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GROUP EXTENSIONS OF $-ADIC
AND ADELIC LINEAR GROUPS®

by CarLvin C. MOORE (?)

INTRODUCTION

If G is a group and A an abelian group such that G operates on A as a group of
automorphisms (i.e., A is a G-module), then one has defined cohomology groups H%G, A),
n>o0, [17]. The group HY(G, A) represents the crossed homomorphisms of G into A
modulo the principal ones, or simply Hom(G, A) if G operates trivially on A [17].

If A is a G-module, an extension of G by A is an exact sequence
o

I >ASEEG o

of groups such that the operation of G on A by inner automorphisms of E is the given
operation of G on A. (If A is a trivial G-module, we speak of central extensions of G
by the abelian group A.) One knows that H*(G, A) is isomorphic to the equivalence
classes of extensions of G by the module A. Addition of cocycles corresponds to the Baer
product of group extensions, and the neutral element of H*(G, A) to the semi-direct
product of G and A (or the direct product when A is a trivial G-module) [17].

If G and A are locally compact (separable) topological groups, and if G acts on A
as a topological transformation group of automorphisms, one may modify the definitions
and arrive at cohomology groups H*(G, A) which take into account the topology [30].
The group H'(G, A) consists of the classes of continuous crossed homomorphisms of G
to A modulo principal ones, and H*(G, A) ¢lassifies topological extensions of G by A.
In this context a topological extension is an exact sequence of topological groups

1 >ASES G
which is an extension of G by A as abstract groups with ; a homeomorphism of A onto
a closed subgroup of E and such that = induces an isomorphism of topological groups

E/i(A)~G. Occasionally we shall be dealing with a topological group G, and also
with the same group G, but viewed as abstract group; we denote this group by G

(Y) Research supported in part by the National Science Foundation under grant no. GP-5585.
(?) Sloan Foundation Fellow.
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6 CALVIN C. MOORE

Then if A is a G-module, H"(G, A) and H*(G% A) are both defined and there are natural
homomorphisms from the former to the latter. (To be perfectly precise, one should
write A® for A viewed as an abstract G*~module, but we shall not do this as no confusion
will arise.) One of the most important cases is that of the circle group T viewed as
trivial G-module; the group H?*(G, T) arises naturally in the study of unitary represen-
tations of groups.

The object of this paper is the study of the groups H*(G, A) where G is a semi-
simple algebraic linear p-adic or adelic group (e.g. G =SL,(k) or SL,(A) where £ is
a locally compact non-discrete field (a local field), or where A is the ring of adeles of a
number field or a function field in one variable over a finite field). If G is such a group
taken over the real or complex numbers instead, and if A is a trivial G-module, one
knows that H*G, A)~Hom(r,(G), A) where =,(G) is the usual fundamental group
of G [37]. We shall obtain very natural generalizations of these results, valid for all
locally compact fields. The structure of these cohomology groups seems to have significant
arithmetic interest since their determination turns out to be equivalent to solving the
congruence subgroup problem [8], [9], [10]. (See Chapter IV.) Furthermore Welil,
in his memoir [41], found certain cohomology classes of order two in H*(G, T) where G
is the symplectic group over either a local field or the adele ring of a global field, and he
found moreover an intimate relation of these cohomology classes with (among other
things) the quadratic reciprocity law. We will show that the complete group H*(G, T)
has the same intimate relation with the higher reciprocity laws of Artin.

The results are organized as follows: Chapter I deals with certain preliminaries
about the cohomology of groups which will serve as a framework for the sequel.
Chapter II is devoted to uniqueness theorems in local and global class field theory.
The determination of the cohomology groups (in Chapter III) is in terms of usual objects
of class field theory (the norm residue symbols, and the reciprocity formula) and the
unicity of these objects plays a key role in the determination of these cohomology groups.
Chapter IIT contains the main results (the statements of which do not depend on
Chapter II) and Chapter IV contains a brief discussion of the connection between the
above and the congruence subgroup problem.

T. Kubota has obtained independently results which overlap with ours; see [23].
We would like here to acknowlcdgé extremely useful conversations and correspondence
about this work with G. P. Hochschild, S. Lang, A. Weil, B. Wyman, J.-P. Serre and
H. Bass.
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CuAPTER 1

1) This chapter is devoted to the definition and the study of the ¢ fundamental
group 7 of certain abstract and topological groups. For topological groups, it need
not coincide with the usual fundamental group, although it does in the most important
cases (e.g. semi-simple Lie groups). Our notion is defined in terms of group extensions,
and has of course a very close formal similarity to the usual fundamental group.

For the present, G will denote an abstract group. We say that G is simply connected
if for every central extension

1 >A>ES5G 1

of G by any abelian group A, there exists a unique homomorphism ¢ of G to E with
mop=1id (in particular the extension splits). The analogy with the notion of simple
connectivity for, say, Lie groups should be clear.

Lemma (x.1). — The following are equivalent :

(1) G is simply connected.

(2) HY(G, T)=H?*(G, T)=o0 where T is the circle group.

(3) H(G, A)=H?*(G, A)=o0 for any trivial G-module A.

Proof. — If G is simply connected, any central extension of G by T is trivial so
H?%(G, T)=o0. Now if H!(G, T)+o0, then the trivial extension E=TxG would have
more than one splitting homomorphism of G into E. Thus (2) follows from (1). If (2)
holds, we note that H'(G, S)=H?(G, S)=(0) where S is any (possibly infinite) product
of copies of T. Now if A is any trivial G-module, we can find such an exact sequence

0>A—>S->M-—>o

of trivial G-modules (the homomorphisms of A into T separate the points of A; from
this fact it also follows that H'(G, A)=o0). Now since H(G, M)=H?(G, S)=o0, the
exact sequence of cohomology for the above short exact sequence shows that H*(G, A)=o0
also.

Finally, if (3) holds, and E is any extension of G by A with projection = from E
to G, the vanishing of H*(G, A) implies the existence of a homomorphism ¢ of G to E
with mwop=id. Any other homomorphism ¢’ with this property must clearly be of
the form ¢'=Bo¢p with BeH!(G, A)=Hom(G, A). Since this group vanishes, =1,
and o=¢'.

We notice, of course, that H'(G, T)=o0 is equivalent to [G, G]=G where [G, G]
always denotes the commutator subgroup. (When one discusses covering groups in the
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8 CALVIN C. MOORE

usual topological sense, one always imposes an assumption of connectivity; the analogue
of connectivity in the present situation is precisely the condition that G=[G, G].)

If E=[E, E], we shall say that E covers G (or more properly that a surjective
homomorphism = from E to G is a covering homomorphism) if the kernel of = is central
in E. Notice then that [G, G]=G necessarily. We shall prove that any group with
[G, G]=G has a simply connected covering group. We first note that such a covering
is unique.

Lemma (x.2). — If E;, 1=1,2, are two simply connected covering groups of G, then
E,~E, as group extensions of G.

Proof. — Let A, be the kernel of the projection =, from E, to G, and let «,e H*(G, A,)
be the class of the extension. We inflate «, to a class in H (Eg, A;) be means of the
projection m,. We then have a central extension

1>A>E,3E, 1

of E, by A,. By hypothesis we can find a unique homomorphism ¢ of E, into E,,
with p,op=id. Since the class of the extension E,, is the inflation to E, of the
class of the extension E, of G, there is a homomorphism B of E;; onto E, such that
moB =my0p,. Now let ¢=pop, which is a homomorphism of E, into E,; then
To =m,0(Bop)=(myop,) op =T, by the above, and so ¢ is a homomorphism of group
extensions. We reverse the indices and construct a homomorphism ¢’ of group extensions
from E, to E,. Then {’o¢=+v is a homomorphism of group extensions from E, to
itself. Then y(x)x~!is an element of A, and since A, is central this is a2 homomorphism
of E, into A, which is therefore trivial since [E,, E;]=E,. Thus y(x)=x. One proves
similarly that (¢o{’)(»)=p for yeE,. Thus E, and E, are isomorphic as group
extensions. '

Lemma (x.3). — If G=[G, G], then G has a simply connected covering group.

Proof. — The following is one of various ways of constructing such a covering.
Let L be the free abelian group generated by objects a(x, y), x,yeGXG. Let R be
the subgroup generated by the elements a(st, 7)a(s, t)a(s, tr)~ta(t, r)~* and a(1,s) and
a(s, 1) for all s,¢,reG. Put By=L/R, and let B(s, ) be the image of a(s, ¢) in this
quotient group. Then it is absolutely clear that B as a function from GxG to B, is
a two-cocycle of G with values in the trivial G-module B,. Let /Eo be the group extension
of G by B, defined by B; E;=ByxG as set and (q, g)(b, k) = (abB(g, ), gh) is the
multiplication [17]. ‘ ’

Now suppose that F is any central extension of G by an abelian group D. We
choose a normalized cocycle y representing this extension and view F as DX G with
the multiplication defined just as above. Consider now the mapping ¢, from L to D
given by ¢y(a(s, t))=+v(s,t) on the generators. It is clear from the fact that vy is a
normalized cocycle that ¢,(R)=(1), and hence ¢, defines a homomorphism ¢, of B,
into D with {g(B(s, t))=7v(s, t). In view of the definition of the group law in E; and F,
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GROUP EXTENSIONS OF p-ADIC AND ADELIC LINEAR GROUPS 9

one sees that ¢, extends to a homomorphism of group extensions, again denoted by ¢,
of E, into F. Thus E, has the first part of the universal property required for simple
connectivity.

Now let E=[Ey, E;] be the commutator subgroup of E,. Since G=[G, G],
the projection of E onto G is all of G so that E is a group extension of G

1>B->E—->G—>1

where B=BynE. Now E=B.E; with B central so that [E, E]=[E,, E;]=E,, and
thus H'(E, T)=(0). If F is any central extension of G by D, we saw that there exists
a homomorphism ¢, of group extensions of E, into F. Thus ¢, the restriction of ¢,
to E, is also a homomorphism of group extensions. In terms of cohomology, this says
exactly that the inflation homomorphism H?*(G, D) — H*E, D) is the zero map for
every trivial G-module D. .

We contend now that E is simply connected, and to do this, it suffices to show
that H?*E, T)=o. In view of the spectral sequence for the group extension E of G
by B [21], it suffices to show first that the E}' term, HY(G, H'(B, T)), is zero. But this
group is zero since H'(B, T) is a trivial G-module and G=[G, G]. Then one must
finally show that the restriction homomorphism r : H3(E, T) — H?(B, T) is the zero map.
This is contained in the following lemma. ,

Lemma (x.4). — If E=[E, E] and B is any central subgroup, then the restriction
homomorphism H*(E, T) — H*B, T) s the zero map.

Proof. — Let acH?(E, T) and F be the corresponding extension of Eby T. If seG
and teB, let s’ and ¢ be representatives of s and ¢ in F. Then the commutator
[s', ] depends only on s and ¢, and we denote it by ¢(s, ). We note that ¢ is a bilinear
map from ExB into T, and since E=[E, E], ¢(s, t)=1.

Now let F’ be the inverse image of B in F. Then F’ is an extension of B by T.
It is a corollary of the previous paragraph that F’ is an abelian group. Since T is divi-
sible, this extension splits, and this says that the restriction of « to B is the trivial class as
desired. '

Thus we have shown that if G=[G, G] we have a central extension

1>B>E->G—>1

with E simply connected. Moreover we have seen that such an extension is unique up
to isomorphism of group extensions, and so the abelian group B is determined uniquely.
It is quite reasonable to call B the fundamental group of G, and to denote it by =,(G).
Recall that a central extension F of G is a covering group of G if [F, F]=F; we shall
call the extension E constructed above the universal covering of G.

Lemma (x.5). — Let F be a covering group of G.  Then the following are equivalent:

(1) F is the universal covering of G.

(2) inflation: H(G, A) — H*(F, A) is the zero map for every trivial G-module A.

(3) inflation: H*G, T) - H*(F, T) is the zero map.
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10 CALVIN C. MOORE

Proof. — (1) =(2) =(3) are clear from the definition. Finally g3=1 follows from
Lemma (1.4) and the remarks immediately preceding it.

The following shows that the universal covering is universal.

Lemma (x.6). — If F is any covering group of G, then ¥ is covered by the universal covering
group E of G and so the universal covering group of ¥ coincides with that of G.

Proof. — By exactly the same argument as in Lemma (1.2) we may produce a
homomorphism ¢ of group extensions (of G) of E into F. Let F'cF denote the range
of ¢. Then F’ is clearly a covering group of G. If AcCF is the kernel of the projection
of F onto G, it follows that F=A.F’. Then as A is central, [F,F]=[F, F]=F,
but [F, F]=F since F is a covering group of G. Thus F=F’ and we are done.

We note that if [G, G]=G, the groups which G covers are exactly the groups G/D
where D is a central subgroup of G. The following fact shows that there is a smallest
group covered by G.

Corollary. — If G=[G, G] and Z is the center of G, then G|Z is centerless and covers
only itself.

Proof. — If 7' |Z is the center of G/Z, then G/Z covers G/Z’, but by the lemma the
universal covering of G/Z covers G/Z’ and this says that Z’ is central in G and hence
that Z'=7Z as desired.

Let G;=[G,, G;], =1, 2, and let ¢ be a homomorphism of G, into G,. IfE,is
the universal covering of G;, then the universal property of E; yields a homomorphism ¢’
of E, into E, compatible with ¢. Then the restriction of ¢’ to =;(G,)cE, is a homo-
morphism ¢_of 7,(G,) into m,(G,). It is clear that the assignment of 7,(G) to G together
with the induced maps ¢_is a covariant functor. If F is a covering group of G, then
we have an induced homomorphism 7 (F) — 7;(G). Lemma (1.6) says that this homo-
morphism is injective. .

Now if G=][G, G], let E be the universal covering, and let =,(G) be the funda-
mental group. If A is any trivial G-module, the restriction-inflation sequence [21]
yields, in view of the fact that H'(E, A)=H?*E, A)=o0, the following:

0 > H'(r(G), A) > HX(G, A) —o.
Here ¢ is the transgression map [21]. Notice that H'(x,(G), A)=Hom(=,(G), A).
Theorem (x.x). — The transgression homomorphism is an isomorphism:
Hom(=,(G), A) ~ H*(G, A)
Sor any trivial G-module A.

We want to note here an alternate construction for w;(G). Observe that the
cochain complex C'(G, T) consists of compact topological groups with the topology of
pointwise convergence. Moreover the differential d is continuous, and it follows that
H"(G, T) becomes in a natural way a compact group. Now if G=[G, G], a special
case of Theorem (1.1) says that H?*(G, T) ~Hom(x,(G), T). We view 7,(G) as a
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GROUP EXTENSIONS OF p-ADIC AND ADELIC LINEAR GROUPS I

discrete group so that then H?(G, T), viewed as the dual group, inherits a natural compact
topology.

Theorem (x.2). — The topology on H3(G, T) induced by pointwise convergence of cochains
coincides with the topology of H?(G, T) viewed as the dual group’ of =,(G).

Proof. — This is essentially implicit in [31]; the map from Hom(=,(G), T) into
H2(G, T) with the topology of convergence of cochains is clearly continuous, hence
bicontinuous.

We shall be using this compact topology on H?*(G, T) in the sequel. We note
that if ¢ is a homomorphism G-—H, the induced map ¢ : H*H, T) - H*G, T) is
continuous as is clear from the definition of the topology.

If G is a finite group, the existence and some of the properties of its universal
covering are well known from the work of Schur [35] in 1904.

We shall conclude this section with some facts about what one might call relative
fundamental groups. Let G=[G, G], and let K=[K, K] be a subgroup, and denote
by ¢ the injection of K into G. Then we have a homomorphism i_of =,(K) into =,(G).
Let D be its range and let =;(G, K) denote the quotient group =,(G)/D. Now if E
is the universal covering of G, D is a central subgroup of E, and so E;=E/D is a
central extension of G by =,(G,K). Let us note that we have restriction maps
¢ : H¥G, A) - H*K, A) for any trivial G-module A. It is absolutely clear that the
kernel of ¢ in H*(G, T) is exactly the annihilator of the subgroup D of =,(G) where
of course we view H*(G, T) as the dual group of =,(G).

Lemma (x.7). — Let a, denote the class in H*(G, w,(G, K)) of the extension Ey,. Then
i"(ay), the restriction of ay to K is the trivial class.

Proof. — By Theorem (1.1), (%) corresponds to a homomorphism of =,(K)
into =;(G, K). Also «, corresponds to a homomorphism of =,(G) into =;(G, K), which
is, by definition of E,, just the projection A of =,(G) into =;(G, K). Then by the theory
above, i"(a,) is represented by the homomorphism Aoi_ which is zero by construction;
hence i*(x,)=o0.

In view of this lemma, there is 2 homomorphism 7, of K into E,such that ¢yoi,=1
where ¢, is the natural projection of E, onto G. Moreover i, is unique subject to these
conditions since K=[K, K]. We show that ¢, is universal in the following sense.

Theorem (x.3). — Let E, be any central extension of G by an abelian group A with pro-
Jection map ¢, of Eq onto G. Suppose that there is a homomorphism iy of K into E, such that
p100,=1. Then there exists a unique homomorphism j of E, into E, such that o,0j=o,.

(43

Moreover joiy=1, so that j < extends > i,.

Proof. — If E is the universal covering of G, there is a homomorphism of group
extensions j' of E into E;. Ifwe can show that j'(D)=o0 where E,=E/D, thenj’deter-
mines a homomorphism of group extensions of E, into E; which clearly satisfies our

requirements. Moreover j is unique since G =[G, G].
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12 CALVIN C. MOORE

Now the class of the extension E, of G by A corresponds to a homomorphism A
of m,;(G) into A which is clearly the restriction of j' to =,(G). But the restriction of the
class of this extension to K, ¢'(7), is trivial by hypothesis. On the other hand, :"(A) corres-
ponds to a homomorphism of ,(K) into A which is clearly exactly roi . Thus Ao =o,
and this says that A (and hence ;') vanishes on D as desired.

Thus one may think of E, as being simply connected relative to its subgroup z,(K),
and one could in fact formulate the above theorem in terms of central extensions of E,
(instead of G) splitting on 7,(K). We note that the topological analogue of the relative
fundamental group m,(G, K) is just the topological fundamental group of the homo-
geneous space G /K, as can be seen from the exact homotopy sequence of a fibration [38].

We conclude with the following fact which is obvious by now.

Lemma (1.9). — If A is any trivial G-module, the kernel of the restriction homomorphism
i H¥G, A) > H*K, A) s isomorphic to Hom(m,(G, K), A) viewed as a subgroup of
Hom(=,(G), A) ~ H%(G, A). ‘ ' A

In conclusion one might raise the rather natural question of whether these isomor-
phisms (say with K =(e¢)) H*(G, A) ~ Hom(=,(G), A) are special cases of isomorphisms
in all dimensions. We do not think that this is the case, but rather that it is more fruitful
to think of these maps as analogues of the Hurewicz isomorphisms [38]. There one
assumes vanishing of the first n—1 groups and obtains results about the z* group. Here
we assume vanishing of H" and obtain results about H®. One may carry this further and
show that if H(G, A)=H?(G, A) for all trivial G-modules A, theri one obtains structural
results similar to those here for H*(G, A), and so on in higher dimensions.

2) In this section we shall carry out the slight modifications of the above in order
to make it apply to topological extensions. Let G be a locally compact separable group,
and A a locally compact separable topological G-module. We have cohomology groups
H"(G, A) defined (see above); at times we shall have to view G as abstract group, and
we denote this group by G%. The cohomology groups of G* in A will be denoted
by H*(G% A).

We say that G is simply connected if for every central topological extension

1>A>ES5G-1

with A locally compact separable, there is a unique continuous homomorphism ¢ of G
into E such that mop=id. We can characterize simply connécted groups as in
Lemma (1.1), but the results are not quite as sharp.

Lemma (2.1). — G is simply connected if and only if H'(G, T)=H?(G, T)=o0 where T
is the circle group, and H*(G, A)=o0 for any discrete abelian group.

Proof. — 1t is clear just as in section 1 that G is simply .connected if and only
if HYG, B)=H?G, B)=(0) for all trivial G-modules B. However the vanishing
of HY(G, B) follows from the vanishing of H!(G, T) by duality theory. Now suppose
that H?*(G, T)=o0; then if S is any group which is a countable (or finite) product of
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GROUP EXTENSIONS OF p-ADIC AND ADELIC LINEAR GROUPS 13

copies of T we clearly have H?*(G, S)=o0. IfBisany (separable) compact group viewed
as trivial G-module, we can find an exact sequence

(%) .~ -+ 0->B->S-»>S/B>o

with S as above. Since H'(G, S/B)=H?G, S)=(0), it follows from the exact coho-
mology sequence of (x) that H(G, B)=(o).

Finally we suppose in addition that H?*(G,D)=o0 for any discrete group D.
Now if A is any trivial G-module, we can find an open subgroup B of A and a
discrete subgroup D of B such that B/D is compact [29]. Then by hypothesis,
H?*(G, D)=H?(G, A/B)=o0, and we have shown that H?*(G, B/D)=o0. Then it follows
from exact sequences of cohomology that H?*G, A)=o.

Remark. — The final condition in the lemma above is annoying; we can show that
it is implied by the first two conditions (hence giving an exact analogue of Lemma (1.1))
in a large number of special cases. However we know neither a proof nor counterexample
in general. ‘

If E is a central extension of G by A, we say that E covers G if [E, E] is dense in E.
Note that the condition H(E, T)=o0 of Lemma (2.1) is equivalent to the density
of [E, E] in E.

Lemma (2.2). — If G s locally compact (separable), then G has at most one simply
connected covering group up to isomorphism of topological group extensions.

Progf. — The argument of Lemma (1.2) applies without change.

It is perhaps possible that we have too weak a notion of covering group. One
could instead of the density of [E, E] in E, demand that [E, E]=E. Lemma (2.2)
remains true (of course) and moreover it is then true that a simply connected covering
group of G (if it exists) covers any other covering of G. This statement is easily seen
to be false with our present definition. However Lemma (2.3) (below) is true with
the weaker definition. ‘

In view of Lemma (2.2), one has at most one extension

I>A>E>G-1

with E simply connected. Keeping in mind section 1, we should call A the fundamental
group of G, and denote it by =,;(G) whenever it exists. Note that =,(G) is now a topo-
logical group. Whenever E exists, n,(G) describes central extensions just as it should.

Lemma (2.3). — If =y (G) exists, then H*G, A) ~ Hom(n,(G), A) for any locally
compact (separable) trivial G-module A. (The ¢ Hom > in this equation indicates of course
continuous homomorphisms.) ‘

Proof. — This follows by the same argument as in Theorem (1.1). (See [30]
for the restriciion-inflation sequence in this context.)

We note that if a simply connected covering E of G exists, then E is a splitting
group for G in the sense of [g1]. Moreover the topology which H*(G, T) inherits as
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14 CALVIN C. MOORE

the dual group of =;(G) by the above lemma is exactly the splitting group topology which
is discussed at length in [g1]. '

We have not yet treated any existence questions. The following two theorems
concern this, but the hypotheses are of such a nature that they are never satisfied (except
in cases where the results are essentially known) for the groups of interest to us in this
paper. (Existence of n;(G) for groups of interest are corollaries of the main theorems
in later sections.) Moreover the arguments are rather tedious and take us far afield
and more properly belong in a forthcoming paper devoted to this and related questions.
We mention them here with only a bare sketch of proof to indicate that the definitions
above are not vacuous.

Theorem (2.1). — If G is almost connected, i.e. G|G, (G, being the connected component)
is compact, and if G=[G, G], then G has a simply connected covering group.

Theorem (2.2). — If G is a connected Lie group with [G, Gl=G, then G has a simply
connected covering group E with [E, E]=E. Moreover E is a connected Lie group, and m,(G)
is the direct sum of the usual fundamental group of G, and the dual vector space to H?(g, R)
where g s the Lie algebra of G and the group above is Lie algebra cohomology with coefficients
in the trivial one dimensional g-module R.

We remark in these theorems, the hypothesis that [G, G]=G (not just that it
is dense in G) is crucial. There are easy counterexamples if [G, G] is only dense. We
note in Theorem 2 that if H?(g, R)=o0 (in particular if G is semi-simple) then =,(G)
is the usual fundamental group. Moreover the extension described in Theorem (2.2),
E, is exactly the ordinary topological universal covering group, as is implicit in the
statement of Theorem (2.2). That this is the case for semi-simple groups was proved
by A. Shapiro [37]. . ‘ |

We sketch the idea of Theorem (2.1). By [31], we know that G has a splitting
group E’; that is, a central extension of G by some A such that the transgression homo-
morphism: H'(A, T) - H*(G, T) is surjective. Now we let E be the closure of the
commutator group of E’. Then E covers G since G=[G, G]. (This is the point at
which the argument fails if [G, G] is only dense in G.) One then proves that E is simply
connected. The fact that H!'(E, T)=H?*E, T)=(0) follows just as in Lemma (1.3).
The tedious part is to show that H*(G, D)=(o) for any discrete group. Let us note
that Lemma (1.4) is valid for topological groups.

Lemma (2.4). — If G s locally compact separable and [G, G] is dense in G,
and if Z is a closed central subgroup, the restriction map: H*(G, T) - H*Z, T) 1is the
zero map.

Proof. — The argument in Lemma (1.4) applies directly if we note that a central
extension (Z abelian)

1-T—->E—=Z-—1

splits if and only if E is abelian (as is evident by Pontrjagin duality), and if we note that
the commutator function constructed in (1.4) is continuous in its arguments.
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The above results suggest perhaps that one should assume that for this development
that [G, G] is all of G and not just dense. In the following we want to compare the
topological cohomology H?*(G, A) with the cohomology H?*(G% A) of G viewed as an
abstract group. We noted before that we have natural homomorphisms of H"*(G, A)
into H"(G*, A) for every n.

Theorem (2.3). — If G=[G, G], the natural map i* of H¥G, A) into H*(G" A) is
injective.

Proof. — This assertion is equivalent to the (somewhat amazing) fact that if

1 >A—>ESG -1

is a topological extension of G by A which splits as extension of abstract groups, then it
splits as extension of topological groups. In fact we shall show that if ¢ is a splitting
homomorphism of G into E (i.e. mop=1id), then ¢ is necessarily continuous, and that
E=AXG as topological groups.

If such a ¢ exists, E=AXG’ as abstract groups where G'=¢(G). Since A is
central and G =[G, G], it is clear that G’ is the commutator subgroup [E, E] of E.
Now we claim that G'=[E, E] is a Borel subset of E. In fact, if K, is a sequence of
compact sets exhausting G, then for each n, L,={kkk; 'k; ", k;,cK,} is compact and so
the group E, generated by L, is a Borel set (an F in fact). Clearly G'= an E, andso G’
is a Borel subset, and in particular G’ is a standard Borel space [26]. We consider
the map & of G'XA into E given by A(a, g')=ag’; it is clear that % is a bijective Borel
map of G'XA onto E. We deduce from Souslin’s theorem ([26] or [6]) that £ is a
Borel isomorphism, and hence that the quotient Borel space E/G’ is a standard Borel
space (Borel isomorphic to A). It follows by [26], Theorem (7.2), that G’ is in fact a
closed subgroup, and hence locally compact. Thus AXG’ is locally compact and
k:AxG ~E is continuous, so by [7], p. 25, £ is a homeomorphism. That is, the
extension E of G by A splits as topological extension.

We conclude this section with some remarks on the relative fundamental groups
for topological groups. Let G and K be locally compact (separable) groups and let ¢
be a continuous injection of K into G.  We are not assuming that 7 is a homeomorphism
onto i(K) (equivalently that i(K) is closed); in fact there will be applications when (K)
is dense in G. Suppose that G and K have simply connected covering groups E; and Eg,
and let 7;(G) and =,(K) be the fundamental groups. Then as we have noticed, ¢ induces
a continuous homomorphism 7_of =;(K) into 7;(G). (Thisis the dual map to the restric-
tion homomorphism i : H¥(G, T) - H*(K, T)). Let D be the closure of the range
of i ; then D is also the annihilator, from duality, of the kernel of i . We form the group
E,=E;/D viewed as a group extension of G by =,(G) /D, both groups with the quotient
topology. Let ¢ and ¢, respectively denote the homomorphisms of E and E; onto G.
We denote =,(G) /D by =;(G, K), the relative fundamental group. (In all of our appli-
cations, the range of i will be closed so D=1 (x,(K)).)
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Lemma (2.7). — There is a unique continuous homomorphism i, of K into E, such that
PoOly =1. :
Proof. — The uniqueness is clear since H!(K, T)=(0). (K has a simply
connected covering group.) For existence, one must show as in Lemma (1.7) that
if «,eH*G, (G, K)) is the class of E,, then i"(«), its restriction to K is trivial. This
follows by the same argument as in Lemma (1.7).

Theorem (2.4). — (Eq, 1) ts universal in the sense that if E, is any central extension of G
by A, with projection @, of E, onto G, such that there exists a continuous homomorphism i, of K
into B, with ¢yo0i,==1, then there exists a unique (continuous) homomorphism j of group extensions
of Eg into E;. Moreover we have joi,=1, automatically so that j  extends ” 1,.

Proof. — The argument is identical with that in Theorem (1.3).

Finally the analogue of Lemma (1.9) comes over without change except that
continuous homomorphisms are used instead of arbitrary ones.
~ Lemma (2.8). — If A is any trivial (topological) G-module, then the kernel of the restriction
map 1 : H¥G, A) - H*(K, A) s isomorphic to Hom(ny(G, K), A) viewed as a subgroup of
Hom(x,(G), A) ~ H*(G, A).
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CuapteEr 11

3) As we have indicated above, this chapter is devoted to certain uniqueness
theorems in class field theory, which will be crucial in the following Chapter. These
results say that the familiar objects of class field theory (the norm residue symbols and the
reciprocity formula) are the only such objects satisfying appropriate axioms.

We shall begin with the local case; thus let & be a locally compact non-discrete
field so that £ is either a finite algebraic extension of Q , the p-adic field, or is a field of
formal power series over a finite field of constants (the non-Archimedian cases), or &
is the real or complex field (the Archimedian case). We shall denote the multiplicative
group k—(0) by £. Let E, be the group of roots of unity in k; then if k+C, E,is a
finite group and hence cyclic of some order , (=n if there is confusion about k).

The norm residue symbol ( , ) of local class field theory ([3], [33]), is 2 mapping
k'xXk—E, such that ‘ '

(1)’ (, ) is bilinear.

(2)' (5 )=(t,5)"

(3)" (s t)=(s: —st).

4) (s, 8)=(s, (1—s)t) if s+1.

(5) (, ) is continuous from £’ xk* into E,.

This function of course has many other properties, but the ones above (or rather
weakenings of the ones described below) are the ones of interest to us. A corollary of our
main theorem is that the norm residue symbol and its powers are the only functions
satisfying (1)’-(5)’. ‘ ,

The weakening of these conditions which is of interest to us seems perhaps artificial
without the motivation which is supplied by the following Chapter.

Definition (3.x). — Let A be a locally compact separable abelian group and let S(A)
denote the set of all functions b from k' Xk™ to A satisfying

(1) b(s, tr)b(t, r)="b(st, )b(s, ), b(1,5)=0b(s, 1)=1.

(2) b(s, 8)=5(¢t"1,s).

(3) (s, t)=0b(s, —st).

(4) b(s, 8)=b(s, (1—s)t) s=*1.

(5) b is continuous. ‘

We shall call such functions Steinberg cocycles. If k is any field and A is any
abelian group, then (1)-(4) above make sense. We shall call the group of such
functions S,(A). (Note that (1) and (5) say that beZ?(k", A).) Our main theorem
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18 CALVIN C. MOORE

in the local case describes the group S(A) completely. To be precise, let us define a
subgroup Sy(A) of S(A) as follows. If £ is non-Archimedian, let Sy(A) be the set of all
functions from £"x k" into A of the form b(s, £)=f((s, t)) where feHom(E,, A),and ( , )
is the norm residue symbol. Since the range.of ( , ) generates E,, S,(A) ~Hom(E,, A).
If k=R, define a function b, from k" xk" to Z (the integers) by b&,(s, {)=o0 unless s
and ¢ are both negative, and then by(s, {)=1. It may then be verified that b,eS(Z).
Then let Sy(A)={b|b=fob, with feHom(Z, A)}. Notice that if A=Z,, the integers
mod 2 and f; is the natural projection of Z onto Z,, then f,0, is the norm residue symbol
for R. Finally if £=0C, let S,(A)=(0o)=Hom((0), A).

Theorem (3.1). — For all k, Sy(A)=S(A).

The remainder of our discussion for local fields (the next four sections) will be
devoted to proving this fact. We note that S (A) is of the form Hom(B,, A) for some
group B,. The whole point of this is that in Chapter III we shall show that S(A) is
isomorphic to H?(SL,(k), A) where SL,(k) is the locally compact group of 2x2 uni-
modular matrices over £ and A is viewed as a trivial module. Thus by Chapter I, we
may identify B, with the fundamental group =,(SL,(k)), so if k¥ is non-Archimedian,
7 (SLy(k)) =E,, whereasif kisreal w(SLy(R))=Z, and if £ is complex =,(SL,(C))=o0;
the latter two facts of course coincide with classical results. We shall investigate other
matrix groups (the simply connected Chevalley groups), but the results are not yet
complete in the general case. The results of [10] supply the complete answer for groups
of type A, and C,.

We shall begin by drawing some consequences of (1)-(4) of the definition of S(A)
(Definition (3.1)). Infactif £ is an arbitrary field and A an abelian group, we consider
the group S,(A). It should always be borne in mind that if 4 satisfies (1) of (3.1),
then b defines a central extension of £* by A

1 >A—>E—>kf —>1.

If u, vek’, then let u and o be representatives for « and v in E. Then the commu-
tator [, v] depends only on # and v and is denoted by [u, v].

Lemma (g.x). — If b is any cocycle defining the extension E  above, then
[u, v] =b(u, v)b(v, u) =" is a bilinear function of u and v.

Proof. — It is clear that [«, v] is a bilinear function of « and v (cf. Lemma (1.4)),
and one may compute that it is given by the formula of the lemma.

The following will be crucial for us.

Lemma (3.2). — If beS,(A), then,
[¢, s1=0(t, s)b(s, t) " =b(e2 s)=b(s% t) !
is a bilinear function of s and t.
Proof. — We begin by observing that the identity
b(t=Y 2)b(t, )b(t ™Y s)=b(t™Y, t25)b(t2 $)b (™Y, 5)
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is (1) (the cocycle identity) multiplied by &4(¢~% s). Now from (3) it follows that
bt~ )b(¢7Y s)=5(¢t"" t?s) and upon substitution of this into the above, we find
that b(¢, s)=05(% 5)b(t%, 5). Since bt~ s)=0b(s, t) follows from (2), we see that
b(#? s)=b(t, 5)b(s, )~ which is the first of our identities. The second follows by inter-
changing s and ¢.

Some other consequences of (1)-(4) are listed in the appendix but we shall not need
them now. We also note that there is some redundancy in Definition (3.1). Namely
if we assume (1) and (4), then (2) and (3) are equivalent to each other. We also note
that if a function & is bilinear (as the most important examples are) then (1)-(4) can be
replaced by a single identity, namely b&(s, (1—s)¢)b(t, s)=1.

Our next result reduces Theorem (3.1) to the case of a single coefficient group.
Remember that we are dealing with a fixed locally compact non-discrete field.

Lemma (3.3). — If So(T)=S(T), then Theorem (3.1) follows, i.e. So(A)=S(A) for
any locally compact separable abelian group A.

Proof. — Suppose that beS(A); then if reHom(A, T) (=A, the dual group
of A) then Aob, the composition of A and & is clearly in S(T)=Sy(T). By defini-
tion Sy(T) ~Hom(B, T) where B is a discrete (cyclic) group, finite or infinite. We
have a distinguished element 5, in Sy(B) (the norm residue symbol if £ is non-
Archimedian, and as defined above for £=R or C) such that y—>vyob is this isomor-
phism of Sy(A) with Hom(B, A). If A=T, we give Sy(T) the topology of pointwise
convergence and observe that this is the same (compact) topology as that defined by
So(T) ~Hom(B, T)=B, the dual group of B. Itisclear now that A—Xob isa continuous
map from Hom(A, T)=A into So(T)~B. Then we have a dual map ¢, which
is a continuous homomorphism of B into A. It is now clear from the definitions
that rob=A(p(b,)) for every reA. Since the elements of A separate the points
of A, we must have b=gob,, and so beSy(A) by definition. This completes
the proof.

We shall now conclude this section by disposing of Theorem (3.1) in the Archi-
median case.

Theorem (3.2). — If k ts real or complex, then Sy(A)=S(A).

Proof. — By Lemma (3.3), it suffices to show that S (T)=S(T); or in
other words, by definition it suffices to show that S(T)=(o) if £=€, and that
S(T)={noby; AeHom(Z, T)} where by(s,t)=o0 if either s or #>0 and 1 otherwise
if k=R. The first step is to compute H?(k", T), the topological cohomology of £ with
coefficients in T.

Lemma (3.4). — If k s Archimedian, H*(K', T)=o.

Proof. — In both cases, £ is the direct product RxL where R is the additive
reals and L is cyclic of order two or the circle group T, respectively, in the two cases.
One deduces from spectral sequences [30] or more directly if desired that

H (K, T) ~H¥R, T)®H!(R, Hom(L, T))®@H(L, T).
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It is well known that H2(R, T)=(0), and since Hom(L, T)=1 is discrete,
and R is connected, H!'(R, Hom(L, T))=Hom(R, f.):(o). Finally it is also well
known that H*T, T)=(0) and that H*(A, T)=(o) for any cyclic group A. Thus
H2(k", T)=(0) as desired.

Now since any element of S(T) represents an element of H?(£", T) we find that
any b in S(T) is a trivial cocycle. However we have observed in Lemma (2.4) that &
is trivial if and only if it is symmetric. Thus b&(s, £)=¥5(¢,s) and by Lemma (3.2),
b(s% t)=b(t,s)=1 for any s and t. The following fact will be useful for us in the
sequel. ' a '

Lemma (3.5). — If beZ2(B, A) where B and A are abelian, and if 'b(s, {)=1 for seD
and teB where D is some subgroup of B, then b(ds, t)=b(s,t) for deD and s, teB.  Simi-
larly, if b(s,t)=1 jor all teD, b(s, td)="b(s,t) if deD.

Proéf. — By the cocycle identity (1) of Definition (3.1), b(ds, t)b(d, s)=0b(d, st)b(s, ¢)
and since the second and third terms are equal to 1 if deD, the result follows. The
result for &(s, td) follows similarly. ’

We combine this result with Lemma (3.4); take B=#k", A=T with D=(k")?
the group of squares in k. We find then that 4(s, ¢) depends on s and ¢ only modulo
squares. If k=G, then (£")®=£" so that b(s,#)=04(1, 1)=1 for all s and £ as desired.
If k=R, then b(s, ¢) depends only on the signs of s and ¢ and this is clearly equivalent
to the desired result (i.e. that b(s, t)=1 if either s or ¢ is positive and b(s, t) is some
constant in T if s and ¢ are both negative).

4) We now turn to the case of non-Archimedian fields &, where the situation is
somewhat more subtle. Let O be the ring of integers in £ and let U be the group of
units in O. Let « be a fixed generator of p, the maximal ideal of ©. Then £k'~UXZ
(Z is the integers) the isomorphism being (u, n) > un"

We let U,={u:1=umodp"} for n>1. Then U,5U,,,; and each is an open
and closed subgroup of the compact group U; moreover QU,,z(I). Let %, denote
the residue class field O/p, and let ¢=p" be its cardinality where p is the characteristic
of k,. Then it is well known [33] that U/U,~k%, is a cyclic group of order ¢—1
(prime to p). Moreover one can find a subgroup R of U such that U=U,xR.
Moreover R is of course precisely the set of elements of E,=E, the roots of unity in £,
of order prime to p. Finally U,/U, ,~k, for n>1 so that U,/U, is a p-group, and
hence U, is a pro-p group [34]. The first step in determlmng S(T), as in the Archi-
median case, is to investigate H?(", T). The fact that this is non-zero if k£ is non-
Archimedian accounts for some of our difficulties.

Lemma (4.1). — We have an isomorphism
H(t", T) ~ UoHX(U, T) ~ RoU,®@H*(U,, T)

Proof. — Since k'=UXZ, the spectral sequence of group extensions [30] gives
H%*(k', T) ~H*Z, T)®HY(Z, H(U, T))®H*(U, T). The first term is zero and the
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second is clearly U, the dual group of U, and this gives the first statement. Furthermore,
since. U=RxU,, we obtain in the same way isomorphisms

H(U, T) ~ H¥(R, T)®H!(R, H!(U,, T)) ®H¥(U,, T).

Now R is cyclic so H*R, T)=o, and the second term above is Hom(R, U,); but U,
i a p-primary torsion gr(;up, and R has order prime to p, so Hom(R, U,) vanishes.
The second statement of the lemma follows immediately.

In addition to knowing the isomorphisms above it is perhaps well to know how
they are implémented. Thus, given a cocycle abeZ2(k*, T) we want to know how to
determine the components ¢,(a) (resp. ¢,(a)) in U=0,xR (resp. H3(U,, T)) of the
class of a. It is clear that g,(a) is the restriction of the class of a to U,;. Now recall
that 7 is our fixed generator of p; thenif seU, consider the function s> a(x, s)a(s, ©) =%
By our remarks above (Lemma (3.1)) this is an element of U, and by the construction
of the spectral sequence, it is ‘exactly ¢,(a) [30].

Corollary. — The group H*(K*, T) is a countable torsion group, and is the sum of a p-primary
group and a cyclic group of order gq—1.

Proof. — Note that ﬁl and H*(U,, T) are both p-primary torsion groups.

Now we of course have a map of "S(T) into H2(k", T) since S(T)cZ*(k", T) by (1)
and (5). The first step is the computation of the kernel of this map. We recall that
a cocycle is trivial if and only if it is symmetric so we are looking for the symmetric
elements of S(T). At this point the whole argument divides into two cases — when p
(the characteristic of %£,) is odd, and when it is two. The latter case is rather more
involved. ‘ ; ,

Lemma (4.2). — If p+2, any symmetric element of S(T) is of order dividing two and
is in Sy(T); hence the kernel of the map of S(T) into H2(k", T) is of order 2.

Proof. — The same result is true if p=2, but the argument is best deferred.
Now let b be a symmetric element of S(T) with p+2. Then by Lemma (3.2),
b(t, s*)=b(s% t)=1, and so by Lemma (3.5), b(s, t) depends only on the classes of s
and ¢ modulo (£")% the group of squares in £". Since p is odd, (£")/(k")*=B is a group
of order 4, and moreover (£)?5U,. Let us fix a generator = of p, and note that the
cyclic group R is of even order so that we can choose some séeR—(k")% Then 1, ¢, =,
and er are coset representatives for (k)2 We denote their classes in B by a,, 4, a,,
and a, respectively. We will abuse notation and simultaneously think of 4 as a function
on k'xk" and on BxB.

Steinberg [40] has observed that it is possible to find an element ¥Xek,
such that * and 1—x are both not squares in £,. Let x be the corresponding
element of R~k,; then x and 1—x are both in the coset of ¢ modulo (£")?% and so
1=>b(x, 1—x)="5(e, €)=1 by (4) of definition (3.1); or equivalently we have b(a,, a,)=1.

At this point we must separate two cases, depending on whether or not —1e (k)2
If —1e(k")?% then b(s, s)=5(s, —s?) (by (3) of definition (3.1))=¥5(s, s*) =1. Thus
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we have b(a;, a)=1 for all i. Also we find that b(s, t)=0b(s, —st)=0b(s, st) for all s
and ¢ In particular, &(w, e)=05(n, ne) and b(ne, €)= b(ne, ne?) =b(mwe, ) and so
b(ay, ay)=b(a,, a;)=0b(ay, a;). Now b(a,, a,a,)b(a,, a,)=b(a2, a,)b(a,, a;) by the cocycle
identity (1). Since =1, and aa,=a,, we see that b(a,, a))b(a;, a;) =b(a,, a,)*=1.
By what we have shown above &(a;, ¢)?=1 so that b is of order two, and in fact 4 has
been determined uniquely by the above formulas. Since Sy(T) does contain an element
of order two (as E, has even order), the element & above must be this element and
hence beSy(T).

Now suppose that —1¢(£)% Then we may take e=-—1 to simplify the calcula-
tions. We observe that b(m, —m)=0b(w, n?)=1 by (3) of definition (3.1) so that
b(ay, a))=1. Also by (3) of definition (3.1), &(n, n)=0b(n, —n*)=b(n, —1) and
b(—=n, —n)=b(—=r, —n*)=b(—m, —1), or in other words &b(a,, a,)=b(a,, a;) and
b(as, az)="b(as, a;). Moreover since we can choose xeR such that x and 1—x are
both congruent to —1 mod (k")% b(x, s)=b(x, (1—x)s) implies that b(a,, a;)="b(a,, a;a,)
for all 2. In particular, b(a,, a,)=0b(a,, a;) since a;a,=a,. Thus since & is symmetric
b(ay, @) =b(az, az) =b(a,, ;) =b(ay, a5)..

By the cocycle identity,

b(ay, asa,)b(as, a,) = b(ay, a5)b(a,a5, ay),

and we have seen that that b(a,, a;) =1=b(ayas, a,) =b(ay, a;)=1. Since a,a,=a,, we
find that b(a,, a,)b(ay, a,)=1 or by the above b(a,, a,)>=1. Thus 4 is of order 2 and
its values have been uniquely determined and so it must be in Sy(T) as we have argued
above. This completes the proof of the lemma.

Corollary. — The group S(T) is a countable torsion group, which is the sum of a p-primary
group and a group of order dividing 2(q—1).

Proof. — We have a sequence

1 - A—S(T) - H(£, T)

where A is of order two. Our assertion follows from the Corollary to Lemma (4.1).

Since S(T) is a torsion group, we can write S(T)=S(T),+S(T), where 5(T),
is p-torsion, and S(T), has no elements of order p. According to the Corollary above
we may write an exact sequence 0—>A—S(T);—~R where A is of order two and R is
viewed as a subgroup of H?(£", T) by means of Lemma (4.1). Moreover the element
o, (b)eR corresponding to 5eS(T), is given by s —b(m, 5)b(s, ©) 7! (seR) (see the dis-
cussion following Lemma (4.1)).

Lemma (4.3). — If beS(T),, then ¢y(b) vanishes on —1.

Proof. — According to the above, we must show that b(w, —1)b(—1, ) '=1
where 7 is a generator of p. However, b(r, —1)b(—1,7n) '=b((—1)% n)=0b(1, ©)=1
by Lemma (3.2).

Corollary. — The image of S(T), in H(K', T) has order dividing (¢—1)/2 and hence
S(T), has order dividing q.
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Proof. — We observe that the image of S(T),; by definition must lie in the part
of H%(k", T) prime to p; i.e. R. Lemma (4.3) says this image in R must have index
divisible by 2 in R, and our assertions follows.

We finally note that Si(F) is a finite group isomorphic to Ek and hence the sum
of a p-primary group (S,(T)), and a group (S,(T)), of order prime to p, which is necessa-
rily isomorphic to R and hence of order g—1.

Theorem (4.x). — If p+2, we have Sy(T);=S(T);.

Proof. — We note that Sy(T),cS(T), and that both groups have order ¢—1.

Thus we have proved our result for p+2 for the part of S(T) prime to p. We
now consider the p-primary component. The analysis is somewhat more subtle here.

5) The group E (roots of unity in k) splits as R xXE, where E,, is a cyclic group of
order p" contained in U,. Our main problem is to discover how to compute the integer 7;
the results here will be valid for all p. It is reasonably easy to tell whether r is positive
or not as follows. If £ is of characteristic zero, it is a finite extension of Q, the p-adic
field and we denote by e the absolute degree of ramification of £ over Q, [33]. Ifkis
of characteristic p, we let e=oco for notational purposes. Now if £ has a p-th root of 1,

it is known that p—1 divides ¢, and we define l:%—}—e: ;’%. In general let /
be the greatest integer in ¢/(p—1)-+e. Let (k")?be the (closed) subgroup of " consisting
of p-th powers, and we observe that £°/(£)? is a vector space over Z, the integers mod .

Lemma (§.x). — If k is of characteristic zero, one always has U, C (k). Moreover
r>o0 if and only if the characteristic of k is zero, p—1le, and the projection of U' into k" [(K)?
is non-zero, in which case it is one dimensional ; i.e. it is cyclic of order p.

Proof. — These are essentially well known facts, but for completeness we include
proofs. We consider the map ¢ :x+—2” onU;. If xeU,, x=1+4un" with 4D and =
a fixed generator of p, the maximal ideal of ©. Now ¢(x)=1+ upn"+ u?n"+ B(x).
Now by definition of ¢, p is a generator of the ideal p® and so p=rn"s, where u,cU.
Thus ¢(x)=1-+us,w" "+ u’n""+ B(x) and from inspection of the terms of B(x), we see
that B(x)ep®” *' where a(n)=min(n+e, np). Thus ¢(U,)cU,, and hence ¢ induces
amap ¢:U, /U, —U,, /Uy For every £, U,/U, ., is isomorphic (not canoni-
cally) to %, the additive group of the residue class field, and in fact the isomorphism is
induced by the map 14 un">u (¢ mod p). In terms of these identifications, ¢, viewed
as map from £, tok , is the map ut>uou if n+e<np, and the map ul>u? if np<n--e,
where u, is non-zero. Thus g, is an isomorphism if np+n-+e. If on the other hand
np=n-e, then ¢, becomes the map u+>ugu—+u?. The kernel of this map is at most
cyclic of order p (0 and the at most p—1 solutions of the equation u?~'=—u;). We
notice that if np=n--¢ then n=e/(p—1) so that p—1 necessarily divides e.

We now consider the proof of the lemma proper, and observe that if n>[—e,
then n>e/(p—1) and so n+e>np. Then ¢, is necessarily an isomorphism. Thus
taking n=I—e-+1, we see that ¢ maps U,_,,, into U, ,. One proves by induction
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onsthat ¢(u,_,,,).U,=U,,; forevery s>/+1 using the fact that ¢, is an isomorphism
if n>Il—e. This says that ¢(U,_,,,) is dense in U,_,, but this group is also closed since
U,_, ;1is compact. This proves the first statement of the lemma, and even more, namely
that every element of U, is the p-th power of some element of U;_, , ;.

Now suppose that r>0 so that £ does have a primitive p-throot of unity, x. Thenk
is of characteristic zero (essentially by definition of a priniitive p-th root of unity). Then
xeU,—U,,, for some n and since ¢(x)=1, it follows that g, is not one-one and hence
that n=e/(p—1) and so p—1 divides e. Now let uslook at U,n (£")?; it is clear that
if ueU,, then whether or not u is a p-th power depends only on its class % in U,/U, .
However by our discussion above it is perfectly clear that u is a p-th power if and only
if ueq(U,[U,,,) (s=e/(p—1)=1[—e). Since ¢, has kernel cyclic of order p, the index
of 9,(U,/U,,) in Uj/U, ,1is clearly p Thus the index of (£)?n U, in U, is p and this
gives the final assertion.

Conversely suppose that £ is of characteristic zero and that [=e/(p—1)+¢ and
that (k)?nU,+U,; then by reversing the above argument, we see that it is-exactly
of index p, and that ¢, (s=7—e¢) is not injective. Then we choose' xeU, such that
¢,(*)=o0, or-in other words ¢(x)eU, ;. But by the first statement of the lemma,
¢(x)=a"=»” for some yeU,,;. Then xy~'=u is in U, but not U, ;; moreover,
u?=1 so that k£ has a primitive p-th root of one.

The following is really a corollary of the argument above.

Corollary. — k has a p-th root of 1 if and only if k is of characteristic zero, and l=e/( [)— 1)+te
and o, (s=Il—e=e[(p—1)) tis not one-one. Moreover if this p-th root of unity exists, it is in
U—-U,,,. :

If k£ does have a p-th root of 1, we shall call any element v of U, ({=¢/(p—1)+e¢)
which is not in (k*)?, unramified. We observe that if » is such an element, then k((v)!P)
is an unramified extension of £. -

Now if = is a generator of the maximal ideal p of O, let H(=) be the smallest closed
subgroup of U, containing all elements of the form 1—un' where ueR (the multipli-
cative residue class system) and ¢t is a positive 1ntcger prime to p. Our main result is
the following.

Theorem (5. 1). — The group U, is the closure of the group generated by H(r) and v where v
is any unramified element with the understanding that H(w)=U, if k has no p-th roots of unity.
Moreover the index of H(x) is divisible by p” where p" is the order of E,. Finally there exists =
such that the index of H(w) in U, is exactly p'.

Progf. — Let W denote the smallest closed subgroup containing H(=) and », where v
is a fixed unramified element. We will show by induction on ¢ that W.U,=U, for
t>1. This is true for t=1 so let us assume that it holds for all integers less than or
equal to some ¢>1. Then we consider (WnU,).U,_,; if we can show that this is U,,
then W.U,, ,5U, and since W.U,, ;5W, WU, , DW.U,=U, by the inductive
assumption.

Thus we must show that (WnU,). U, ,=U,, orin other words that W contains an
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element of each coset of U, ; in U,. If fis prime to p, then W contains 1—un’ for
all ueR, and these are representatives of every non-zero coset of U, in U, so we are
done in this case. If p|t, we choose m such that a(m)=min(m--e, pm)=t¢. Thisis clearly
possible, and then, by induction, W contains coset representatives x; of every coset of U,
in U,,. Then W contains the elements ¢(x;)=x?, and so if ¢, :U,/U,,.,—~U,/U,, .,
is an isomorphism, the ¢(;) are coset representatives of every coset of U, ; in U, and we
are done. Thus if £ has no p-th roots of unity (so that ¢,, is always an isomorphism), then
W=H(n) satisfies W.U,_ ,=U, forall¢. Ifhoweverkhas a p-th root of unity, ¢,, fails to
be an isomorphism only for m=s=e/(p—1). In this case ¢=e¢/(p—1)—+¢=I[ and the
range of ¢, in U,/U, , is of index p. - Moreover the image of v (any unramified element)
in Uy/U,,, is not in the range of ¢,. Thus the elements o¢(x,)o*=x"* (k=1, ..., p)
are representatives of the cosets of U;in U, ; and areallin W. Thus (WnU)).U, ,=U,
for all ¢ and as we have remarked, it follows then that W.U,=U, for all .

The statement that W.U,=U, for all ¢ says exactly that W is dense in U,, but
since W is closed by its definition, W=U,, and this proves the first part of the theorem.
Now if K is the extension field of £ generated by the p’-th roots of =, K is a totally non-
tamely ramified Kummer extension of £ [33]. (Recall that p" is the order of E,, the
p-primary component of the roots of unity of £.) Now it is more or less clear from the
properties of the norm residue symbol that every element of the form 1—ur!, ueR,
¢ prime to p, is a norm from K. (This is a special case of an argument to be given in more
detail shortly.) Thus H(x) is contained in N(K), the norm group from K. Now it
follows from local class field theory that the index of N(K)n U, in U, is exactly p" [33]-
Our second assertion then follows.

It remains to show the existence of at least one © such that the index of H(x) in U,
isp”. (Thisis the same thing as showing that H(wx)=U;nN(K) by the above comments.)
If r=o, that is, if k¥ has no p-th roots of unity, we are done. Thus assume that r>o,
and let x be any primitive p’-th root of unity. Then x¢(k")? and so if y is a p-th root
of x, L=#k(y)+k. Now let = be any generator of p such that = is not a norm from L.
Such elements clearly exist (otherwise every element of £ is a norm from L), and by
class field theory N(L)+£". Then we claim that H(r) is of index " in Uy, or equiva-
lently that o™ (n=p") is in H(x) where v is any unramified element.

' Let H be the projection of H(r) into U, /U, , where [=pe/(p—1) asusual. If v
is the image of v in U, /U, ,, it is a corollary of the first part of the theorem that H and »
generate U,/U,,,. Then if # is the image of  in U, /U, ,, #=~A(J)™ with heH and m
an integer. Since o has order p in U,/U,,,, cither %eH in which case m=o0 (mod p),
or mis prime to p. If xeH, it follows that xeH(x).U,,,. However H(r) is contained
in the norm group from K=£(z) where zis a p™-th root of =. Thus H(x) is contained
in the norm group from M=Fk(w) where w is a p-th root of w. Since U, ,c(k")?,
every element of U, ,, is a norm from M since M is of degree p over £. Thus the assump-
tion that #eH implies that x is a norm from M. By the skew symmetry of the norm
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residue symbol (cf. definition (3. 1)), this implies that 7 is anorm from L=XK(y) where y
is a p-th root of x and this is contrary to our choice of w.

Thus we find that #%=/4s™ where m is prime to p, or in other words x = ho™y
where yeU;, ;. We now take n=p"-th powers of this to find that 1=4A4"""y" (recall
that x is a p"-th root of unity). Moreover, w=y"eU, ., by our computations about
p-th powers, and we deduce that »""e(H(x)nU,,,).U;,, ;. Since U, /U, .,
is a p-group and m is prime to p we see that »"e(H(x)nU,,,,).U, ., (n=p"). The
same inductive argument utilized in the first part of the theorem may be used again to
show that H(x)>U,,,. (That is, one shows that (H(x)nU,).U, ,=1U, for all
t>1+re.) Then it follows that »"eH(x) as desired.

Remark. — The content of this theorem is that for suitable =, the group N(K)nU,
where K is £(z), z a p’-th root of =, is generated by the elements 1—un’, which are all
obviously norms from K. These objects are obviously norms by virtue of formal pro-
perties of the norm residue symbol which in addition are part of the definition of S(T)
(Definition (3.1)). For these reasons it is clear that this theorem will play a key role
in the proof of Theorem (3.1).

We now complete the proof of Theorem (g.1) in the case when p (= characteristic
of the residue class field) is odd. Recall that S(T), is the subgroup of S(T) of elements
of order a power of p.

Lemma (5.2). — Let p be odd and beS(T),, and let ™ be a generator for p and let v be
an unramified element (it it exists). If b(m,v)=1, then b=1. If there is no unramified
element, b=1.

Progf. — We first note that every element of U, is a square since p is odd, and so
by Lemma (3.2), 6(x, u) and &(u, x) are bilinear functions of # and x when zeU,;. Now
if seR (the multiplicative residue class system), and ueU, b(s, 4), being continuous, has
order a power of p since Uj is a pro-p-group, but it also has order prime to p since R has
order prime to p. Thus b(s, #)=1, and by the same argument, b(u, s)=1 (ueU,, seR).

Now we will show that b(r, u)=b(u, ®)=1 for all ueU; under our assumptions.
Let u=1—sn" with seR and z prime to p; then 1=0b(sn", 1)=0b(s7", 1—sn") (by
definition (g.1))=05(sx", u)=>5(s, u)b(m, u)" by bilinearity established above. But also
b(s,u)=1, and so b(w, u)"=1. Now =z is prime to p and b(=, u) has order prime to p
so that b(w, u)=1. By linearity and continuity, b&(w, x)=1 for all xeH(x), and
since b(m, v)=1 where v is some fixed unramified element by assumption, it follows,
again by linearity and continuity and Theorem (5.1) that b(w, x)=1 for all xeU;.
Moreover, if £ has no unramified elements then it follows that &(m,, x)=1 for any
generator 7, of p and any xeU,.

Our next step is to prove that b(w,, x)=1 for any =, and any xeU,; when £ does
have a p-th root of one. We may write the unramified element v of the statement in the
form v=r1—sur’ where seR, ueU; and [=e/(p—1)+e. If m, is any generator of p
then m, =tu;n with teR,u;,€U,. Nowletusform »,=1—su;n'; then »;=vmod U,
so that v, is also unramified. Moreover, 1="5(x, 1)=>b(x, 1—x) by definition (3.1), and
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putting v, =1—x, we see that 1=05(1—0v,, v;)=>b(su, =, v;)="b(s, v,)b(m, v;)'b(u;, v;) by
linearity. On the other hand, we have seen that 4(s, v;)=1 since seR and v,eU;, and
we have shown that &(w, v,)=1. We then conclude that b5(x,,v;)=1, and finally
that  b(wy, v,) =0b(w, v,)b(¢, v,)b(u,y, v;) again by bilinearity since v,eU;. We have
shown that all terms are equal to 1, and hence &(x,, v;)=1. Our previous argument
now applies since v, is unramified, and shows that &(n;, u)=1 for any ueU,. Since
b(my, u)=b(u"",m;) by definition (3.1), we can conclude from the hypotheses of
the lemma that b(w,, 4)=0&(u, ™;)=1 whenever =, is an arbitrary generator of p and u
is an arbitrary element of U,.

Now if u,eU,; and ueU, and = is any generator of p, b(nu, u;)=b(u;, mu)=1, and
so by linearity, and the fact that (=, u,)=b(u,, ®)=1, we see that b(u, uy)=0b(y,, u)=1.
Thus the cohomology class of 4 in H?(£", T) must vanish upon restriction to U;. Now
according to Lemmas (4.1) and (4.2), 4, as an element of S(T), must have order divi-
ding 2(¢—1), ¢ being the cardinality of the residue class field, and hence b must have
order prime to p since p is odd. However 4 is assumed to have order dividing p, and so
b=1 as desired.

We can now complete the proof of Theorem (3.1) when p, the characteristic of the
residue class field, is odd. We have shown that S(T) is a torsion group, and that its
component of order prime to p is contained in Sy(T). We want to show that its p-primary
component S(T), is contained in Sy(T). Since the p-primary component of Sy(T) is
cyclic of order p" (the order of E,, the p-primary component of the group of roots of unity
of £), it suffices to estimate the order of S(T),.

Lemma (5.3). — The group S(T), is cyclic of order p" and hence S(T)=S,(T).

Proof. — If r=o0, lemma (5.2) says that S(T),=(1) and we are done. If r>o,
so that there exist unramified elements, choose an unramified element » and a generator =
of the maximal ideal p such that the final statement of Theorem (5.1) is valid. Then
we define a map ¢ of S(T), into T by ¢(b)=5(x,v). By the preceding lemma, ¢ is
injective. Moreover since b(w, u) is linear in u when ueU, ¢(b)"=b(x, v)"=b(=, v")
for any n. We take n=p" and use the fact that »"eH(x) by Theorem (5.1). On the
other hand the argument of the preceding lemma showed that b(w, u)=1 if weH(xw),
and hence we deduce that ¢(b)"=5(x, ")=1. Thus since ¢ is injective, S(T), is cyclic
of order dividing n=p". Since it clearly contains a cyclic group of order p" (So(T),)
its order is exactly .

6) We are now left with the case when p (the characteristic of the residue class
field) is two. Our first result is the extension of Lemma (4.2) to this case.

Theorem (6.x). — If beS(T) is symmetric, then beSy(T) and hence b has order dividing

two.

Proof. — Since b is symmetric, b(x% y)=b(x, »*)=1 for all x and y by Lemma (3.2),
and hence b(x, y) depends only on the classes of x and » mod (k)% the group of squares.
The group R is cyclic of order g—1 prime to 2 and hence Rc(£)%. Now let =
be any generator of p, and let n be an odd positive integer, seR, and xek’;
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then b(m, x)=b(sn""'m, x)=0b(sn", x)=b(sn", (1—sn")x)=b(x, (1—sn")x). Therefore, by
continuity, b6(w, ) depends only on the coset of x modulo H(n) (H(r) is defined in
Theorem (5.1)), and hence 4(x, #) depends only on the coset of x modulo H(x). (%)%

Now let us suppose that £ has characteristic two. Then by Theorem (5.1), H(x) is
all of U, and hence H(r) (k")?is of index two in £".  Moreover = is in the non-trivial coset,
and b(m, n) =b(m, —n®) =b(m, 1)=1, so that we conclude that b(rn, x)="5(x, *)=1 for
any © and all x. (The last statement follows since 4 is symmetric.) Finally let x=ur"
and y=on™ be arbitrary elements of £* with z and »eU. Ifeither z or m is odd, say =,
then &(x, y)=0(ur,y)=1 since un is a generator of p. If » and m are even,
b(x, y)=05(u, v), and since b(u, v) depends on the classes of . and » modulo squares,
if either # or v is not a square, say u, we can assume that ¥ =1—u'n", «’eU where n is
an odd integer. Then b&(u, v)=>5(u, (1—u)v)=>b(u, u'vn™)=>5b(u, 'vw) since n is odd.
Since u#'vm is a generator of p we see that b(y, v)=1. Thus we have shown that
b(x, y)=1 for all x and y in £*, and this gives our assertion when £ has characteristic two.

We assume now that £ has characteristic zero; then there exists an unramified
element v since £ has a square root of 1. If wis any generator of p, then by Lemma (5. 1)
and Theorem (5.1), (H(x). (k)% n U, isofindex two in U,, and any unramified element v
is in the non—trwlal coset. We complete the argument in the following lemmas.

Lemma (6.1). — Let k be of characteristic zero and b be Aymmetric. If b(m,v)=1 for
some T and some unramified element v, then b=1.

Proof — By our preceding discussion b(w, x) depends only on the coset of x modulo
H(n).(£)? and hence by our hypothesis, b(n, x)=1 for all xeU,. Since Rc(£")?
we see at once that b(w, x)=1 if xeU also. ' : ’

If 4eU, then for suitable seR, the element v'=1—su~ %% is unramified where ¢
is the absolute degree of ramification (cf. Lemma (5.1), 2¢=e¢/(p—1)+e=1 since p=2).
Then b(nu, v')=b(ru(1—2v'), v')=b(nsn*, v')=b(m, v') =1 since sn*e (k)% - Since mu is
the most general generator of p and ¢’ is unramifiéd, we deduce from the above that
b(v’,u’)=1 for any generator =’ of p and any #'eU. We can argue essentially as in
the case when £ has characteristic two that b&(x, y)=1 for all x and yek’. The only
modification is that not every element # of U can be written as 1—u'n" 2 odd, #'eU,
modulo squares. We must allow the case when # is unramified.  Then if » any element
of U, we can write « in the form w=1—svn® for appropriate seR. Then we must
show that &(u, v)=1, but 1=>5(u, 1)=>5b(u, 1—u)=b(u, son*) =b(u, v) since smn*e(k")%
This remark concludes the proof of the lemma.

We want to show that #eS,(T) and is of order two. ‘We note that Sy(T) contains
a symmetric element of order two, b, (the Hilbert symbol), and that by(x, v)+1 by the
preceding lemma since b,#1. Suppose that we could show that our symmetric element &
is of order two. Then if b+1, b(w, v)+1 and then necessarily b(w, v)=b,(r, v), and
hence b,=5% by the preceding lemma. Thus it suffices to show any symmetric element
of S(T) is of order two and by the lemma above, it suffices to show that &(x, v)?=1 for
any © and any unramified element o.
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Lemma (6.2). — If b is symmetric, then b(w, v)*=1.

Proof. — First we note that if v and o’ are unramified, then »=0" mod(k")? by
Lemma (5.1), so that b(x, v)=b(w, v')." Furthermore if ueU, then v'=1—su"1n* is
unramified for suitable seR, so that &(mu, v')=b(x, v’) as above. Thus b(w, v) does
not depend on the choice of either @ or ». In our proof then we are free to choose =
and v at will. o

Just as in Lemma (4.2), we must consider two ‘cases depending on whether
—1 is unramified or not. If —1 is not unramified, that is’ ‘—1 =% » mod(k")?,
we claim that we can choose © so that —1eH(m). (k)% If —1e(£)% this is clear,
and if not —1=1—sun" mod(k’)? where n is either odd or n=2¢ by the local square
theorem with ueU,; and seR. However, if n=2¢, —1=0v mod(£")? contrary to hypo-
thesis. Thus —1=1—sun" mod(k")> with n odd. Since U, is a pro2-group, u=2"
for appropriate z and —1=1—s(zw)" mod(k")%.. Thus if we replace = by zw, we have
—1eH(n). (k)2 Let us fix such a =. : .

We now consider the subgroup A of &' /(/c) consisting of the classes of 1, v, =,
and vw which we denote by 4,,.4,, a,, and g respectively. As in Lemma (4.2), we may
with slight abuse of notation, view 4 as a cocycle on A and denote its values by &(g;, 4;).
Now b(ay, ay) =b(m, mw)=b(n, —n*)=b(n, —1)=1 since —r1eH(w).(k")% On the
other hand, we claim that H(w).(k")2=H(or). (k)% for if n is odd, 1—s(rm)"=1—sm"
modulo p**' since v=1 modulo p*. Thus as U, ,c(k)® by Lemma (5.1),
we see that 1—s(om)"=1-—sn" modulo (£")? for n odd, and this proves our asser-
tion. Thus in particular b(a,, a3) = b(vw, vn)=b(vw, —1)==1 since —1eH(vn). (k")
We finally note that o'==1—son® is unramified for suitable seR, and hence
v=v" mod(k")?. Thus for any ¢, b(v', t)=b(v', (1—0")t)=b(v', vsnt*t)=b(v’, vt), and
in particular &(?, v)=0b(a;, a,)=1. Therefore we have shown'that &(g;, ¢)=1 for
all 1.

Moreover, b(as, a,)= b(vr, v)=b(w, v)=b(a,, a;) since b(w, v) is independent of
the choice of m. Also b(a,, a,) = b(vr, ©) = b(vm, —ovr®) = b(vr, —v) = b(vr, v)=b(as, a,)
since —1eH(vn). (k") Thus we have a-symmetric cocycle & on A (the Klein four
group) with b(g, ¢)=1 and b&(a, a)=0(ay, a;)=b(a,, a;). It follows just as in
lemma (4.2) thg b(ay, a)?=b(w, v)>=1 as desired. This completes the argument

when —1-is not unramified. If —1 is unramified, the argument proceeds in exactly
the same fashion as the second of the two cases considered in Lemma (4.2). It is clear
that the argume t above is the analogue of the first of the tweo cases considered in
Lemma ( and it shows the way. We omit the details.

Corolla(y 1. — The map S(T)—>H*K",T) has kernel of order two if the chamctmstw of k
is zero, and is injective if the characteristic of k is two. »

Corollary 2. — The group S(T) is a countable totsion group and S(T),, the sum of the
components of order prime to two, is cyclic of order dwzdzng q— 1 where q is the cardinality of the
residue class field P% '

Progf. — This follows from Corollary 1 and the. Corollary to Lemma (4.1).
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Corollary 3. — If (So(T)), is the sum of the components of So(T) of order prime to two,
then So(T),=S(T),.

Proof. — Since Sy(T),cS(T); and S,(T), is cyclic of order ¢g—1, the result
follows from Corollary 2.

We are now reduced to the study of S(T),, the two-primary component of S(T).

Lemma (6.8). — If b€S(T),, then b(sx, y)=b(x, sp)=0b(x,») for seR and x, yek’.

Proof. — We recall that R is cyclic of odd order ¢—1 so that s=¢2. Then b(x, ¢?)
and b(#? x) are bilinear in x and ¢ by lemma (3.2), and hence b(x, )"=5(% x)"=1
for n odd. But b has 2-power order and so with s=12, b(x,s)=b(s, x)=1 for all xek’.
Our result follows now from Lemma (3.5).

The next step is the following fact.

Lemma (6.4). — If the characteristic of k is two, S(T),=(1); if k is of characteristic zero,
and  is a generator of P, and v an unramified element, then b(wm,*)=1 implies that b is symmetric.

Proof. — Let us say that x and y commute if b(x, »)=05(y, x). By Lemma (3.2),
this is equivalent to any one of the following: &(x% »)=¥5(y, *)=b(J? x)=b(x, )*)=1.
Furthermore if E is the extension of £* by T defined by &, this also means that coset
representatives of x and y in E commute with each other.

First let us note that 1=¥4(sn", 1)=05(sn", 1—sn") and that

1=>5(1, st")=b(1—sn", sn")

if seR, by definition (g.1) and a substitution of variables. We conclude by Lemma (6.3)
that 1=5(n", 1—sn")=b(1—sn", n"), and hence that =" commutes with 1—sx". Ifn
is odd it follows since b has order a power of two that © commutes with 1—s=" for all seR,
and 7 odd. Since the set of elements commuting with = is a closed subgroup, we deduce
that ®# commutes with H(x).

Thus if £ has characteristic two, H(rx)=U,; so that © commutes with U;. On the
other hand, Lemma (6.2) implies that ® commutes with R, and hence that © commutes
with U=U;xR. Since n clearly commutes with itself, this shows that © commutes
with all of £*. If ueU, this also says that mu commutes with £* and hence that « does.
Finally we deduce that any element of £* commutes with any other element; this says that b
is symmetric and then Theorem (6.1) says then that 4 is identically equal to one.

Now let £ have characteristic zero. Then our hypothesis is that some fixed =
commutes with some fixed unramified element ». Now as above, © commutes with H(x)
and hence with U, by Theorem (5.1), the same argument as above shows that then =
commutes with all of £’

Now if u is an arbitrary element of U, then »'=1—su"?n* is unramified for
suitable seR. Then b(v', n?u®)=b(v, (1—0')n?u®)=b(sn™ 2 v')=b(r% v')* T '=1 by
definition (3.1), Lemma (3.2) and Lemma (6.3). Therefore nz commutes with »" and
the first part of the argument shows then that nu commutes with £*. Thus « commutes
with £” and it follows as above that 4 is symmetric as desired.

We now need the converse of Theorem (6.1).
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Lemma (6.5). — Any element of S(T), or order two is symmetric.
Proof. — We may assume by Lemma (6.4) that £ has characteristic zero. Let 2" be
the order of the two primary component of E and hence the order of Sy(T),. By

Theorem (5.1), W
be an unramified

e can choose a generator = such that H(x) has index 2" in U, ; now let »
element, and let us assume that r=r1; we see then that *cH(mw).

It was shown in the preceding lemma that = commutes with H(x) or in other
words that b(n% x)=1 if xeH(x). We claim now that b(x, x)=1 if xeH(rn). First

m m
let us take x:illx,- with x,=1—s5;7" s5eR, n, odd. If y=il;[2x,-, then we may

assume inductivel
then b(sw", y)=5
so that &(xn", y)=

In view of

by Lemma (3.2)
and y mod (k%)% 1
becomes b(w, x)
b(rd, x)=b(rn? ).

By Lemma
find then that b

above. Thus if
b(m, x) =b(m, y)=1.
This shows

elements 1—sn",
since b is continuc
and of course is
hypothesis that r=
Thus b(r, *)=1

Now we ass

we apply this to the equation &(n® x

y on m that b(m,y)=1.
sm", 1—sm"y) = b(sm", x).
b(x", x).
the fact that & is of order two,
b(zY, w)=0b(2, w)li=1=0b(z, w*)=b(z, w*)’=1

For simplicity, we write x,=1—sx", and
By Lemma (6.3) we can drop the factor of s

Then by Lemma (3.5), 6(z, w) depends only on the classes of x

Now if # above is congruent to 1 mod 4, the equation &(x", y)=b(x", x)

b(m,9)=1. On the order hand if n=gmod4, we see that

However for any z we have by the cocycle identity,
b(x®, 2)b(n?, @) = b(r?, m2)b(m, 2).

(3.2), b(n* w)=1 and b(n® wz)="04(n? w)b(r? 2)=b(n? z), and we
7, 2)=b(n% 2)b(m, 2). Now if zeH(w), b

b

(7% z)=1 by our remark
b(n% ), we deduce that

that b&(w,x)=1 for any x in the semi-group generated by the
and hence that &(w, x)=1 for any x in the closure of the semi-group
bus. Since U, is compact, the closure of this semi-group is a group,
exactly H(x). Thus &(n, x)=1 for any xeH(wx). Now under our
=1, and our choice of n, ?*¢H(wn) where v is any unramified element.
and our result follows from Lemma (6.4) when r=1.

ume that #>1 where p" is the order of p-primary component of E,

the roots of unity
exactly four, whic

Now let 5 be an

two in the circle grE

and some unramified v, we are done by Lemma

since b has order
d(m, *)=1 so th
Theorem (6.1).

E d is symmetric by Lemma (6.4),

in E. In this case Sy(T),cS(T), contains an element ¢ of order
is moreover bilinear. Now ¢(m, v*)=¢(m, v)?=—1. (It is of order
up T and it is not + 1 for then ¢ would be symmetric by Lemma (6.4).)
lement of order two in S(T). If b(m, *)=1 for some generator =
(6.3), so we can assume that b(m, v*) =—1
Then we form d=b¢, an element of S(T),, and observe that
and hence of order two by

hus 1=d%=b?c*=¢? which contradicts the fact that ¢ has order four.

two.

This completes the proof of Lemma (6.5).
The followirﬁg lemma will then complete the proof of Theorem (3.1).
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Lemma (6.6). — We have S(T),=S,(T),. 4 :

Proof. — Recall that Sy(T), is cyclic of order p” and is contained in S(T),. We
may assume that £ has characteristic zero, and also that r>o0, by virtue of the first
statment of Lemma (6.4). Now let 5eS(T), and choose m so that H(x) has index
n=2" in U; by Theorem (5.1). If v is an unramified element, then (*)"="eH(x)
where m=2"" : -

By the argument of Lemma (6 4), = commutes with H(x), so that

b(m, #2) = b(x?, x) =1

if xeH(n) (cf. Lemma (3.2)).- We contend in fact that b&(w, x)=1 if xeH(rn).
Let us first note that formula (7) of the appendix, b&(p2% x)="5(y, x)b(Z ),
holds for any 4. In particular, if xeH(zx) and a=2c+1 is odd, and seR,
b(sn®, x) = b(sm, x)b(()%, x)=b(w, x)b(r? x)°=0b(w, x). In order to prove that b(m, x)=1
if xeH(x), it clearly suffices to show that &(m, x)=1 if x=i1=-ll(1-s,-1c”(‘)), n(Z) odd,
5;€R.  We proceed by induction on r starting at r=o0 (in which case x=1).
Let x,=1—sn% a odd, and assume &(m, x)=1. Then by the above, we have
1=>b(m, x) =b(sm’ x)=b(sw, xyx) = b(r, x,x) which completes the induction.
Returning - to our argument, we have »"=(*)"eH(x), so that

b(wm, v")=b(x, P)"=1.

Therefore 4™ is symmetric by Lemma (6.4) and hence of order two by Theorem (6.1).
Thus b"=(b")?=1, -and we have shown that any element of S(T), has order divi-
ding n=2". S

On the other hand, Lemma (6.5) and Theorem (6.1) together say that the
subgroup of S(T), of elements with #*=1 isexactly of order two. It follows by elemen-
tary group theory that S(T), is cyclic of order dividing n=2". This completes the proof
of the' Lemma and hence finally the proof of Theorem (3. I)

7) We now turn to uniqueness questions in global class field theory. By a global
field £, we shall mean either a finite algebraic extension of the field of rational numbers,
or a function field in one variable over a finite field of constants. We denote by » an
exponential valuation of £, and %, the completion of £ with respect to ». Then £, is
either Archimedian and hence the real or complex field, or if non-Archimedian is one of
the fields discussed in sections g through 6. In any case we normalize (as usual) o, as a
valuation of £, as follows: if £, is real, v is usual absolute value;.if £, is complex, v is the
square of the usual absolute value; if £, is non-Archimedian, and = is a generator of the
maximal ideal of thei ring of integers in £,, the normalization of v is determined by o(r)
which we set equal to 1/g where g=p" is the cardinality of the residue class field of k,.

Then one has the classical product formula ([2], [5]), Ilv(a)=1 if aek’, where

the product is taken over all normalized valuations. One might inquire whether there
exists any other such formula; the fact that this is the only such formula is implicit in [5],
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but the proof below is rather short so that we shall present it, even though the result is
not used later. Namely let us suppose that

ITo(a)"™ = for aek’

where n(v) is a non-negative real number for each valuation o.

Theorem (7.x). — If Hv( Y =1 Jor ack’, then n(v)=n is independent of v.

Proof. — Let I be the 1dele group of £, i.e. the restricted product [3] of the locally
compact groups k, with respect to their compact open subgroups U, (the units in the
ring of integers in £,). If v is Archimedian, U, is undefined but this is irrelevant since
there are only a finite number of Archimedian ». 1If 2(s)>o0 for each v, we see that the
map ¢ defined by <p(a)=l;[v(av)"(”), if «=(a,), of I into the positive multiplicative

reals R’ is a continuous homomorphism. Let I, denote the closed subgroup of idéles
of norm one, (i.e., «=(q,)€el, if and only if l;[l}(av)zl). Now £"cI, by the product
formula, and it is basic that £" is closed and that I, /£" is compact. (This is equivalent to
the finiteness of class number and the Dirichlet theorem ([2], [3]).) Now our hypothesis
is that ¢@(k")=(1) and since I,/k" is compact, it follows that ¢(I;)=(1) since R, has
no non-trivial compact subgroups. Thus we can interpret ¢ as a homomorphism ¢’
of I/I, into R,. However if goo(oc)=1;lv(av) when a=(q,), then ¢, defines in the
same way a homomorphism ¢, of I/I, into R’, which is injective by definition of I,.
On the other }'lnd, the image of ¢y is all of R, if £ is a number field or the
group {(p™)™, meZ} if k is a function field and p is the characteristic of the constant field.
In either case ¢ is a topological isomorphism onto its range, and it is absolutely clear that
any other continuous homomorphism ¢’ of 1/I, into R, is of the form ¢'=(gp,)" for some
non-negative real number n. It is now clear that n=n(s) where ¢(x)=1IIs(a,)",
as desired. ’

Remark. — This proof makes it evident that the compacity of the group I,/k" is
the key factor in the uniqueness of the product formula, since a compact group, or more
generally a locally compact group which is a union of compact subgroups, admits no
non-trivial continuous homomorphisms into R’.

The uniqueness theorems which will be of interest to us in the sequel concern the
reciprocity law of global class field theory. The fundamental result in the local case
applied to each completion £, is the existence of a continuous homomorphism (the reci-
procity homomorphism) ¢, of £, into G2, the Galois group of the maximal abelian exten-
sion of £, [33], such that the range of ¢, is dense, and ¢, has kernel equal to the connected
component of k,. Then one notes that if G* is the Galois group of the maximal abelian
extension of k£, our global field, then G} may be viewed as a subgroup of G* [3].
Moreover if «€l, one may define ¢(«) =l;[<pv(av) if «=(a,) since only a finite number
of terms are unequal to 1. It is clear that ¢, vanishes on the connected component of £,
and hence that ¢ vanishes on the connected component I, of I. The Artin reciprocity |
law ([3],[33]), says that @(k")=(1) where £"cI, and moreover that ¢ defines a continuous
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injection of G =I/IO_.I:* into G% In characteristic zero, this map is a topological
isomorphism. Also in this case, I=1,.1;, so that C=1,/(I,n],).4" is the connected
component of I, /£, so that C is compact totally disconnected. In characteristic p+o,
I,=(0), and the range of ¢ is dense in G*. More precisely ¢ is a topological isomor-
phism of I,/k" onto the subgroup of G* fixing the algebraic closure of the finite field
of constants in £, and ¢ maps I/I;, which as a group is the integers, onto the obvious dense
subgroup of the Galois group of the algebraic closure of the constant field.

Now we let E, be the group of roots of unity in £,, and we let #(v) denote its order
with obvious conventions if £, is complex. Then Kummer theory [g] yields an isomor-
phism, s,, of (£))/(k})"® onto Hom(G?, E,); if a, bek,, (a, b),=s,(b)(p,(a)), where a
is the class of a in £,/(k,)"", is a bilinear function from £, X, into E, which is by defini-
tion the norm residue symbol we have discussed previously. Let E denote the group
of roots of unity in the global field £, and let 7 be its order. Since EcE, for all v, n|n(v)
and so define m(v)=n(v)/n; we observe that the map f(v) of raising to the power m(v)
in E,, maps E, onto E.  Welet b,(x, ») =f(v)((x,),) so thatb,is a map of k, X%, into E.
A corollary of the reciprocity law is the reciprocity formula which says that lv]bv(x, P)=1
if x, ek’ [33]. We shall be simultaneously concerned with the uniqueness of the reci-
procity map ¢ of I into G* and with the uniqueness of the reciprocity formula.

Theorem (7.2). — Let p(v) be an integer for each completion v of k and let g(v) be the map
of E into itself of raising to the power p(v). Then if l—vlg(v)(b,,(x, 9))=1, there exists p so
that p(v)=p (mod n) for all non-complex places. (i.e. g(v)=g tis independent of v for all
non-complex places. Note that b,=1 if v is complex so that the value of p(v) is irrelevant.)

Theorem (77.3). — Let o, be the local reciprocity map of k, into G% and let p(v) an integer
Jor each v. Then let @’(a)zrv[(cpv(av))p‘”) be the corresponding homomorphism of 1 into G°
If ©'(K")=(1), then there exists an integer p such that p(v)=p for all non-Archimedian v and
p(v) =p (mod 2) forrealv. (Again the value p(v) for v complex isirrelevant as @, =1 in this case.)

We note that Theorem (7.3) says that the only global reciprocity mapping that can
be constructed out of the local ones are the powers of the usual global reciprocity homo-
morphism. Theorem (7.2) says similarly that the only identities relating the norm residue
symbols b,(x, y) for n'* roots of unity in the various completions of k, are powers of the
known one. One may raise a more general uniqueness question concerning the norm
residue symbols. That is, suppose that A(v) is a homomorphism of E, into the circle
group T, and suppose that l;[h(v)((a, b),)=1, a, bek’, where ( , ), is the norm residue
symbol for n(v)™ roots of unity in £,. Theorem (7.2) treats the case when A(v)=g(v)f(?)
where f(v) is the map E,—E given by raising to the power m(v)=n(v)/n and where g(v)
is a homomorphism of E into T, where we view E as a subgroup of T. The general
theorem is also valid.

Theorem (7.4). — If lllcp(v)((a, b),)=1 for all a,bek’, then o(v)=g(v)f(v) for
some homomorphisms g(v) of E into itself (equivalently into T ), and hence g(v) is the map of raising
to the m™ power for some m for every non-complex v (by Theorem (7.2)).
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This resul says that the only relations among the norm residue symbols for
n(v)™ roots of unity for the various completions are the powers of the reciprocity formula.
The proof of Theorem (7.4) involves in an essential way the ideas of [g9] and [10].
We note here that Theorems (7.2) and (7.4) are the results that allow us to compute
the relative fundamental groups w,(SL,(A), SLy(£)) where A is the ring of adeles of the
global field £.

We now ploceed to the proofs of Theorems (7.2) and (7.3). In both cases we
are given integers p(v), one for each completion £, of £. We form the mapping ¢ of I
into I given on an idéle a=(aq,) by ¢(x)=(a?™). Itis clear that { is a continuous homo-
morphism of I into itself. Clearly I,,, the connected component of I is sent into itself

by ¢. On the ot
absolutely clear t
V() k.1, invi
by the Artin recij

Furthermor

is an integer. It

the hypothesis of

for every m W
Hb W(% )P =1 fe
is the order of E,
element of Hom
of £*/(k")" onto

indicates the cla

into G it is perfe

Therefore ¢

o(Y(x)) is an 2™
is torsion free, t

Now we let

the subgroup G,

/e claim now that the hypothesis of Theorem (7.2),

her hand, the multiplicative group £" of k£ is a subgroup of I, and it is
hat the hypothesis of Theorem (7.3) is equivalent to the assertion that
ew of the Artin reciprocity law (i.e., that C=1/I,.

k" is injected into G*

procity map).

e, let us denote by I, the subgroup of I consisting of m™ powers where m
is well known that I,.&# =N (I,.£") since I,,.£"is closed in I [g]. Thus
Theorem (7.3) is also equivalent to the assertion that ¢(£k")ck’.1,

namely that
is equivalent to the assertion that ¢(k")ck’.I, wheren

Indeed, let xek’,

r x and yek’,

the group of roots of unity in £.
(G% E). Now as above, Kummer theory vyields an isomorphism s
om(G% E) so that A is of the form s(») for some ypek’, where the dot
s of » mod n™ powers. Now if ¢ is the global reciprocity map of I
ctly clear from the definition of 4, above and class field theory [3], that

1=I}bv(x,y)"<”>:l]b (xp(v) )
=35(2) (e($(*))) =M(p($(x))-

very character of order dividing n of G* vanishes on ¢(¢(x)), and so
ower in G% Since ¢ is an injective map of C into G* and G*/¢(C)
is says that {(x)ek’.I, as desired.

Cr=1 /k 1,, for any m, and observe that C" is exactly G modulo
of its m™ powers. If ¢(k)ck’.I,, then clearly ¢(£".1,)ck".I,

and let A be any

SO

that ¢ induces a
Lemma (7.

closed subgroup of finite index in C"=

Proof. — L

homomorphism ¢,, of C™ into itself.
). — Suppose that LK) .k so that §,, is defined. Then if U is any
I/1,.%, $(U)cU

t U’ be the inverse image of U in C so that U’ is a closed subgroup of

finite index (dividing m) in C. Then by the existence theorem, there exists a (unique)
finite abelian extension K of £ such that U’ consists of the norms from K to £. Now for
each completion £, we have an abelian extension K, of £, which is a completion of K.
The norm group N ck, of norms from K, is independent of the choice of K,; moreover
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from the definitions of global class field theory, U'=k". (I;IND) /k.1,. In order to show
that ¢, (U)cU it clearly suffices to show that Lp(k*.l;[N,,)ck*.I}Nm and this is clear
since I;IN,,D I, (K, is of degree dividing m over £,), and since $(k")ck".I,, and since
WIIN) =TINZY CTIN, |
Thus we must study a homomorphism ¢,, of C” such that ¢,, maps every closed
subgroup of finite index into itself. In other words we have an endomorphism « of a
pro-finite abelian group A such that a(U)cU for every closed subgroup of finite index.
We note that any such A is a Z"-module where Z" denotes the compact ring of super-
natural numbers (the completion of the integers Z at all ideals). We write this action
as (m, x) b>a", xeA, neZ’, and note that the continuous endomorphism x}>x" sends
every closed subgroup of finite index of A into itself. The following lemma says that

these are the only such continuous endomorphisms with this property.
~ Lemma '(7.‘2). — Let A be a profinite abelian group and o a continuous endomorphism such

that «(U)cU for every closed subgroup of finite index in A. Then there exits a supernatural
number n such that o(x)=x"

In order not to interrupt the continuity of argument, we defer this proof until
the end and proceed with the proofs of Theorems (7.2) and (7.8). Then Lemmas (7.1)
and (7.2) tell us that whenever ¢,, is defined, {,,(x)==x° for some supernatural number s.
Since C™ is a torsion group (of exponent m), it follows that we can choose s to be an integer,
whose residue modulo m is uniquely determined. Thus if ¢,, is defined, ¢, (x)=4° for
some integer s, for all xeC™..

Now we have seen that the hypotheses of Theorem (7.2) imply that ¢, is defined
where 7 is the order of E, the roots of unity in £. . We lift the previous result back to the
idele group I, and deduce that if ‘a€l, then {(x)=a'.x".t, for some xel, and ¢,k
Now if a=(a,), recall that ¢(a)=(a?") so that a?¥=galx".t, with ¢.ek’. We are
trying to show that p(v)=p (mod n) for some p and every non-complex place v; we in
fact claim that p(v)=s (modn). Suppose that p(v) s (mod ) for some non-Archi-
median ». Now define an idéle «, by a,=mn where = is a generator of the maximal
ideal p,, and a,=1 if u$0v. Then by the above, for every u=ov, we have 1=1.x;.1,
and so the element ¢, has an n™ root in all completions £, for u=+2. Since n is the
order of E, Griinwald’s theorem ([3], p. 96) applies with no exceptional case, and it
follows that ¢, has an #™ root in &. However in the completion k,, n?®=mn°.x".¢,
and since p(v) £ smodn, it is clear that ¢, does not have an n™ root in k,. This
contradiction shows that p(v)=s (modz) for all non-Archimedian o.

If £, is a real completion of £, it follows necessarily that n=2. Then if
p(v) %= smod 2, we define an idéle « by a,=—1 and g,=1 if u+0. The same argu-
ment as above leads to the same contradiction, and hence Theorem (7.2) is proved.

We now consider Theorem (7.3); we have seen that the hypotheses of this
theorem imply that ¢, is defined for all m, and hence that for each m, there exists an
integer s(m) such that ¢(x)=x"" for xeC™, or equivalently that for each a=(a,)€l,
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with xel and t.ek’. If m is odd, and &, non-Archimedian, we claim
nod m), forifnot, define anidéle « by a,==, a generator of the maximal
if u$0v. It follows as before that ¢, has an m™ root in all comple-

u=uy. Since m is odd, Griinwald’s theorem ([3], p. 96) applies with
e, and says that ¢, has an n™ root in £.  We obtain the same contra-

diction as before in the completion £,. Thus we conclude that p(v)=s(m) (mod m)
if v is non-Archimedian; hence if » and »" are non-Archimedian, p(v)=p(v") (mod m)
for every odd i téger m. It follows immediately that p(v)=p(+'), and hence that

p(v)=p for som

p(v)=p (mod 2)
Theorem (7.2).

integer p for every non-Archimedian ». It remains to see that
if k£, is real, and this is proved in exactly the same way as in

We conclude this argument with the proof of Lemma (7.2); this lemma was

stated without pr
this lemma is a v

now a profinite a

We remark that in a sense
ersion of the fundamental theorem of projective geometry. We have
belian group A and a continuous endomorphism « such that «(U)cU

oof in the course of the argument above.

for any closed subgroup U of finite index in A. We want to know that «(x)=x' for

some supernatur

dual endomorphi

torsion group an

B(F)cF for ever
is a module for Z

aJl number teZ’. We denote by B the dual group of A, and by B the

sm defined by B(b)(a)=0b(xa)~! for beB=A. Then B is a discrete
d the hypothesis on « translates by duality into the hypothesis that
y finite subgroup F of B. We notice that B, being a torsion group,
* and that this module structure is compatible with duality. Thus it

suffices to show that B(b)=»5' for some teZ’.
Now if xeB, the group generated by x is a finite cyclic group of order o(x). It

follows then that

mod o(x). Let B

B(x)=a"® for some integer m(x) which is uniquely determined
denote the subgroup of all elements in B of order dividing ! so that B,

is a group of finite exponent k(n) dividing n!. ' Let x be an element of order £(z); then

B(x)=x" for some integer m=m(x) unique modulo k(n).
course B(y)=y".

If y is a power of x, then of
On the other hand if yeB, is not a power of x, then the finite

group F generated by x and y has a basis of two elements, one of which can be
chosen to be x and the other to be of the form z=x"y. Every element of F is of the

form x*y' and

g

m(xz) =m mod k(n

of 2. Now

0(z)|k(n), and c
hence B(y)=)"
Note that

k(n)|k(n+1);

we
modulo 4(n), suc
B(x)=x""*1 for

z'=1 if and only if s=o0mod k(n) and ¢=o0 (modo(z)), the order

xz) = (xz) ™) = yma2) zmlad) — B (x) B(z) =4"z™?. Thus we must have
), and m(xz)=m(z) (mod 0(z)). Thus m=m(z) (modo(z)) since
nsequently  B(z)=2". Now yp=2zx"% so B(y)=2"x""=y" and

for any yeB,.
BnCBn +1 and that ananB since B is a torsion group. Moreover
have shown above that there is for'each n an integer m(n), unique
h that B(x)=+"" for xeB,. Now as B,cB,.,,
xeB, and hence m(n-+1)=m(n) (mod k(n)).

we also have
It follows essentially

from the definition of Z that there exists at least one supernatural number ¢ such
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that ¢=m(n) modulo the ideal £(n)Z* of Z* for every n. (Note that ¢ will be unique if
and only if the sequence £(n) is cofinal in the sense of divisibility; that is every integer a
eventually divides £(n).) It follows thatif xeB,, B(x) = ™" =x' since t=m(n) (mod k(n)),
and hence B(x)=x«' for all xeB. This completes the proof of the lemma.

We conclude now with the proof of Theorem (7.4). Recall that we are given a
global field £ with completions £, and homomorphisms ¢(») of E, (the roots of unity
in £,) into the circle group T such that 1:]I<p(v) ((a, b),)=1, a, bek’, where ( , ),is the norm

residue symbol for n(v)™ roots of unity in £, (n(v) being the order of E,). For notational
convenience let us agree that E,=(0) if v is complex so that we are really dealing with E,
modulo its maximal divisible subgroup. Let n be the order of E, the roots of unity in £.
We want to show that ¢(v)"=1 so that ¢(v) takes values in a cyclic subgroup of order 7.

Let S, be the set of Archimedian places, and let S be a finite non-void subset of V,
the set of all places, which contains S,. We let O(S)={x|xek, v(x)<1 for 0¢S}.
Then D(S) is a Dedekind domain, and its maximal ideals are in one-one correspondence
with the places » not in S; to be precise p,={y|y€O(S), »(»)<1} is the maximal ideal
corresponding to » [10]. Now let q be a non-zero ideal in O(S) and let W, be the set
{(a, b) : a, 5eD(S), (a, b) = (1, 0)mod ¢, and a.D(S)+5.O(S)=90(S)}, (see [10]). A
Mennicke symbol [10] is a function M(a, 4) defined on W, into a group C such that the
following conditions hold:

MS 1. a) M(1,0)=1.

b) M(a, b)=M(a, b+ta) if teq.

¢) M(a, b)=M(a—+1tb, b) if teD(S).
MS 2. M(a, b,)M(a, b,) = M(a, b,b,).

The following line of argument is really just a trivial modification of the technique
in [10]. If aeO(S), let D(a) denote the set of its prime factors; that is, those v divi-
ding @, or »(a)>1. Given the hypotheses of the theorem and an ideal g, define for
(a, b)eW,, M(a, b)=I;[<p(v)(<(b, a),) (veD(a)), with the convention that M(a, o)=1.
This is a function from W, into the circle group which we claim will be a Mennicke
symbol under appropriate conditions. To be precise, let F be the finite set of
places where E, has order divisible by the characteristic of the residue class field
at v. (F=g¢ for function fields.) We claim that there is an ideal q containing only
primes in F such that if »¢S, and x and y are elements of O(S) which are units at »
(i.e. o(x)=0v(p)=1) with x=ymod(qnp,), then (x,2),=(»,2), for all z. Indeed if
v¢F, it is clear that if x=1 mod p, then (x,z2),=1. If veF, itis clear that we can
find an integer a(»)>1 such that if x=1 mod a(v), then (¥, z),=1. Thus it suffices
to take q=IIp” (veF), and in particular q=9O(S) is the unit ideal if £ is a function
field. '

Lemma (7.3). — If q is as above and if o(v)=1 jfor veS, and if the hypothesis of
Theorem (7.4) holds, then M is a Mennicke symbol on 'W,.
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Proof. — MS 1 a) is clear by definition, and MS 2 is also clear from the formula
for M. Also if @, beW,, and teq, then M(a, b—l—ta):l}cp(v)((b—}—ta, a),) (veD(a)).
Now if veD(a), b is a unit at v since @ and 4 are relatively prime and since aep,, and
D(a)nF =@, tacqp,=qnp,. Thusby the choiceof q, (b fa, a),=(b, a), and MS 1 b)
is established.

Finally we consider MS 1 ¢). By the assumed “ reciprocity formula ** of the hypo-
thesis of the theorem and skew symmetry of (a, b),, M(a, b) =l;[<p(v)((a, b),), veV—D(a).
We decompose V—D(a) into the disjoint union V—D(a)=(D()—F)uFuSuH
where H is the complement of the first three sets. (Note that D(a)nD(b)=wo since a
and b are relatively prime.) Then M(a, b)=M,.M,.M;. M, where the four factors
represent the products taken over the four sets above. If veH, @ and b are units at »
and v¢FuS so that (q,8),=1 so M,=1. If veS, then ¢(v)=1 by the hypothesis
of the lemma so that My=1. Finallyif veF, a=1 mod q and since q=qnp, as p,0q
(recall that F is void for a function field), we see that (a, b),=1. Thus M,=1, and
we see that M(a, b) =I1¢(v)((a, b),) (veD(b)—F), with obvious conventions if 4= o.

If tO(S) then

M(a+tb, )=Tlg(e) ((a-+1b, b)) (vD(5)—F).

But now if »eD(b)—F, ais a unit at v and bep, and also beq by definition of W,.

Thus a+th=a mod qnyp, and so (a+1b, b),=(a, b),. Now MS 1 ¢) is established,
and so the lemma is proved.

We now turn to the proof proper of Theorem (7.4). Let £ be a number field;
and let S=S_. |If £ is totally imaginary ¢(v)=1 for all veS automatically so that M
is a Mennicke symbol on W,. It is shown in [g] (see also [10]) that any such symbol
has order dividing n, the order of the roots of unity in £&. Thus M"=1. If now £
is not totally imaginary, then E, has order dividing two for each v€S, and upon replacing
@(v) by ¢(v)? for every v, we see that the hypothesis of the lemma is satisfied. Thus M?is
a Mennicke symbol on W,. However, it is shown in [g] (see also [10]) that any such
Mennicke symbol% is trivial. Thus M?=1, but we note that n=2 since k& has a real
place so that N=M"=1 for a number field.

Thus if we set $(v)=¢(v)", we see that N{a, b)=l}np(v)((a, b)),=1 (veD(a)) for
every a,beW,. |We shall deduce that {¢(»)=1, which will prove our theorem for
number fields. The Dirichlet theorem will be useful here and we refer to [10], A. 10,
for a convenient formulation of this result. Since ¢(2)=1 if 2€S, by construction,
we fix a v¢S with v¢F. We can find by the Dirichlet theorem a #¢F (x4 v) such that
P.P,=0.0(S) isaprincipal ideal, and such that a is congruent to 1 modulo q. Thus D(a)
consists of the points « and v so if b is a unit at « and v and is in q, (g, b))eW, and we
see that ¢(v)((a, p),)$(u)((a, b),)=1. Again by the Dirichlet theorem we can find a
beq such that b=1mod p, and such that the image of 4 in O(S)/p, is a generator of
the multiplicativel group of this field. Then (a, 4),=1 by construction since u¢F,
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and so ¢(v)((a, b),)=1. However by construction and properties of the local symbol,
(a, b), is a primitive n(v)™ root of 1 in E,. Thus {(»)=1 for »¢F.

Now the n'™ power of the alleged reciprocity formula in the statement of the
theorem reads l;Iq;(v)((a, b),)=1 (veF). Let kg denote the product of the local fields £,

veF. Then k' is injected diagonally into 4, and the image is dense by the Dirichlet
theorem (i.e. weak approximation). Since ¢(v)((a, b),) is continuous on £, X%, it
follows by density that E[([;(v)((av, b,),)=1 (veF) where @, and b, are arbitrary elements
of k,. Itis clear now that ¢(v)=1 for veF as desired. This completes the proof for
number fields. :

Now let £ be a function field. We choose S to consist of a single point v and
denote by n(v) the order of E,. We now define ¢(w)=o¢(w)"® for all weV. Then
the lemma applies to M(a, b)"® with q=O(S) the unit ideal since ¢(v)=1. Now it
is shown in [9] (see also [10]) that any Mennicke symbol on W is trivial so that' we
deduce that M(a, 5)"®=1. We can apply exactly the same argument using the
Dirichlet theorem as in the case of a number field. The conclusion is that
$(w)=o(w)"™=1 for v+w. (Note that F is void, and note that o¢(»)"”=1 by
construction.) Now if m=g.c.d.(n(v)), e(v)"=1 implies that ¢(s)"=1 for all v.
On the other hand m=n is the order of E the roots of unity in £, see [g], p. 12. This
completes the proof of the theorem. °
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8) Let £ be a field and let G be a simply connected simple Chevalley group ([12],
[15], [1]). We denote by G, the group of points of G in £&. Among these groups one
has SL,, the unimodular group, Sp, the group of 2zX2n matrices preserving a non-
degenerate skew-two form, and Spin,, the spin group of a quadratic form of maximal
Witt index. With the exception of SLy(Z,), SLy(Z,), Spy(Z,) and Gy(Z,) [15], where Z,
is the field of # elements, all of the groups G, are equal to their own commutator subgroups.
Therefore G, with these exceptions has a fundamental group, =,(G,). We note that the
groups G, are simply connected as algebraic groups; that is, they have no algebraic cove-
rings, but they certainly might have non-trivial covering groups as abstract groups;
or when £ is a topological field, they may have non-trivial topological coverings. One
point of view is then that =,(G,) will reflect properties of the field £, and the fact that it
might be non-zera reflects some properties of £. Note that if £=GC the complex numbers,
then Gy is simply connected as topological group, whereas if £ is the real field Gy is not
simply connected, In [40], Steinberg shows that =,(G,)=o0 if £ is a finite field, at
least if we exclude a few fields of low cardinality.

In fact in [40], Steinberg gives an explicit construction for the universal covering
group E(G,) of G, if one excludes again some small finite fields (to be precise, the cardi-
nality of £ must be greater than 4, and in an addition unequal to 9 if  G=SL,). He
constructs these groups as extensions of G,/Z where Z is the center of G,, but in fact the
same group E(G,) will be the universal covering of G, by Lemma (1.6). These results
of Steinberg clearly supplied the motivation for the general discussion in Chapter I (1).

By construction of G as group scheme over Z [16] we have a split Cartan subgroup H
of G, ; we also fix an ordering on the roots of G, with respect to H. Thus we have distin-
guished nilpotent subgroups U, corresponding to the positive roots, and U_ corresponding
to the negative roots. To be precise, each root « determines a one dimensional uni-
potent subgroup of G, : {x,(f), tek}, so that ¢t>x,(¢) is a homomorphism of %
into G, ([12], [15]). Then U, is the group generated by x,(¢), >0 (resp. a<o).
Now G, is generated by the elements x,(f), «aeX (the root system) and ¢tek. Moreover,
one has

A) x,(t+s)=x,(t)x,(s) and

B) [x,(t), x3()]=IIx  ;s(N, g ;¢'s") if a+B+0, where the product is taken of
all roots of the form ix /B arranged in dictionary order and N, g ; ; are certain integers.

(*) In fact an appropriate title for this entire paper would be ¢ Variations on a theme of Steinberg .
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If G=SL,, then B) is vacuous and is replaced by B’) below. For any root o,
define w,(t)==x,(t)x_ (—¢t " Yx,(¢) and then

B) w,(t)x,(s)w,(t) '=x_,(—st7?) if G=SL,.

One defines 4,(t)=w,(t)w,(1)~! and then

C) h,(t)h,(s)="h,(ss) holds.

Now Steinberg [40] shows that in fact G, is the group generated by x,(f) subject
to exactly these relations A), B) (B’) if G=SL,) and C). Then one defines the
group E(G,) to be the group generated by objects which we denote by x,(¢) subject to
the same relations A) and B) (or B’)), but not C). There is clearly a unique homo-
morphism ¢ of E(G;) onto G, such that ¢(x,(¢))=ux,(t) for every aeX and tek.
Steinberg [4] shows that E(G,) is simply connected and that the kernel of ¢ is central
in E,. Hence E(G,) is the universal covering group of G, and the kernel of ¢ is just =, (G,).

Let U, denote the subgroup of E(G,) generated by the elements x(¢), «>o,
(resp. x,(?), «<o). Then Steinberg shows that ¢ restricted to U’, is an isomorphism
onto U,. Moreover we have elements w,(t), #,(¢) of E(G,) defined by the same formulas,
and we let H' be the subgroup generated by the elements A (f), «eX, tek’, and
N’ be the subgroup generated by the elements w(t), aeX, tek’. Then H is normal
in N [40], and W=N'/H’'~N/H, where N is the group generated by w,(t), xeZX, tek".
Then W is the Weyl group of G relative to H, and we choose representatives w’(s) (ceW)
for the cosets of H' in N’, and for simplicity if ¢ is a reflection in a positive root «, we
take w'(c)=w,(1). Let ¢(w'(s))=w(s) be the images of these elements in G,. Now
let IT denote the set of simple roots in our ordering on Z. Then every element of H
can be uniquely written as l;[lza(ta) (aell, t,ek’) ([40], p. 122).

On the basis of these choices we want to define a cross section s of G, into E(G)),
that is s(g) will be an element of E(G,) such that (gos)(g)=g. If ceW, let U, be the
subgroup of U_ generated by the x,(¢) such that «a>0 and o(x)<o. Then G, has a
Bruhat decomposition ([15], [40]); namely each element g is uniquely of the form
g=tuz.w(c).h.u where u,eU,, heH, and ueU_. For fixed o, the set of such elements
is the double coset Bw(c)B where B=H.U_,. Now we observed that ¢ : E(G,) >G,
is an isomorphism of U’, onto U,. We denote itsinverse on U, bys. Also % =l;[lza(ta),
aell, t,ek’, and we define s(h)zlglz;(ta)eH'. Then one defines for g=u,.k.w(s).u,
s(g)=s(u,)s(h)w'(c)s(u) so that s is a well defined map of G, into E(G,) with ¢os=id.

Now for g, and g,eG, b(g,, g,)=s(g,)5(g:8,)~" is an element of the kernel of o,
that is 7, (G,), and moreover 5 is an element of Z*(G,, =,(G,)) whose class is the universal
covering E(G,) of G,. If A is any abelian group and if A is a homomorphism of =,(G,)
into A, then Aob is clearly an element of Z*(G,, A), and by Chapter I, if (Aob)’is the class
of Aob, the map A (hobd)’ is the isomorphism of Hom(w,(G,), A) with H*G,, A)
described in Theorem (1.1). We shall call the cocycles Aob, Steinberg cocycles on G.

Recall that H’ is the subgroup of E(G,) generated by the elements A (f), and
recall that Steinberg [40] shows that =,(G,)cH’. Now for any a«cX, let
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b () ki, (s)=b,(¢, s)h,(ts); it is evident from the defining relation C) for G, that b,(s, ¢)
is in 7,(Gy) and that in fact &,(s, ¢)=0b(k,(s), h,(t)) is the restriction of the Steinberg
cocycle b to the subgroup {#,(t); tck’}. We are interested in the structure of =,(G,)
and the following fact will be very useful.

Lemma (8. ﬁ) — The group =,(G,) is generated by b,(s, t) for aell (the fundamental

roots) and s, tek’
Proof. — Let H, denote the subgroup of H' generated by #(¢), tek’. Then
y ([40], (7.7)), H, is normal in H’ and H’=I;IH;. Thus if keH/, /z=l;[/z°‘ with
h“eH’ > and by (8.2) of [40], hew (G,) if and only if each A*ew,(G,). Thus it suffices
to show that H,nm,(G,) is generated by the elements b,(s, #). But if h=i1=]1’l;(’%),
then by (8.2) of [40], hem(G,) if an only if iI=I1t":I' We proceed by induction

on n to show our result, the case n=1 being trivial. Now if n>1, observe that

() ke (8 oty b) R (2,8,) so that ig1h“(t")zl implies that
R = (by(ty, 1))~ h =k (t;8;) 11 (&) emy(Gy).

Thus by induction, &’ is in the group generated by the (s, t), and hence so is 4, by the
definition of 4’ above.

Theorem (8.1). — A Steinberg cocycle ¢=nob is uniquely determined by its restriction
to HxH.
Proof. — '+ view of our construction, it suffices to show that if ¢(h, hy)=1 for
all heH’, then ¢=1. Let ¢ take values in the abelian group A, and let F be the
extension of G ‘:)i A defined by ¢. Then by the universal property of E(G,), there is

rphism of group extensions j of E(G,) into F. The restriction of j
to =, (G,) is clearly A by Chapter I. Let s be the canonical cross section chosen from G,
into E(G,) and let —(]os )(g). Then if we let y, (¢)=0(x,(¢)) it is clear from the
construction of that the relations A) and B) (or B’)) are satisfied by the
elements _ya Moreover 1f we let [ (t)=ov(h,(t)) for «eX, and tek’, then
L,(8)! =j(b, by(t, 5))=c(h,(?), hy(s))=1. Thus the elements y,()
satlsfy relatlon C*I above, and since G, has only the relations A), B) and C), it follows
that j is a homomorphism of G, into F. Hence the class of the cocycle ¢ is trivial, and
hence ¢=1 by Chapter I.

a umque homo

Definition ( — S(Gy, A) s the group of all restrictions of cocycles of the form rob,
reHom(x,(Gy), to H><H An element of this group is called a Steinberg cocycle (on H).
By Theore , it is clear that S(G,, A) is isomorphic to

H*(Gy, A) = Hom(m,(G,), A).

A Steinberg cocycle ¢ may be thought of on the one hand as a function from HxH
into A satisfying certain identities; on the other hand, since =;(G,) is generated by the
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elements b,(s, t), the homomorphism A of =,(G,) into A corresponding to ¢ is uniquely
determined by A(b,(s, t)) =c(h,(s), k,(¢)). Then it becomes absolutely clear that the
identities that ¢ must satisfy in order to belong to S(G,, A) are exactly the relations among
the generators b,(s, £). Thus determining necessary and sufficient conditions for a func-
tion ¢ to be belong to S(G,, A) is exactly the same thing as determining all the relations
between the generators b,(s, t) of =, (Gy).

Our next observation is that one may reduce substantially the number of generators
required for w,(G,). Since G is simple, it is known that the roots a€X can have at
most two distinct lengths. Moreover the ratio between the squared lengths of any pair
of roots is either 1, 2, g 1/2 or 1/3. Thus if there are two lengths of roots we may speak
of long roots and short roots; if there is only one length for the roots, any root is long by
convention. ‘ -

Lemma (8.2). — The group w,(G,) is generated by by(s, t), s, tek’, for any fixed long
root (.

Proof. — Let D, be the group generated by the elements &,(s, ¢). Nowif ceW (the
Weyl group) let §=o(«); then Bisa root, and we claim that D,=D,. Since W is gene-
rated by reflections in positive roots, it suffices to consider the case when ¢ is reflection in a
positive root y. Then by (7.3) &) of [40], we have = w!(1)k,(t)w, (—1)=hy(nt)hs(n)
where n=<+1, independently of . Then as w(—1)=w/,(1)7},

(1) w (1) () i ()l (1) ™= g (nt) iy (n) g (n5) g () -

But now the left hand side is exactly b&,(t, s)w, (1), (ts)w, (1)~ since b,(t,s) is
central in E(G,). However let us apply the same formula above to % (fs); this yields

(2) by, s)wl (1) b (Es) i (1) ™= by (4, 5) kg (nts) g ().

Then we see by equating (1) and (2) and solving for bq(‘t-, s) that
bty 5) = () () (s ) .

Then by relation C) in G, and Lemma (8.1) it is clear that the right hand side is
in D;. Thus D,cD; and by symmetry DscD,, hence D,=Dj as asserted.

Now suppose that there is only one length of rootin 2. Then all roots are conjugate
under W and so D,=D, for all « and 8 and hence m(G,)=D, for any « by
Lemma (8.1). Now if there are two lengths of roots, let 8 be a long root. Since B is
conjugate to any long root under W, it will suffice to show that D,cD; for any short
roota. We may replace « by any conjugate under W and hence assume that («, 8)>0 since
G issimple. Since B is long, the Cartan integer 2(«, 8) /(B, 8) is one and 2(«, B) /(«, «) =d
where d=2 or 3. Then by (7.3) ¢) of [40]

(3) Ry (£) kg (5 e, (8) ~ g (5) ™= B (#7) g (¢7) ~HHig(s) 1
= ba(s, td)"l.

Furthermore we find from the same formula that
(4) By (5) ey (8) iy (8) ™o, (8) 1=, (2, 5) .
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ft hand sides of (3) and (4) are clearly inverses of each other we see
s, #1)~' _which shows that D,cD; as desired.

nt in the preceding proof simultaneously yields an important set of
by b,(s, t).

Lemma (8.3). — Let «cS and suppose there exists a root B such that 2({3; a)/(B, B)=1.
Then b,(t, s) is a bilinear function of s and t.

Proof. — If our hypothesis is satisfied, formula (4) of the argument above holds,

and we simply observe that the right hand side is bilinear in s and ¢ by Lemma (3.2)
(cf. Lemma (1.4)).

We note that by inspection of the root systems of simple Lie algebras that the
hypothesis on « in Lemma (8. 3) is satisfied for every root in every simple algebra except
for the long roots of the algebras of type C,,n>1. Also in this particular case b,(s, t)

may fail to be bilinear.

We denote by H, the subgroup of HcG, generated by the elements 4,; then
Lemma (8.2) yields the following fact.

Lemma (8.4

by its restriction to
Proof. — As
We must show th:

). — If « is a long root, any Steinberg cocycle on G, is determined uniquely
H,.
before, let ¢ be a Steinberg cocycle such that ¢(h, h,)=1 if A, heH,.

at ¢=1. Now c¢ restricted to H is of the form Aob where A is a homo-

morphism of =,(G,) into A, and b is the fixed cocycle describing the universal cove-

ring E(G,) of G,.
thesis that A(b,(s,
s, tek’. Then by
¢=1 by Theorem

It is possible

there is an injective homomorphism i, of SL,(k) into G, such that if ¥ (f)=

) then iE ()= x..00.

I
( resp. (o

The hypothesis that ¢=1 on H, is clearly equivalent to the hypo-
t))=1 and hence that A=1 on D,, the group generated by b&,(s, £),
Lemma (8.2), D,=m,(G,) and hence A=1 on m;(G;) and hence
(8.1).

> to view this result in a slightly different way; namely if « is any root,

(: 7)

t o1
There is a corresponding homomorphism e, of

the universal covering E, of SL,(k) into E(G,), and the restriction of ¢, to m,(SL,(k))
maps this group into =,(Gy), and is of course the induced homomorphism (z,), on funda-
mental groups (see Chapter I). The dual map (i,)" of Hom(w,(G,), A)=H?*(G,, A)

into Hom(w,(SL,
Lemma (8.5
are injective for any

Proof. — 1

the same way fr

construction that

range of (i), ¢

lemma.

k)), A) for any A is of course the restriction map in cohomology.

). — The map (i,), is surjective, and hence the restriction homomorphisms (i)

A, and o a long root. '

t is clear that w,(G,) is generated by elements Za(s, t) defined in

om the elements x_(f) of SL,(k).
ea(_ba(s, t)) —_—(ic;)*(—l-zm(s, t))=b,(s, t). Hence by Lemma (8.1), the

ontains D, and hence is equal to m;(G,). This establishes the

Moreover it is clear from our

<4
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This lemma indicates the key role played by the group of rank one, SL,(k). The
next section is devoted to the detailed treatment of this group.

9) If G,=SL,(£), the split Cartan subgroup H may be taken to be £*, the multi-
plicative group of the field £&. There are two roots +«, and we denote the corresponding
one parameter groups by x(¢) and y(¢). We take the representative for the Weyl reflection
in G, and E(G,) to be w(1)=w_,(1) and @'(1)=w/ ,(1). Then A(t)=w(t)w(1)™",
and w,(G,) is generated by elements b(s, ) which we denote for simplicity by &(s, ¢).

Now every element of G, is uniquely of the form g,(u, t)=x(u)k(¢), uek, tek’ or
of the form g,(u, ¢, v) = x(u)w(¢)x(v), u, vek, tek” by the Bruhat decomposition. We
have elements g(u, ), gy(u, ¢, v) in E(G,) defined by the same formulas with primes.
The canonical cross section s of section 8 of G, into E(G,) is then s(g,(u, ¢))=g;(u, t),
5(g(u, t, v))=gy(u, t, v). The Steinberg cocycle b on G, x G, into w,(G,) is defined by
s(ay)s(ay) =b(ay, ay)s(aa,) if a,€G,. Then Theorem (8.1) says in principle that b(a,, a,)
can be computed from its values on k"Xk', b(k(s), k(¢))=b(s,t). In this simple case

it is possible by simple calculations to make this explicit. We omit the routine details
and record the results.

(1) b(gy(u, t, 0), g/, t', ")) =b(tw™, w™ )" h(tw™, ¢') (if w=—(v+u')*0)
and =b(—t, —t')"' if w=o.

(2) b(g(u, t, ), g (W, 8))=0b(t, Y

(3) b(g(ut), go(u', t',0"))=b(t, ¥)

(4) b(g(u, 1), gi(u', t)) =b(t, ¢).

Lemma (9.1). — If deS(Gy, A) is any Steinberg cocycle on G, =SLy(k) with values
in A, then d can be calculated from its values d(k'(s), b'(t))=d(s,t) on k'Xk by substituting d
Sor b in formulas (1)-(4) above.

Proof. — By definition d is of the form Aob for some homomorphism of =,(Gy)
into A, and the result is immediate.

Now the function & in the formulas above is a normalized cocycle; i.e.
b(a,ay, a3)b(ay, a,)b(ay, aa5) " b(ay, @)~ =1, (1, 1)=1.
Then if we rewrite these expressions using (1)-(4), we obtain words W(ay, a,, a;)
in the generators b(s, t) of = ,(G,).

Theorem (9.1). — The relations W (ay, ay, a;)=1 and b(1, 1)=1 hold for the gene-
rators b(s, t) of m,(G,). Moreover these relations generate all relations so that ©,(Gy) is the free
group on generators b(s, t) subject to relations W(ay, ay, a;)=1 and b(1, 1)=1.

Proof. — It is clear that these relations hold; now let F be the free group on
objects b(s, ) subject to these relations. There is cleafly a surjective homomorphism ¢

of F onto ,(G,) sending generators to generators. Then 5(s, £) is a function from £"x£"
into F. We extend 4 to a function from G,x G, to F by formulas (1)-(4), and it is
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absolutely clear that it is a normalized cocycle with values in F. Let K be the group
extension of G, by F which 4 defines. Then by the universal property of E(G,) there is
a unique homomorphism j of group extensions of E(G,) into K. It is clear from the
definition of b that j(b(s, t))=b(s, £) and since b(s, £) =y (b(s, £)), it follows that j§=id,
and hence that ¢ is injective, and hence an isomorphism as desired.

The problem then is to reduce the relations in Theorem (g.1) to a more usable
form. This is simply a routine but tedious calculation; see the appendix for the details.

Theorem (9.2). — If G, =SL,(k), then =,(G,) is the free group generated by b(s, t),
5, tek” subject to the following relations

(1) b(st, r)b(s, t)=b(s, tr)b(t, 1), b(1,5)=0b(s, 1)=1
(2) b(s, t)=b(t"Y,s)

(3) b(s, t)=b(s, —st)

(4) b(s, £)=b(s, (1—s)t).

We note that (1) is the normalized cocycle identity. Also Steinberg showed that a
special case of (4) holds in 7,(G,) (see the calculation at the bottom of p. 121 of [40]).
We note of course that these properties are exactly the first four parts of definition (3.1)
of Chapter II, so that Theorem (g.2) serves as the motivation for the discussion in
Chapter II.

We recall that S(G,, A) consists of all Steinberg cocycles from £"x k™ into A, or
equivalently all functions of the form (Aob)(s, ¢) where A is a homomorphism from =,(G,)
into A.

Corollary. — The group S(G,, A) for G, =SLy(k) consists of all functions d from k" Xk’
satisfying (1)-(4) of Theorem (9.2) with b replaced by d.

Proof. — If deS(Gy, A), d=»nob so that d satisfies (1)-(4) of Theorem (9.2).
Conversely if d satisfies these properties, then the map b&(s, t) > d(s, t) defines a homo-
morphism A of w,(G,) into A by Theorem (g.2). We clearly have d=2x0b so our asser-
tion is established.

We note that then S(Gy, A) is the group we denoted by S,(A) in Chapter II. Our
real interest is the subgroup S(A) consisting of the continuous functions in S, (A) when &
is a topological field and when A is a topological group.

10) Let £ be a locally compact non-discrete field (a local field), and let'G, denote
the set of points of an arbitrary simply connected simple Chevalley group in £. Since G,
can be realized as an algebraic group of matrices, G, is a locally compact (separable)
topological group; also G, =[G;, G;]. In accordance with Chapter I we denote by Gf
the group G, viewed as an abstract group, and by E(G{) its universal covering group,
and by =w,(G}) the fundamental group of Gf.

Let A be any locally compact separable abelian group and let E be a central topo-
logical extension of G, by A. By the universal property of E(Gj), there is a unique
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homomorphism of group extensions ¢ of E(Gj}) into E. Recall that s denotes the distin-
guished cross section of G§ into E(G§); then we define o(g)={(s(g)) which is a cross
section of G, into E. The Steinberg cocycle d of the extension E is then defined by the
equation o(g,)o(g,) =d(g,, 8,)6(g,8,); also d=1{ob where b is the Steinberg cocycle
of E(G}). We want to show first that the fact that E is a topological extension implies
certain topological properties of ¢ and d.

Recall that U, is the subgroup of G, generated by the elements x,(¢), aeZ*, tek.

Lemma (x0.1). — If E is a topological extension, then o is a continuous function on U
and U_.

Proof. — It is always possible [25], [26] to choose a Borel map ¢’ of G into E such
that @oo’=id where ¢ is the projection of E onto G,. The commutator [¢'(a), ¢’(8)]€E
depends only on a and 4 and not on the choice of ¢’ since E is a central extension of G,
by A; moreover it is clear that [¢'(a), ¢'(b)] is a Borel function of a and 4. Now if «
is a root, and if nek” with n’=c¢+1 (such an 7z exists if we omit the fields of 2 or
3 elements), then o(x,(f))=[c"(A.(n)), o' (x,(¢((¢c—1))))] by [40], p. 123 where ¢ is the
distinguished cross section of our lemma. Thus it follows that o is a Borel function when
restricted to the subgroup U, of elements of the form x,(¢). Since U, is clearly a closed
subgroup of ka U, is locally compact separable, and it follows by a classical theorem
of Banach [7], p. 25 that ¢ is continuous on U,.

Every element u of the group U can be written uniquely as u:l;[xa(ta), aeXt,
t,k’, where the product is taken in lexicographic order. It is also known that the
map ub> (x,(f,)) is a homeomorphism onto the product I;I U,. Thus since ¢ is known
to be a homomorphism on U, o(u)=0(Ilx,(¢,))=Ilc(x,(¢,)) is clearly a continuous
function of u, as desired. * : ‘

By definition, we have o={os, where s is the distinguished section of G}
into E(G?), and ¢ is the projection of E(GY) into E. Also we know that for any a«,
Wl (£) = s5(x,(1))s (%, (¢71))s(x,(t)) and that A,({)=w,(t)w,(—1). If « is a fundamental
root, we defined s(k,(¢))=~rh,(t), and hence

o(ho(£)) = 0 (10,(2)) 0 (o (— 1)) = 0(%4 (1)) 0 (% (£71)) 0, (£) ) 0 (w0 (— 1))
so that o(%,(¢)) is a continuous function of ¢ by the previous lemma.

Corollary 1. — The cross section o is continuous on H.

Progof. — Every element h of H can be written uniquely as h=I;I/za(t¢) (aell)
where II is the set of simple roots ([40], p. 122). Then we defined s(k)=II4,(t,) and
hence c(h):l;la(ha(ta)). Since H is isomorphic as topological group to the ;roduct Iz
by the map &> (2,), itis clear from the preceding paragraph that ¢ is continuous onaH.

Now if aeW, the Weyl group, let D(a)=Bw(a)B be the corresponding double
coset of B in G, where w(a) is the representative of @ in N chosen in section 8.
Corollary 2. — The cross section o is continuous on each double coset D(a).
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Proof. — Each element g of D(a) can be uniquely represented as u,.w(a).k.u
with #,eU,, keH, ueU. Moreover the map gk (4, &, u) is a homeomorphism, as is
well known. Since by definition o(g)=0(y,)w(a)s(h)c(x), the result follows from

Lemma (10.1) and Corollary 1.

\
Now if a4, a,, a,€W, let A(ay, a,, a;) be the subset of G, X G, of all pairs g;, g, such

that g,eD(q,), geD(a,) and g,g,eD(a;). Since each set D(g) is locally closed (the
intersection of an open and a closed set) it follows at once that A(g,, a,, a;) is locally
closed. |
Corollary 3. — If E is a topological extension of G, by A, and if ¢ is the Steinberg cocycle
of this extension, then ¢ is continuous on each set Alay, ay, as), and hence ¢ is a Borel function
on G XG,. |

Progf. — We have by definition ¢(g;, &) =0(g;)0(g,)0(g:8)~ ", and the result
follows immediatLely from Corollaty 2. Since G,xG,=UA(a,, 4,4, and each is a
Borel set, and since ¢ is a Borel function on each A(ay, a,, a;), ¢ is a Borel function.

Now if as before, A is a separable locally compact abelian group, it follows from
Theorem (2.3) that the natural homomorphism of H*(G,, A) into H*(G¢, A) is injective
since [Gy, G;]=G;. Thus we can view H?*(G,, A) as a subgroup of H*(G{, A), and to
each class aeH?(G{, A), there is associated a Steinberg cocycle ¢, which we view as a
function on G, x G, or on HxH since the values of ¢, on HxH determine ¢, uniquely
by Theorem (8. I‘). (By Chapter I, « determines a unique homomorphism A of =, (G§)
into A and ca=?\Ob where & is the Steinberg cocycle for the universal covering E(Gj)
of G.) We are now in a position to say which Steinberg cocycles belong to classes
in H%(G,, A) in terms of their restrictions to H xH.

Theorem (x0.x). — The following are equivalent for a Steinberg cocycle ¢ :

(1) ¢ is continuous on H X H, for some long root a.

(2) ¢ ts continuous on H x H.

(3) cisa éorel JSunction on H x H.

(4) ¢ is a Borel function on G, XG,.

(5) The class of ¢ is in H2(G,, A).

Proof. — (2)=>(3) is clear since any continuous function is a Borel function. Also
(5)=(1) is a cons‘equence of Corollary g above applied to the set A(1, 1, 1). Now if (4)
holds, there is by ‘[2 5] a topological extension E of G, by A with ¢ as a cocycle represen-
tative. Then ¢ ﬁelongs to a class in H%(G,, A) as desired, so (4)=(5) holds.

Suppose now that (1) holds. We make use of the formulas developed in
Lemma (8.2) and the general case of (7.3) e) of [40], and one may obtain an expression
for ¢(hy, hy), h;eH, in terms of its values ¢(k,(s), £,(t)) with o a long root. We omit the
details, but the result is that this formula exhibits ¢ as a continuous function on Hx H
provided it is cor‘ltinuous of H,xH, so (1)=>(2) holds.

It remains to consider (3)=(4). If G=SL, then the explicit formulas (1)-(4)
preceding Lemma (g.1) show immediately that ¢ is a Borel function on SL,(k)x SL,(k).
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For a general group G, one knows in principle that one can compute the values of ¢ on
G, X G, from its values on HxH, but explicit formulas seem too formidable; however,
the same basic idea will work. It clearly suffices to show that ¢ is a Borel function on
each set G, xD(B) for each BeW. Now any element w of W may be written as a
product of reflections in fundamental roots [22], and let us call the minimal number of
reflections needed I(w). We shall prove our statement above by induction on {(B).
Suppose that (8)>1; then any element g of the double coset D(B) may be written
uniquely as g=ugw(B)hu with uzeUg, heH, ueU where w(B) is the representative of 8
chosen. Now by the construction of Steinberg cocycles it is absolutely clear that
c(x, yu)=c(x, ») when ueU (see the formulas (1)-(4) of Lemma (g9.1)). Thus it
suffices to show that ¢(x, ugw(B)%) is a Borel function of its variables. Now we can find
a reflection, «, in a fundamental root such that f=vya and [(y)=I[(p)—1. Let w be
the representative for « in G,. Since any element w(t), teW, normalizes H, it follows
that if g=wugw(B)% is the second variable above, g=g'w where g’ is a Borel function
of g, and where geD(y) with [(y)={(B)—1. Now by the cocycle identity,
¢(x, g) =c(x, gw)=c¢(g, w)_lc(xgl> w)c(x> g)-

Now geD(y) and [(y)<I(B) so that the third term on the right is a Borel function of x
and g’, and hence of x and g. It is quite evident now that it suffices to show that ¢(x, w)
is a Borel function of x, w being a reflection in a fundamental root, and to treat the case
when [(B)=o0; that is to show that ¢(x, g) is a Borel function of x and g when geB, the
Borel subgroup of G,. In both of these cases one may write down formulas for the
relevant values of the cocycle ¢ in terms of its values on HxH quite analogous to the
formulas (1)-(4) of Lemma (9.1). These formulas, which we omit, show immediately
that ¢ is a Borel function. This completes the proof of the Theorem.

Remark. — The description of topological extensions by Borel cocycles, rather than
by some other class of cocycles (e.g. those continuous at (¢, ¢) in Gx G or those continuous
in a neighborhood of (¢, ¢) in GXG) is well adapted to this discussion, since the rather
natural selection of the Steinberg cocycle to represent a class leads to a cocycle that clearly
is a Borel function, but in general is not even continuous at (¢, ¢) in G,XxG,. Notice
that any Steinberg cocycle is continuous on a dense open set in G, X G, by Corollary 3
of Lemma (10.1). 4

We change notation slightly from section 8 and denote by S(Gf, A) the set of all
Steinberg cocycles of G, with values in A viewed as functions .on HxH. Then
S(G§, A) ~H*(G§, A) for any A. Then if A is locally compact separable, S(G;, A) will
denote all such functions corresponding to topological extensions. By Theorem (10.1),
S(Gy, A) consists of the continuous functions in S(G§, A). Ifnow G,=SIL,(k), we have
an explicit description of S(SL,(£)%, A) by Theorem (g9.2), and its Corollary. Now
S(SLy(k), A), the continuous functions in the former group, will be denoted by S(A).

Theorem (10.2). — The group S(A) consists of all functions from k'K into A satis-
Jring (1)-(4) of Theorem (9.2) which in addition are continuous.
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We remen'Jber now that Theorem (3.1) of Chapter II describes the group. S(A)
completely (cf. Definition (3.1)). Thus since S(A)~ H?(SL,(k), A) for any A, we
have an explicit‘ description of this group of extensions. Recall that there is a cyclic
group B, such that S(A) ~Hom(B,, A) and that B;=(0), By=Z, and B,=E,, the
roots of unity ‘ in k£ if k is non-Archimedian. Thus H?(SL,(C), A)=0 and
H?*(SL,(R), A) ~Hom(Z, A), both of which are well known results (cf. Chapter I).
Moreover we find the following fact. '

Theorem (10.3). — If k is non-Archimedian, then H?*(SL,(k), A) ~ Hom(E,, A) for
any separable locaJ{y compact abelian group viewed as a trivial SL,(k)-module. ’

It is clcar‘then that if SL,(k) as topological group has a fundamental group
in the sense of Chapter I, this group must be E,. Our main result in the local case
includes this and‘ more (see Theorem (10.5)). Itis really a matter of putting the pieces
together. : ,

Theorem (10.4). — If k is a local field, and G is a simple, simply connected Chevalley
group, then Gy, (L locally compact group, has a universal covering group E(Gy). Moreover
E(G,) =[E(Gy), ﬁ.(Gk)] so that E(Gy) is a covering group of Gy as abstract group. If k=G,
7,(Gg)=0 and if k=R, n,(Gg)=17Z, (the integers mod 2) unless G is of type C, (the sym-
plectic groups), in‘which case 7 (Ggp)=2Z. If k is non-Archimedian, 7.(Gy) is a finite cyclic
group of order dividing the order of E,, the roots of unity in k, and finally w,(SLy(k)) ~ E,.

Proof. — IF k=C, the complex numbers, it is well known that G is simply
connected. If £=R, the real number field, then Gy has a simply connected covering
group E(Gg) equal to its commutator subgroup by Theorem (2.2); moreover E(Gyg)
is the usual topo}hogical universal covering group of Gg. That =, (SL,(R))=Z follows
from Theorem (é, 1) and Theorem (10.2), not to mention the usual classical proof of
this fact. If G is arbitrary, let « be a long root of G, and let ¢, be the corresponding
injection of SL, ir*to G (see Lemma (8.5)). In view of Lemma (8.5) and Lemma (2.5),
the induced map (7,), : 7, (SLy(R)) — 7,(Gg) is surjective. Thus =,(Gg) is cyclic and
generated by.(ia)‘*(x) where x is a generator of =,(SL,(R)). Now by Theorem (3.1),
Theorem (9.2), and Theorem (10.2), =;(SLy(R)) is generated by x=5b(—1, —1).
Now by Lemma (8.5), (), (b(—1, —1))=25,(—1,—1), but by Lemma (8.3) which
is valid for the chng roots of any group other than those of type C,, &,(s, t) is bilinear
in s and ¢. Hence b,(—1, —1)’=1, and =,(Gg) has order at most two if G is not a
symplectic group. Now if G is of type C, so Gg=Sp,(R), it is well known that
7 (Gr)=Z. Mo*eover an inspection of a list of simple groups reveals that =,(Gg) =2,
in all other cases. We of course do not need this elaborate theory at all here, but we
feel it is signiﬁcaﬁ‘lt in that it * explains.” the empirically observed facts about =,(Gg):

Suppose now that £ is non-Archimedian. If G,=SL,(k), then =;(Gj}) is generated
by the elements &(s, t) subject to the relations of Theorem (9.2). We define a homo-
morphism « of ni(Gﬁ) onto the roots of unity E, by sending b(s, ¢) into (s, ¢), the norm
residue symbol in £. It is well known (cf. Chapter II) that (s, f) satisfies all relations
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satisfied by the elements 4(s, ¢) so that « is well defined and surjective. By Chapter I,
acHom(m,(G}), E,) defines an element ' of H*(G¢, E,) and so a central extension E(G%)
of G. The Steinberg cocycle of this extension is ¢(s, t)=a(b(s,t))=(s,t) and is a
continuous function on £"x£" and hence E(G,) is a topological extension of SL,(k) by
Theorem (10.1). Let D be the kernel of « in w,(SL,(£)?). Then if G is any simple
simply connected Chevalley group, let B be a long root of G. Then by Lemma (8.2),
the map &(s, ¢) > bg(s, t) defines a surjective homomorphism (z5), of ,(SLy(k)*) into
7;(Gg) (the induced map defined by the inclusion i : SLy(k) -G;). Let (i) (D)=Dg
be the image of D. Then L,=m,(G%)/D, is a finite cyclic group of order dividing the
order of E, and in fact a quotient group of E,. If « is the natural projection of =,(Gj)
into L, then there is a unique yeHom(E,, L;) such that yoa=uago(s5),. Since
ageHom(w,(G,)% L,), it defines a central extension E(G,) of G} by L,. The Steinberg
cocycle ¢ of this extension is simply agob, where by is the Steinberg cocycle of E(G}).
Now if h=#hy(t) and h'=hg(s) are in HycH, then b(h, h')=0b4(t,s) and hence
(b, W)= (agoB) (hy ) =g Byt 5)) = tglie) (b4 ) =v(a(b(t, ) =7((t, 5)) where (8, s) is
the norm residue symbol since ya=oag(i3), by construction. This shows that the
Steinberg cocycle ¢ is continuous on HgxHj and hence by Theorem (10.1), E(G;) is
a topological extension. This extension could have easily been constructed by the
techniques in [31].

We contend now that E(G,) is simply connected as topological group. We first
consider the inflation homomorphism j: H?*G,, A) - H*(E(G,), A) for any A. We
view H*(G,, A) and H*(E(G,), A) as subgroups of H3(G}, A) and H*(E(G), A) respec-
tively. Since H?*(G%, A) ~Hom(w,(G§), A) and E(G,) is a covering group of G, as
E(G,)=E(G})/Dg (Dgc=(G})), it is clear from Theorem (1.1) that the kernel of the
inflation map j viewed as a subgroup of Hom(r,(G§), A) consists of exactly those homo-
morphisms vanishing on D;. Now if aeH?*(Gy, A), let d be its Steinberg cocycle. We
consider the restriction d’ of d to SL,(k) so that d’is the Steinberg cocycle of the restric-
tion @’ of a to SL,(k). Then viewing 4’ as a function on HgxH; (B is the long root
defining the injection of SL,(k) into G, and Hg is a split Cartan subgroup of the image
of SL,(k)) and hence on £"xk", d’is the Steinberg cocycle of a topological extension.
Hence deS(A) (cf. Theorems (10.1) and (10.2)) and then by Theorem (3.1),
deSy(A)=S(A). But S,(A) consists of all functions on £"xk" into A of the form ¢((s, ¢))
where (s, ¢t) is the norm residue symbol and ¢eHom(E,, A). Thus d’ viewed now as
the homomorphism of r,(SL,(k)?) into A which sends &(s, t) into d'(s, t) =d(hy(s), k5(t))
vanishes on D, the kernel of the projection a of =,(SL,(£)?) into E,. Since 4’ is the
restriction of d to Hg=4#", itis clear that d viewed as a homomorphism of =,(G,) into A
vanishes on (i5) (D)=Dg. It follows then that the class of d, which is an arbitrary
class of H?(G,, A)cH?*(G% A) is in the kernel of the inflation homomorphism j to
H*(E(G,), A)cH*(E(G]), A). We have shown the following.

Lemma (10.2). — The inflation homomorphism j : H3(G,, A) — HX(E(G,), A) is the
zero map.
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This is the first step in showing that E(G,) is simply connected. We consider the

spectral sequence

Hl (GIH HI (Lln A))

module H'(L,, A).

(%)

is exact where ¢

(o)

group, 7 is the z

HY(E(G,), T)=(o

of the hypotheses
Now let

H2(E(G,), A)= (o).

for the group extension E(G,) of G, by L,. The Ef! term is
which is trivial since G,=[G,, G;] acts trivially on the coefficient
Thus the restriction-inflation sequence [30]:

> Hi(B,, A) > H}(G,, A) > H}(E(Gy), A) - H¥(B,, A)

s the transgression and r is the restriction. If A=T is the circle
ero map since [E(Gy), E(G,)]=E(G,) by Lemma (2.4), and so
Since H'(E(G,), T)=o0, we have already verified the first part
of Lemma (2.1).
be any discrete abelian group. It will suffice to show that
H2(E(G,), A) cH*(L,, A)

By the exact sequence (%) via the

restriction homomorphism. Let aeH*(E(G,), A) and let r(«) be its image in H*(L,, A).
Since L, is finite, there exists a finitely generated subgroup A’ of A, or an exact

sequence,

such that &°(r(«))
aclass peH*(E(G

a b
0o>A'>A—>A"—>o0

=o0 and hence that & («)eH*(E(G,), A”’) is zero. Thus there exists
), A’') with a'(B)=a«, and so it suffices to show that H*(E(G,), A)=(0)

if A is finitely generated. In this case A=IIA, where A, is cyclic (finite or infinite)

and so it suffices
HY(E(G,, T)=H?
for any finite grou
is the integers.

We consider

()

as an exact seq
we find from the

to show that H*(E(G,), A)=o0 if A is cyclic. We have seen that if
E(G,), T)=(0), then H*(E(G,), B)=o0 for any compact B, and hence
p B. Thus it finally suffices to show that H?*(E(G,), Z)=(0) where Z

now the exact sequence

0—->Z—->R->T—o
uence of E(G,)-modules. Since H'(E(G,), T)=H*(E(G,), T)=/(o),
exact cohomology sequence of (*#) that

o—~H(E(G,), Z)~H(E(G,), R) —>o.

However H*(E(G
subgroup of H(

), R) is a vector space, and H?*(E(G,), Z), being isomorphic to a
L,,Z), with L, a finite cyclic group, is a finite group. Thus

H*(E(Gy), Z)=(0) as desired. This shows that E(G,) is simply connected, and hence

identifies ,(Gy)

s described in the theorem. We have already observed that E(G,)

is equal to its own commutator subgroup.

The author

s in [10] have remarked that via the connection of this theory

with the problem of congruence subgroups (cf. Chapter IV), one may deduce the

following.

Theorem (1?.5). — If G,=SL,(k), or G,=Sp,(k) for any n, then w,(G,) ~E,

if k is of character

stic zero.
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Remark. — There seems to be considerable evidence now that- n;(G,) ~E, for any
simple simply connected Chevalley group for non-Archimedian £ (*). Part of this comes
from the observed regularity of the fundamental groups =w,(G,) for £=R, the real
field, when they are incidentally isomorphic to Eg the roots of unity in R, if G is not of
type G,. The anomaly for the symplectic groups is explained in Lemma (8.3), and is a
phenomenon which is not expected to occur in the non-Archimedian case, since
Steinberg cocycles even for SL,(k) are already bilinear by Theorem (3.1).

We note two additional results which are obvious at this point. ;

Corollary 1. — If « is a long root, the injection i, of SLy(k) in Gy induces a surjective map
of m (SLy(k)) into m,(Gy). ‘ :

Let H be the fixed Cartan subgroup we have been using. Then we have the
restriction homomorphism r: H*G,, T) - H*(H, T).

Corollary 2. — If the characteristic of k is not two and if G is of type C, (n>1), then the
kernel of r is of order two. Otherwise r is injective.

Progof. — If G=S8L,, then the result follows from Lemma (4.2). If G is not of
type C,, the result follows from Lemma (8.2) and (8.3). Finally if G is of type C,,
it follows from Lemma (8.2), that any element of order two in H?*(G,, T) is in the kernel
of r and that conversely any element of the kernel of 7 is of order two. It then suffices
to know that if £ is not of characteristic two, then H?*(G,, T) (G=C,) has a non-trivial
element of order two. However Weil’s classes [41] are non-trivial elements of order two,
and we are done. _

Remark. — It seems to be more than an accident that the metaplectic coverings
found by Weil in [41] are characterized by Corollary 2 above.

11) In addition to information about G, £ a local field, we shall also need some
facts about Gg where O is the ring of integefs in k. By definition we shall denote by Gg
the subgroup of G, generated by the elements =x,(t), aeZ, teD. We shall recall some
well known facts about this group. View G as a group scheme defined over the integers Z
as in [16] or [1] (lecture I-D, I-D’). Then we have a faithful representation p of G,
(defined over Z) on a vector space V, and an admissible lattice L in V) such that
o(x,(1)) (LY=L for every acX and teO (op. cit., [14], [22]). Let K be the subgroup
of G, of all elements g such that p(g)(L)=L. Then it is well known that K is an open
compact subgroup ([14], [22]). Also let K; be the subgroup of all elements of K such
that p(g) induces the identity transformation on L/p‘L where p is the maximal ideal
of L. These are clearly the ¢ congruence subgroups ”* of K of level . We recall some
well-known facts.

Lemma (x1.1). — K=Gg is a compact subgroup and K |K, is isomorphic to G', the
group of points of G in the residue class field k,. Moreover K, ts a pro-p-group where p is the
characteristic of k,. If k, has at least four elements, then K =[K, K].

(1) Added in proof : H. Matsumoto has shown that this is in fact true; see [42].
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Proof. — As we have observed each of the generators x,(f) of G, t€O, is contained
in K and so GgcK. But Gg is known to be -a maximal compact subgroup ([14],
p. 36, and [22]), and so G =K. Itisknown by the construction of the group scheme G
over Z ([16], [1]) that K/K, is G’, the group of points of G in k,. We note that K, is
a subgroup of the group H of all endomorphisms of V leaving the lattice L fixed and
inducing the trivial map on L/pL. We observe that H is a pro-p-group and hence
that K, is a pro-p-group. '

Finally if k,, the residue class field, has at least four elements we can find deR
the residue class system (which is cyclic or order at least three) such that ¢=d*#1.
Then ¢—1 and ¢ are units in O and by [41], p. 123, x,(f)=[4,(d), x,(¢/(c—1))] for
any tek. By the definition of w,(x) and 4,(x), it is clear that 4,(x)eGog=K if x is a
unit in O.. Thus if €D, (¢/(c—1))eD and ¢ is a unit, hence x,(f)e[K, K], and so
K =[K, K] since K is generated by elements x,(¢), t€D.

It is appropriate to consider at this point when a compact group K has a funda-
mental group m,(K). The following is more than we shall need.

Lemma (xx.2). — If K is compact and [K, K] is dense in K, then K has a simply connected
covering group. Moreover 7, (K) is a compact totally disconnected group (i.e. a profinite group).

Proof. — This almost follows from Theorem (2.1), but we notice that in essence,
we have already constructed explicitly in [31], p. 380, the universal covering E of K,
and observed that the kernel of the projection of E onto K is profinite. The only problem
is to show that E is simply connected. The commutator subgroup of E is dense for if
not then [E,_E] covers K since E is compact, contrary to the properties of E in [31].
We showed in [31] that the inflation map: H?*(K, T) — H*(E, T) is the zero map, and
this combined with the fact that [G, G] is dense in G and Lemma (2.4) shows that
H?(E, T)=o0. It suffices then to show that H?*(E, D)=o0 for any discrete group, but
exactly as in the proof of Theorem (10.4) and Lemma (2.2) of [30], it suffices to
consider the case when D=Z. We consider 0—>Z->R—T—>0 as an exact sequence
of E-modules and observe that H!(E, T)=0 by the above, and also that H*E, R)=o0
so that it follows that H?*(E,Z)=o0 as desired.

We shall apply these results to the case when K =Gy, the group of integral points
of a simple connected Chevalley group in the integers O of a local field £.

Lemma (11.3). — [f K =[K, K], in particular if k, has at least four elements, =,(K) is
a pro-p-group. ,

Proof. — Since m,(K) is the dual group of H*(K, T), it suffices to show that H3(K, T)
is a p-torsion group. If K, is the principal congruence subgroup of level one as above,
K, is a pro-p-group and K/K,=G’, the group of points in G in the residue class field.
We have a spectral sequence EY for the group extension of G’ by K, and it suffices to
prove that E¥, i4j=2, are p-torsion groups. Now EZ?is a subgroup of H}K,, T),
and since K,= l(i_n_qK1 /K, it follows from [g0] that H*K,, T):}i_r)n H*(K,/K;, T).
Since K, /K, is a finite p-group for each i, it follows that H*(K,, T) is a p-torsion group.
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Now Ej'=H'(G’, Hom(K,, T)) and since Hom(K,, T) is a p-torsion group, and G’ is
finite, it follows that Ej'is a p-torsion group. Finally E2°=H?*G’, T), and if one
excludes a finite number of examples where the residue class field £, has low cardinality,
Steinberg [40] shows that H?(G’, T)=(0). In all cases Steinberg shows that any
projective representation of G’ over a field of characteristic p, is equivalent to an ordinary
representation. Now if «eH?(G’, T) is of order prime to p, « may be viewed as a
cocycle with values in Z, the cyclic group or order z» with n prime to p. We may find
a finite field L of characteristic p such that Z, may be identified to a subgroup L', the
multiplicative group of L. Then we view « as a cohomology class of G’ with values
in L". Since G’'=[G’, G'] it suffices to show that a=1 as a class in H¥(G’, L"). Now
we can find a modular projective representation ©= of G’ in a finite dimensional vector
space over L whose associated cohomology class is «. (The left regular a-representation,
for instance.) Since = is equivalent to an ordinary representation, « is the trivial class.
This shows that the finite group H?(G’, T) has no elements of order prime to p, and hence
is a finite p-group. This completes the proof of the Lemma.

12) We shall begin our discussion of the global or adélic situation with a discussion
of the cohomology of restricted products of groups. Thus let G, be a countable family
of separable locally compact groups and let K, be a compact open subgroup of G, which
is defined for almost all « (i.e. except for a finite number of «). If one changes or leaves
undefined the group K, for a finite set of «, the entire construction which follows is
unchanged. We denote by G the subgroup of the complete Cartesian product l;[Ga
consisting of elements g=(g,) such that g,eK, for almost all «. This group is called
the restricted product of the groups G, relative to (K,) and it can be given a separable
locally compact topology such that it is a topological group [11]. If F is a finite set of
indices containing the exceptional set where K, is undefined, let Gle;[Ga (xeF)
and let K}:l}Ka (x¢F). Then GyxKpcG and is locally compact with the product
topology. We topologize G by declaring that GyXx K} is an open subgroup with the
relative topology. (This is independent of the choice of F.) We denote by Gi the
restricted product of the groups G, (2¢F) so that then G =GyxG;.

Our object is to determine the fundamental group of G if it exists, in terms of the
fundamental groups of the factors G,, assuming that they exist. It will be necessary to
also assume that almost all K, have fundamental groups, but in view of Lemma (11.2)
it will suffice to assume that [K,, K] is dense in K, for almost all «.

Now for almost all « the injection of K into G, induces a continuous homomor-
phism j, of =, (K,) into =,(G,). The range D, of j, is compact since =,(K,) is profinite,
hence closed and in fact totally disconnected. The quotient group =,(G,)/D, is by
definition the relative fundamental group =,(G,, K,), and we assume that it is discrete
for almost all « or in other words, that D, is open. We will see that this is a necessary
condition for the existence of ©,(G). It is quite a reasonable hypothesis and may always
be true; in any case if K, is normal in G, it is automatically satisfied. Let E, be the
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universal covering of G, and let L) be the universal covering of K,. By the universal
property of L, there is for almost all « a unique continuous homomorphism d, of L
into E, compatible with the inclusion of K, in G,. The image L, of L, is a compact
subgroup and L,/D,~K,. Moreover L, is open since K, is open in G, and D, is
open in =,(G,) for almost all « by hypothesis.

Theorem (12.1). — If G, has a universal covering group E, for all o, and if [K,, K,]
is dense in K, for almost all o and if D, (above) is open in 7,(G,) for almost all «, then the restricted
product E of the groups E, relative to their compact open subgroups L, ts simply connected and
covers G.  Hence G has a fundamental group, and moreover w,(G) is isomorphic to the restricted
product of the groups =,(G,) relative to their compact open subgroups D, .

Proof. — Let us notice that the product of two simply connected groups C and D
is simply connected since H'(CxD, A)=H!(C, A)xH!(D, A) and

H2(Cx D, A) ~ H(C, A)x H¥(D, A) x H'(C, H'(D, A))

for any trivial module A (see Chapter I), and all terms vanish since C and D are simply
connected. Thus the same holds for any finite product. So if F is any finite set of
indices @, E =E;x E; where Eg is the product of E, (x€F) and Ej is the restricted product
of the remaining factors, it suffices to show that Ej is simply connected. Thus we are
free to drop any finite set of indices, and consequently we may assume that the hypotheses
of the theorem hold for all «.

If AeH'(E, T), let A, be its restriction to E, viewed as a subgroup of E. Then
A, =1 as [E,, E,] is dense in E,. Since the group generated by the E, is dense in E,
A=1 on a dense subgroup and hence A=1 so H'(E, T)=1. Now let A be any abelian
Lie group viewed as trivial E-module, and let aeH?(E, A). Let L--—l;ILa be our
compact open subgroup of E and let 4 denote the restriction of atoL. Then L=L,xL}
where LF=1;[La (xeF) and L}:I;ILO‘ («¢F). Then as [L,, L] is dense in L,, the
same is true of Ly and L and so

(#) H(L, A) ~ H¥(L;, A)x HA(L5, A).

On the other hand it is clear that L is the projective limit of the groups Ly relative to the
obvious projection maps. Then by Theorem (2.3) of [g0], H3(L, A) is the inductive
limit of the groups H?(Lg, A) or in view of our special situation, H*(L, A) = ti‘, H*(Lg, A)
where H?(Ly, A) is viewed as a subgroup of H*(L, A) by (*). Thus if we choose F such
that beH?(Lp, A) it is clear that the restriction of 4 to H?*(Ly, A) will be the zero class.
Also the restriction of b to L} for any HoF is zero.

Now suppose that H is any finite set of indices containing F. We form the group
Ef=EgxLy. Since Ey is simply connected, H*(EH, A) ~ H*(Ly;, A) by the restriction
homomorphism. Now we started with a class aeH?(E, A) and showed that there existed
an F such that if HOF, the restriction of a to Ly is zero. Thus the restriction 4" of a
to E¥ is the zero class for all HoF. On the other hand, E::gEH (HoF), and this
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is a countable union. We fix a Borel cocycle representative « of a; then if HOF there
is a (normalized) Borel one-cochain 8 on E¥, such that «"=3§(g#) on EYxE® where §
is the coboundary operator. Since H'(EY, A)=o0 and A is a trivial module, it follows
that § is injective and hence the cochain ¥ is unique. Hence if Mo HDF, Bfis the
restriction of B¥ to E¥XEY, and so we may define a unique function B on E by
B(»)=pH(y) if yeE". Now each E" is a Borel subset of E and each p* is a Borel function
and since E= HEH is a countable union, it follows that B is a Borel function for which
a=293(p). Thus « is a coboundary, and so the original class a is trivial.

We have shown then that H?(E, A)=(0) for any Lie group A. However to
show that E is simply connected it is enough to show that H*(E, T)=H?*E, D)=o0 for
the circle group T and for any discrete group D, both of which are Lie groups. This
completes the proof of Theorem (12.1). o

We now apply Theorem (12.1) to the number theoretic situation at hand. Let &
be a global field (i.e. a finite extension of the rational field or a function field in one
variable over a finite field), and let £, denote its completions. Then the fields £, are
local fields, and if G is a simple, simply connected Chevalley group over &, denote by G,
its points in k,. Let K, denote the group of points of G in O, the ring of integers in £,,
which is defined for non-Archimedian v, and in particular for almost all ». The restricted
product of the groups G, relative to their compact open subgroups K, is the group of
points G, of G in the adele ring A of &. More generally if S is any set of places (possibly
void), then G(S) will denote the restricted product of the groups G,, v¢S. If S=p,
G(S)=G, is the adele group of G.

Theorem (12.2). — The topological group G(S) has a fundamental group ,(G(S)).
Moreover =,(G(S)) ~ I;[Tcl(Gu) (v¢S) (where 11 denotes direct sum), the isomorphism being
¢ffected by the maps =,(G,) —>7,(G(S)) induced by the inclusions G,cG(S).

Proof. — Since G, has a discrete fundamental group for each » by Theorem (10.4),
it suffices to show by Theorem (12.1), that for almost all », [K,, K,]=K, and that for
almost all », the induced map =,(K,)—>n,(G,) is the zero map.

First we note there are only a finite number of places v such that the residue
class field %, has cardinality less than four and so [K,, K=K, for almost all v by
Lemma (11.1). Finally we observe that =,(G,) is a quotient group of E, the roots of
unity in £, for non-Archimedian ». If £ is a number field, it is classical [g] that almost
all £, are absolutely unramified and hence that E, is of order prime to p,, the characte-
ristic of the residue class field of %,, for almost all ». If £ is a function field E, is always
of order prime to p, the characteristic of £ and £,. Thus as =,(K,) is a p,-primary torsion
group for almost all v by Lemma (11. ) and the comments at the beginning of the proof, the
induced map =,(K,) >=,(G,) is the zero map for almost all ». This completes the proof.

Now the group of points of G with coefficients in &, G, is injected into each comple-
tion G, by a map ¢,. Moreover if geG,, then 7,(g) which we can view as a matrix with
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coefficients in £ (cf. Lemma (11.1)), will clearly have integral entries for almost all ».
Hence i,(g)eK, for almost all v and we can define an injection ¢ of G, into G(S) for
any S. We view G; as a discrete group; then [G,, G,]=G;, so that G, has a fundamental
group m,(G;). Moreover (the continuous map) ¢ induces a homomorphism i, of w,(Gy)
into 7;(G(S)). Since 7;(G(S)) is discrete, the range is closed, and the cokernel of 7,
is exactly the relative group =,(G(S), Gy).

Lemma (12.1). — If xem(Gy), (3,),(x)=o0 for almost all v and i (x) viewed as an
element of m(G(S)) ~Hrc1( G,) has components (3,) (x).

Proof — Let p, denote the projection of G(S) onto the »™ factor G Then p,o1=r1,
so that (¢,),=(p,),ot,. However it is clear from Theorem (12.2) that (p,), is just the
projection of m,(G ( ) ZIUITH(GJ onto the »™ factor. Thus the »™ component

of ¢ (s) is (3,),(x) which is zero for almost all o.

We now have to discover in more detail what these induced maps are. Let G
be as above and let « be a fixed long root and consider the corresponding subgroup
isomorphic to SL, as embedded in G. We have natural generators b(s, ), s, tek’,
for the fundamental group of SL,(k) (Lemma (8.1)). The induced homomorphism
v : 7, (SLy(k)) into =,(G,) is surjective as we have shown and sends the generators b(s, ¢)
onto elements we denoted by 4,(s, t). Moreover by Theorem (10.2), 7;(G,) is generated
by elements %(s, t), s, tek, and (3,) b,(s, t)="0}(s, t) asis perfectly clear. We also have
induced maps ¢, ; 7, (SLy(£,)) — m,(G,), and if (s, ¢), s, tek,, denotes the canonical
generators of w,(SL,(%,)), $,(6°(s, t)=20%(s, t) by construction. Moreover w,(SL,(%,))
for » non-Archimedian is identified with E, the roots of unity in £, by 5°(s, t) > (s, £),
where (s, t), denotes the norm residue symbol for n(2)™ roots of unity (n(?) is the order
of E,). Finally we let E denote the roots of unity in £ and we denote by # its order.

Our main result below follows from the above and the global uniqueness theorems
in Chapter II.

* Theorem (12.3). — Let k be a global field and S be a set of places, and G a simple, simply
connected Chevalley group. Then the relative group =,(G(S), G,) is zero if S contains a non-
complex place. If S consists entirely of complex places m,(G(S), G,) is cyclic of order dividing n
(the order of E, the roots of unity in k). If G=SL,, and S consists entirely of complex places,
7,(SLy(S), SLy(R)) ~ E

© Proof. — If a is a long root of G, then the map =,(SLy(S)) — w,(G(S)) is surjective,
since the local maps at each completion are surjective. Moreover, the map
7, (SLy(k)) = =,(Gy) 1is surjective by Lemma (8.1). It follows that =, (G(S), G,) is a
quotient group of 7, (SLy(S), SL,(£)) and hence it suffices to prove our assertions for
G =08L,. -
Let L(S) be the subgroup of homomorphisms of m,;(SL,(S)) into T (the circle
group) vanishing on the image of =,(SL,(k)). Then L(S) is simply the dual group of
7, (SLy(S), SLy(k)). Any homomorphism ¢ of 7,(SLy(S)) :[vIn'l(SLz(kv)) (v¢S) into T
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is uniquely determined by a family ¢(v) of homomorphisms of =,(SL,(£,)) into T. Then

to say that ¢ vanishes on 7 (SL,(k)) is to say that 1=¢(i (b(s, £))) for s, tek’ or equi-

valently by Lemma (12.1), 1=I(’I<p(v)(iv)_(b(s, t))=l;[cp(v)(b°(s, t)) (v¢S). For non-

Archimedian v we identify =,(SL,(k,)) with E, by the map &°(s, ¢) > (s, t),. We denote

by V the infinite places. Then we have 1= II ¢(u)(8°(s, t)). ¢l;[ vqp(zz)((s, £),)-
v vESU

€v-8
We notice now that since the second factor on the right is bilinear in s and ¢, the first

factor Iv1<p(v) (6°(s, t)) (v€V—S) is bilinear in 5 and &. Now the image of £ in vl;lvk:
is dense as is well known, and since ¢(v) (°(s, )) is continuous for s, tek,, itisimmediately
clear that I;Icp(v) (86°(sy5 £,))5 Sy» t,ky, is bilinear and hence that ¢(v)%(.,.) is bilinear
for veV—S. In that case, ¢(v)(6°(s, t)) is of the form ¢'(v)((s, t),) where ¢’ is a homo-
morphism of E, into T by Chapter ITI. (Ifvis complex this is automatic since 5°(s, #) =1
so the only content here is for real places.) We change notation and call ¢'(v), ¢(v)
so that in all cases, ¢(v) is a homomorphism from E, into T. Then our formula reads
I=I;Iq>(v)((s, t),) (v¢S). Thus it ts absolutely clear that the group L(S) is the group of all
“ reciprocity laws > with no contribution from S.

If o=(9(v)), v¢S, satisfies the above, we may define ¢(v)=1 for veS, and then
we have I=I')Icp(v) ((s, t),) with the product taken over all completions. Theorem (7.4)

concerns exactly this situation; to be precise, let us embed the cyclic group E in the
circle group by some map j and let us denote by {(v) the map of E, onto E of raising
to the power n(v)/n with obvious conventions if » is complex. Then Theorem (7.4)
says that ¢(v)=j({(v))" for some integer m uniquely determined modulo =, with say
o(v)=1 if v is complex. Thus if we know ¢(v) for some non-complex v, ¢ is completely
determined. Now suppose that S contains a non-complex place v;since ¢(v)=1 if veS
by definition this says that ¢(w)=1 for all w and hence that ¢=1. Thus L(S)=(1)
and hence its dual group =,(SL,(S), SL,(£)) is trivial. If on the other hand, S contains
only complex places, let ¢(v) =1 for v complex, and ¢(v) =j(¢(v))" for m=o, 1,...,n—1.
Then l;Icp(v)((s, £)),=1 1is the classical Artin reciprocity formula or a power
of it ([3], [33]). Since these are the only possible choices for ¢(p), it follows that L(S) is
cyclic of order n, and hence that 7, (SL,(S), SL,(k)) is cyclic of order n. This completes
the proof.

A more careful analysis of the surjective homomorphism 7,(SLy(S)) — =,(G(S))
for any G mentioned in the first sentence of the proof together with the argument of the
above theorem for SL, yields a formula for the order of the relative group =,(G(S), G)
in terms of local data alone. Namely let /(v) denote the order of =,(G,), so that
[(v)|n(v). It is absolutely clear by global class field theory [3] that n=g.c.d.(n(v)),
v not complex. Then let /=g.c.d.({(v)) v not complex so that ! divides .

Theorem (x2.4). — If every v in S is complex 70,(G(S), G,) has order l.

We noted in Theorem (10.5) that the authors in [10] show that [(v)=n(v) if Gis
of type A, or C, (the special linear or symplectic groups) and %, is of characteristic zero.
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Theorem (12.5). — If G is of type A, or C,,, and if every v in S is complex, and if k is
a number field
7 (G(S), Gy) = E.

The argument in [10] proceeds by showing by completely different methods that
for any totally imaginary number field and S consisting of all complex places,
7, (G(S), G,) ~E for G of type A, or G, (n>2). If one has a given local field £’ the
authors in [10] remark that one can find a totally imaginary field £ such that £’ is
a completion of £ and £ and £’ have the same roots of unity.

Remarks. — 1) We remark that the determination of the kernel of the map
i, : 7(Gy) — 7, (G(S)) seems to be somewhat deeper. We have no information about it.

2) It seems a reasonable conjecture that the relative group =,(G(S), G,) is isomor-
phic to E, the roots of unity in £ if every veS is complex for any G. This conjecture
follows if one can solve the local problem. We note that this is exactly the ¢ meta-
plectic ” conjecture posed in [10] with slightly different notation.



CuAPTER IV

13) We want to indicate briefly in this final chapter the connection of the relative
fundamental groups =;(G(S), G;) with the problem of congruence subgroups ([8], [9],
[10], [27], [28]). This connection is set forth in [10] and we briefly recall it here. Let &
be a global field and let S be a finite non-void set of places containing S, the Archimedian
places. Let O(S)={x|xek, v(x)<1,x¢S}. Then O(S) is a Dedekind domain [10] and &
is its field of fractions; if £ is a number field and S=S,, then O(S) is simply the ring of
integers in k. We choose a faithful matrix representation of the group scheme G over
the integers Z as in section 1r. Then x,(¢) is a matrix with entries polynomials in ¢
with integral coefficients. We let Gg be the points in G, with coefficients in O(S).
If p is an ideal in O(S), one has the congruence subgroup G (p) of matrices congruent
to the unit matrix mod p. One defines a topology then on G, by taking as neighborhoods
of 1, the congruence subgroups. Then G, is a topological group, and we denote by G,
the completion with respect to this topology. On the other hand, an S-arithmetic
subgroup H of G, is by definition a subgroup such that Hn Ggg is of finite index in
both Ggg and H.  One defines a topology of G, by choosing the arithmetic subgroups
as neighborhoods of 1, and completes G, in the topology and arrives at a group G.
Since every congruence subgroup is arithmetic, the identity map G,—G, induces a
continuous homomorphism 7 of the completions: G,—G,. It is shown in [10] that = is
surjective and that G,, G,, and the kernel C(Ggg) of = are locally compact and that
C(Ggpg) is in fact pro-finite. The congruence subgroup problem then is to deter-
mine C(Gg). It is shown in [10] that C(Ggg) is central in G, if G is of type A,
or G, and 7n>2, and presumably the argument of Matsumoto in [1] (lecture I-H)
would show that this is true for any G other than SL, (1).

Thus if G is of type A, or C,, n>2, we have a central extension

1->C(Go) _>Gk—)(_}k_)1

and moreover the natural injection of G, into G, lifts to an injection of G, into Gk since G,
is a completion of G,. Since [G,, G,]=G;,, it is clear that the commutator subgroups
of G, and G, are dense, and so we are in the context of relative fundamental groups, since
the class of the extension G, of G, splits upon restriction to G,. More generally we may
factor G, by [C(Gog)s G,]~ which will turn G, modulo this subgroup into a central
extension of the same type for any G. We consider then an arbitrary G.

(*) Added in proof : Matsumoto has proved this ; see [42]. Serre has settled the problem for SL,.
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One observes then from [10] that the natural injection of G, into G(S) is a homeo-
morphism for the congruence topology and hence one may identify G, with the closure
of Gy in G(S). If kis a number field, the authors in [10] observe that G,=G(S) by
theorems on strong approximation. (See Kneser’s lectures in [1] if G#E;.) We
observe that this is always. the case.

Lemma (13.x). — If S a non-void set of places, containing all infinite places, G, is dense
in G(S) if G is a simple simply connected Chevalley group.

Proof. — We denote by A(S) the ad¢le ring of £ associated to the set S, so that A(S)
is the restricted product of the additive groups £, relative to their rings of integers O,
for v¢S. The natural diagonal injection of £ into A(S) is dense in A(S) — this is strong
approximation for the Dedekind domain O(S), or essentially the Chinese remainder
theorem. Let us consider the elements x,(¢), tek, acX (the root system of G) of G,.
Let x,(¢,) denote the corresponding elements of G,, f,€k,. Itis clear by strong approxi-
mation in A(S), that the closure of the one parameter group x,(¢) in G(S) consists of
all elements x=(x,(¢,)), v¢S, with ¢, an arbitrary element of £, almost all of which
belong to ©,. If we fix v, and take all #,=o0 except for w=uv, the elements x,(¢,) fo G,
viewed as a subgroup of G(S) lie in the closure of G,. However these elements generate G,
and so G,0G, for all »¢S. Hence G;> GF=1;[G,) (veF) for any finite set F. - Since
the union of the groups Gy is dense in G(S), our result follows.

Thus we have an exact sequence
(%) ' 1>C(Gog) >G,—>G(S) >1

with C(Gg) central at least if G is of type A, or G, (n=>2). Moreover this extension
splits upon restriction to G,. We know from Theorem (12.2) and Chapter I that G(S)
has a universal covering split on G, which is an extension of G(S) by =;(G(S), G,)

(%) _ 1>, (G(S), G;,) >E—G(S) —»1.

We now factor G, by the closure of the subgroup [G,, C(Ggg)] so that we
convert (%) into a central extension (if it is not so already),

(k) 1->B(Gg) -G, —>G(S)>1

with B(Ggg) :C(GD(S))/[Gk, C(Ggg)]l~- The following result serves to tie up the
material of the first three Chapters with the theory of congruence subgroups. We are
deeply indebted to J.-P. Serre for pointing out this connection to us. The formulation
of the theorems in the first three Chapters was strongly influenced by this.

Theorem (13.x). — The group extensions (xx) and (%x*) are isomorphic, and hence
B(Ggg) @™ (G(S), G;) and if CG(Gg) is central, C(Ggyg) ~m,(G(S), G,).

Proof. — By the universal property of the extension E in (#x), there is a (unique)
homomorphism ¢ of group extensions of (#*) into (#*x). Since G, is dense in G,'c, the
range of ¢ is dense. Let K, be the maximal compact subgroup of integral matrices
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in G, for v¢S, andlet K= l;[ K, so that K is compact open subgroup. Then viewing G,
as a subgroup of G(S), Ggg=G,nK since an element of £ is in O(S) if and only if
it is local integer at all »¢S. It is moreover clear that Gg, is dense in K. Now let L
be the inverse image in E of K; it is clear that i{(Ggy)CL where 7 is the injection
of G into E assured by the definition of E. Let M be the closure of i(Ggg) in L.
Since 7, (G(S), G;) is finite, and K is profinite, L. and hence M are profinite. Moreover
since the projection of i(Gg) into G(S) is dense in K, it follows that M is also open
in E.

Now let N be an open subgroup of M and my the projection onto the finite
group M/N. Then myoz is a surjective homomorphism of Gg g into the finite group M/N
and hence its kernel is an arithmetic subgroup of G,. Since the subgroups N of M
define the topology of E (M is open), it is clear that the closure of (G,) in E is a
completion of G, relative to a family of arithmetic groups containing all the congruence
subgroups. Also M is open in E so that the closure of {(G;) is open in E, and it follows
immediately that the closure of ¢(G;) in E is all of E (the projection of the closure of G,
into G(S) is open and contains the dense subgroup G, and is hence all of G(S). Then
the closure of ¢(G,) is a central extension of G(S) splitting on G, and by the universal
property of E, must be all of E.)

Since G, is the completion of G, with respect to all arithmetic subgroups, there is
a continuous homomorphism ¢ of Gk into E, which is in fact surjective (since the image
contains M, an open subgroup of E) and is clearly seen to be a homomorphism of group
extensions. Since E is a central extension of G(S), it is clear that §([G,, C(Ggg)l)=1
so that ¢ becomes a homomorphism ¢’ of G, onto E (as central group extensions of G(S)).
On the other hand we have already constructed a homomorphism ¢ of group extensions
of E into Gj. It follows immediately that ¢o{’ and {’o¢ are the identity maps
since [E, E] and [G;, G;] are dense in E and G, respectively. This completes the proof cs
the Theorem.

Now we can make use of the results in [10]; in particular it is shown that if G if
of type A, or G, (n=>2), then C(Ggy) is central in G,, and moreover that C(Ggg) ~E,
the roots of unity in £ provided that S consists entirely of complex places, and that
C(Ggg) =(0) otherwise. This then yields Theorem (12.5), and together with

Theorem (12.4) it also yields Theorem (10.5) so that all of the statements are completely
proved.
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APPENDIX

We shall concern ourselves here with the proof of Theorem (9.2) of Chapter III,
which characterizes Steinberg cocycles as those functions b on £" X k" into an abelian
group satisfying:

(1) b(st, )b(s, t)=0b(s, tr)b(t, 1), b(s, 1)=0(1,s)=1
(2) bis, t)=0b(t"" )

(3) b(s, )=b(s, —ts)

(4) b(s, )=b(s, t(1—s)).

Let us first establish that these conditions are first of all necessary, it being
clear that (1) is necessary. Now for (3), we take r=s in Lemma (7.3 a)
of [40] and this becomes in our notation () (t)w(u)“‘—w(t‘1 #*). Then we use
the substitution w(x)w(y)=~A(x)h(—y) " '=b(—xy~", —p)"*A(—xp~') and find that
b(—st™!, —t)=0b(—st™', —s) which is (3) with a change of variables. We note also
that (1) and (3) yield

(5) b(ox, —x~Nb(v, x)=b(v, —1).

We put x=—2"" in (5) and find that &(—1,2)b(s, —v~')=0b(v, —1). Since

b(v, —v~")=1 by (3), b(—1,2)=0b(, —1). By (5) and (3),
b(st, —t™1)"b(s, —1)=b(s, t)=b(s, —st)=0b(s%t, (st)"1)"tb(s%, —1)
and since b(—1, x)b(—1, —x)=05b(—1, —1) by (1), and since b(x, —1)="5b(—1, x), the
above becomes
b(—1, —s5)b(st, —t™Y)=b(—1, —st)b(s*¢, s~ 1).

We transform the right hand side by (1) and use the fact derived from (3) that
b(st, —t~Y)=b(st, —s*t), and find that b(st, —s*¢)=0b(—s%, s~'¢~') which is (2).

Finally we note that the same argument verbatim as on the bottom of p. 121 of [40]
shows that k(av—av?)h(a—av)~'= h(av)h(a)™* orin other words that b(v, a(1—0))=b(v, a)
which is (4). This establishes the necessity. We also note that by (2) and (3),
b(ox, —x~Y)=0b(v, —x~") so that (5) becomes
(6) b(v, x)b(v, —x~ 1) =b(v, —1).

Moreover we showed in Lemma (3. 2) that b(2% xp) =5(2% x)b(<% ») follows from (1)—(3).
Now from (1), b(2% x)b(2%x, ) ="5b(2% x»)b(x,y), and substituting in the above, we see that
(7) b(2%, ) =b(<% 3)b(x, )

is a consequence of (1)—(3).
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For sufficiency, we begin with a function b from k'X%" into an abelian group A
satisfying (1)-(4), and we extend it to a function from SL,(k)x SL,(£) into A by the for-
mulas preceding Lemma (9.1). We must simply show that this function again denoted
by b is a cocycle. (Thatitis then the Steinberg cocycle of the corresponding group exten-
sion is implicit in Theorem (g.1).) In the language of Theorem (9.1) it must be shown
that each relation W(a,, a,, a;)=1, ¢,€SL,(k) isaconsequence of (1)—(4). Furtherexa-
mination shows that this decomposes into consideration of fifteen special cases depending
on the position of the ¢, However, there is one case which we may speak of as generic.
Recall that each geSL,(k) is uniquely of the form x(u)w(t)x(v) or x(u)h(t). The latter
set forms a subgroup B and the former its complement U which is in fact the double coset
Bw(1)B. We say that a,, a,, a, are generic if a,, a4y, a5, a,0,, 6,8, a,a,a, all are in U.

Lemma (A.1). — If a,, a,, a, are generic, then W(ay, ay, a;)=1 if b satisfies (1)-(4).

Proof. — If a;=x(u)w(t;)x(v,), it is evident from
() b(ay, &) =b(to™, ©)Hh((oT 4) (if ©=—(2+1)+0)
that W(a,, a,, a;) does not depend on u, or v; and depends only on f and »,+u, and
(v,+u;). Thusitisno loss of generality to take u,=uv,=u,=v,=0. Tosay that (a,, a,, a;)
is generic means that v, 0, u;% 0, and that 1—#v; ?u; '+ 0. We simplify our notation
and take a,=w(s)x(—u~"?Y), g=w(t), aa=x(—v " w(r) and put z=1—>uw. Then
W(a,, a,, a;)=1 becomes by (k)

(A) b(su, u=*)"1b(su, )b(stuvz ™", v~ 2) " b(sutvz ™1, r)
=b(tv, v b(tv, r)b(suz ", u=t2) " b(suz ", tor).
The second and fourth terms on the right may be replaced using (1) by
b(sutoz=*, r)b(suz ™", tv), and the first of these cancels out. Now we place the third
term on the left on the right side and use (1) to replace it times b(suz™!, tv) by
b(suz™1, tz)b(tv, v~ '2). Finally we use the identities b(suz™*, u~'z)=5b(—s,u"'z) and
b(suz™*, tz)=b(—sut, tz) which are derived from (2) and (3) to write (A) as
(B) b(su, u=Y)"1h(su, t) = b(tv, v=1) b (tv, v 2)b(—s, uT12) b (—sut, tz).
Now by (1) we have
b(—s, u™'2) " = b(—s, u™Y) " (—su~Y, 2) " b(uY, 2)
b(—sut, tz) = b(—sut, t)b(—sut®, z2)b(t, 2)~*
b(to, v=12)=b(tv, v~ 1)b(¢, 2)b(v™1, 2) 7,

and we may replace b(—s, #~') and b(—sut,t) by b(su, u~') and b(su, t) respectively
using (2) and (3). With these substitutions and the resulting cancellations, (B) becomes
(Q) C1=b(vY 2)" b(uT, 2)b(—su~t, 2) T b (—sut?, 2).

Now by (7) above the final two terms may be replaced by (#?# z) and this in turn may
be combined with the second term so that (C) becomes

(D) 1=b(v"" 2) " b(ut? 2).
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Finally by (2) and (4) we may write this as
(E) S =b(v_1(1_z): z)—lb(utza 2),

and recalling that z=1—¢*us, we observe that v~ !(1—z)=ut’. Thus (E) reduces
to 1=1 and the lemma is proved. We observe incidentally that this also provides a
proof of the necessity of condition (4). '

One could complete the proof-by considering each of the remaining fourteen
special cases, but this does not seem profitable even through none are as involved as the
above. There is however another method which avoids most of these calculations
and has some independent interest. - '

w'  Theorem (A.1). — Let G be a group and U a subset of G such that U=U""' and
’_QlaiU + 0. for any finite set of points a;in G. Let b be a function defined on the set of points X
consisting of all pairs (s,t)eG X G with s, t, steU, taking values in an abelian group A satisfying
b(s, tr)b(t, r)="0b(st, r)b(s, t) whenever s,t,r, st,tr,streU. There exists an extension ¢ of b to
Gx G which is a cocycle. Moreover, any two extensions differ by a coboundary.

Progf. — We can find a complex vector space W and a faithful representation
of A on W; we shall now simply view A as a subgroup of GL(W). Now if fand g are
two functions on G, we shall say that f=g almost everywhere (a.e.) if f=g on a set

of the form ir_lla,-U. This is clearly an equivalence rel\ation, and we denote by V
the set of equivalence classes of functions from G into W. Then V is a vector space
which is non zero under our hypothesis; we shall with the usual abuse write the same
symbol f for a function and its class. If a is function defined a.e. in G with values in A,
and geG, then (Mf)(x)=a(x)f(gx) is a well defined linear operator M on V. We
let H denote the group of all such transformations, and note that A is naturally a subgroup
of the center of H.

Now for each seU, we defined an element L(s) of H by (L(s)f)(x)=b(s, s~ x)f(s 'x)
where b is the function of the theorem. A simple calculation shows that

(L) L(8)f) (%) =b(s, 2) (L(st)f ) (%)

for all s, ¢, x such that s, ¢, steU and xesUnU and hence that L(s)L(¢)=b5(s, #)L(st)
if (s,t)eX. If p is the natural projection of H into H/A, and J(s)=p(L(s)), then
J&J@) =] (st) for (s,¢)eX. It follows from Lemma 6 of [41] that J extends uniquely
to a homomorphism of G into H/A. (The lemma in question asserts that G is naturally
isomorphic to the free group on symbols (s), seU, subject to the relations (s)(£) = (st)
for all (s5,t)eX.) We denote this extension by J, and choose for each seG an
element K(s) of H with p(K(s))=J(s) and with K(s)=L(s) if seU. Then we must
have K(s)K(¢)=c¢(s, t)K(st) forall (s,£)eGxG with ¢(s, f)eA. Evidently c¢=5 on X
and ¢ is a cocycle extending b.

Finally, if 4 is any extension of & as a cocycle to GXG, let us define
(M(s)f)(x) =d(s, s~ *x)f(s"'x). Then evidently, M(s)M(¢)=d(s, t)M(st) and so if
N(s)=p(M(s)), N(s)N(¢) =N(st) ; but on the other hand, if seU, d(s, s™'x) =5(s, s~ 'x) a.e.,
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and so M(s)=L(s), and hence N(s)=]J(s). By unicity, N =], and it follows that
M(s)=a(s).K(s) where K is as above, and a is some function from G into A. We find
then that a(s)a(t)K(s)K(¢)=d(s, t)a(st)K(st) and hence that ¢ and d differ by the
coboundary of a. This completes the proof.

We note that a unique class in H*(G, A) is determined by the above, and hence
an extension of G by A. It is absolutely clear from the proof that this extension E is
simply the subgroup of H generated by L(s), seU, and A. This extension is equipped
with a partial cross section defined on U, namely s L(s).

We now apply the Theorem above to the situation of Lemma (A.1), taking U to
be the complement of the subgroup B. The hypothesis are fulfilled whenever B has
infinite index in SL,(k); i.e. whenever £ is infinite. (If £ is finite, it follows from [40]
that any function satisfying (1)-(4) is identically one so there is nothing to prove in this
case anyway.) The proof of Theorem (g.2) will be complete once we show that b as
function on £*x k" is the Steinberg cocycle of the extension E produced by Lemma (A.1)
and Theorem (A.2).

The Steinberg cocycle of any extension is computed as follows. We choose
representatives B(x(f)) and B(h(s)) for x(f) and Ak(s), and then the commutator
[B(A(s)), B(x(t))]=D(x(s*t—t)) is a representative for x(s?4—¢) independent of our
choices. Now if B(w(1)) represents w(1), let D(y(¢))=B(w(1))D(x(—£))B(w(1))~! and
D(w(t))=D(x(#))D(p(—¢1))D(x(¢)), and finally D(k(¢))=D(w(¢))D(w(—1)). Then
the Steinberg cocycle ¢ is defined by the equation D(A(s))D(A(2)) =c(s, t)D(h(st)). At
this point we need to know in more detail some of the operators L(s) seU defined by
Lemma (A.1) and Theorem (A.1). It g=xww(t)y(v), let x(g)=u, w(g)=¢ and
then a simple calculation shows that for seU,

(L)) (@) =b((x(g)—x()w(s) ™", —w(s)) " b((x(g) —x(8))w(s) ™", —w(g))f(s™"g)-

Now clearly we may choose B(x(t))=L(w(—1))L(w(1)x(f)) and by using (2), (8) and (1),
this becomes (B(x(¢))f)(g)=f(x(—1%)g). Also we may take B(k(s))=L(w(s))L(w(—1))
which upon simplification yields (B(h(s))f)(g)=0b(s, —w(g))f(h(s)"'g). Then compu-
tation of the commutator above shows at once that D(x(¢))=B(x(¢)). Furthermore
using the fact that &(x(t)s, »)=05(s, »)=>0b(sx(¢), x(—t)y) for (s,y)eX, we see that
D(x(¢))L(s)=L(x(t)s) and L(s)D(x(¢))=L(sx(t)) if seU. Since B(k(1))=T1,
L(w(1)) '=L(w(—1)) and then we see that
D(»(t))=L(w(1))D(x(—£))L(w(1)) " =D (x(t"")) Lw(t ")) D(x(t7"))
and hence that D(w(¢f))=L(w(t)). Finally we see that
(D(A(s))f ) (8)=(B(A(s))f ) (§) =b(s, —w(&))S(h(s)")-
Then calculation of D(A(s))D(k(¢))D(k(st)) =" yields b(s, t) and the proof is complete.
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