME(a+i)E((B+i)E(^)=

-E^-a-^^-i-a^-r^D^E^-r1).

We conclude this section by showing that in any ring, Dg normalizes Eg and by
obtaining a certain Standard form for the elements of GEg which will later be shown to
be unique, for suitably restricted rings.

Proposition (2. i). — In any ring R, GEg(R) = DE = ED and E is normal in GEg(R).
Proof. — By (2.4), (2.5) and (2.3),

[a, (B^EMIa, (B]= [a-1?, (B^aTO-1^)

-^(a-^E^-^a)

=E(a-l(B)E(p-la)E(a-lp)E(o)2E(p-l^a).

Thus E^E and since GEg(R) is generated by D and E, we have EOGE^R) and the
result follows.

We note that in general DnE=|= i, so that we do not have a semi-direct product.
In fact, by (2.5) and (2.3), D(a)eDnE for all aeU(R); later (in § 9) we shall find
conditions under which the subgroup generated by the D(a) is exactly DnE.

By definition, every element of GEg(R) is a product of matrices [a, [B], E{x) and
E(^)~1. Now by (2.6) any factor E{x)~1 can be replaced by a product of E's, so it
follows from Proposition 2.1 that every element A of GE2(R) has the form

(2 .11) A-[a,p]E(^)...E(^).

If for some i in i<i<r, a^=o, then we can shorten (2.11) by using (2 .2) ; if ^eU(R)
we can use (2.9) and (2.4) to shorten (2.11). Thus after a finite number of steps we
reach a form (2.11) which cannot be shortened in this way and then ^Uo(R) for
i <i<r. Moreover, when r== 2, we may assume by (2.5) that a^ a^ do not both vanish.
Such an expression for A is said to be a standard form. We note that only (2.2-4) and
their consequences have been used in obtaining the standard form.

Our results may now be summed up as follows:
Theorem (2.2). — Let R be any ring and denote by GEg(R) the group generated by all

matrices

^^ 1) ^'P61^)) and w-[J[ ^ (ffe^
and set D(oc)==[a, a~1]. These generators satisfy the relations:

(2.2) E(.v)E(o)E(j.)=-E(^+j),
(2.3) £(0^(00-^(0) =-D(a),
(2-4) EM[a,p]=[p,a]E(r^a).
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io P. M. C O H N

These relations, together with those in the group D(R) generated by the [a, p] imply

(2.5) E^^-I, E^^-I, E^i)3^!,
(2.6) EM-^E^-^O),

(2.7) E^E^-^E^-^E^-^-E^-^E^),
(2.8) EMEOO-^) =E(^-^+Z),
(2.9) E^a-^EO^E^-^a^E^-a),
(2.10)

EME(a+I)E(p+I)E(J/)=-E(^-a-l)D(a)E(—I-a-l-p-l)D(p)E(y—p~l).

Moreover, they imply that the group Ea(R) generated by all E{a) is normal in GEg(R)
and that every element A of GEg(R) can be expressed in standard form

( 2 . 1 1 ) A=[a,(3]E(^)...E(^),

where a, (BGU(R), ^,eR and such that ^Uo(R) /or i<i<r and a^, a^ are not both ^ero
in case r=2.

In some rings it is possible to shorten (2.11) still further by an application
of (2.10), but for many rings such a reduction is impossible and (2.11) actually represents
a normal form for the elements of GE2(R) (cf. §§ 4 and 7). Such a ring is said to have
a unique standard form for GEg. We shall also meet rings R for which the only relation
in GE^R) of the form W==I, where W is a word in standard form, is the trivial rela-
tion 1=1. Such a ring is said to be quasi-free for GEg. It is clear that of the properties:

(i) R has a unique standard form for GEg,
(ii) R is quasi-free for GEg,
(iii) R is universal for GEg,

each implies the next, but as examples to be given later show, these three classes are
distinct.

3. Direct and free products of GE-rings.

We now turn to consider ring constructions which preserve the property of being
a GE-ring. Here it is more convenient not to restrict the size of the matrices in any way.

For any ring R and any integer n^ i we may define GE^(R), D^(R) and E^(R)
as the subgroups of GL^(R) generated by all elementary matrices, all diagonal matrices
and all B^.(^) (aeR, i^=j) respectively. As in the case n==2, it is easily verified
that E^D^=D^E^==GE^(R), and hence in every GE-ring, every AeGL^(R) has form

(3.1) A=DB^...B^,

where DeD^ and B^^B^) for some z+j, aeR (depending on p).
Let R be a direct product of a family of rings, say R==IlR^, and denote the

canonical projection R-^R^ by s^. Then 2^ is a homomorphism which induces a
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ON THE STRUCTURE OF THE GLg OF A RING n

group homomorphism e\ : GL^(R) -^GL^(R^). Composing these homomorphisms, we
obtain a mapping

s*:GL^R)^nGL«(R,),

which is easily seen to be an isomorphism. Now suppose that each R^ is a GE-ring;
then R need not be a GE-ring. We need only take a product of infinitely many factors R^
such that in R^ the integer r in (3.1) cannot be taken to be bounded, as X varies (1).
Then it is easy to write down a matrix AeGL^(R) which is not of the form (3.1).
However, when the number of factors R^ is finite and each is a GE-ring, then any
AeGL^(R) is again of the form (3.1) and we obtain

Theorem (3.1). — The direct product of a finite number of GE-rings is again a GE-ring.

The result holds more generally for the direct sum (=weak direct product) of
any number of GE-rings, since any matrix over the direct sum lies in the direct product
of a finite number of factors.

We next suppose that we are dealing with K-algebras, K being a commutative
ring with i, and ask whether the GE-property is preserved under tensor products. The
answer is easily seen to be <c no ", even when K is a field, since K^] is a GE-ring, for
any indeterminate x over K, whereas the polynomial ring in two indeterminates,
K[A:,J/] ==K[A:] ®K[j/], is not (see § 7). In fact the analogy with the Euclidean algorithm
suggests that we consider, not the tensor product but the free product (cf. [5]). Of
course it is now more natural to replace the K-algebras by K-rings, where K is any ring
with i. It will be recalled that a K-ring is a ring R with a canonical homomorphism
6 : K—^R. In case 6 is injective, R is said to be a strict K-ring: thus a strict K-ring is
just a ring in which K is embedded in a canonical way. In considering free products of
rings we shall assume that all the factors are strict K-rings for a fixed K, which may
thus be considered as a common subring of all the factors.

To answer the question whether the GE-property is preserved by free products,
would require a formidable calculation; we therefore confine ourselves to establishing
the result in a special case (which turns out to be sufficient for many applications).
Namely, we shall assume in addition that our rings are locally free ideal rings,
i.e. semifirs (2). The GE-rings which are semifirs are characterized in the following

Proposition (3.2). — For any ring R, the following assertions are equivalent:

(i) R is a GE-ring and a semifir,

(ii) for any n ̂  i, given a^, . . ., a^ b^ .. ., ̂ eR, if

(3.2) S î, ==o, b^, ..., b^ not all ^ero^

then there exists CeE^(R) such that (^, .... a^C has at least one ^.ero coordinate.

(1) We shall see below (in § 5) that there even exist GEg-rings in which r cannot be taken bounded.
(2) Cf. [6], where they are called local firs. This name has now been abandoned as it may give rise to

confusion with local rings. Thus a semifir is an integral domain (not necessarily commutative) in which all finitely
generated right ideals are free and any two bases of a given free module have the same cardinal.
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12 P. M. C O H N

A ring satisfying either (and hence both) of (i), (ii) will be described as a GE-semifir,
for brevity. We note that H. Bass in [3] takes (ii) as the definition of a generalized
Euclidean ring.

Proof. — Suppose (i) holds and (3.2) is given, then by Theorem 2.6 of [6] there
exists AeGL^ (R) such that {a^ . . ., ^JA has a zero coordinate. Since R is a GE-ring,
A'^DE, where DeD^, EeE^. Hence (^, . . ., ^JE'^D"1 has a zero coordinate,
and so does (^i, . . ., ^JE"1. Thus R satisfies (ii).

Conversely, assume (ii); then R is a semifir, again by Theorem 2.6 of [6], so it
remains to prove that GE^ holds and here we may clearly assume that n>i. Let A
be an invertible n X n matrix; if the first row has only one non-zero element then this
must be a unit. By permuting the columns of A (which corresponds to right multipli-
cation by a matrix in EJ we may bring this unit to the (1,1)-position and obtain

(oc o o . .. o\

A==
* Ai /

where AieGL^_^(R). Now the result follows by induction on n. If A has preci-
sely r(> i) non-zero elements in the first row, we may assume that these elements come
in the first r places. Writing A==(^), A"'1^^.), we have, for j=2, ...,n,

r

(3.3) ^lAy-0-

Since A~1 is invertible, either <^=(=o for some j ̂  2 or a^o for some j ̂  2.
Choosing j accordingly, we may assume that of the a^ actually occurring in (3.3),
not all vanish. By (ii) there exists BieEy(R) such that (a^, ...,^)Bi has a zero
coordinate. Hence

A?1 ° \\o I..J

has fewer than r non-zero elements in the first row and after at most n—i steps we
reach the case r == i treated before. This completes the proof.

In connexion with this proposition we remark that a GE-ring need not be a semifir.
For by Theorem 3. i, a GE-ring need not even be an integral domain. To obtain an
example of a GE-ring which is an integral domain but not a semifir, take any commu-
tative local domain (i.e. an integral domain with a single maximal ideal) which is not
a valuation ring. This is not a Bezout ring and hence not a semifir, but as we shall
see later, any local ring is a GE-ring (§ 4 below; see also [12]). In the other direction
we note that a semifir need not be a GE-ring; an example of a commutative principal
ideal domain which is not a GE-ring will be given in § 6.

We now show that the free product of any family of GE-semifirs over a skew field,
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ON THE STRUCTURE OF THE GLg OF A RING 13

is again a GE-semifir. Let R be any strict K-ring; by a suitable identification we may
regard K as a subring of R. If K is a direct summand of R, as right K-module,

R=K®N,

then R is called an augmented K-ring, with augmentation module N. It was shown in [6]
that for any ring K, the free product of any family of augmented K-rings exists and is
again an augmented K-ring. We shall use the terminology and notation for free
products introduced in [6]; in particular (IP) is the usual filtration of the free product
(by height) and two elements ^, b of the free product are said to interact if h{ab) <h{a) + h(b).
In any ring R, two TZ-tuples (^i, . . ., aj and (^i, . . ., &J are said to be GE-equivalent
if there is a matrix P=Q^.)eGE^(R) such that ^==S^^.

Lemma (3.3). — Let K be a field (possibly skew) and (R^) a family of GE-semifirs.
Denote the free product of the R^ [over K) by P and let (IP) be the filtration by height of P.
Let a^ b^ (k= i, . . ., r) be any elements of P such that h{a^b^=n and

(3.4) S^==o (mod IP-1).

Further., assume that the a^ are ordered by decreasing height^ say h[a^=m for i^s and h{a^<m
for j>s. Then either

a) (<2i, . .., a^) is GE-equivalent over K to an s-tuple {a[, . . ., a^) such that h{a'^m
with strict inequality for at least one i, or

b) the elements a^ [i^s) which interact with b^ in a given factor R^ are GE-equivalent
over R^ to a tuple of elements of height ^ m, with strict inequality in at least one place, or

c) for each a^ {i^s) there exist elements ^••eP such that

/z(^—S^)<m, h^x^m {J>s).

The proof of this lemma will be omitted as it is very similar to that of Lemma 4. i
of [6], the only difference being that instead of unimodular equivalence we assume
and prove GE-equivalence throughout (1). As in [6], Theorem 4.2 we now
deduce

Theorem (3.4). — Let K be a field (possibly skew) and (R^) a family of GE-semifirs.
Then the free product of the R^ over K is again a GE-semifir.

In particular, all the examples of semifirs given in [6] are actually GE-semifirs.
For all arise as free products whose factors are either fields or rings of the form k[t\
or k[t, t~1] and these are all clearly GE-rings. In particular, it follows that the group
algebra over A: of a free group (and the semigroup algebra of a free semigroup) are
GE-semifirs, a fact used by H. Bass in [3].

(1) Note that the phrase " set including an element of height less than m " occurring twice in Lemma 4. i
of [6] should each time be replaced by: tf tuple of elements of height ^w, with strict inequality in at least one
place ". Further, K should be a skew field. In fact this is what was proved (and used) there.
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14 P. M. G O H N

4. GLa(R) for a local ring.

It is well known that any field (not necessarily commutative) is a GE-ring
(cf. e.g. Dieudonn^ [8]) and this result was generalized to local rings by Klingenberg [12].
In the present section we shall prove that a local ring is in fact a universal GEg-ring;
however it does not have a unique standard form and in fact is not even quasi-free for GEg
(unless it is a field).

To investigate the uniqueness of the form

(4.1) [a, (B]E(^). . .E(^)=I (a, (BeU(R), ^Uo(R) i<z<r),

for any ring R, let us look at low values of r. Clearly, when r==o, we must have
a==(3==i . The case r = = i is impossible, as we see by comparing (i,2)-elements.
When r=2, we have a^i == (3<22= °5 hence ^==^==0 and a = ( B = — i . For r=3 a
comparison of (2,2)-elements gives ^a^=i, hence a^ is a unit, which contradicts the
conditions in (4.1). Thus in any ring R the relation (4.1) (with the stated conditions)
is possible only if r^4, apart from trivial cases.

Next let r=4 and for convenience write the relation as

E(^)E(^)E(^)E(^)=[a,P].

A comparison of terms shows that this holds if and only if

a^a^a^—a-^a^—a^a^—a^a^-\-1 ==a,
^2^3——a!——^3==°)

^3^4——^2——^4==°?

^3——1 =——P.

We shall now show that in any local ring R which is not a field, these relations can be
satisfied by elements a, (BeU(R), a^ <23^Uo(R). For by hypothesis, Uo(R)4=R? choose
any elements ^3, a^ not in Uo(R), then (B== i—a^a^eV(R) and a-^y a^ are given by the
equations

^1 (B + ^3 == 0, (B^ + ̂  == 0,

which determine a^ a^ uniquely as elements of R; moreover it is clear that a^, a^ so
defined do not lie in U()(R). The fourth relation is of the form a== i +nonunit, and
it determines aeU(R). Thus for r=4, (4.1) can be satisfied in any local ring not
a field, hence such a ring is not quasi-free for GE^.

Let R be a ring in which any one-sided inverse is two-sided and which satisfies
the following condition: for any n>i, given a-^y . . . ,^eR such that 2<^R==R, there
exist &i, . . . , ^ _ i e R such that S^+^n^)^^^* This is expressed by saying that
n = i is a stable range for R; any such ring is easily seen to be a GE-ring (cf. H. Bass [2],
who proves this and also shows that these rings include any ring which modulo itsjacobson
radical satisfies the minimum condition on left ideals). The case 72=2 of the above
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condition states that for any a, ^eR such that <zR+^R=R, there exists ceR such
that a + ̂ eU(R); clearly this holds in any local ring. Assuming this condition we can
easily show that any AeGLg(R) can be written in the form (2.11) with r<3. For by
hypothesis, for any BeGL^R) we can find ueR such that BE(^)~1 has a unit in
the (i^-place and hence, for suitable yeR, BE^^E^)"1 has o in the (i,2)-place. This
matrix is therefore of the form.

(^ ^)=-^ME(o)E(r^).

Applying this argument with E(o)A in place ofB, we find that

E(o)A==-[a,p]E(o)E(r^)E(zQE(^
A=-[(B,a]E(r^)E(.)E(^),

i.e.

which is of the required form. This shows in particular that any local ring is a GEg-ring.
We now come to

Theorem (4.1). — Any local ring is a universal G^-ring.
After what has been said it only remains to show that any relation (4.1) in a

local ring is a consequence of the defining relations (2.2-4) and the relations in Dg. Let

(4.2) [a,(B]E(^)...E(^)=I, a,(BeU(R), ^Uo(R) for i<i<r.

If 2^4, then a^ a^U^R) and hence a^—i, a^—ieU(R), say a^==^-}-i, ^3=8+1.
By (2.10)3 we can reduce (4.2) to

-[a,[B]E(^-y-l)D(Y)E(-I-y-l-8-l)D(8)E(^-8-l)E(^)...E(^)==I.

Using (2.4) to pull D(y) and D(8) through to the left and then (2.9) (as in the proof
of Theorem 2.2) we obtain an expression of the form (4.2) but with r replaced by a
smaller value. This process can be continued as long as r^4; so we finally reduce (4.2)
to the case r< 3 and only (2.2-4) and their consequences have been used in the reduction.
For r^3 we saw that the only relation (4.2) is —E^)2^! and by (2.5) this is also
a consequence of (2.2-4). Hence (4.2) itself is a consequence of (2.2-4) (and relations
in D), as we wished to show.

5. Discretely normed rings.

We now look for more general conditions on our ring R to ensure that the
form (2.11) for the elements of GE^R), given by Proposition 2 .2 is unique. The
most natural way of imposing such conditions is by means of a norm; this is of course
closely related to the question of the existence of a Euclidean algorithm, or a weak
algorithm (cf. [5]) in R and hence to the question whether R is a Euclidean ring. In
fact we shall use this method to construct rings which are not Euclidean in a rather
strong sense: they are not GE-rings.
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Definition. — A norm on R is a mapping \ from R to the nonnegative real numbers such
that
N . i . | ^ | = o if and only if x = o,
N. 2. 1^+j^M+bl,
N. 3. |^|=Mb[.

We note that by N. 3, R must be an integral domain (not necessarily commutative).
We shall say that [ | is a discrete norm or that R is discretely normed, if further,
N. 4. | A: | ̂  i for all x=t=o, with equality only if A;eU(R),
N. 5. there exists no ^eR such that i<|^ |<2.

If a is any unit, then by N. 4, a ^ i, |a~1 ^ i, while by N. 3,
|a|. la"1] = |aa~1! = i,

hence ]a |=i for all aeU(R). Now N.5 shows that | ;c |^2 for any ^Uo(R).
Conversely, the two conditions
N. 4' | a |=i for all oceU(R),
N. 5' x\^2 for all ^Uo(R)

imply N. 4 and N. 5.
In order to derive further consequences of N. 1-5 we need an expression for the

product E(fli). . .E(<2y); this is closely related to the chain of equations in the Euclidean
algorithm, cf. § 8. Let t^ t^ . . . be any noncommuting indeterminates and define
a sequence of polynomials in the t ' s with integer coefficients recursively by the equations

(5.i)
^-1=0, €o-==I,

^n(^l3 • • • ? y^^n-l^l? • • • ? ^n-l)^n——^n-2^13 • • "> ^-2)*

We note that for n ̂  o, the suffix of e^ just indicates the number of arguments and so
may be omitted when the arguments are given explicitly; we shall do so in what follows
and only write the suffix when the arguments are omitted. We assert that

(5.2) E(a,)...E(^=( ^• t-^) ^,...^-i)\
v r/ \—e[a^ . . ., a,) —e[a^ . . ., ̂ _J/

This is clear for r == i and in the general case follows by induction, since, writing
^==^1, . . ., ^), e\=e{a^ . . ., ^_^), we have

/ <?,-! e,_A/ a, i \ / e, e , A
\-e[_, -e^J\-i o) \-e^ - e [ _ J '

From the symmetry of (5.2) it is easy to see that the e's may also be defined by e_^=o,
^o=1.

en^l9 • • • ? ^J'^A-lC^? • • - 5 ^n)—^n-2^3? • • * 5 ^n)*

The following lemma is basic for all uniqueness questions in GEg(R) where R is discretely
normed.
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Lemma (5.1). — Z^ ^, . . . , ^ (r> i) 6<? ̂  elements of a discretely normed ring R such
that fl^Uo(R) /or z>i . Then

(5-3) |^i, . . . , f l , ) | ^ |^i, . . . ,a ,_i) |

aW

(5.4) ^i, . . . ,^)+o.

If, moreover, the norm on R is such that

(S-5) for any ueR, \u\==i and \i+u\==2 imply u==i,

then the inequality in (5.3) is strict, unless |2 | =2 and ^==aeU(R), a^=a^== .. . ==2a-1

aW ^3 = a^ == . . . === 2a. /TZ ^?j case,

E(^) . . .E(^) ^^j (< I a^ or

according as r is even or odd.

Proof. — Write e,=e(a^, . . ., a,) for short. Then for i>i, \a,\ ̂  2, hence

Vi-i^—e,_^\^2\e,_^\—\e,_^\,

^ • - i l ^ l ^ - i l ^-21(5.6)
i.e.

(z>i).

Suppose first that ^1=0; then e^=a^=o, e^==a^—i = — i and hence by (5.6),

^ l — — k r - l l ^ 1^2 —— ^ l |=I .

This proves (5.3) (with strict inequality) and hence (5.4).
Now let a^ 4= o, then a^ \ ̂  i and

(5-7) ^i |—|^o == l^i I — i ^ o .

Combining this with (5.6) we see that |^

(5-8) \e,\^\e.
| ^_ i | ^o for i>i, and hence

^ .. . ^ \e.\^ i.r-i

This proves (5.3) and (5.4). If further, a^\> i, then we have strict inequality
in (5.7) and hence in (5.3). Likewise, if \a,\> 2 for some i> i, then we have strict
inequality in the corresponding formula (5.6) and hence in (5.3). There remains the
case \a^\ = i, a,\ ==2 {i> i); in particular, ^ is then a unit. Suppose first that a^= i
and assume that (5.5) holds. If we have equality in (5.3), then \a^—i|==i, so
a^==i+b, where \b\ = i, 11 +b\ = \a^\ =2, hence b==i and a^= a^ =2. Now

E(I)E(2) f c=( 1

-k—i —k

and by induction it follows that all the ,̂ {i>i) must be 2. In general, when a^==(x.
is any unit, we have

[a-1, i]A=[a-1, i]E(a)E(^)...E(^)

=E(i)E(^a)E(a-^3)E(^a)...
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with a factor D==[i, a-1] (for r odd) or [a-1, i] (for r even) at the right-hand end,
as follows by repeated application of (2.4). Now if the elements of the first row of A have
the same norm, then the same holds for [a"1, i]AD~1, so we are reduced to the case
a^==i and the result follows.

Theorem (5.2). — Any discretely normed ring is quasi-free for GEg, and hence is universal
for GE^.

Proof. — By Theorem 2.2, any relation in GE2(R) can be brought to standard
form

(5.9) [a,(3]E(^)...E(^)=I,

where ^Uo(R) for i<i<r. Comparing the (1,2)-elements in this equation we see
that

e[a^ . . . ,^_i)=o,

and this contradicts Lemma 5.1 if r— i>i, i.e. r>2. But when r^2, only the trivial
cases noted in § 4 are possible. This completes the proof.

Corollary. — A discretely normed ring which is a GE^-ring is a universal GE^-ring.
When R is a discretely normed ring, it is easy to obtain an explicit form for the

involutions in GE2(R), i.e. the elements of order two. This will be useful later on,
in the study of automorphisms ofGEg(R) and also in showing that for certain Dedekind
rings the class number must be i. We begin by determining the centre of GEg(R),
where R may be any ring:

Proposition (5.3). — For any ring R(=)= o) the centrali^er of E^R.) in GÎ R) consists
of all matrices XI, where \ runs over the central units of R.

Proof. — Let A = (^ ^\ eGL^R) centralize Eg(R); since A commutes with E(o)

we must have a=d, b+c==o; since it commutes with E (i) we have b == o, i.e. A = al
and now the commutativity with E(^) (xeR) shows that a lies in the centre ofR. This
completes the proof.

We next determine how the standard form simplifies in the case of elements of
finite order.

Proposition (5.4). — Let R be a ring which is quasi-free for GEg; then any matrix in GEg(R)
which is of finite order modulo the centre of GE^(R) is conjugate {under E^R)) to an element of
the form

(5.io) [a,ME^)

or

( 5 - x i ) [a, (B]E(o)E(6),

and in case (5.10) holds, we have aeV^R).
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Proof. — Let AeGE2(R) be of finite order modulo the centre ofGE^R) and write
(5.") A=[a,iB]E(^)...E(0.

Then any conjugate of A is again of finite order mod the centre. If 7-^3 in (5.12)
and ^eUo(R), then A is conjugate to

[lB,a]E(<)E(^)...E(^_,),

for some a'eR, and now the length can be reduced. Likewise, if ^eUo(R), we can
transfer the factor E(fli) to the right-hand end and then make a reduction. Thus we
obtain a form (5.12) for a conjugate of A, in which either r^2 or ^Uo(R) for all z.
Since A^^XI, we have

[a,p]E(^)...E(^)[a,p]E(^)... ... . . .E(^)=XL

By pulling all the diagonal factors through to the left and then transferring them to
the right-hand side, we obtain a relation

E(^).. . E(^J == diagonal matrix,

where each by is associated to some a,. By hypothesis this can only hold if some
^^^(R), hence some ^eU^(R) and so in particular, r^2. For r=i , we obtain
the form (5.10), where necessarily ^eUo(R). If r=2, we may without loss of gene-
rality assume that ^eUo(R). Suppose first that ^==yeU(R). Then transforming A
by E(^), we have

E^AEM-^EMIa, PJE(Y)E(6)E(o)E(—^)E(o)
=—[(B,a]E(r l^—Y- l)D(Y)E(6-Y- l—^)E(o).

Choose x==b—y""1, then the right-hand side becomes
[a', P']E(.)

and this is again of the form (5 „ i o). In the alternative case, ^1=0 and we obtain (5.11).
Finally if in (5.12) r=o, then this is of the form (5.11), with 6=0.

We remark that (5.10) is conjugate, under GEa(R), to a matrix of the form
[i,P]E(^);

for we can reduce a to i by transforming by [a, i].
It is now easy to derive a standard form for the involutions in GEg(R), when R

is quasi-free for GEg.
Theorem (5.5). — Let R be an integral domain which is quasi-free for GEg, then any invo-

lution 4=—I in GEg(R) is conjugate to one of the form

(5.i3) 41 °)\h — i /

where h runs over a transversal of 2R in R (qua additive group).
In particular, if 2R=R, then every non-central involution is conjugate to [i, _i].
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Proof. — By Prop. 5.4 and the remark following it, any involution A 4=—I is
conjugate to one of the forms

/ a i\ / a o\
\-P o; \^b ^-

In the first case, by squaring, we see that [(B, PJE^-^E^)^!, hence a==o, (3=—i
and we find A=[i ,—i]E(o) . Transforming by [i ,—i]E(i)E(o)--1 we reach (5.13)
with h=i. In the second case squaring shows that a2^?2^!, hence a , ( B = = ± i
(because R is an integral domain) and (B(a+(B)&=o. Thus either — [ B = = a = = ± i and
we have the form (5.13) or a = = ( B = = ± i and b=o. But this means that A=±I and
these possibilities were excluded. Thus every involution can be brought to the
form (5.13). Now transforming (5.13) by B^) we obtain

±(, r °)\h—2c —i/

and by a suitable choice ofc we can ensure that h^==h—2c belongs to the given trans-
versal of 2R in R. In particular when 2R=R this means that every involution is
conjugate to ±[i, —i] ; since [—-i, i] is transformed to [i, —i ] by E(o), we need
only one of these forms and the proof is complete.

A ring is said to be 2-torsion free if 2x=o implies x=o. With this definition we
note the following application:

Proposition (5.6). — Let R be a 2-torsionfree integral domain which is a quasi-free GE^-ring.
Then every projective module on two generators is free.

Proof. — Any projective module M on two generators is a direct summand of R2

and may be characterized by its projection, an idempotent 2 x 2 matrix, E say. The
matrix P = I — 2 E has square I; if P==±I, then E=o or I, and M is clearly free.
Otherwise P is an involution + — I and by Theorem 5.5, after applying a suitable
inner automorphism, we have

p^I_,E-±(; °).
\h i j

In particular h = o (mod 2R), hence by a further inner automorphism we may arrange
that P = = d b [ i , — i ] ; then E=[i,o] or [o, i] and M is again free.

In a Dedekind domain each ideal is projective and can be generated by two
elements; moreover, the free ideals are just the principal ideals, hence we obtain the

Corollary. — Let R be a 2-torsionfree discretely normed Dedekind ring. If R is a GE^-ring,
then it must be a principal ideal domain.

In the next section we shall see how the result may be applied to purely imaginary
quadratic number fields. We conclude this section by giving some examples of discretely
normed rings.

i. The rational integers, with the usual absolute value. More generally, consider
the ring of algebraic integers in any imaginary quadratic number field. If this is
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embedded in the complex numbers, the usual absolute value is a norm, i.e. it
satisfies N. 1-3. N. 4 is also satisfied because the integers form a lattice which can only
have finitely many points in the unit circle; if any were strictly inside the unit circle,
their powers would give an infinite set. Further, if an element is on the unit circle, so
is its conjugate and hence the element is a unit. Thus N. 4 always holds; N. 5 holds
with a few exceptions (see § 6). Whenever it is satisfied we have a discretely normed ring.

2. Let R be any ring such that Ug(R) is a field, k say, and suppose that we have
a degree-function on R, i.e. to each a eR there corresponds a non-negative integer or —oo,
written d{a), such that

D. i. d{a)==—oo if and only if <2==o,
D. 2. d{a)==o if and only if aeI^R),
D.3. d(a-b)^msix{d{a),d{b)},
D.4. d(ab)=d(a)+d(b).

Then R becomes a discretely normed ring if we put | a \ = 2^. For example,
the polynomial rings over A, in any number of indeterminates, and the free associative
algebras (polynomial rings in non-commuting indeterminates) are of this form.

3. If R is any discretely normed ring, then R[^], the polynomial ring in a single
indeterminate over R, may be discretely normed by the rule

|S^|=S|a.l2*.

4. The free product of fields does not at first sight admit a norm, but it does have
a filtration which is very nearly a norm, and many of the results proved here for discretely
normed rings can be carried over for free products of fields. We shall not enter into
the details here (cf. [5]).

In a discretely normed ring it is often possible to decide whether the ring is a
GEg-ring. If it happens to be Euclidean with respect to the norm, it is clearly a GEg-ring.
In the next two sections we shall show that under certain conditions a discretely normed
ring cannot be a GEg-ring; this means in particular that no norm function can be defined
for which the ring is Euclidean.

6. Rings of algebraic integers and algebraic functions.

We have just seen that the ring of integers in an imaginary quadratic number field
is discretely normed, provided that N. 5 holds. This amounts to the condition that no
integer a in the ring satisfies

i<N(<z)<4.

It is easily verified that this holds for the integers in Q/V7—d), where d is positive and
squarefree, except when

(6.1) rf==i, 2,3, 7, n.
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As it happens, these are just the fields in which there is a Euclidean algorithm with
respect to the usual norm \a\=='N{a)112 (cf. [9], ch. 14). For the remaining cases
we have

Theorem (6.1). — Let dbea squarefree positive integer and I the ring of integers in Q,('\/—d).
Then I is not a GE^-ring, unless d has one of the values (6.1).

Proof. — We shall assume that I is a GEg-ring for some d which is not among the
values (6.1) and derive a contradiction. By what has been said, I is discretely normed
by \a\ =N((2)1/2^ and since I is also a 2-torsion free Dedekind ring, it is a principal
ideal domain, by Proposition 5.6 Corollary. By Theorem 2.2, every element AeGL^I)
has the form
(6.2) A=[a,(B]E(^)...E(^), where |^| ̂ 2 for i<i<r.

Since [ | is the ordinary distance in the Euclidean plane, condition (5.5) of Lemma 5. i
is always satisfied. Moreover, the only units in I are ± i $ this is easily checked because
the low values (6.1) of d have been excluded. Let us denote the first row of A by (a, b)',
then three cases are possible, according to the value of q^.

(i) [^, .[^2. Then by Lemma 5. i, [ f l [> |6 | , unless a==±b (recall that d=i
are the only units in I).

(ii) ]yJ==o and hence <7,.==o. Applying Lemma 5.1 to AE(o)~1, we see
that |fl|<|6|, unless a=-±b.

(iii) | <7y | = i and hence q^ == ± i. In this case we find that

(6.3) \a±b\<\b\

for at least one choice of sign, unless a±b=b. Again this follows by considering
AE(y,)-1.

Now suppose that |<z |= |6 [ , but a^-Lb. Then the first two alternatives do
not apply and a=t=o, 2&, so that (6.3) must hold for at least one choice of sign. Thus
if we can find a and b, forming the first row of an invertible matrix, such that

(6.4) M-H. \a±b\^\b\,

we have a contradiction. Now in a principal ideal domain any pair of elements without
a common factor forms the first row of an invertible matrix, and any element of the field
of fractions can be written as a quotient of two elements without a common factor.
So to satisfy (6.4) we only have to find an element aeQ/'\/—d) such that

(6.5) H-1. [oc± i |^ i ;

for on writing a=^/6 in reduced form, we obtain a solution of (6.4). Now the equa-
tion [ a | == i defines a circle in R2 (relative to oblique coordinates) on which the rational
points are clearly dense. These correspond to points aeQ/^—d) and by going suffi-
ciently far from the real axis we can ensure that the second relation in (6.5) is also
satisfied (for both signs). This gives us the required pair of values {a, b) and it shows
that I is not a GEg-ring.
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The first value of d not listed in (6.1) for which I is a principal ideal domain
is d== 19 (cf. [9], p. 213) and in this case an explicit matrix in GL^I) but not in GE^I) is

/ 3_e 2 + 6 \
V-3—29 5—29/3

where 62—6+5=0. By going through the steps of the proof of Proposition 5.63
Corollary, we can construct a similar example for 0/^/^5).

In the language of valuation theory we can say that for a ring of integers in an
algebraic number field to be discretely normed it is necessary for the field to have a
single place at infinity. When this condition holds we can prove an analogue of
Theorem 6.1 for function fields (1).

Theorem (6.2). — Let K be afield of functions of a single variable with k as field of constants
and assume that k has characteristic not two. Let p be any place of K./k of degree f^> i and
denote by I the ring of elements ofK. which are integral everywhere except possibly at p. Then I
is not a GE^-ring.

Proof. — If Vp denotes the exponential valuation at p then the product formula
shows that

Vp(A:)<o for all xel, x^o,

with equality only if xek. If we define

8W=-VpW,

then 8 is easily verified to be a degree function on I. Hence I is discretely normed and
since it is 2-torsion free and Dedekind, we see that if I is a GEg-ring, it must be a principal
ideal domain. Further, every AeGL^I) has the form

^ ^=[a,p]E(^)...E(^) S(^)>o (i<t<r).A = f l
\c

As in the proof of Theorem 6. i there are three possibilities:
(i) o(^,)>o: then 8{a)>S{b) or a^\b (\ek),
(ii) q,==o: then 8{a)<S{b) or a=\b (XeA;),
(iii) 8(^)=o: then q^==\ek and S{a—\b)<8{b}.

To avoid these three possibilities we need only find a pair of elements a, b in I without
common factor such that S{a—\b)==S{b) for all \ek. Let k{p) be the residue field
at p and x->x the residue mapping. By hypothesis, A:(p)=i=A;, so there exists r^ek{p),
r^^k', choose j^eK such that y == T]. Then S(y—X)==o for all \ek and as in the proof
of Theorem 6. i we can write y == alb, whence S(a—\b) =8(^)3 so that none of (i)-(iii)
can hold. Hence I cannot be a GEg-ring.

When K is of genus zero, the condition of Theorem 6.2 is necessary and sufficient,
for in that case /p == i implies that K is rational and I is just a polynomial ring over k.

(1) I am indebted to J. V. Armitage for a helpful discussion of this point.
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7. A-rings with a degree function.

We now turn to look at the second example of discretely normed rings given in § 5.
Let k be a field (possibly skew), then a A;-ring with a degree function was defined in § 5;
we stress that an element of degree zero must by definition lie in L In § 5 we showed
that such a ring is discretely normed. We shall now show that for these rings we can
strengthen Theorem 5.2 by proving that the standard form is unique.

Theorem (7.1). — Let R be a k-ring with a degree function (k afield); then R has a unique
standardform for GEg.

Proof. — By Theorem 2 .2 every AeGE2(R) can be brought to the form

(7.i) A=[a, (B]E(^) . . . E(^) (^eR, a, [BeU(R)),

where a^k ( i<z<r) and a^ a^ are not both zero in case r==2. Suppose that we also
have

(7 -2) A=[y, 8]E(^) . . . E(&J b^k (i<j<.);

we must show that o c = = y , p = = S and r==s,a,=b,. We may assume r^s and then use
induction on r; further, we may assume that y==S== i, by replacing A by [y, S]~1A
if necessary. If ^ == ̂  we can cancel the last factor and use induction, so we may
assume that a^b^ Then

I =±[a, (B]E(^).. . E(^)E(o)E(-^)... E(-^)E(o)
=±[a, (B]E(^). . . E(^-^)E(-^). . . E(-^)E(o).

If we put ^—^=(: ^d multiply by E(o) we get

(7.3) E(o) -DE(^)... E(^_,)E(.)E(-^_,)... E(-&,),

where D is some diagonal matrix. Comparing elements in the (2,2)-place we find

(7-4) e{a^ .. ., ^,_i, c, —^_i , . . ., —^)=o.

We now apply Lemma 5. i and note that condition (5.5) is satisfied because for R the
hypothesis is vacuous, and |2 |^ i ; therefore the inequality in (5.3) is always strict.
Assume first that ^^3, then also 7-^3 and we reach a contradiction unless cek. But
then c must be a unit because it is not zero, and (7.3) takes the form

E(o)-DE(^)... ̂ a^-c-WW-b^-c-W-b,,,)... E(-^).

By hypothesis, a,_^ b,_^k, hence a^^—c^.b.^—c-1^. If we pull D{c) through
to the left (by (2.4)) and equate the (2,2)-elements, we obtain

e{a^ . . ., a\_^ <-i—^ —b,_^—c~1, —b,_^ . . ., —^)=o,

where a\ is associated to ^ and hence none of the arguments lie in k\ but this contradicts
Lemma 5.1.
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When s == 2 we have

(Al!2^1 _^)=[a,P]E(^)...E(^),

hence ^(^3, . . ., ^_i)=—P~1 . ByLemma5.i, r — 2 = = o and in this case the uniqueness
follows easily.

When j== i ,
E(&)=[a, iB]E(^) . . .E(^) ,

hence e(a^ . . ., ^._i)=o. By Lemma 5.1, r—2 =— i, so r== i and the uniqueness
is then clear. The same argument applies when s==o, and this completes the proof.

We remark that the result does not hold for all discretely normed rings. E.g.,
for the ring Z of rational integers,

E(2)E(-2)E(2)=-E(3)E(2)E(3)[=(-12 ~5)].
L \ 5 2 / J

In the next section we shall introduce a different generating set for GLg(Z) in
terms of which a unique normal form is possible.

We now give some more specific examples of rings with a degree-function which
are GE-rings and some which are not. Naturally, any Euclidean ring (with respect
to its degree function) is a GE-ring, and for this to hold the ring need not be commutative,
e.g. the ring k[x\ of polynomials in a single indeterminate over a skew field is Euclidean.
More generally, we have the rings with a weak algorithm described in [5]. We shall
not recall the definition here but merely note that they are always A-rings with a degree
function, for some field k. A typical example is the tensor ring over an arbitrary
A-bimodule; in particular, any free associative algebra over a commutative field is of
this form. For these rings we have

Theorem (7.2). — Any ring with a weak algorithm is a GJL-ring,
Proof. — By Prop. 3.2 we need only show: for any n^i, given ^, ..., a^

b^, . . ., b^eR such that

(7.5) S^.^==o ^ not all zero,

then there exists CeE^(R) such that (^, .... a^)G has at least one zero coordinate.
The proof is by induction on Sa?(^). By suitably renumbering the a's and &'s we may
assume that d(a^b^)==m for i^s and d[a.b-)<im for j^>s. Then (7.5) shows that
<2i, . . ., a^ are right R-dependent, hence by the weak algorithm, an a^ of maximal
degree, say a^ is right R-dependent on the rest:

8

a^ == S ,̂ + a[ d{a[)<d{a^), d(a,c^d{a^.
2

This shows that the transformation from (^i, . . ., aj to {a[, a^ . . ., a^) is a product
of elementary transformations and it diminishes the value of the sum Srf(^). Hence the
result follows by induction.

385
4



26 P. M. G O H N

Since a ring with a weak algorithm is discretely normed, such a ring is a universal
GEg-ring; it is also easily seen that E^(R) is normal in GL^(R).

Next, to give some examples of rings which are not GE-rings, we establish a neces-
sary condition for a A:-ring with a degree function to be a GEg-ring. Let R be any k-ring
with a degree function which is also a GEg-ring. We saw that in this case (5.5) always
holds and |2 |< i , therefore Lemma 5.1 shows that in the present case

d{e(a^ . . ., a,))>d{e{a^ . . ., ̂ _i))

for any elements a^ . . . , ^ ( r> i ) such that a^k for i>i. Let us call a pair of
elements (a, b) a regular row if it can occur as the first row of an invertible matrix over R
(when R is commutative this reduces to the notion of a unimodular row defined by
Bass in [2]). Take any regular row {a, b) and let AeGLg(R) be a matrix in which
it occurs as first row. Since R is a GEg-ring, A can be written in the form (7.1) and
as in the proof of Theorem 6.2, there are there possibilities: (i) if q^k then d(a)>d{b),
(ii) if y,=o then d{a)<d{b), (iii) if ^,=oceU(R), then d(bd—a)<d{b). In terms of
the notion of (right) R-dependence, which is defined in any ring with a degree
function (cf. [4] or [5]), we can sum up the result as follows:

Proposition (7.3). — If R is a k-ring with a degree function which is also a GE^-ring, then
of any two elements of the same degree which form a regular row, each is ^.-dependent on the other.

With the help of this result it is easy to show e.g. that the ring A;[^,j/] of polynomials
in two indeterminates over a field is not a GEg-ring. As the degree function we take
the total degree in x andj\ Then (1+^5 ^2) is a regular row consisting of two elements
of the same degree, neither of which is R-dependent on the other. This means that
the matrix

/ i + x y x2 \
\ -^ i-^/

which is clearly invertible, cannot be expressed as a product of elementary matrices.
The same reasoning shows that more generally, the ring k\x^ . . ., Xg\ is not a GEg-ring
whenever d>i.

8. Discretely ordered rings.

The results of §§ 5-7 show the usefulness of a norm for the study of GE^R). In
some respects the same purpose is served by assuming that the ring is totally ordered (1);
here it is again necessary to make some discreteness assumption.

Definition. — A discretely ordered ring is a ring R which is totally ordered., such that

(8.1) for any ^eR, if a>o, then a^ i.

(1) I am indebted to H. Bass for drawing my attention to this possibility.

386



ON THE STRUCTURE OF THE GLg OF A RING 27

In order to describe GEg(R) in this case it is advantageous to supplement the
diagonal matrices by matrices with positive coefficients and we therefore replace the
generators E{x) by

(8.2) PW- '̂ T
oj

Of course the P's could also have been used to develop the theory for discretely
normed rings; but the E's there offered the advantage that their determinant
was i. If P2(R) denotes the group generated by all the P's, then in particular,
[ i ,—i: l=P(i)P(—i)P(i)eP2(R), and since [ i ,—i] normalizes E^R) and
(8.3) PW=[I,-I]EM, EM=[i,-i]P(^),

it follows that Ea(R) is a subgroup of index 2 in Pa(R). In order to describe PgnDg
we shall write

(8.4) C(a)=[a,-a-1] (aeU(R)).

With these notations we have the following analogues of (2.2-4):

(8.5) P(^+jO-PWP(o)P(jO,
(8.6) P(a)P(-o^l)P(oc)=C(a),
(8.7) PW[^!B]=[P,a]P(r1^).

Now the relation (8.3) between P{x) and E{x) shows that the defining rela-
tions (8.5-7) are equivalent to the relations (2.2-4). Hence R is universal for GEg
if and only ifGEg has (8.5-7) and the relations in D^ as a complete set of defining relations.
As in § 2 we obtain the following relations as a consequence of (8.5-7):
(8.8) PW^I, [P(i)P(-i)]3=_i^

(8.9) PW-^P^-^o)^0 ^\ i x /
(8.xo) PWPOO-^P^-jWo),

(8-") PWPOO-1P(^)==P(^-J'+^),
(8.'2) PCWoOPO^P^+a-^C^PCy+a-1).

In particular, putting a = i in the last relation, we find

PWP(I)P^)=P(^+I)C(I)P(^+I)-C(-I)P(-^-I)P(J,+I),
whence on replacing x, y by x—i,y—i respectively, we find

(8.13) P(-^)P(7) = G(- i)P(^- i)P(i)P(j-1).

Similarly,

(8.14) PWP(-J')P(Z)=-P(A-I)P(I)P(J'-2)P(I)P(^-I).

Next we shall derive expressions for a product of P's, analogous to (5.2); they
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are essentially the continuant polynomials, cf. [18] and [5]. Let ^, ^, . . . be a
sequence of noncommuting indeterminates and define the polynomials p^ recursively by

fft j^\ fP-i=^ A)-1.
{ 5) \Pn^ • • ., tn)=Pn-l(t^ • • .. tn-l^n+Pn-2^ ' " . ^-2).

As in the case of the e's defined in (5.1) we shall omit either the arguments or the suffixes
from the ^'s. It is easily seen that

(8.16) P^.-.P^)-^15'"5^ ^ l ^•••5 ' r- l )).v / v 1/ v r/ \P{^ . . ., a,) p[a^ . . ., ̂ ,_i)/

The symmetry of (8.16) leads to the following alternative definition for the p ' s :

(8.17) \P-i=^ A)-1.
[Pn^ ' " , Q=hPn-l^ • • ., tn)+Pn-^ '-. Q'

Either definition shows that p^ may be described as the sum of t^.. . ̂  and all terms
obtained by omitting one or more pairs of adjacent factors ^+1. In particular, this
shows the truth of

Lemma (8.1.) — In any ordered ring R, given a^, . . . , ^ e R such that a^>Q for
iW(r>o), then ^,...,^)>o.

The same conclusion holds if a^o, and ^>o for 2^i^r, provided that r^2 .
This lemma leads to the following analogue of Theorem 2 .2 and Theorem 5.2,

which is related to the uniqueness of the expansion of a rational number in a simple
continued fraction (cf. [9], p. 135).

Theorem (8.2.) — Let R be any discretely ordered ring. Then R is universal for GEg;
moreover^ any AeGE2(R) is unique of the form
(8.18) A=[a,[B]P(^)...P(^) ^eR, a,(3eU(R),

subject to the conditions
(8.19) ^1^0, a,>o ( i<z<r) ,
(8.20) when r==2,a^,a^ are not both ^ero.

Proof. — By definition, GEg(R) is generated by the diagonal matrices and all P(^),
aeR', using (8.9) and (8.7) we can bring any such product to the form (8.18). If
a,=o for some i (i<i<r) we can use (8.5) to simplify the expression (8.18); so we
may assume that ^ 4 = o ( i < z < r ) . To complete the proof we use induction on the
number of sign changes in the sequence (^i, . . ., ^_i, i). If this number is zero,
it means that the conditions (8.19) are satisfied. In the contrary case let i be the last
suffix for which ^<o. Then —^>o, hence — ^ — i ^ o and

A=[a, P]P(^). . . P(^JC(-i)P(-^-i)P(i)P(^i-1)- • • P(^)
=±[a, -PJP(-^i). . . P(-^-i)P(-^- l)P(l)P(^i- J ) • • • p^).

If ^==—-1, we can reduce the number of factors P by (8.5).
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If a^^>i, then there is one less sign change than before and we can apply the
induction hypothesis. If ^_^==i , we can combine P(i) with P^+a) by (8.5),
unless z + i = = r ; in any case the number of sign changes is again diminished by i.
There remains the case ^..^<i; this can only happen when a^^o, hence i-\-1 ==r
and the same conclusion applies. By induction it follows that the conditions (8.19)
can always be satisfied; moreover only (8.5-7) were used in the process. To prove that
the form (8.18) is unique, let us first assume that A is diagonal. If ^i>o, then a compa-
rison of (1,2)-elements shows that p{a^ . . ., ^._i)==o, which contradicts Lemma 8.1.
If ^==0, we have

P(^)...P(^)=DP(o),

where D is a diagonal matrix, and comparing (2,2)-elements we find that
p(a^ .... ^_^)==o,

which again contradicts Lemma 8.1, unless r^2. In the latter case we are only left
with the possibility a^==a^==o, which was excluded in (8.20). If ^<o, then r = = i
and A cannot be diagonal. Thus (8.18) is unique when A is diagonal.

In general, let (8.18) hold and also

A-[Y,S]P(^)...P(^) ^o, &,>o (i<j<^).

If ay==bg we can cancel a term and use induction on max(r, j"), so we may assume
that a^ bg, say dy>b^ Writing D^, Dg, etc., for diagonal matrices whose exact value
is immaterial, we find

(8.21) I=DiP(^).. . P(^-W-^_,)... P(-WO),

hence

I -D,P(-^)... P(^-^)P(^_,).. . P(W&i- i)P(i)P(-1)
=D3P(^)... P(^-^- i)P(i)P(^- i)P(^)... P(W&i- i)P(i)P(-1).

Since dy>b^ we have d y — b g — i ^ o ; in case this is zero we can combine P(^_i)
with P(i). Then all arguments are strictly positive except possibly the first, last and
b^— i. Moreover, a^ ̂  o, b^ ̂  o. Assume for the moment that &i>o, then b^— i ^ o
and by combining P(&a) with P(i) in case b^—i ==o, we obtain a formula in which all
arguments except the first and last are >o, and the first is ^ o. The special case
proved shows that this is only possible when there are just two arguments, both zero.
Thus we have uniqueness in this case. If b^ == o, the argument is the same except
that the last two factors in (8.21) are omitted. This completes the proof.

The most obvious example of a discretely ordered ring is the ring Z of rational
integers. Unfortunately this cannot be extended to the ring of integers in a real algebraic
number field, since such a ring is never discretely ordered. IfR is any discretely ordered
ring, then R[^], the ring of polynomials in an indeterminate over R, is again discretely
ordered, if we take as positive polynomials those polynomials which have a positive
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leading coefficient. E.g. Z [x] is discretely ordered in this way. We shall show below that
this ring is not a GEg-ring, but in order to do so we need a refinement of Lemma 8.1.

Lemma ( 8 .3 ) .—Le tR be discretely ordered, a-^, .. ., ̂ eR (r^2), a-^-o, a^>o {i<i<r);
then

(8.22) p{a^ ...,^)>j&(^, ...,^_i).

Proof. — Write pi=p(a-^, . . ., ^) and assume first that ^4= o; then by definition,
A=A-i^+A-2. hence

A—A-i-A-i^r—^+A-^-
Now ^.>o, hence a^ i and A-i^0? A-2^0 by Lemma 8.1, hence A^A-i?
i.e. (8.22) holds. If ^=o, then by (8.17), p,=p[a^ . . . , ^),A-i=^3, .. . ,^-i)
and the result still holds.

Now let AeGE^R), where R is any discretely ordered ring. Then by
Theorem 8.2,

(8-23) A=[a,Q]P(^)...P(^), <7i^o,^>o (i<z<r).

Let A==( ,| and consider\c dj

AP(^}-l-(a ^V0 I^-^ a—b9r\Ap(?r) -[c d)[. -J-[d c-dj'

If we compare this expression with (8.23) we see by Lemma 8.1, that b and a—bq^
must have the same sign; replacing A by —A if necessary, we may take this sign to be
positive. Then b>a—bq^'y now there are three possibilities, according to the sign
of q,\

Lemma (8.4). — Let R be a discretely ordered ring, and let AeGE^R) be any matrix
with first row {a, &), where b>o and assume that A has the form (8.23) with r^2. Then

(1) if Sr^0^ ^len a^b^o,
(ii) if ^==0, then b>a>o,
{m) if q^==—c<o, then b>a>—be.
Proof. — A comparison of (1,2)-elements in (8.23) shows that

b==^p{a^ . . . ,^_i),

hence a>o and so a may be ignored. If y,>o, we can apply Lemma 8.3 to the
first row of A. If q^=o we apply Lemma 8.3 to AP(^)~1 unless r^3, when a separate
argument is necessary; this may be left to the reader. If ^<o, ^==—c, we have
b>a+bc>o and hence the result follows.

As an application, let us take any discretely ordered ring R and consider R[)c],
with the ordering by highest coefficient described earlier. The matrix

A^+T 4
\ —X- 1—2^
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is invertible and i +2^>4>o, so if AeGEg, we are in case (i) of Lemma 8.4 (clearly
r ^ 2 in any representation (8.23) of A). But then q^>Q and b>a—bqy>o^ i.e.

a>bq^>o.

Let u be the leading coefficient of q^'y then z/>o, hence u"^- i and so 4^>o, 4^>2;
this shows that ^ must be of degree zero in x. But for such ^ we have ^—bq^>by
which is a contradiction. Hence A cannot be of the form (8.23) and this shows that R[x]
cannot be a GEg-ring. In particular, Z^, ...,;vJ is not a GEg-ring, for any
number (>o) of indeterminates. Similarly, free associative rings (i.e. algebras over Z)
are not GEg-rings.

9. The commutator quotient structure of GE^R) and of E2(R).

For any group G we shall denote the derived group by G', the commutator quotient
group G/G' by G° (i.e. G abelianized) and write x->x0' for the natural homomorphism
G-^G^. We saw in § 2 that for any ring R, Ea(R) is normal in GEa(R). When R is
universal for GEg, this quotient is abelian; we therefore begin by determining the quotient
in this case.

Theorem (9.1). — Let R be any ring universal/or GEg. Then

(9.1) GE^/E^R^IW.

Proof. — We define a homomorphism f : GEg(R) -> U^R)® by the rule

EM->l , la^-^aiB)0.

To show that this is well-defined we need only check that the defining relations (2.2-4)
are preserved. But this is immediate for (2.2) and (2.3), and for (2.4) it follows from
the fact that (ap^^pa)0. Clearly/maps GEg(R) onto l^R)", so to complete the
proof we need only show that ker/^E^R). By definition, E(.v)eker/, so the kernel
contains Eg(R). Conversely, if A, given by (2.11) say, lies in the kernel, then apeU(R)';
multiplying by D^^E^E^E^-^E^), we may suppose that (B=i , so it only
remains to show that [y, i]eE2(R) for all y^l^R)', and this will follow if we prove
that [a-^-^P, i]eEa(R) for all a, (BeU(R). Now we saw that D(a)eE2(R) and

(9.2) [a-lrla(3,I]=D(a-l)D(rl)D(ap)eE,(R).

Hence ker/=E2(R) and (9.1) follows.
Corollary 1. — In any ring which is universal/or GEg, Dg(R) nE^R) is generated by

all matrices D(a), aeU(R).
For if we restrict the homomorphism /: GEg(R) -> l^R)0 constructed in the proof

of the theorem to Da(R), the kernel is just D^R^E^R). Now [a, (B] maps to i if
and only if apel^R)', but in this case the proof of the theorem shows that [a, P] can
be written as a product of matrices D(y), y^^R).
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Cor. i shows that any element AeE^R) can be written

A=D(aJD(a,).. .D(a,)E(^).. .E(0.

In particular, any relation in Eg(R) can be brought to this form, using only (2 .2 )3 (2.3)
and
(9.3) E^)D(a) =^(00-^(0^0),

which is just the special case of (2.4) where a? == i. If R is assumed to be quasi-free
for GEg, then by the remark just made, we can further reduce this relation to the form

(9.4) D(ai)...D(a,)=I.

Using (9.2) we can finally reduce (9.4) to the form

(9.5) [vi, i]. . .[T^ i]-! where Y^U(R)', Yr . -T^i -

Thus we obtain
Corollary 2. — In a ring R which is quasi-free for GEg, Eg(R) is generated by all E(^) (,yeR)

and if D(a) (aeU(R)) and [y, i] (yel^R)') are defined by (2.3) and (9.2) respectively,
then a complete set of defining relations in terms of these generators is given by

EME(o)EO/)==-E(^+A
E(^)D(a)=D(a-l)E(a^a),

[TI,!]...^!]-! (T^R)^...^!).

In the case of universal GEg-rings, Theorem 9. i may be thought of as a generaliza-
tion (in the case 72=2) of Dieudonne's determinants over a skew field (cf. [7]). Since
the right-hand side of (9. i) is abelian, we obtain

Corollary 3. — For any ring which is universal for GEg,

(9.6) E,(R)DGE,(R)'.

This corollary can still be improved, as follows:
Proposition (9.2). — For any ring which is universal for GEg and in which 1 can be written

as the sum of two units,

(9.7) GE,(R)'=E,(R),

and hence GE^^l^R)0.
The result follows, once (9.7) is proved, and this is well known (cf. e.g. [2]).

It is proved by noting that if a + P = i , the commutator X^Y^XY of X^a"1,!]
and Y^EdS-^E^)-1 is E(A:)E(o)"'1; by transposition we obtain E^)-^^) and
hence GEg(R)' contains

—E(o)E(—i)E(—i)E(o)E(o)E(^—i)-E(o)E(o)D(—i)EM=EM.

In particular, when Uo(R) is a field k, we have the
Corollary. — In any k-ring with a degree function, (9. j ) holds provided that k has more than

two elements.
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It is convenient to consider next the group E^R)^. Let R be any discretely
normed ring; working mod Eg(R)' we have by (2.5) and (2.2),

EWE(j;)=EWE(o)E(^)E(o)E(-i)E(o)E(-i)E(o)E(-i)
=E(^+j.-3),

hence

(9-8) EWE(J;) == E(x+y-s) (mod E,(R)').

This suggests defining a mapping Eg(R)->R by putting

(9.9) E(^)-^—3.

This mapping can be extended to a homomorphism of Eg(R) into the additive group
of R provided that the defining relations of Eg(R) are preserved. Since E^)2^—I,
we must have —1->—6 and in particular,

(9.10) 12 ===o in R.

Next the definition of D(oc) shows that

( 9 . 1 1 ) D(oc) -^a+a-^—s,

and using this value in (9.3) we find that x—3+2a+a~1—3 ==20L~1-{-OL—3 +a^a—3,
i.e. OLXOL—X==OL—a~1. If we replace x by x-\-<x~1, this equation reduces to

(9.12) ^XOL==X.

Thus in order to be able to define a homomorphism into the additive group of R
we must have (9.10) and (9.12). However we can obtain a homomorphism in all
cases if we divide out by the appropriate subgroup of R. In order not to complicate
the result, let us assume that U(R) is abelian. Then we have

Theorem (9.3). — Let R be a ring which is quasi-free for GE^ and such that U(R) is
abelian, and denote by M the additive subgroup of'R generated by 12, all oaa—x (.yeR, aeU(R))
and all 3(a+ i ) (P + i) (a, (BeU(R)); then

(9.13) E,(R)^R/M,

under the homomorphism defined by

(9.14) E(x)->x—^ (modM).

It should be noted that M is in general not an ideal of R but merely an additive
subgroup.

Proof. — It is clear from the remarks preceding the theorem and the definition
of M that the first two relations of Theorem 9.1, Cor. 2 are preserved. Moreover,
the third relation reduces in the present case to

(9.15) D(a- l)D(r l)D(ap)=I.
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By definition of M we have axa^A;, hence a=a'~1 (mod M). Thus

D(a)^2a+a- l —3Es3(a—I)E=3(a- l —I) (mod M),

and the left-hand side of (9.15) is mapped to

3(a—l)+3(P-l)+3(ap-l)=3(a+P+a(B-3)

=3(a+[B+a(B+l)
EE3(a+l)(P+l)

=o (mod M).

Thus all defining relations of Eg(R) are preserved and (9.14) defines indeed a homo-
morphism g : Eg(R) ->R/M. Clearly g is onto, and since the right-hand side is abelian,
ker ^DE^R)'; to complete the proof we must establish equality here. By (9.8) we
have

(9.16) E(^+3)E(^+3)=E(^+J+3) (modE^RH,

and hence

(9.17) E(^+3). . .E(^+3)=E(2^+3) (modE^R)').

If the left-hand side maps to zero, so must the right-hand side, whence S^=;o (mod M).
Now we have the identity

E(^E(o)- lE(^- lE(o)=E(^E(o)-2E(—^)=—E(x)E(—^);
hence

—E{x)E{—x)==l (modE^R)').
It follows that

D(a2)=—D(a)D(—a)=E(a)E(a- l)E(a).E(—a)E(—a- l)E(—a)
=1 (modE^R)').

Next we have
E M D (a) == D (a-1) E (a^oc), hence

(9.18) E(a^a)E(^- l=D(a2)=I (modE^R)').

If we put x==—3,j;=o in (9.16), we see that E(3)eE2(R)', and so, by (2.8), we obtain
(9.19) E(a^a-^+3)=E(a^)EM- lE(3)eE,(R) /.

By (9.18) we also have E(aA:a) == E(.v), hence E(a) ̂  E(a~1) (mod E^R)'), and so
E(3oc) ^E(a)E(o)E(a)E(o)E(ocJ ^(0)^(0^(00-^(0) ^D(a), hence
(9.20) E(3a)=D(a) (modE^R)').

In particular, E(—6+3) ^E(—3) ES—I, whence

(9.21) E^+S)-! (modE^R)').

Further, E(3ap) =D(ap) =D(a)D(p) =E(3a)E(3p) and so

E(3(ap +a+P+i)+3) =E(3ap)E(3a)E(3P)E(i5) =D(ap)D(a)D([B) =1,
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by (9.18) and (9.21), hence

(9-22) E(3(a+ i ) (P+i )+3)=I (modE^R)').

Now (9.19), (9.2i) and (9.22) showthatfor any generator x of M, E^^^eE^R)'.
fiy (9- I?) thls ^Id3 fo1' any ^eM. Hence, in particular, if the left-hand side of (9.17)
is mapped to zero by g, then the right-hand side lies in E^R)7 and therefore so does the
left-hand side. This shows that ker ^cEg(R)' and it completes the proof of Theorem 9.3.

The isomorphism (9.13) can be made to play a similar role for Eg(R) as the deter-
minant for GLg(R); in this connexion we note that when R is commutative, so that a
determinant is defined, then (in case R is discretely normed or discretely ordered)
Eg(R) is just the subgroup of GEg(R) consisting of matrices of determinant i, because
every matrix in GE^R) is congruent (modE^R)) to a matrix of the form [a, i]. In
particular, for a commutative (discretely normed) GEg-ring R we have E2(R)==SL.2(R).
As an example, take the ring Z of rational integers. Here M == isZ and Theorem 9.3
shows that SL^Z)" is cyclic of order 12. Secondly, let I be the ring ofGaussian integers.
The only units are ±i, ±i and in this case M is generated by 12 and all 2x and all
3 (a + i) 0 + i). This is just the ideal 2R, so 81 (̂1)° is the direct product of two cycles
of order two.

Suppose that R is a A;-ring with a degree-function and moreover, that k is in the
centre of R, i.e. that R is a k-algebra. Then M contains x^—i) for all xeR,
oceA; (a=t=o), and hence coincides with R, unless every non-zero element of k has its
square equal to i. In the latter case k cannot have more than 3 elements and then it is
easily verified that M=o. Thus we have

Corollary 1, — Let R be a k-algebra with a degree-function, then E^R)"^^ unless k
is the field of 2 or 3 elements, in which case E2(R)°^R.

At the other extreme R has no units apart from ± i; then it is easily seen that M
is the additive subgroup generated by 12. This is true in particular when R is discretely
ordered, and so we have

Corollary 2. — Let R be a discretely ordered ring (or a discretely normed ring in which ± i
are the only units), then

E2(R)^R/i2.

For example, if I is the ring of integers in an imaginary quadratic extension of Q^
which is not Euclidean, then E^I)^ is the direct product of an infinite cycle and a cycle
of order 12.

To obtain more precise information about GE^R)" it is necessary to find out
more about E2(R)/GE2(R)/ in the cases where Prop. 9.2 does not apply. Let us
return to the proof of Theorem 9.3 but drop the assumption that U(R) is abelian»
By (2.8),

E(a(^-3))E(,-3)-lE(3a)=E(a^-3)-^-3)+3a)
=E((a-i)^+3).
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Now (9.20) shows that E(3a)=sD(a) (mod GE^R)'); the proof uses no units apart
from a and so does not depend on the commutativity ofU(R). Since we clearly also
have

l=E{x)-l[^l]-lE{x)[^l]
== £(^-^(0^(0) (mod GE^R)'),

we deduce that

(9.23) E((a-i)^+3) EE I (mod GE^R)').

By symmetry we also have

(9.24) E(^(a-i)+3) = I (mod GE,(R)').

Let N be the ideal of R generated by all a — i (aeU(R)). We note that N D M
since e. g., ouca—A;==(a—i).va+^(a—i) and 12 = = — 6 ( — i — i ) . It is easily seen that
the mapping h : E(A:)->^—i (mod N) preseives the first two relations of Theorem 9.1,
Cor. 2, while the third one becomes trivial (mod GE^R)'); therefore we have
a homomorphism

E,(R)/GE,(R)'^R/N.

If the left-hand side of (9.17) lies in the kernel of this mapping it follows that S^.eN
and now (9.23), (9.24) show that the right-hand side of (9.17) must lie in GE^R)'.
This proves that the kernel is in fact equal to GEa(R)' and we have

Theorem (9.4). — Let R be any ring which is quasi-free for GEg and denote by N the
ideal generated by all a — i (oceU(R)). Then

E2(R)/GE2(R)'^R/N.

E.g., when R==Z, then N=2Z and we obtain the result of Hua and Reiner [n],
that SLa(Z)/GL2(Z)' is cyclic of order two. If I is the ring of Gaussian integers,
N = = ( i + i ) I and SL^I^GL^I)' again is cyclic of order two.

Theorems 9.1 and 9.4 may be summarized as follows:
Theorem (9.5). — Let R be a ring which is quasi-free for GEg and denote by N the ideal

generated by all a—i (aeU(R)). Then there is a split exact sequence

o -> R/N -> GE^R)0 -> l^R)" -> o.

For the mapping ^-^[a^, i] clearly induces a splitting.

10. Generating sets and free products in GE^(R)«

It is well known that SL^Z), the two-dimensional unimodular group, can modulo
its centre be written as a free product of a 2-cycle and a 3-cycle. It seems to be
unusual for GEg(R) or Eg(R) to be expressible a.s a free product in a non-trivial way,
but there are a number of results on large subgroups which have the form of free
products (cf. e.g. Nagao [14]). The question is related to the problem of deciding
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when GEg(R) is finitely generated; by means of the normal form for elements in GEg(R)
we shall be able to give an answer to these questions which includes many of the known
results as special cases. We begin by discussing the problem of finite generation
of GEg(R).

Theorem (10 .1) . — Let R be any ring; ifV(R) is finitely generated (as multiplicative
group) and R is finitely generated, as V(R)-bimodule, then GEg(R) is finitely generated.

Proof. — Let U(R) be generated by YD • • • ? Y f c ^d R? as U(R)-bimodule,
by c^ ...,^. We already know that GEg(R) is generated by all E(/z), aeR, and
[a, [B], a, (BeU(R). By (2.2) and (2.4)3 E(^) can be expressed in terms ofE(^), E(o)
and [a, [3] 3 and hence in terms of

( 1 0 . 1 ) E(o), E(^) (r-i, . . . ,A), [Y,,T,] (^J=i, . . . ,A).

This shows that GEg(R) is finitely generated.
The following is a partial converse:
Theorem (10.2). — Let R be a ring quasi-free for GEg and such that GEg(R) is finitely

generated. Then so is U(R)a, and moreover, R is finitely generated, as V(R.)-bimodule.
Proof. — Since GE2(R) is finitely generated, so is l^R)", by Theorem 9.5.

Moreover, every generating set of GEg(R) contains a finite subset which is still a gene-
rating set. We can therefore find elements c^, . .., ^eR and YI? • • - 9 Y^l^R) such
that the elements (10.1) generate GE^R). Thus every element of GEg(R) can be
expressed in the form

(10.2) [a,p]E(^)...E(^

where a^ ..., Oy belong to the U(R)-bimodule generated by q, . . ., c^. Clearly we
may assume that a^ 4= o (z ===!;, . . . , r ) and using (2.9) we may even take a^U^R),
provided that we let the ^ range over the U(R)-bimodule generated by i, q, . . ., c^.
Now take any 6eR and consider E(6). If E(6) is expressed in the form (10.2), we
necessarily have r^ i, hence we obtain

-[oc,p]E(^)...E(^_,)E(^-6)E(o)==I.

If a^—6^Uo(R), then the argument used to prove Theorem 5.2 shows that r ^ 2 and
we obtain a contradiction. Therefore Oy—^eUo(R) and it follows that b lies in the
U(R)-bimodule generated by 1,^15 . . . , ^; but b was any element of R. This shows
that R is finitely generated, as U(R)-bimodule.

This theorem shows e.g. that G'L^{k[x]), for any field k, is not finitely generated
(cf. Nagao [14]). It seems likely that Theorem 10.2 holds for any ring which is uni-
versal for GE^.

Next we turn to the question of free subgroups and free products. Let R be any
ring, and A a subgroup of the additive group of R. Then it is clear that the set

B^(A)-{B^)|^A}
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is a subgroup ofE^R) isomorphic to A, and of course the same holds for its conjugate
with respect to P(o), which will be denoted by B^(A).

Theorem (10.3). — Let R be a ring which is quasi-free for GEg and A, B any two
subgroups of the additive group of R which do not meet U(R). Then the subgroup of GEa(R)
generated by B^A) and B^(B) is equal to their free product.

Proof. — Let F be the subgroup generated by B^A) and B^fB). Any element
of F has the form f^-g^g^. . .gyh^ where ^eB^A), A.eBg^B) and &4= i for
i=f= i, h^ i for i=t=y. Write

&-B^)=E(^)E(o)-1, ^B^^o)-^),

then y has the form

(10.3) ±E(ai)E(^)...E(^)E(y,

where a^b^o except possibly a^ or by; moreover, a^ ^U(R), by hypothesis. In
particular, the left-hand side of any relation in F can be brought to the form (10.3).
But by hypothesis there are no non-trivial relations of the form (10.3) and it follows that F
is a free product as asserted.

For example, if x, y are elements of R such that nx, n^Uo(R) for all n^= o, then
the subgroup generated by B^A:) and B^Qy) is free on these generators. In particular
this yields the well known result that for any indeterminate x over a field of characteristic
zero, B^fA:) and Bg^) generate a free group. Similarly, for any integer m'^-2,
Bi2(w) and Bg^m) generate a free group.

n« The construction of homomorphisms between general linear groups.

Let y : R — > S be any homomorphism (1) of rings; clearly this induces a homo-
morphism of nxn matrix rings j^ : R^->S^ and since a unit of R^ maps to a unit
of S^, we obtain a homomorphism

(ii. i) /*:GL^(R)^GL»(S).

Secondly, let g : R-»S be an antihomomorphism; this induces in the same way
an antihomomorphism of groups g * : GL^(R) -> GL^(S). If we follow this by inversion
in GL^(S) we again obtain a homomorphism of groups

(11.2) J:GL,(R)-^GL,(S).

In particular, when S=R, the automorphisms and antiautomorphisms of R give
rise in this way to automorphisms ofGL^(R). Not all automorphisms arise in this way,
however; if a is any homomorphism of GL^(R) into the group of central units of R,
then the mapping A-^A.A0 is an endomorphism of GL^(R), which will be called

(1) It is understood that such a homomorphism maps the i of R to the i of S.
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a central homothety. When we come to study automorphisms of GL^(R) we shall find
that for n > 3 and a fairly wide class of rings, every automorphism of GL^(R) is obtained
by combining /* or g with an inner automorphism and a central homothety. For n= 2
the situation is rather different; to describe it we need a

Definition. — Let R, S be any rings. A U-homomorphism f:R->S is a homo-
morphism x->x' of the additive group of R into the additive group of S such that

(11.3) I'-i.

and

( 1 1 . 4 ) (a^)'==a^'(B' for all aeR, a, peU(R).

If g is a homomorphism from the additive group of R to that of S which satisfies
(11.3) and instead of (11.4) satisfies
(11.5) (a^V^-p^a' for all aeR, a, ReU(R),

then g is called a V-antihomomorphism.
Clearly a U-homomorphism between fields is just an ordinary homomorphism,

and likewise for antihomomorphisms. More generally, we have
Proposition ( 1 1 . 1 ) . — Let R be a ring which is generated, qua ring, by its units. Then

a U-homomorphism of R into an arbitrary ring is a homomorphism and a V-antihomomorphism
is an antihomomorphism.

Proof. — Let x->x' be a U-homomorphism and write

Ro^eRK^)^^' for all aeR}

then by (11.4), RQ contains U(R) and if x,yeRQ then for any aeR,
^^^^[xa—ya^^^xaY—^^x'a'—y'a'

^{x'-y'V^x-yya1,

hence x—yeR^. Further, { x y Y ^ x ' y ' and for any aeR,

[xyay^x'W^xya-^xyYa^

which shows that xyeR^. Together with (11.3) this shows that RQ is a subring of R
and since it contains the units of R, by (11.4)3 it must be the whole of R. But this
means that f \ x->x' is a homomorphism. The proof for antihomomorphisms is
similar.

The form of the defining relations (2.2-4) now yields almost immediately
Theorem (11.2). — Let R be any ring universal for GEg, S any ring and let f: R->S

be any U-homomorphism x->x\ Then f induces a homomorphism
(n.6) r:GE,(R)->GE,(S)

by the rule

(n.7) EM^EM, [a,P]->[a',P'].
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If g : R->S is a V-antihomomorphism, then g induces an antihomomorphism g defined
in the same way and hence induces a homomorphism

("•8) g : GE^R) -> GE^S)

by the rule

("•9) EM -> EM-1, [a, JB] -> [a', JB']-1.

Proo/1 — We need only check that the defining relations (2.2-4) and the relations
in Dg(R) are satisfied and this is clearly the case.

When/is a homomorphism, the effect of/" in (i i .6) can be described more simply
by the rule

'"•"' (: y - (? :̂)
but it should be noted that for arbitrary U-homomorphisms this is not so. Although
there is still a group homomorphism/* (given by (11.7)) it does not agree with the
mapping (n.io), which in general will not be a homomorphism. A similar remark
applies to U-antihomomorphisms.

Corollary. — Any V-homomorphism of a universal Goring R defines a homomorphism
(n.6) of GLgfR) and any LJ-antihomomorphism defines a homomorphism (n.8) of GLg(R).

When the units in R (together with o) form a field k, a U-homomorphism of R
is just a A;-bimodule homomorphism such that i ->i. Thus it induces a monomorphism
from k to the image ring, so a U-homomorphism in this case is essentially a A-semilinear
mapping. Below we list some special cases of Theorem 11.2.

(i) Let R, S be A-rings and assume that R is a universal GEg-ring with Uo(R)==A;.
Then any A-semilinear mapping of R into S induces a homomorphism of GLg(R)
into GLa(S).

(ii) If R is a k-ring with a weak algorithm, then any A;-semilinear mapping to
a k-ring S induces a homomorphism of GLg(R).

(iii) Any ^-linear mapping of a A-ring R with a weak algorithm (into itself) induces
an endomorphism of GL^R).

In the case where R is the ring of polynomials over a commutative field in a single
indeterminate, this construction of automorphisms ofGLg(R) is due to Reiner [15], [i6].

As an application of the above results, consider the free associative algebra over a
commutative field k, on a free generating set which is at most countable. As A;-bimodule
this is just a vector space of countable dimension over k and so is isomorphic to k[x],
the ring of polynomials in a single indeterminate. Hence the GLg over the free associa-
tive algebra is isomorphic to GL^{k[x]).

In case ± i are the only units in R, the statement of Theorem 11.2 can be slightly
simplified.

Theorem ( 11 .3 ) . — Let R be any ring which is universal for GE^ and in which ±1 are
the only units, and let S be any ring. Then any additive homomorphism from R to S which maps
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i->i induces a homomorphism of GEg(R) into GE^S) by the rule E(^)->E(^), and another
one by the rule E{x)->E{xf)~l.

Corollary. — Let R be any ring universal/or GEg, in which ±1 are the only units, then
there is an automorphism of GEg(R) defined by

EM->EW-1.

The statement of the various special cases (in particular the case where R is a
universal GE^-ring) may be left to the reader. The result may in particular be applied
to the case of discretely ordered rings, where the hypothesis relative to the units in R
is automatically satisfied.

I2. The analysis of isomorphisms of general linear groups.

We now7 consider the converse problem: Given an isomorphism between GL^(R)
and GLJS), when is this induced by a mapping /: R^S? The aim will be to show
that/can be taken to be an (and) isomorphism or in case n = 2, a U-(anti) isomorphism.
We shall limit ourselves to brings with a degree-function and to begin with we
assume ?z==2. Just as for fields, the case of characteristic 2 has to be treated separately.
On the other hand, we do not need to restrict ourselves to GEg-rings, but instead consider
rings in which projective modules are free.

Lemma ( 12 .1 ) . — Let R be a k-ring with a degree function^ where k is afield of characteristic
not two., and assume that either of the following conditions is satisfied:

(i) R is a GE^ring,

(ii) every projective (right) ^-module on two generators is free,

then any pair of anticommuting involutions in GLg(R) can be transformed simultaneously by an

inner automorphism to the forms [ i , — i ] and P(o)==l I respectively.

Proof. — Let A, B be the given involutions. If (i) holds, then by Theorem 5.5,
A is conjugate to [ i ,—i] , because A is non-central. If (ii) holds, consider
E==i /2( I+A) ; clearly E is an idempotent, and since A+±I , it follows that E=t=o, I .
If we regard E as acting on R2;, it defines a direct decomposition and by assumption (ii),
both the kernel and image of E are free R-modules; taking a suitably adapted basis,

we obtain E in diagonal form: E == I I, and in this coordinate system, A = [ i, — i ].

Thus A has been transformed to the form [i, —i], assuming only (i) or (ii). Let

B =^ d ) ' then A~ lBA==(_a j} and by hypothesis this equals —B, hence

a==--d=o. Moreover, B2=I, therefore bc==i, i.e. b, ^eU(R) and transforming B
by [b, i], which leaves A unchanged, we obtain [c, i]B[&, i |==P(o).

Now let R be a k-ring and S a A'-ring, both with a degree-function, where k, k ' are
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fields of characteristic 4= 2 and assume that one of R and S, say S, is either a GEg-ring
or has its projective modules free. Let

(".i) /:GL,(R) ->GL,(S)

be an isomorphism, and for brevity write Do==[i, —i] (in R or S). Now over any
integral domain, —I is characterized as the only central involution, hence (—1)/=—I.
Since Do and P(o) are a pair of anticommuting involutions in GLg(R), their images
under/are again anticommuting involutions in GL^S), and the same is true of T](DQ/),
7](P(o)/), where T] is one of the numbers i, — i . Let us make a definite choice of T],
then by composing / with an inner automorphism of GL^S) we may assume (by
Lemma 12.1) that

(12.2) Do./=7]Do, P(O)/=TJP(O).

By (12.2) the centralizer of Do in GLg(R) is mapped into the centralizer of Do
in GL^S). But this centralizer is easily seen to be the set of all diagonal matrices,
therefore f maps the subgroup Dg(R) onto D^S). Our next problem is to characterize

the triangular matrices T(A)=1 ). Writing T==T(A), T^D-^TD, we clearly
have

(12.3) (TDo)2^!,
(12.4) ^T^^T1^ for all DeD^R).

It follows that the image U ===T/ satisfies the same equations. Taking U === ( ,),\c a/
D=[i, 8], we have L^U^UU1^ and equating the (i, i)-terms in this equation we
obtain

(12.5) 6(S--S-l^==o.

If we assume that k ' has more than 3 elements, we can find S e k ' such that S2^!, and
now (12.5) shows that b == o or c == o. In the remaining case k ' is the field of 3 elements
(because the characteristic is +2) and from (12.3) we obtain (UDo)2^!, whence by
equating coefficients,
(12.6) ab==bd, ca==dc, a2—bc==d2—cb=i.

Moreover, in this case, T^I, hence U3^!; in detail

^]2_(a2•~\~^c ab-rbd\_/2a2—i 2ab \
\ca+dc d2+cb^~~[ 2dc 2rf2—!/

I-U3-
f 2 a3— a -\- 2 abc * \

^ ^d3—d+2dcb|9

thus a{2a2—IJr2bc)==l, d{2d2—IJr2cb)=^l. This shows that a, fl?eU(S)c^, i.e.
^ , r f = = ± i , therefore a2== d2''== i and the last equation (12.6) now shows that bc==o.
Again we deduce that either b=o or c--=o.
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Let us assume that Z»4=o, say, then ^===0, and by (12.6) which always holds,
we have c^^d2^!, i.e. [a-\-i)[a—i)==o. Since S is an integral domain, ^=±1,
and similarly d=±i; moreover, the first equation (12.6) shows that a==d. This then
shows that U is of the form

(".7) U»^ ^),

and clearly every such matrix satisfies the conditions (12.3) and (12.4) for T. Simi-
larly if b=o but c4=o we obtain the form

(12.8) U=±
I 0}

(c ij

and this matrix again satisfies the conditions (12.3) and (12.4). Finally, if 6==^==o,
then all we can conclude is that a=±i and r f=±i , and thus we have ±1 or ±DQ.
This exhausts all the possibilities.

Now / leaves Do fixed except for a scalar factor and it maps diagonal matrices to
diagonal matrices, hence/ maps any matrix T (A) to a matrix of the form (12.7) or (12.8).
Consider T(i); if T{i)f=T{k) say, where keS, then k^=o because/is injective.
But for any AeR, T (A)/commutes with T(A:)==T(i)/, and it must therefore be again
of the form (12.7), so in this case the subgroup B^(R) is mapped into the subgroup
d=B^(S) by/. The other possibility is that T(i)==B2i(/;); in this case we modify/by
composing it with the inner automorphism defined by E(o) = D^P(o). This leaves (12.2)
unaffected except to replace ^ by —T], but now T^/^E^o^Bgi^Efo)^!^—k)y
so that this is essentially reduced to the previous case. More precisely, we have shown
that by composing/with a suitable inner automorphism we can ensure that (12.2)
holds (for 7]=dbi) and B^R) is mapped into r^B^S).

As a consequence we can write

(12.9) TW/=sMT(^°),

where x->x° is a mapping of R into S and x->^[x) is a mapping of R into {±i}.
Since T{x)T{jy)==T{x+y), we have

^x+^T^x+^^^W^TW

=cMs(j;)T(^+y),
hence

(12.10) (^+^)°=^+y,
( 1 2 . 1 1 ) e{x)e{y)==z{x+v).

Putting y=x in (12. n), we find that z[2x) == s{x)2 == i, hence e[x)==i for all xeR.
We saw that x°^o for ^+o, hence (12.10) shows that the mapping cr is injective.
Repeating the argument with/replaced by /-1 (and reading (12.2) in the opposite
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direction), we see that a is an isomorphism of the additive groups of R and S. Next
we look at }L{x):

EW==DoTMP(o).

Applying/, we obtain E{x)f==--r2DQ^{xa)P{o), hence

(12 .12) EW/=E(..°).

If we apply/to (2.3) and use (12.12) to simplify the result, we get
E((a-l)o)E(ao)E((a-l)o)=-D(a-l)/.

The right-hand side belongs to 03(8), hence so does the left-hand side; but this can only
happen if a°eUo(S). We know that oc°4=o and so we find

D(a- l)/=—E((a- l)o—(ao)- l)D(ao)E((a- l)o—(ao)- l).

Equating the ( i , 2)-terms we see that

(12.13) (a-1)0^0)-1,

so both sides of this equation may without risk of ambiguity be denoted by a~°.
Using (12,13) on the preceding equation we obtain D(a-l)/=D((ao)~-l), or replacing a
by a~1 and using (12.13) again,

(12.14) D(a)/=D(oc°).

In particular, taking oc==i , we obtain

(12.15) i0-!.

We can now use Hua's Theorem (cf. e.g. [i], p. 37) and conclude from (12.10),
(12.13) and (12.15) that a is either a homomorphism or an antihomomorphism of k
into k ' . The same argument applied to f~1 shows that cr is actually a bijection between k
and A;', and therefore an isomorphism or an anti-isomorphism.

If we apply/to (2.4) we obtain

D (a- °) E (a° x° a°) == E (x°) D (a°) = D (a- °) E ((a^a) °), and hence
(12.16) (o^a^oc^a0 (.veR, aeU(R)).

This relation can actually be used in the proof of Hua's theorem; more generally, we
can use it to show, in exactly the same way as in the proof of Hua's theorem, that we
have either

(12.17) (a^^a0^0,

or
(12.18) (a;^)0^0^0,

for all ^eR and a, peU(R). Thus cr is either a U-isomorphism or a U-anti-
isomorphism.

Next we consider the effect of/ on diagonal matrices. Every diagonal matrix can
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be reduced to the form [i, a] by multiplying by a matrix D([B), for suitable (B. Now D((B)/
is given by (12.14); we may therefore restrict our attention to [i, a]. We know that
this is again mapped to a diagonal matrix by fy say
(12.19) [i,^\f=[^,^.
Since P(o)[i, a]P(o)==[a, i]=[a, a-1]!;!, a], we have

[a°, a-0] [a\ ^] - P(o) [a\ 01^(0) == [a^, o ]̂,
and hence
(12.20) a^^^a^.

Using this relation we obtain

[a, P]/=([a, a-1] [i, ap])/==[a°, or°][(a(B)\ (a^^a?)^, i.e.

(12.21) [a^l/^Eo^a-^ap)0^^.

Suppose now that <y is a U-isomorphism $ then (12.21) states
[a,p]/=[a°,P°](a(3)\

If we apply this to the equation
(12.22) [l,ap]=[l,a][l,p],

we obtain
[i, a'TOocp)^!:!, a°]^[i, p0]^ i.e.

(alB)^!:!,?-0]^!:!,?0]^.

Equating the (i, i) -terms in this equation we find
(ap)^a^\

and it can be used to simplify the equation between the (2, 2)-terms to

(12.23) (^a^oc^0.

Thus X is a homomorphism ofU(R) into U(S), and since a maps U(R) onto U(S),
(12.23) shows that a^ centralizes U(S). By (2.4)

[P°, ̂ (a^Ear^n^E^0)^0, ^(ap)^
=[PO,ao]E(ro^ao)(ap)\

This shows again that (oap)0^^0^0 and taking ( B = = = i , x==yy~1 we find
axE(J/o)=E(^o)ax3 which shows that o^ lies in the centre of S. Thus X is a central
homothety, and (12.12), (12.21) show that f is just the isomorphism induced by the
U-isomorphism cr, followed by the central homothety X. Finally, a comparison of (12.21)
and (12.2) shows that ' / ]==(—i)^.

Next assume that a is a U-anti-isomorphism, then (12.21) becomes

[^pV-Ea^a-P-^Ka^^.
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If we express X in terms of a and [L by means of (12.20), we can write this relation as

kN^Er0^-0^^.
Applying this to (12.22) we find that (JL is a homomorphism of U(R) into the centre
ofU(S) and as before we can use (2.4) to show that o^ in fact lies in the centre of S.
Thus / is now the isomorphism induced by the U-anti-isomorphism a, followed by the
central homothety (JL.

The result may be summed up as
Theorem (12.2). — Let R be a k-ring and S a k'-ring, both with a degree-function, where k

and k' are any fields of characteristic + 2 and S is either a GE^-ring or all projective ^-modules
on two generators are free. Then every isomorphism between GL^R) and GL^S) is obtained
by taking the isomorphism induced by a ^-isomorphism or V'-anti-isomorphism, followed by a
central homothety and an inner automorphism.

This includes the result of Reiner [i 6] when S=R=/;[;(] and earlier results of
Schreier-v.d. Waerden and Hua (cf. [8] and the references given there).

IfR is any A-ring, then the characteristic of A; is =)= 2 if and only if GLg(R) contains
a central involution. Hence if we are given an isomorphism

/:GL,(R)^GL,(S),

where R is a A;-ring and S a /./-ring, then k, k ' both have characteristic =t= 2 or both = 2.
In order to deal with the latter case we need a Lemma analogous to Lemma 12.1.
Whereas Lemma 12.1 shows that in characteristic not two (and under the given hypo-
theses) the subgroups of GLg(R) of the type of the dihedral group of order eight form
a single conjugacy-class, the next lemma establishes a corresponding fact for subgroups
of the type of the symmetric group of degree 3, in the case of characteristic 2.

Lemma (12.3). — Let R be a k-ring with a degree-function, where k is afield of charac-
teristic 2, and assume further that R is a GE^-ring. Then any pair of involutions in GLg(R)
whose product has order 3, can be transformed simultaneously by an inner automorphism to the
forms T(i)(=Bi2(i)), P(o) respectively.

Proof. — Let A.BeGL^R) be the given involutions and write C==AB. By
Prop. 5.4 and the remark following it, G can be brought to one of the forms
(".24) [i, (3-jE^), [a, (B]E(o)E(6).

Suppose that G has the second of these forms; comparing terms in the equation G3 = I,
we see that a3 == (B3 = i, ba? + (B6a + ̂ b = o. If we transform by E^oc)-1, we therefore
obtain

E((32&a)[a,p]E(o)E(&)E(o)E((326a)E(o)=[^a]E(p6a2)E(o)E(6)E(o)E(p26a)E(o)
^[^aJE^+p^a+jB^E^)
=[P,a].

Thus C has been transformed to diagonal form. If G has the first form in (12.24),
the equation C3 == I shows that (B = a2, a3 = i. When a =t= i, it follows that a2 + a + i == o,
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and transforming by ( ( we reduce C to the form [(3, i]. Thus C has been reduced

to either of the following forms

("•25) (; ^ [^N.
We assert that in fact C can always be reduced to the first of these forms. Since C
has order 3, we have a3^?3^! and a, (3 are not both i in the second form (12.25).

Suppose that a==i, say and let A==( ,(, then by equating (i, i)-terms in the equa-\c df
lions A2==(AG)2=I, we find c^+bc^a^+b^c^i, hence &( [B—i)^=o ; therefore b
or c must vanish, say 6=0. Then a==d==i, and equating (2,2)-terms in (AC)2^!
we find (B2 == i, i.e. P == i, which is a contradiction; the same reasoning applies if c == o.
Thus neither oc nor [B in (12.25) can be i and they therefore satisfy the equation

(12.2.6) ^+A;+I=O.

Assume first that this equation has a root in the centre of k, say co. Then
(a—(x))(a—Ct)2)==o, hence a==co or a==(o2, and likewise for p. If |B=a, then G is
a scalar matrix; leaving this case aside for the moment, so as not to interrupt the argument,

we may assume that (B=t=a ; it follows that (B=oc~1, and transforming G by ( )

we obtain the first form in (12.25) for C. If (12.26) has no roots in the centre Z of ky
it must be irreducible over Z and so all its roots in k are conjugate (Herstein [10]). Hence
there exists yeA: such that y'^jBy^a"'1 and transforming [a, [B] by [i, y] we are reduced
to the previous case.

/1 i \Thus C has now been reduced to the form ( ( (with the exception noted).

Now by hypothesis, C==AB, G'^BA, therefore

(12.27) GB==A==BC-1.

Taking B •== ( ) and using the expression found for C we obtain by equating

components in (12.27) and simplifying,
^==u, u-{-v-{-w==o.

If we equate terms in B^I, we find that uv==vu, u2-{-vw=l. Moreover, A=( j ;

and by Theorem 5.5, A is conjugate to T(A), for some AeR. Thus there exists an inver-

tible matrix P===( ,1 such that\c d )
(12.28) AP=PT(A).

Equating coefficients, we obtain the equations

va 4- we = a, vb + wd== ah + by
ua+vc =c, ub+vd ==bh-}-d,

407



48 P. M. G O H N

or after some simplification,

, ^ x {v+i)a=wc, (u+i)b+wd=ah,

ua=[v-\- i)c, ^+(y+ i)d==bh.

Now (12.28) may be written as(A+I)P^ ^
The first row of this matrix equation reads
(12.30) (y-i,^)P-(o,^),

hence

(12.31) {v+i,w)=={o,ah)P-1.

From the first two equations (12.29)5 we have
(12.32) (v + i)c +w{a+c)==a,

and by (12.31), ah is a common left factor of v+ i and w, therefore a==ahk, which
shows h to be a unit, A=T] say. Combining (12.32) and the third equation of (12.29)
we obtain an equation which in matrix form can be written

, , . / b+cr^ \
(^'+I'W)(</+(.+.)J=:0•

Using (12.30), we may write this as
/ \-n i/ b-\-cr\ \^p ^+(a+.)J-0-

If <2=o, then c^o and the first two equations (12.29) show that w=o, ^=--1, and
hence u==i. In this case transformation by G~1 achieves the desired reduction.
If a + o, then at\ 4= o, and from the last equation written it follows that

Hence

p~l(^b^. W^ fo^^e AeR.\d+{a+c)r^/ \o/

/ b+^ \ p ^ \[d+^+c^r^o)9

thus b==cr^-\-ak, d={a-\-c)^ -\-ck. Inserting these values in P, we find that

p — ( a ^\—(a ak+cr^ \_(a c \ / i k\
~\c d]~\c c k + { a + c ) r ^ / [ c a+c)[o Y]/

This shows the matrix Pi==( , | to be invertible, evidently it commutes with\c a+c]
G=( j and transforming A by P^ we obtain T(i). The same transformation

reduces B=AG to the form P(o), as we wished to show.
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It only remains to show that the case C==col, where co is a root of (12.26) in the
centre of k, cannot occur. Let us assume the contrary and write

R4- ==:{^eR|jcco==cox}, R~ ==-{xeR|^(o ==^x}.

For brevity the elements in R4' will be called symmetric and the elements in R~ skew.
By hypothesis, every element of k is symmetric; further, every element of R can be
expressed as the sum of a symmetric element and a skew element in just one way, for if

(12.33) x=x++x~ (^eR, c==±),

then

(12.34) COA: == x^ (o -{- x~ co2,

and solving the equations (12.33-4) we find

^+ === ^co2 4- o ,̂ x~ == xu 4- ^-^5

thus only one choice is possible for ^+, A;~ and this choice clearly satisfies (12.33).
By (12.27) we have

coB=Bco2,

hence all the elements of B are skew. Now B is invertible and hence of the form
[a,p]E(^)...E(^).

Denoting the first row of B by {a, b), we have

{^'35) a=bq,+a\

where d{af)<d{b), by Lemma 5.1. If we equate the symmetric components here we
obtain

^r+^r-o.
But d{{af)+)^d(af)<d{b), hence {a/)+ ==={q,)~ =o and so a! is skew and q, is symmetric.
Therefore BE(^)~'1 consists entirely of skew elements; by induction on r we conclude
that [a, p] consists of skew elements, but this contradicts the fact that YfccR4 ' . This
completes the proof of Lemma 12.3.

With the help of this lemma it is now an easy matter to obtain an analogue of
Theorem 12.2 for the case of characteristic 2. Let

/:GL,(R)-GL,(S)

be an isomorphism, where R is a k-rmg and S is a A'-ring, both with a degree-function,
k and k ' are fields of characteristic 2 and moreover S is a GEg-ring. In GLg(R) the
matrices T(i), P(o) form a pair of involutions whose product has order 3, hence so do
their images in GLg(S), and by Lemma 12.3 we may therefore assume (by combining/
with a suitable inner automorphism of GLg(S)),

(^.36) T(i)/=T(i), P(o)/=P(o).
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The subgroup B^R) ofGLg(R) may be characterized as the maximal abelian subgroup
of exponent 2 in the centralizer ofT(i) in GLg(R) (1). It is therefore mapped to B^S),
the maximal abelian subgroup of exponent 2 in the centralizer of T(i) in GL^S).
Thus there is a mapping a : R-^S such that

TW/==T^°) xeR.
By (2.2)5 we have

(12.37) ^+^a==xa+yo,

and by (12.36)3

(i2.33) i°=i.

Now a diagonal matrix D in GLg(R) is characterized by the fact that both D and
P(o)DP(o) normalize B^R). This shows that/maps diagonal matrices over R to
diagonal matrices over S; we can now follow the proof of Theorem 12.2 exactly and
finally obtain

Theorem (12.4). — Let R be a k-ring and S a k'-ring, both with a degree-function, where k,
k' are any fields of characteristic 2 and S is a GE^-ring. Then every isomorphism between GLg(R)
and GL^S) is obtained by taking the isomorphism induced by a U-isomorphism or a \3-anti-
isomorphism, followed by a central homothety and an inner automorphism.

In conclusion we briefly discuss the isomorphisms of GL^(R). It turns out that
by a method similar to that used in proving Theorem 12.2, we obtain

Theorem (12.5). — Let R be a k-ring and S a k'-ring, both with a degree-function, where k
and k' are fields of characteristic =)= 2, and assume further that every finitely generated projective
^-module is free. Then every isomorphism between GL^(R) and GL^(S) {for ^3) is obtained
by taking an isomorphism or anti-isomorphism from R to ^.followed by a central homothety and an
inner automorphism.

Proof. — GL^(R) contains a system / of ^ commuting involutions, namely
[=t=i, . . ., ±1]; moreover, the symmetric group S of degree n acts on this set by permu-

ln\tations: there are n-\-i orbits, of ( , 1 elements respectively (A=o, i, . . . , ^ ) . The\K/
isomorphism / transforms / into a set of 2n commuting involutions in GL^(S). Now
if P is any involution in GL^(S), then E== i /2(I+P) is an idempotent, so that we get
a set of 2n commuting idempotents in the matrix ring S^. Since projective S-modules
are free, any idempotent can be diagonalized, and likewise any commuting set of idem-
potents can be transformed simultaneously to diagonal form, with diagonal elements ± i.
By applying this transformation we thus bring the 2n commuting idempotents to the form
E==[^, . . . ,^J, where ^=o or i. Now P = = = 2 E — I is again an involution, so that
we have a system of 2n commuting involutions in diagonal form in GL^(S). More
precisely, by applying a suitable inner automorphism, we may assume that for any

(1) This subgroup may also be described as the set of all involutions in the centralizer of T(i), together with I.
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involution P =[£i, ..., sj, £,==d=i, P/is again diagonal, with ±i on the diagonal.
If k of the s, are +1 and the rest are — i , P is said to be of type (k, n—k) or a
{k, n—k) -involution. The subgroup of 2 centralizing a {k, n—k) -involution has the
form 2:^x2^; hence if P is of type (k,n—k), then P/is of type (k, n—k) or (n—k,k),
i.e. either P/ or —P/ is of type (k, n—k). Consider the n (i, n—i) -involutions
PI 5 • . - 3 Pn$ i^ey form an orbit under 2, hence P^/, .. ., P^/ are conjugate and so
they are all of type (i, n—i) or (n—i, i). By combining/ with a suitable inner
automorphism we may thus assume that

(12'39) PJ-^P. (T^±I ,Z=I , . . . ,^) .

Since every involution in / is a product of P/s, we have, for any involution Pc^,

iy==7]pP where ^==7^ if P has type (A, n—k).

Let S^ be the permutation matrix corresponding to the permutation ceS; then
SO^PI-SO^P^, hence applying/ and noting (12.39), we obtain

(S,/)-1?^/)^.

Therefore Sy(Syf)~1 commutes with P, for i== i, ..., n and hence is diagonal, say
("•40) S,./=D,S,.

Consider the yz-cycle p = = ( i 2 ... n) and let Dp=[ai, . .., aj$ then the equa-
tion 8"==! shows that

("•41) a^_i.. .ai=i.

If we transform the images under / by a fixed diagonal matrix T=[yi, ..., yj, the
Ve/ remain unchanged and (12.40) takes on the form

S,/=D,S,, where D^T-^.S.TS^.
In particular, we have

^-[Yr^iTn, Y2"la2Yl, . . ., Yn'^nTn-l]-

Our aim will be to choose ^==±1 and y,- (^= i, . . ., n—i) such that

t12-!2) T^Y,-!^ (z=i, . . . , T Z ; Yo=Yi==i).

If this is to hold, then by (12.41) we must have

Yi==ai^ Y2=a2Yi^-^a^2, .... Yn-i-^.i. . . ai^-1, ^=^=1;

conversely, these equations will ensure that (12.42) holds. Now these equations can
always be solved if n is even, while for odd n they can be solved provided that ^== i.
To sum up, we can always transform by an inner automorphism (induced by a diagonal
matrix) such that for p = = ( i 2 ... 7z), (12.40) reduces to

("•43) V==x(p)Sp,

where ^ is a linear character of S.
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Next consider a transposition, say r=( i2) ; if D^==[pi, ..., (BJ, the relation
S^ == I shows that (B^ == i, (B? = i (z> 3). If we put S^ into diagonal form for a moment
we see that it is a (i 5 n—i) -involution, and hence S^/is of type (i, n—i) or (n—i, i ) ;
this means ^ == ̂ 4= ... == ̂  (--== ± i). Thus

D^ns.r1^,...^] (§=±1).

Now the equation (i 2 ... n)=={n n—i){n—i n—2) . . . (3 2)(3 i) shows that
Q —QP""2^"3 C
^ P — — ^ T ^T • • • ^T5

where S^ denotes the transform of S by Sp. Applying / and equating diagonal terms,
we find that

(^.44) PS"-2-^), (^-^(p).

If n is odd, ^(p)= i and these equations reduce to

P=8.

In this case D^===SI is a scalar matrix and since p, T generate S, every Dg is scalar, in
fact,

(^.45) S,/=y,(o)S,,

where ^(cr) is a linear character ofS, the identity or the alternating character according
as S == i or = — i. If n is even, the equations (12.44) reduce to

^^(p) (=xM),
and in this case ^ is still at our disposal. We now choose ^=^)c(p)? then D^ is again
a scalar matrix and so (12.45) holds in this case too.

Now the diagonal matrices may be characterized as the set of matrices centralized
by the P's; consider the set centralized by

t12^6) [i, i, £3, • • • , s J ^-±1.

Clearly this is the set of all A-f-^, .... rfj, where AeGL^R). Hence the set
centralized by the elements (12.46) and the permutations not involving i or 2 is
A4-^In-2 (>^). Thus/induces a mapping A+In-2 -^ A/+^A)ln-2^ where/is an
isomorphism GLg(R) -^ GLa(S). Transforming both sides by Sg (for ceS) we see
that a corresponding formula holds for other rows and columns. Now by Theorem 12.2,
/is of the form/i/2/3, where/i is induced by a U-isomorphism or a U-anti-isomorphism 9,
say the former, /g is a central homothety and /g is an inner automorphism. Thus /i
maps B^-(^) to B^.^), and since

(B^),B^))=Bi3(^)

(where (A, B)=A-1B-1AB), we have

(B^(^),B,3(y))=B,3((^)^), i.e.
(^:=.^y.
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Thus 9 is in fact an isomorphism; similarly a U-anti-isomorphism is shows to be an anti-
isomorphism. By taking commutators with elements of the form Ig + B we see that X(A)
lies in the centre of S; dividing by X(A) we thus have a homomorphism

A+I,_2^e(A)A^+I^2,

and by definition, 9 (A) =1 on involutions. Further,

[a, i, i, ..., i] -[6(0)^,6(0), i, ...,i];

permuting the second and third rows and columns (which does not change the left-
hand side) we see that 6 ([a, i ] )==i . Therefore 6== i and the result follows.
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