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GROUP EXTENSIONS OF J&-ADIC
AND ADELIC LINEAR GROUPS(I)

by CALVIN G. MOORE (2)

INTRODUCTION

If G is a group and A an abelian group such that G operates on A as a group of
automorphisms (i.e., A is a G-module), then one has defined cohomology groups H^G, A),
n^9 [17]- The group H^G, A) represents the crossed homomorphisms of G into A
modulo the principal ones, or simply Horn (G, A) if G operates trivially on A [17].
If A is a G-module, an extension of G by A is an exact sequence

. . . , . , . /
l^A^E^G-^i

of groups such that the operation of G on A by inner automorphisms of E is the given
operation of G on A. (If A is a trivial G-module, we speak of central extensions of G
by the abelian group A.) One knows that HP(G, A) is isomorphic to the equivalence
classes of extensions of G by the module A. Addition ofcocycles corresponds to the Baer
product of group extensions, and the neutral element of H^G, A) to the semi-direct
product ofG and A (or the direct product when A is a trivial G-module) [17].

If G and A are locally compact (separable) topological groups, and if G acts on A
as a topological transformation group of automorphisms, one may modify the definitions
and arrive at cohomology groups H"(G, A) which take into account the topology [30].
The group H^G, A) consists of the classes of continuous crossed homomorphisms of G
to A modulo principal ones, and H^G, A) classifies topological extensions of G by A.
In this context a topological extension is an exact sequence of topological groups

. I ,̂  TC _^i ->A-^E->G-> i

which is an extension of G by A as abstract groups with i a homeomorphism of A onto
a closed subgroup of E and such that TT induces an isomorphism of topological groups
E/z(A)^G. Occasionally we shall be dealing with a topological group G, and also
with the same group G, but viewed as abstract group; we denote this group by G0.

(1) Research supported in part by the National Science Foundation under grant no. GP-5585.
(2) Sloan Foundation Fellow.
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6 C A L V I N C. M O O R E

Then if A is a G-module, H^G, A) and H^G0, A) are both defined and there are natural
homomorphisms from the former to the latter. (To be perfectly precise, one should
write A° for A viewed as an abstract G^-module, but we shall not do this as no confusion
will arise.) One of the most important cases is that of the circle group T viewed as
trivial G-module; the group H^G, T) arises naturally in the study of unitary represen-
tations of groups.

The object of this paper is the study of the groups H^G, A) where G is a semi-
simple algebraic linear j^-adic or adelic group (e.g. G==SL^(k) or SLg(A) where k is
a locally compact non-discrete field (a local field), or where A is the ring of adeles of a
number field or a function field in one variable over a finite field). If G is such a group
taken over the real or complex numbers instead, and if A is a trivial G-module, one
knows that H^G, A) ^Hom(7Ti(G), A) where T^(G) is the usual fundamental group
of G [37]. We shall obtain very natural generalizations of these results, valid for all
locally compact fields. The structure of these cohomology groups seems to have significant
arithmetic interest since their determination turns out to be equivalent to solving the
congruence subgroup problem [8], [9], [io]. (See Chapter IV.) Furthermore Well,
in his memoir [41], found certain cohomology classes of order two in H^G, T) where G
is the symplectic group over either a local field or the adele ring of a global field, and he
found moreover an intimate relation of these cohomology classes with (among other
things) the quadratic reciprocity law. We will show that the complete group H^G, T)
has the same intimate relation with the higher reciprocity lawsofArtin.

The results are organized as follows: Chapter I deals with certain preliminaries
about the cohomology of groups which will serve as a framework for the sequel.
Chapter II is devoted to uniqueness theorems in local and global class field theory.
The determination of the cohomology groups (in Chapter III) is in terms of usual objects
of class field theory (the norm residue symbols, and the reciprocity formula) and the
unicity of these objects plays a key role in the determination of these cohomology groups.
Chapter III contains the main results (the statements of which do not depend on
Chapter II) and Chapter IV contains a brief discussion of the connection between the
above and the congruence subgroup problem.

T. Kubota has obtained independently results which overlap with ours; see [23].
We would like here to acknowledge extremely useful conversations and correspondence
about this work with G. P. Hochschild, S. Lang, A. Weil, B. Wyman, J.-P. Serre and
H. Bass.
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CHAPTER I

i) This chapter is devoted to the definition and the study of the < c fundamental
group " of certain abstract and topological groups. For topological groups, it need
not coincide with the usual fundamental group, although it does in the most important
cases (e.g. semi-simple Lie groups). Our notion is defined in terms of group extensions,
and has of course a very close formal similarity to the usual fundamental group.

For the present, G will denote an abstract group. We say that G is simply connected
if for every central extension

i ->A->E-^G-> i

of G by any abelian group A, there exists a unique homomorphism 9 of G to E with
7^09= id (in particular the extension splits). The analogy with the notion of simple
connectivity for, say, Lie groups should be clear.

Lemma (1.1). — The following are equivalent :
(1) G is simply connected.
(2) H^G, T^H^G, T)=o where T is the circle group.
(3) Hl{G,A)=H2(G,A)=o for any trivial G-module A.
Proof. — If G is simply connected, any central extension of G by T is trivial so

HP(G, T)=o. Now if H^G, T)={=o, then the trivial extension E==TxG would have
more than one splitting homomorphism of G into E. Thus (2) follows from (i). If (2)
holds, we note that H^G, S^H^G, S)=(o) where S is any (possibly infinite) product
of copies of T. Now if A is any trivial G-module, we can find such an exact sequence

o — > - A - > S — > M - > o

of trivial G-modules (the homomorphisms of A into T separate the points of A; from
this fact it also follows that H^G.A^o). Now since H^G, M^H^G, S)==o, the
exact sequence ofcohomology for the above short exact sequence shows that H^G, A) == o
also.

Finally, if (3) holds, and E is any extension of G by A with projection TT from E
to G, the vanishing of EP(G, A) implies the existence of a homomorphism 9 of G to E
with 7:09= id. Any other homomorphism 9' with this property must clearly be of
the form <p'=(Bo(p with peH^G, A)=Hom(G, A). Since this group vanishes, ( B = = i ,
and 9=9'.

We notice, of course, that H^G, T)==o is equivalent to [G, G]=G where [G, G]
always denotes the commutator subgroup. (When one discusses covering groups in the
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8 C A L V I N C. M O O R E

usual topological sense, one always imposes an assumption of connectivity; the analogue
of connectivity in the present situation is precisely the condition that G=[G, G].)

If E==[E, E], we shall say that E covers G (or more properly that a surjective
homomorphism TC from E to G is a covering homomorphism) if the kernel of n is central
in E. Notice then that [G, G] == G necessarily. We shall prove that any group with
[G, G] == G has a simply connected covering group. We first note that such a covering
is unique.

Lemma (i.a). — If E,, z==i, 2, are two simply connected covering groups of G, then
E^ Eg as group extensions of G.

Proof. — Let A, be the kernel of the projection TT, from E, to G, and let o^eH^G, AJ
be the class of the extension. We inflate o^ to a class in H^Eg, A^) be means of the
projection TCg. We then have a central extension

i -> A^ -> E^g p^ Eg -> i

of Eg by AI. By hypothesis we can find a unique homomorphism 9 of Eg into E^g
with j&gocp==id. Since the class of the extension E^g is the inflation to Eg of the
class of the extension E^ of G, there is a homomorphism (3 of E^g onto E^ such that
7^o(B=7Tgo^g. Now let ^==(3o<p, which is a homomorphism of Eg into E^; then
7rio^=7rio((3o<p)===(7rgo^)o<p==7Tg by the above, and so ^ is a homomorphism of group
extensions. We reverse the indices and construct a homomorphism <j/ of group extensions
from Eg to E^. Then ((/O^===Y is a homomorphism of group extensions from E^ to
itself. Then yW-^"1 ls an element ofA^ and since A^ is central this is a homomorphism
of EI into AI which is therefore trivial since [E^, EJ = E^. Thus y(A:) = .y. One proves
similarly that (^o^KjO^ for j/eEg. Thus E^ and Eg are isomorphic as group
extensions.

Lemma (1.3). — If G=[G, G], then G has a simply connected covering group.
Proof. — The following is one of various ways of constructing such a covering.

Let L be the free abelian group generated by objects a(x,jy), x,jyeGxG. Let R be
the subgroup generated by the elements a(st, r)a{s, t)a(s, tr^a^t, r)~~1 and a(i,s) and
fl(^, i) for all s, t, reG. Put Bo==L/R, and let (B(J, t) be the image of a(s, t) in this
quotient group. Then it is absolutely clear that (3 as a function from GxG to Bo is
a two-cocycle ofG with values in the trivial G-module BQ. Let Eg be the group extension
of G by Bo defined by (3$ Eo==BoXG as set and {a,g)(b, h) = {ab^{g, h),gh) is the
multiplication [17].

Now suppose that F is any central extension of G by an abelian group D. We
choose a normalized cocycle y representing this extension and view F as DxG with
the multiplication defined just as above. Consider now the mapping ^ from L to D
given by ^i(a(^ ^))==Y(^ t) on the generators. It is clear from the fact that y is a
normalized cocycle that ^i(R)=(i), and hence ^ defines a homomorphism ^o of Bo
into D with ^(P^ ^)) = Y^ f)9 I11 vlew °f Ae definition of the group law in EQ and F,
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GROUP EXTENSIONS OF />-ADIC AND ADELIC LINEAR GROUPS 9

one sees that ^Q extends to a homomorphism of group extensions, again denoted by ^o,
of EQ into F. Thus Eg has the first part of the universal property required for simple
connectivity.

Now let E=[Eo, EJ be the commutator subgroup of Eo. Since G==[G, G],
the projection of E onto G is all of G so that E is a group extension of G

I-^B->E->G-^I

where B=BonE. Now E==B.Eo with B central so that [E, E]==[Eo, Eo]=Eo, and
thus H^E, T)=(o). I fF i s any central extension of G by D, we saw that there exists
a homomorphism ^o of group extensions of Eo into F. Thus ^, the restriction of ^
to E, is also a homomorphism of group extensions. In terms of cohomology, this says
exactly that the inflation homomorphism HP(G, D) ->• H^fE, D) is the zero map for
every trivial G-module D.

We contend now that E is simply connected, and to do this, it suffices to show
that HP(E, T)==o. In view of the spectral sequence for the group extension E of G
by B [21], it suffices to show first that the E^ term, H^G, H^B, T)), is zero. But this
group is zero since H^B, T) is a trivial G-module and G=[G, G]. Then one must
finally show that the restriction homomorphism r : H^E, T) -> H^B, T) is the zero map.
This is contained in the following lemma.

Lemma (1.4). — If E==[E,E] and B is any central subgroup, then the restriction
homomorphism H^E, T) -> H^B, T) is the ^ero map.

Proof. — Let pceH^E, T) and F be the corresponding extension ofE by T. If seG
and ^eB, let s ' and t ' be representatives of s and t in F. Then the commutator
[V, t ' ] depends only on s and t, and we denote it by <p(.y, t). We note that 9 is a bilinear
map from ExB into T, and since E=[E,E], 9(^^=1.

Now let F' be the inverse image of B in F. Then F' is an extension of B by T.
It is a corollary of the previous paragraph that F' is an abelian group. Since T is divi-
sible, this extension splits, and this says that the restriction of a to B is the trivial class as
desired.

Thus we have shown that if G = [G, G] we have a central extension
I->B->E->G-^I

with E simply connected. Moreover we have seen that such an extension is unique up
to isomorphism of group extensions, and so the abelian group B is determined uniquely.
It is quite reasonable to call B the fundamental group of G, and to denote it by ^(G).
Recall that a central extension F of G is a covering group of G if [F, F]==F; we shall
call the extension E constructed above the universal covering of G.

Lemma (1.5). — Let F ' b e a covering group of G. Then the following are equivalent:
(1) F is the universal covering of G.
(2) inflation9. H^G, A) -> H^F, A) is the ^ero map/or every trivial G-module A.
(3) inflation: H^G, T) -> H^F, T) is the ^ero map.
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io C A L V I N C. M O O R E

Proof. — ( i) => (2) => (g) are clear from the definition. Finally 3 => i follows from
Lemma (1.4) and the remarks immediately preceding it.

The following shows that the universal covering is universal.
Lemma (1.6). — IfFis any covering group ofG, then F is covered by the universal covering

group E of G and so the universal covering group of F coincides with that of G.
Proof. — By exactly the same argument as in Lemma (1 .2) we may produce a

homomorphism ^ of group extensions (ofG) of E into F. Let F'cF denote the range
of^. Then F' is clearly a covering group ofG. If AcF is the kernel of the projection
of F onto G, it follows that F=A.F7 . Then as A is central, [F, F]==[F7, F']=F',
but [F, F] == F since F is a covering group of G. Thus F = F' and we are done.

We note that if [G, G] = G, the groups which G covers are exactly the groups G/D
where D is a central subgroup of G. The following fact shows that there is a smallest
group covered by G.

Corollary. — If G==[G, G] and Z is the center of G, then G/Z is centerless and covers
only itself.

Proof. — IfZ'/Z is the center of G/Z, then G/Z covers G/Z7, but by the lemma the
universal covering of G/Z covers G/Z7 and this says that Z7 is central in G and hence
that Z'^Z as desired.

Let G^= [G^, GJ, i == i, 2, and let 9 be a homomorphism of G^ into G^. If E .̂ is
the universal covering ofG^, then the universal property ofE^ yields a homomorphism 9'
of E^ into Eg compatible with 9. Then the restriction of 9' to ^(G^) cE^ is a homo-
morphism 9^ ofT^(Gi) into 7^2(^2) • It is clear that the assignment ofir^G) to G together
with the induced maps 9 is a covariant functor. If F is a covering group of G, then
we have an induced homomorphism ^(F) -> 7ri(G). Lemma (1.6) says that this homo-
morphism is injective.

Now if G==[G, G], let E be the universal covering, and let TCi(G) be the funda-
mental group. If A is any trivial G-modnie, the restriction-inflation sequence [21]
yields, in view of the fact that H^E, A)='H.2(E, A)==o, the following:

o -> H^G), A) -I H^G, A) -> o.

Here t is the transgression map [21]. Notice that H^TT^G), A)==Hom(Ti^(G), A).
Theorem (1 .1 ) . — The transgression homomorphism is an isomorphism'.

Hom(7Ti(G), A) ^ H^G, A)
for any trivial G-module A.

We want to note here an alternate construction for ^(G). Observe that the
cochain complex C^G, T) consists of compact topological groups with the topology of
pointwise convergence. Moreover the differential d is continuous, and it follows that
]-P(G, T) becomes in a natural way a compact group.1 Now if G==[G, G], a special
case of Theorem (1.1) says that H^G, T) ^ Hom(7Ti(G), T). We view TT^G) as a
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GROUP EXTENSIONS OF /?-ADIC AND ADELIC LINEAR GROUPS n

discrete group so that then H^G, T), viewed as the dual group, inherits a natural compact
topology.

Theorem (1.2) . — The topology on H^G, T) induced by point-wise convergence of cochains
coincides with the topology of H^G, T) viewed as the dual group9 of TT^G).

Proof. — This is essentially implicit in [31]; the map from Hom(^(G), T) into
H^G, T) with the topology of convergence of cochains is clearly continuous, hence
bicontinuous.

We shall be using this compact topology on H^G, T) in the sequel. We note
that if 9 is a homomorphism G->H, the induced map 9* : H^H, T) -> H^G, T) is
continuous as is clear from the definition of the topology.

If G is a finite group, the existence and some of the properties of its universal
covering are well known from the work of Schur [35] in 1904.

We shall conclude this section with some facts about what one might call relative
fundamental groups. Let G=[G,G], and let K=[K,K] be a subgroup, and denote
by i the injection of K into G. Then we have a homomorphism ^ of^(K) into TT^G).
Let D be its range and let T^(G, K) denote the quotient group T^(G)/D. Now if E
is the universal covering of G, D is a central subgroup of E, and so Eo=E/D is a
central extension of G by TC^(G, K). Let us note that we have restriction maps
F : H^G, A) -> H^K, A) for any trivial G-module A. It is absolutely clear that the
kernel of z* in HP(G, T) is exactly the annihilator of the subgroup D of T^(G) where
of course we view H^G, T) as the dual group of^^G).

Lemma (1 .7) . — Let ao denote the class in H^G, TT^G, K),) of the extension EQ. Then
r(ao), the restriction of (XQ to K is the trivial class.

Proof. — By Theorem (1.1), ^(oco) corresponds to a homomorphism of T^(K)
into TCi(G, K). Also o^ corresponds to a homomorphism of^G) into ^(G, K), which
is, by definition of Eg, just the projection \ of ^(G) into -n:i(G, K). Then by the theory
above, ^(ao) is represented by the homomorphism Xo^ which is zero by construction;
hence ^!(!(ao)=o.

In view of this lemma, there is a homomorphism ̂  of K into EQ such that 9oo^o = l

where 90 is the natural projection of EQ onto G. Moreover io is unique subject to these
conditions since K==[K, K]. We show that io is universal in the following sense.

Theorem (1.3). — Let E^ be any central extension of G by an abelian group A with pro-
jection map 91 of EI onto G. Suppose that there is a homomorphism i^ of K into E^ such that
9^o^=z. Then there exists a unique homomorphism j of E() into E^ such that 9ioj==9o.
Moreover joi^^i^ so that j ( t extends ?? ^.

Proof. — If E is the universal covering of G, there is a homomorphism of group
extensions^*7 ofE into Ei. If we can show that j'(D) = o where EQ == E/D, thenj' deter-
mines a homomorphism of group extensions of E^ into E^ which clearly satisfies our
requirements. Moreover j is unique since G==[G,G].
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is C A L V I N C. M O O R E

Now the class of the extension E^ of G by A corresponds to a homomorphism X
ofTTi(G) into A which is clearly the restriction ofj' to ^(G). But the restriction of the
class of this extension to K, z*(X), is trivial by hypothesis. On the other hand, i*(\) corres-
ponds to a homomorphism of7ti(K) into A which is clearly exactly \oi . Thus \oi ==o,
and this says that X (and hence j ' ) vanishes on D as desired.

Thus one may think of Eg as being simply connected relative to its subgroup ^0(^)5
and one could in fact formulate the above theorem in terms of central extensions of Eo
(instead ofG) splitting on z'o(K). We note that the topological analogue of the relative
fundamental group 7ri(G, K) is just the topological fundamental group of the homo-
geneous space G/K, as can be seen from the exact homotopy sequence of a fibration [38].

We conclude with the following fact which is obvious by now.
Lemma (1.9). — If A is any trivial G-module, the kernel of the restriction homomorphism

i*: H^G, A) -> HPfK, A) is isomorphic to Hom(7Ti(G, K), A) viewed as a subgroup of
HomfT^G^A^H^G.A).

In conclusion one might raise the rather natural question of whether these isomor-
phisms (say with K==(^)) H^G, A) ^Hom(7^(G), A) are special cases of isomorphisms
in all dimensions. We do not think that this is the case, but rather that it is more fruitful
to think of these maps as analogues of the Hurewicz isomorphisms [38]. There One
assumes vanishing of the first n—i groups and obtains results about the 72th group. Here
we assume vanishing of H1 and obtain results about H2. One may carry this further and
show that if H^G, A) = H^G, A) for all trivial G-modules A, then one obtains structural
results similar to those here for H^G, A), and so on in higher dimensions.

2) In this section we shall carry out the slight modifications of the above in order
to make it apply to topological extensions. Let G be a locally compact separable group,
and A a locally compact separable topological G-module. We have cohomology groups
H^G, A) defined (see above); at times we shall have to view G as abstract group, and
we denote this group by Ga. The cohomology groups of Ga in A will be denoted
byH^G^A).

We say that G is simply connected if for every central topological extension

I -^A-^E^G->I

with A locally compact separable, there is a unique continuous homomorphism 9 of G
into E such that 7Tocp=id. We can characterize simply connected groups as in
Lemma ( i . i), but the results are not quite as sharp.

Lemma (2.1). — G is simply connected if and only if H^G, T) = HP(G, T) = o where T
is the circle group, and H^G, A)==o for any discrete abelian group.

Proof. — It is clear just as in section i that G is simply connected if arid only
if H^G.B)^^^^)^) for all trivial G-modules B. However the vanishing
of H^G, B) follows from the vanishing of H^G, T) by duality theory. Now suppose
that H^G, T)==o; then if S is any group which is a countable (or finite) product of
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GROUP EXTENSIONS OF /»-ADIC AND ADELIC LINEAR GROUPS 13

copies ofT we clearly have H^G, S)==o. IfB is any (separable) compact group viewed
as trivial G-module, we can find an exact sequence
(*) • o-^B-^S^S/B->o

with S as above. Since H^G, S/B^H^G, S)=(o), it follows from the exact coho-
mology sequence of (*) that H^G, B)==(o).

Finally we suppose in addition that H2(G^D)==o for any discrete group D.
Now if A is any trivial G-module, we can find an open subgroup B of A and a
discrete subgroup D of B such that B/D is compact [29]. Then by hypothesis,
HP(G, D) = H^G, A/B) == o, and we have shown that H^G, B/D) = o. Then it follows
from exact sequences of cohomology that H2(G,A)==o.

Remark. — The final condition in the lemma above is annoying; we can show that
it is implied by the first two conditions (hence giving an exact analogue of Lemma ( i . i))
in a large number of special cases. However we know neither a proof nor counterexample
in general.

If E is a central extension ofG by A, we say that E covers G if [E, E] is dense in E.
Note that the condition H l(E,T)=o of Lemma (2.1) is equivalent to the density
of [E, E] in E.

Lemma (2.2). — If G is locally compact (separable), then G has at most one simply
connected covering group up to isomorphism of topological group extensions.

Proof. — The argument of Lemma (1.2) applies without change.

It is perhaps possible that we have too weak a notion of covering group. One
could instead of the density of [E, E] in E, demand that [E, E]==E. Lemma (2.2)
remains true (of course) and moreover it is then true that a simply connected covering
group of G (if it exists) covers any other covering of G. This statement is easily seen
to be false with our present definition. However Lemma (2.3) (below) is true with
the weaker definition.

In view of Lemma (2.2), one has at most one extension
I^A->E-^G->I

with E simply connected. Keeping in mind section i, we should call A the fundamental
group ofG, and denote it by ^i(G) whenever it exists. Note that ^(G) is now a topo-
logical group. Whenever E exists, ^{G) describes central extensions just as it should.

Lemma (2.3). — If ^(G) exists, then H^G, A) ̂  Horn (71:1 (G), A) for any locally
compact (separable) trivial G-module A. (The cc Horn " in this equation indicates of course
continuous homomorphisms.)

Proof. — This follows by the same argument as in Theorem ( i . i). (See [30]
for the restric don-inflation sequence in this context.)

We note that if a simply connected covering E of G exists, then E is a splitting
group for G in the sense of [31]. Moreover the topology which H^G, T) inherits as
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14 C A L V I N C. M O O R E

the dual group of ^i(G) by the above lemma is exactly the splitting group topology which
is discussed at length in [31].

We have not yet treated any existence questions. The following two theorems
concern this, but the hypotheses are of such a nature that they are never satisfied (except
in cases where the results are essentially known) for the groups of interest to us in this
paper. (Existence of 7i:i(G) for groups of interest are corollaries of the main theorems
in later sections.) Moreover the arguments are rather tedious and take us far afield
and more properly belong in a forthcoming paper devoted to this and related questions.
We mention them here with only a bare sketch of proof to indicate that the definitions
above are not vacuous.

Theorem (2.1). — If G is almost connected, i.e. G/GQ (Gg being the connected component)
is compact^ and if G == [G, G], then G has a simply connected covering group.

Theorem (2.2). — If G is a connected Lie group with [G, G] == G, then G has a simply
connected covering group E with [E, E]=E. Moreover E is a connected Lie group, and T^(G)
is the direct sum of the usual fundamental group of G, and the dual vector space to H^g, R)
where Q is the Lie algebra of G and the group above is Lie algebra cohomology with coefficients
in the trivial one dimensional Q-module R.

We remark in these theorems, the hypothesis that [G, G]=G (not just that it
is dense in G) is crucial. There are easy counterexamples if [G, G] is only dense. We
note in Theorem 2 that if H^g, R)==o (in particular if G is semi-simple) then TC^(G)
is the usual fundamental group. Moreover the extension described in Theorem (2 .2) ,
E, is exactly the ordinary topological universal covering group, as is /implicit in the
statement of Theorem (2.2). That this is the case for semi-simple groups was proved
by A. Shapiro [37].

We sketch the idea of Theorem (2.1). By [31], we know that G has a splitting
group E'; that is, a central extension of G by some A such that the transgression homo-
morphism: H^A, T) -> H^G, T) is surjective. Now we let E be the closure of the
commutator group of E'. Then E covers G since G==[G, G]. (This is the point at
which the argument fails if [G, G] is only dense in G.) One then proves that E is simply
connected. The fact that H^E, T^H^E, T)=(o) follows just as in Lemma (1.3).
The tedious part is to show that H^G, D)==(o) for any discrete group. Let us note
that Lemma (1.4) is valid for topological groups.

Lemma (2.4). — If G is locally compact separable and [G, G] is dense in G,
and if Z is a closed central subgroup, the restriction map: H^G, T) -> HP(Z, T) is the
^ero map.

Proof. — The argument in Lemma (1.4) applies directly if we note that a central
extension (Z abelian)

i->T->E->Z->i

splits if and only i fE is abelian (as is evident by Pontrjagin duality), and if we note that
the commutator function constructed in (1.4) is continuous in its arguments.
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The above results suggest perhaps that one should assume that for this development
that [G, G] is all of G and not just dense. In the following we want to compare the
topological cohomology H^G, A) with the cohomology H^G", A) of G viewed as an
abstract group. We noted before that we have natural homomorphisms of H^G, A)
into H^G^ A) for every n.

Theorem (2.3). — If G=[G, G], the natural map ^ of H^G, A) into tt\G\ A) is
injective.

Proof. — This assertion is equivalent to the (somewhat amazing) fact that if

i ->A->E^>G->i

is a topological extension of G by A which splits as extension of abstract groups, then it
splits as extension of topological groups. In fact we shall show that if 9 is a splitting
homomorphism of G into E (i.e. 7109= id), then 9 is necessarily continuous, and that
E == A x G as topological groups.

If such a 9 exists, E=AxG' as abstract groups where G'==y(G). Since A is
central and G==[G, G], it is clear that G' is the commutator subgroup [E, E] of E.
Now we claim that G'==[E, E] is a Borel subset of E. In fact, if K^ is a sequence of
compact sets exhausting G, then for each 72, il^=fk^k^k^lk^~l, ̂ eK^J is compact and so
the group E^ generated by L,^ is a Borel set (an Fg in fact). Clearly G'== U E^ and so G'
is a Borel subset, and in particular G' is a standard Borel space [26]. We consider
the map h of G'xA into E given by h{a, g')=ag'$ it is clear that h is a bijective Borel
map of G'xA onto E. We deduce from Souslin's theorem ([26] or [6]) that h is a
Borel isomorphism, and hence that the quotient Borel space E/G' is a standard Borel
space (Borel isomorphic to A). It follows by [26], Theorem (7.2) , that G' is in fact a
closed subgroup, and hence locally compact. Thus AxG' is locally compact and
h : A x G ' ^ E is continuous, so by [7], p. 25, A is a homeomorphism. That is, the
extension E of G by A splits as topological extension.

We conclude this section with some remarks on the relative fundamental groups
for topological groups. Let G and K be locally compact (separable) groups and let i
be a continuous injection of K into G. We are not assuming that i is a homeomorphism
onto z(K) (equivalently that i(K.) is closed); in fact there will be applications when z(K)
is dense in G. Suppose that G and K have simply connected covering groups E^ and E^,
and let 7Ti(G) and ^(K) be the fundamental groups. Then as we have noticed, i induces
a continuous homomorphism ^ of ^i(K) into T^(G). (This is the dual map to the restric-
tion homomorphism z* : H^G, T) -> H^K, T)). Let D be the closure of the range
ofi ; then D is also the annihilator, from duality, of the kernel of^. We form the group
E()=EQ/D viewed as a group extension ofG by 7Ti(G)/D, both groups with the quotient
topology. Let 9 and 90 respectively denote the homomorphisms of E and Eg onto G.
We denote 7Ti(G)/D by ^(G, K), the relative fundamental group. (In all of our appli-
cations, the range of ^ will be closed so D=^(7Ti(K)).)
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Lemma (2.7). — There is a unique continuous homomorphism i^ of K into Eo such that

(po0^)^-
Proof. —The uniqueness is clear since H^K, T)==(o). (K has a simply

connected covering group.) For existence, one must show as in Lemma (1.7) that
if o^eI-I^G, 7Ci(G, K)) is the class of Eg, then F(ao), its restriction to K is trivial. This
follows by the same argument as in Lemma (1.7).

Theorem (2.4)* — (Eg, io) is universal in the sense that ift^i is any central extension of G
by A, with projection 91 of E^ onto G, such that there exists a continuous homomorphism i^ of K
into EI with (pio^==z, then there exists a unique (continuous) homomorphism j of group extensions
oft^o mto EI. Moreover we have jo^==z\ automatically so that j ^ extends " z\.

Proof. — The argument is identical with that in Theorem (1.3).

Finally the analogue of Lemma (1.9) comes over without change except that
continuous homomorphisms are used instead of arbitrary ones.

Lemma (2.8). — If A is any trivial (topological) G-module, then the kernel of the restriction
map i* : H^G, A) -> H^K, A) is isomorphic to Hon^Tr^G, K), A) viewed as a subgroup of
Hon^G^A^H^G.A).
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CHAPTER II

3) As we have indicated above, this chapter is devoted to certain uniqueness
theorems in class field theory, which will be crucial in the following Chapter. These
results say that the familiar objects of class field theory (the norm residue symbols and the
reciprocity formula) are the only such objects satisfying appropriate axioms.

We shall begin with the local case; thus let A; be a locally compact non-discrete
field so that k is either a finite algebraic extension of Q^ the ^-adic field, or is a field of
formal power series over a finite field of constants (the non-Archimedian cases), or k
is the real or complex field (the Archimedian case). We shall denote the multiplicative
group k—(6) by k*. Let E^ be the group of roots of unity in k; then if A;+C, E^ is a
finite group and hence cyclic of some order n^ (==TZ if there is confusion about k).

The norm residue symbol ( , ) of local class field theory ([3], [33]), is a mapping
k*xk*->'Ej^ such that

(1)' ( , ) is bilinear.
(2)' (^)==(^)-1.

(3)7 (^)==(^-^.
(4)' (^)=(.,(i-^) if .+i. / _
(5)' ( 3 ) ls continuous from k*xk* into E^.
This function of course has many other properties, but the ones above (or rather

weakenings of the ones described below) are the ones of interest to us. A corollary of our
main theorem is that the norm residue symbol and its powers are the only functions
satisfying (iy-(5)'. .

The weakening of these conditions which is of interest to us seems perhaps artificial
without the motivation which is supplied by the following Chapter.

Definition (3.1). — Let A be a locally compact separable abelian group and let S(A)
denote the set of all functions b from k* xk* to A satisfying

(1) b{s,tr}b(t,r)=b{st,r)b{s,t), &(i, s)=b[s, i)=i.
(2) b^t)==b{t-\s).
(3) b{s,t)=b^-st).
(4) b[s,t)^b{s,(i^s)t) s^i.
(5) b is continuous.
We shall call such functions Steinberg cocycles. If k is any field and A is any

abelian group, then (i)-(4) above make sense. We shall call the group of such
functions S^(A). (Note that (i) and (5) say that beZ2{k*, A).) Our main theorem
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18 C A L V I N C. M O O R E

in the local case describes the group S(A) completely. To be precise, let us define a
subgroup So(A) ofS(A) as follows. If k is non-Archimedian, let So(A) be the set of all
functions from k*xk* into A of the form b{s, t)==f{{s, t)) where fe Horn (E/,, A), and ( , )
is the norm residue symbol. Since the range of ( , ) generates E^, So(A) ^Hom(E^ A).
If k==VL, define a function b^ from k * x k * to Z (the integers) by ^(j, t)==o unless s
and t are both negative, and then bo{s, t)=i. It may then be verified that ^eS(Z).
Then let So (A) = [b \ b ==fobo with /eHom(Z, A)}. Notice that if A == Zg, the integers
mod 2 and/a is the natural projection of Z onto Zg, then f^b^ is the norm residue symbol
forR. Finally if k =C, let So(A)==(o)=Hom((o), A).

Theorem (3.1). — For all k, So(A)=S(A).
The remainder of our discussion for local fields (the next four sections) will be

devoted to proving this fact. We note that So (A) is of the form Hom(B^, A) for some
group B/,. The whole point of this is that in Chapter III we shall show that S(A) is
isomorphic to H^SL^A;), A) where SL^{k) is the locally compact group of 2 x 2 uni-
modular matrices over k and A is viewed as a trivial module. Thus by Chapter I, we
may identify B ;̂ with the fundamental group ^(SL^A;)), so if k is non-Archimedian,
Tr^SLg^)) = E^, whereas ifk is real ^(SL^R)) == Z, and ifk is complex TT^SL^C)) = o;
the latter two facts of course coincide with classical results. We shall investigate other
matrix groups (the simply connected Chevalley groups), but the results are not yet
complete in the general case. The results of [10] supply the complete answer for groups
of type A^ and G^.

We shall begin by drawing some consequences of (i)-(4) of the definition of S(A)
(Definition (3.1)). In fact if k is an arbitrary field and A an abelian group, we consider
the group S^(A). It should always be borne in mind that if b satisfies (i) of (3.1),
then b defines a central extension of k* by A

i ̂ A->E-^*->i.

If u, vek*, then let u and v be representatives for u and v in E. Then the commu-
tator [u, v] depends only on u and v and is denoted by [ ,̂ y],

Lemma (3.2). — If b is any cocycle defining the extension E above\ then
[u, v]==b{u, v)b(v^ u)~1 is a bilinear function of u and v.

Proof. — It is clear that [u, v~\ is a bilinear function of u and v (cf. Lemma (1.4)),
and one may compute that it is given by the formula of the lemma.

The following will be crucial for us.
Lemma (3.2). — If 6eS^(A), then,

[t,s]==b^s)b{s,t)-l==b[t^s)=b{s\t)-l

is a bilinear function of s and t.

Proof. — We begin by observing that the identity

b{t-\ t^b(t, s)b{t-\ s)^b(t-\ t^s}b(t\ s)b{t-\ s)
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GROUP EXTENSIONS OF p-ADIC AND ADELIC LINEAR GROUPS 19

is ( i ) (the cocycle identity) multiplied by b^t"1^). Now from (3) it follows that
b(t~1, t2)b(t~l, s)==b{t~1, t2s) and upon substitution of this into the above, we find
that b(t, s)==b{t2, s)b{t~1, s). Since b{t~1, s)==b{s, t) follows from (2), we see that
b(f2, s) = b(f, s)b{s, t)~1 which is the first of our identities. The second follows by inter-
changing s and t.

Some other consequences of (i)-(4) are listed in the appendix but we shall not need
them now. We also note that there is some redundancy in Definition (3.1). Namely
if we assume (i) and (4)3 then (2) and (3) are equivalent to each other. We also note
that if a function b is bilinear (as the most important examples are) then (i)-(4) can be
replaced by a single identity, namely b{s, ( i—s) t )b{t , j )==i.

Our next result reduces Theorem (3.1) to the case of a single coefficient group.
Remember that we are dealing with a fixed locally compact non-discrete field.

Lemma (3.3). — I f So(T)==S(T), then Theorem (3.1) follows^ i.e. S()(A)=S(A) for
any locally compact separable abelian group A.

Proof. — Suppose that 6eS(A); then if XeHom(A, T) (=A, the dual group
of A) then Xofi, the composition of X and b is clearly in S(T)=S()(T). By defini-
tion So(T) ^Hom(B, T) where B is a discrete (cyclic) group, finite or infinite. We
have a distinguished element b^ in Sg(B) (the norm residue symbol if k is non-
Archimedian, and as defined above for A:==R or C) such that ^—>^ob is this isomor-
phism of So (A) with Hom(B,A). If A==T, we give So(T) the topology of pointwise
convergence and observe that this is the same (compact) topology as that defined by
S()(T) ^Hom(B, T) = B, the dual group ofB. It is clear now that X — ^ X o & is a continuous
map from Hom(A,T)==A into So(T)^B. Then we have a dual map cp, which
is a continuous homomorphism of B into A. It is now clear from the definitions
that Xo^=X(<p(&o) ) for every XeA. Since the elements of A separate the points
of A, we must have ^ = = V ° & o 3 ^d so ^^(A) by definition. This completes
the proof.

We shall now conclude this section by disposing of Theorem (3.1) in the Archi-
median case.

Theorem (3.2). — If k is real or complex^ then So(A)==S(A).
Proof. — By Lemma (3.3), it suffices to show that So(T)==S(T); or in

other words, by definition it suffices to show that S(T)=(o) if k==C, and that
S(T)=={Xo^; XeHom(Z, T)} where ^o(j ,^)==o if either s or t>o and i otherwise
if k='K. The first step is to compute H2^*, T), the topological cohomology ofk* with
coefficients in T.

Lemma (3.4). — If k is Archimedian^ H2^*, T)==o.
Proof. — In both cases, H is the direct product RxL where R is the additive

reals and L is cyclic of order two or the circle group T, respectively, in the two cases.
One deduces from spectral sequences [30] or more directly if desired that

H\k\ T) ^H^R, ^©H^R, Hom(L, T))®!!2^, T).
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It is well known that H^R, T)===(o), and since Hom(L,T)==L is discrete,
and R is connected, H^R, Horn (L, T))= Horn (R, L)==(o). Finally it is also well
known that H^T.T)^^) and that H^A,!1)^) for any cyclic group A. Thus
H^T)^) as desired.

Now since any element of S(T) represents an element of H2^*, T) we find that
any b in S(T) is a trivial cocycle. However we have observed in Lemma (2.4) that b
is trivial if and only if it is symmetric. Thus b(s, t)=.b[t, s) and by Lemma (3.2),
b[s2, t)==b{t, ^)===i for any s and t. The following fact will be useful for us in the
sequel.

Lemma (3.5). — If ieZ^B, A) where B and A. are abeliari, and if b[s, t)==i for seD
and teS where D is some subgroup of B, then b(ds,t)==b{s, t) for deD and s, ^eB. Simi-
larly, if b{s,t)==i for all teD, b{s, td)==b{s,t) if deD.

Proof. — By the cocycle identity (i) of Definition (3.1), b[ds, t)b(d, s)== b{d, st)b{s, t)
and since the second and third terms are equal to i if afeD, the result follows. The
result for b{s, td) follows similarly.

We combine this result with Lemma (3.4)$ take B==A:*, A=T with D=(A;*)2

the group of squares in k*. We find then that b{s, t) depends on s and t only modulo
squares. If k=C, then {k*y== k* so that b{s, t)=b{i, i )=i for all s and t as desired.
If A;=R, then b{s, t) depends only on the signs ofs and t and this is clearly equivalent
to the desired result (i.e. that b(s, t)=i if either s or t is positive and b{s, t) is some
constant in T if s and t are both negative).

4) We now turn to the case of non-Archi median fields k, where the situation is
somewhat more subtle. Let 0 be the ring of integers in k and let U be the group of
units in 0. Let TT be a fixed generator of p, the maximal ideal of £>. Then k* ̂  U X Z
(Z is the integers) the isomorphism being (u, n) l-> un^

We let U^={^ : i =u mod p^ for n^ i. Then U^DU^+i; and each is an open
and closed subgroup of the compact group U; moreover riU^==(i). Let ky denote
the residue class field 0/p, and let q•==pn be its cardinality where p is the characteristic
of ky. Then it is well known [33] that U/U^^ is a cyclic group of order q—i
(prime to p). Moreover one can find a subgroup R of U such that U==UiXR.
Moreover R is of course precisely the set of elements of Ej, == E, the roots of unity in k,
of order prime to p. Finally VJU^^^^ky for n^i so that VJUy is a j^-group, and
hence U\ is a pro-p group [34]. The first step in determining S(T), as in the Archi-
median case, is to investigate H2^*, T). The fact that this is non-zero if A; is non-
Archimedian accounts for some of our difficulties.

Lemma (4.1). — We have an isomorphism

H\k\ T) ^ UOH^U, T)^ RQU^H^Ui, T)

Proof. — Since /;*=UxZ, the spectral sequence of group extensions [30] gives
H^.^^H^Z.^OH^Z.H^U.T))®^2^,^. The first term is zero and the
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second is clearly V, the dual group ofU, and this gives the first statement. Furthermore,
since U=RxUi, we obtain in the same way isomorphisms

H^U, T) ^ H^R, I^CH^R, H^Ui, T))®!!2^, T).

Now R is cyclic so H^R, T)=o, and the second term above is Hom(R, U^); but Ui
is a ^-primary torsion group, and R has order prime to py so Hom(R, U^) vanishes.
The second statement of the lemma follows immediately.

In addition to knowing the isomorphisms above it is perhaps well to know how
they are implemented. Thus, given a cocycle ae7?{k*^ T) we want to know how to
determine the components 91(0) (resp. 9a(^)) m U==U^xR (resp. H^U^, T)) of the
class of a. It is clear that ^{a) is the restriction of the class of a to U^. Now recall
that TT is our fixed generator of p $ then if seV, consider the function s \-> a{r^, s)a{s, 7r)-1.
By our remarks above (Lemma (3.1)) this is an element of U, and by the construction
of the spectral sequence, it is exactly (pi(^) [30].

Corollary. — The group H2^*, T) is a countable torsion group, and is the sum of a p-primary
group and a cyclic group of order q— i.

Proof. — Note that U^ and H^U^, T) are both ^-primary torsion groups.
Now we of course have a map oFS(T) into H2^*, T) since S(T) c7?[k\ T) by (i)

and (5). The first step is the computation of the kernel of this map. We recall that
a cocycle is trivial if and only if it is symmetric so we are looking for the symmetric
elements of S(T). At this point the whole argument divides into two cases — when p
(the characteristic of ky) is odd, and when it is two. The latter case is rather more
involved.

Lemma (4.2). — If ^=t=2, any symmetric element o/*S(T) is of order dividing two and
is in So(T); hence the kernel of the map of S(T) into H2^, T) is of order 2.

Proof. — The same result is true if p==2, but the argument is best deferred.
Now let b be a symmetric element of S(T) with ^4=2. Then by Lemma (3.2),
b{t,s2)==b{s2,t)=l, and so by Lemma (3.5), b{s, f) depends only on the classes of s
and t modulo (A*)2, the group of squares in k*. Since p is odd, (^/(A^^B is a group
of order 4, and moreover (k^DV^. Let us fix a generator TT of p, and note that the
cyclic group R is of even order so that we can choose some seR—(A:*)2. Then i, s, TC,
and STC are coset representatives for (A;*)2. We denote their classes in B by a^ a^ a^
and ffg respectively. We will abuse notation and simultaneously think of b as a function
on k * x k * and on BxB.

Steinberg [40] has observed that it is possible to find an element ~xek^
such that ~x and i—~x are both not squares in ky. Let x be the corresponding
element of R^^; then x and i—x are both in the coset of s modulo (^)2, and so
i = b {x, i —x) == b (e, e) = i by (4) of definition (3. i); or equivalently we have b [a^, a^) = i.

At this point we must separate two cases, depending on whether or not —ie(A*)2 .
If -le^)2, then b{s, s)==b{s, -s2) (by (3) of definition (3.1))=^, ̂ )=i. Thus
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we have b[a^ a^==i for all i. Also we find that b{s, t)===b{s, —st)=b(s, st) for all s
and t. In particular, b(^, £)==b(n, TO) and 6(7r£, e)==6(7r£, TTS^^^TTS, 7c) and so
b{a^ a^)==b{a^ ^)==6(^, ^3). Now b{a^ a^a^b[a^ a^)==b{a^ a^b{a^ a^) by the cocycle
identity (i). Since a^==i, and a^=a^ we see that b{a^ a^)b[a^ a^)==b{a^y a^2=l.
By what we have shown above b{a^ a^)2^! so that b is of order two, and in fact b has
been determined uniquely by the above formulas. Since S()(T) does contain an element
of order two (as E^ has even order), the element b above must be this element and
hence beSo{T).

Now suppose that —i^(A;*)2. Then we may take e = — i to simplify the calcula-
tions. We observe that b{n,—^)=b('^:,'^:2)=I by (3) of definition (3.1) so that
b(a^ ^3)===!. Also by (3) of definition (3.1), b(n, n)==b{'K, —7?')==b(r:, -—i) and
&(—7^,—7^)==6(—7^,—7^ 2 )=^(—T^: ,—I) , or in other words b{a^ a^)=b{a^, a^) and
b{^^ a^==b{a^, a-^). Moreover since we can choose xeR. such that x and i—x are
both congruent to —i mod (A*)2, b{x, s)==b(x, {i—x)s) implies that b{a^ a^)=b{a^ a^
for all i. In particular, b{a^ a^==b{a^ a^ since ^^==^3. Thus since b is symmetric
&(fl2, a^)==b{a^ ^)==&(fli, ^)=6(^, ^3).

By the cocycle identity,

,̂ a^)b{a^ a^)==b{a^ a^b{a^ ^),

and we have seen that that b{a^y a^) == i = b[a^y a^) == b{a^y a^) = i. Since ^3^ == flg, we
find that &(<?2, a^b(a^ a^)==i or by the above b{a^ a^-==i. Thus 6 is of order 2 and
its values have been uniquely determined and so it must be in So(T) as we have argued
above. This completes the proof of the lemma.

Corollary. — The group S(T) is a countable torsion groups which is the sum of op-primary
group and a group of order dividing 2{q—i).

Proof. — We have a sequence
i ^A-^S^-^H^T)

where A is of order two. Our assertion follows from the Corollary to Lemma (4.1).
Since S(T) is a torsion group, we can write S(T)=S(T)^+S(T)p where S(T)y

is ^-torsion, and S(T)i has no elements of order p. According to the Corollary above
we may write an exact sequence o->A-^S(T)i-^R where A is of order two and R is
viewed as a subgroup of H2^*, T) by means of Lemma (4.1). Moreover the element
9i(&)eR corresponding to &eS(T)i is given by s -^b{n, s)b{s, n)~1 {seR) (see the dis-
cussion following Lemma (4.1)).

Lemma (4.3). — If 6eS(T)i, then 91(6) vanishes on —i.
Proof. — According to the above, we must show that b(n, —i)^—!,^)""1^:!

where n is a generator of p. However, b(n, — i ) 6 ( — i , ^"^^((—i)2, 7r)==6(i, 7r)==i
by Lemma (3.2).

Corollary. — The image of S(T)i in H2^*, T) has order dividing (y-—i)/2 and hence
S(T)i has order dividing q.
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Proof. — We observe that the image of S(T)^ by definition must lie in the part
of H^A*, T) prime to p\ i.e. R. Lemma (4.3) says this image in R must have index
divisible by 2 in R, and our assertions follows.

We finally note that So(T) is a finite group isomorphic to E^ and hence the sum
ofa^-primary group (So(T))p and a group (So(T))^ of order prime to p, which is necessa-
rily isomorphic to R and hence of order q—i.

Theorem (4.1). — If p^-2, we have So(T)i=S(T)r
Proof. — We note that So(T)iCS(T)i and that both groups have order q—i.
Thus we have proved our result for p ̂  2 for the part of S (T) prime to p. We

now consider the ^-primary component. The analysis is somewhat more subtle here.
5) The group E (roots of unity in k) splits as RxEp where Ep is a cyclic group of

order ̂ r contained in U\. Our main problem is to discover how to compute the integer r$
the results here will be valid for all p. It is reasonably easy to tell whether r is positive
or not as follows. If k is of characteristic zero, it is a finite extension of Q», the j&-adic
field and we denote by e the absolute degree of ramification of A; over Q ,̂ [33]. If k is
of characteristic p, we let e==co for notational purposes. Now ifk has a p-th root of i,

e be
it is known that p—i divides ^ and we define /==——-\-e==——. In general let /

p—i p—i
be the greatest integer in ef[p—i)+^- Let (Af^be the (closed) subgroup of k* consisting
of p-th powers, and we observe that k* l{k*)F is a vector space over Z the integers mod p.

Lemma (g.i). — Ifk is of characteristic ^ero, one always has U^lC(A;sle)p. Moreover
r>o if and only if the characteristic of k is ^ero, p—i \e^ and the projection ofU1 into k'l|{k*)p

is non-^ero, in which case it is one dimensional; i.e. it is cyclic of order p,
Proof. — These are essentially well known facts, but for completeness we include

proofs. We consider the map 9 : x}^->xp on U\. If xe\]^ x^i-^-u^ with ueD and TT
a fixed generator of p, the maximal ideal of D. Now <p(^)==i -\-upnn-^-upnnp-}-'B{x).
Now by definition of e, p is a generator of the ideal p6 and so p^n^o where ^eU.
Thus (p(^) = i + uu^^6-^ ̂ 7^4- BW 2Ln<^ from inspection of the terms of B(;c), we see
that B^ep^4'1 where a{n)==min{n-\-e, np). Thus 9(UJcU^ and hence <p induces
a map 9 : UJU^i^U^/U^.^. For every k, UJU^ is isomorphic (not canoni-
cally) to ky the additive group of the residue class field, and in fact the isomorphism is
induced by the map i-^-un^'i-^u [u mod p). In terms of these identifications, 9^ viewed
as map from ky tok y is the map u \-> u^u, if n + e<np, and the map u h> u? if np<n + e,
where UQ is non-zero. Thus (p^ is an isomorphism if np 4= n + e. If on the other hand
np = n + e, then <p^ becomes the map u \-> u^u + u?. The kernel of this map is at most
cyclic of order p (o and the at most p—i solutions of the equation up~'l==—Uo). We
notice that if np-=^n-\-e then n==el{p—i) so that p—i necessarily divides e.

We now consider the proof of the lemma proper, and observe that if n>l—e,
then n>el(p—i) and so n-\-e>np. Then <p^ is necessarily an isomorphism. Thus
taking n=l—e+i, we see that 9 maps U^_g_^ into U;+i. One proves by induction
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on s that q?(^_^i). Ug==U^i for every s^l +1 using the fact that q^ is an isomorphism
if n>l—e. This says that (pW-e+i) is dense in U^i, but this group is also closed since
U^ - e +1 is compact. This proves the first statement of the lemma, and even more, namely
that every element of U^i is the p-th power of some element of U;_^r

Now suppose that r> o so that k does have a primitive p-th root of unity, x. Then k
is of characteristic zero (essentially by definition of a primitive p-th root of unity). Then
^Un-'-Ui+i for some n and since ^{x)==i, it follows that <p^ is not one-one and hence
that n==el(p—i) and so p—i divides <?. Now let us look at U; n (A*)p; it is clear that
if ^eU;, then whether or not u is a p-th power depends only on its class u in U^/U^.
However by our discussion above it is perfectly clear that u is a p-th power if and only
if ^<^(UJU,+i) (s==el(p— i )= /— e). Since 9^ has kernel cyclic of order p, the index
of<p,(U,/U^i) in n/U^i is clearly p. Thus the index of (A^nU; in U; is ^ and this
gives the final assertion.

Conversely suppose that k is of characteristic zero and that l=el{p—i)-\-e and
that (A^nU^U;; then by reversing the above argument, we see that it is exactly
of index p, and that 9^ (s==l—e) is not injective. Then we choose xeV^ such that
Ps^)^0? or in other words ^(^eU^i. But by the first statement of the lemma,
cp(A:)==^=y for some j^eU^i. Then xy^^u is in U, but not U,+i; moreover,
^==1 so that k has a primitive j^-th root of one.

The following is really a corollary of the argument above.
Corollary. —k has a p-th root ofi if and only ifk is of characteristic ^ero, and l==el(p—i)-{-e

and 9g (^s==l—e=el{p—i)) is not one-one. Moreover if this p-th root of unity exists, it is in
U.~U .̂

If A; does have a p-th root of i, we shall call any element v of U^ {l==el{p—i)-}-e)
which is not in (A*)^ unramified. We observe that if v is such an element, then k^v)1!10)
is an unramified extension of A:.

Now i f rc isa generator of the maximal ideal p of0, let H(7r) be the smallest closed
subgroup ofUi containing all elements of the form i—un1 where ueR. (the multipli-
cative residue class system) and t is a positive integer prime to p. Our main result is
the following.

Theorem (5.1). — The group Ui is the closure of the group generated by H(7r) and v where v
is any unramified element with the understanding that H(TI;)==UI if k has no p-th roots of unity.
Moreover the index O^H^TC) is divisible by pr where pr is the order ofE. Finally there exists n
such that the index of1ri.{n) in U\ is exactly p1'.

Proof. — Let W denote the smallest closed subgroup containing H(7r) and y, where v
is a fixed unramified element. We will show by induction on t that W.U(=Ui for
t>_i. This is true for t==i so let us assume that it holds for all integers less than or
equal to some t> i. Then we consider (W n U<). U^i; if we can show that this is U^,
then W.U,+iDU< and since W.U^DW, WU^DW.U(==UI by the inductive
assumption.

Thus we must show that (Wn LT() . U(+ ^ == U^, or in other words that W contains an
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element of each coset of U^ in U<. If t is prime to p, then W contains i—un1 for
all ueR, and these are representatives of every non-zero coset ofU^i in U< so we are
done in this case. Ifp \ t, we choose m such that a(m) == mm{m+e, pm) ==t. This is clearly
possible, and then, by induction, W contains coset representatives x, of every coset ofU^+i
in U^. Then W contains the elements <p(A:,)==^, and so if <p^ : UJU^i -> U^/U^
is an isomorphism, the (p(^) are coset representatives of every coset ofU<^ in U^ and we
are done. Thus if k has no p-th roots of unity (so that <p^ is always an isomorphism), then
W==H(7r) satisfies W.U^==Ui for all t. If however k has a j&-th root of unity, <p^ fails to
be an isomorphism only for m=s==el{p—i). In this case t==el(p—i)+e==l and the
range of 9^ in U^/U^i is of index p. Moreover the image ofv (any unramified element)
in U;/U^ is not in the range of 9^. Thus the elements ^{x^^x^^ (A;==i, .. .,^)
are representatives of the cosets of U; in U^and are all in W. Thus (WnU,) .U<+i==U<
for all t and as we have remarked, it follows then that W.U^==Ui for all t.

The statement that W.U(=Ui for all t says exactly that W is dense in Ui, but
since W is closed by its definition, W==Ui, and this proves the first part of the theorem.
Now ifK is the extension field of A; generated by thej^-th roots of TC, K is a totally non-
tamely ramified Kummer extension of k [33]. (Recall that pT is the order of Ey, the
^-primary component of the roots of unity of k.) Now it is more or less clear from the
properties of the norm residue symbol that every element of the form i—un^ MeR,
t prime top, is a norm from K. (This is a Special case of an argument to be given in more
detail shortly.) Thus H(7r) is contained in N(K), the norm group from K. Now it
follows from local class field theory that the index of N(K) n Ui in Ui is exactly^ [33].
Our second assertion then follows.

It remains to show the existence of at least one n such that the index ofH(Tc) in Ui
isp\ (This is the same thing as showing that H(7c) ==Ui n N(K) by the above comments.)
If r==o, that is, if k has no p-th roots of unity, we are done. Thus assume that r>o,
and let x be any primitive p'-th root of unity. Then x^(k*Y and so ifj/ is 21 p-th root
of x, L==k{jy) =f=A. Now let TT be any generator of p such that n is not a norm from L.
Such elements clearly exist (otherwise every element of A; is a norm from L), and by
class field theory N(L) +k\ Then we claim that H(7r) is of index p ' in Ui, or equiva-
lently that vn (n^p^ is in H(TT) where v is any unramified element.

Let H be the projection ofH(Tr) into U^/U^i where l==pel{p—i) as usual. If v
is the image ofy in Ui/U;+i, it is a corollary of the first part of the theorem that H and v
generate Ui/U^+i. Then if x is the image of x in U^/U^, x^h^ with heH and m
an integer. Since v has order p in U^/U^i, either xeH in which case m==o (mod^),
or m is prime to p. If ;veH, it follows that xeH{n) . U^. However H(7r) is contained
in the norm group from K == k[^) where ^ is a j^-th root of TT. Thus H(7i) is contained
in the norm group from M=k(w) where w is a p-th root of TC. Since U^iC(A;y,
every element ofU;+i is a norm from M since M is of degree p over k. Thus the assump-
tion that xeH implies that x is a norm from M. By the skew symmetry of the norm
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residue symbol (cf. definition (3. i)), this implies that n is a norm from L = K(j;) where j/
is a p-th root of x and this is contrary to our choice of n.

Thus we find that x^hv"1 where m is prime to p, or in other words x=hvmy
where j^eU^i. We now take n=pT-th powers of this to find that i =hnvnmyn (recall
that x is a j^-th root of unity). Moreover, w^^eU^y^^ by our computations about
p-th powers, and we deduce that ^^(H^) nU^J .U^+i. Since U^/U,+^
is a j&-group and m is prime to p we see that ^(^Tr) nU;.^) .U^g.^ (n^p^. The
same inductive argument utilized in the first part of the theorem may be used again to
show that H(7r)DU^,,. (That is, one shows that (H(7r) nU<) .U^i==U^ for all
t^l+re.) Then it follows that vneH{n) as desired.

Remark. — The content of this theorem is that for suitable TT, the group N(K) nUi
where K is A:(<s;), ^ aj^-th root ofTc, is generated by the elements i—un^ which are all
obviously norms from K. These objects are obviously norms by virtue of formal pro-
perties of the norm residue symbol which in addition are part of the definition of S(T)
(Definition (3.1)). For these reasons it is clear that this theorem will play a key role
in the proof of Theorem (3.1).

We now complete the proof of Theorem (3.1) in the case whenj& (== characteristic
of the residue class field) is odd. Recall that S(T)y is the subgroup ofS(T) of elements
of order a power of p.

Lemma (5.2). — Let p be odd and 6eS(T)p, and let TT be a generator/or p and let v be
an unramified element (it it exists). If 6(7c,y)==i, then b=i. I/there is no unramified
element, b == i.

Proof. — We first note that every element of Ui is a square since p is odd, and so
by Lemma (3.2)3 b{x, u) and b{u, x) are bilinear functions of u and x when ^eUi. Now
if seR. (the multiplicative residue class system), and ueV, b{s, u), being continuous, has
order a power ofp since U\ is a pro-j^-group, but it also has order prime to p since R has
order prime to p. Thus b{s,u)=i, and by the same argument, b{u, s)==i {ueU^y jeR).

Now we will show that b{n, n)=b(u^ 71:)== i for all ueU-^ under our assumptions.
Let u==i—ST^ with ^eR and n prime to p ' , then I==6(J7^n, l)=b[sTcn, i—s^) (by
definition (3.1))=b{s^n, u)==b{s, u)b(n, uY by bilinearity established above. But also
b{s, u)=i, and so b(n, u)n==I. Now n is prime to p and b{n, u) has order prime to p
so that &(TT,Z / )= I . By linearity and continuity, b{n,x)=i for all xe'H.{n), and
since b{n,v)=i where v is some fixed unramified element by assumption, it follows,
again by linearity and continuity and Theorem (5.1) that b[T:,x)=i for all xeV-^.
Moreover, if k has no unramified elements then it follows that b(^^x)=i for any
generator TT^ ofp and any ^eUr

Our next step is to prove that b{'K^, x)==i for any n^ and any xeV-^ when k does
have a p-th root of one. We may write the unramified element v of the statement in the
form v=i—swK1 where ^eR, ueV-^ and l==:el{p—i)+e. If TT^ is any generator of p
then 7Ti==^7T; with ^R.^eUr Now let us form y^= i—su^n1; then ^symodU^i
so that ^i is also unramified. Moreover, i = b(x, i) = b{x, i —x) by definition (3.1)5 and
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putting v^i—x, we see that i==b{i—v^ v^)=:b{su^n\ v^)==b{s, v^)b{n, v^b{u^ ^) by
linearity. On the other hand, we have seen that b{s,v^)=i since seR and ^eLIi, and
we have shown that b{n,v^)==i. We then conclude that b(u^v^)=i, and finally
that 6(7Ti, v^==if{-K, v^)b(t, v^b(u^ u^) again by bilinearity since ^cUi. We have
shown that all terms are equal to i, and hence b{n^, ^i)=i. Our previous argument
now applies since ^ is unramified, and shows that b{^, u)=i for any z/eUi. Since
6(71:1, u)==b{u~1, 7:1) by definition (3.1), we can conclude from the hypotheses of
the lemma that b(n-^y u)^b{u, ̂ ==1 whenever n^ is an arbitrary generator ofp and u
is an arbitrary e ement of U\.

Now if ^ ieUiand ueV^ and n is any generator of p, b{nu, u-^)=b(u^ nu)==i, and
so by linearity, ar.d the fact that b{n, u-^==b{u^, 7r)=i, we see that b{u, u^)=b{u^, u)==i.
Thus the cohomology class of 6 in H2^*, T) must vanish upon restriction to Ur Now
according to Lemmas (4. i) and (4.2), b, as an element of S(T), must have order divi-
ding 2(^—1), q being the cardinality of the residue class field, and hence b must have
order prime to p since p is odd. However b is assumed to have order dividing j&, and so
b==i as desired.

We can now complete the proof of Theorem (3.1) whenj&, the characteristic of the
residue class field, is odd. We have shown that S(T) is a torsion group, and that its
component of order prime top is contained in So(T). We want to show that its^-primary
component S(T)^ is contained in So(T). Since the ^-primary component of So(T) is
cyclic of order p ' (the order ofEy, the ̂ -primary component of the group of roots of unity
of ^), it suffices 1:o estimate the order of S(T) .

Lemma (5.3;). — The group S(T)p is cyclic of order p ' and hence S(T)==So(T).
Proof. — If r=o, lemma (5.2) says that S(T)p=(i) and we are done. If r>o,

so that there exist unramified elements, choose an unramified element v and a generator TT
of the maximal i< leal p such that the final statement of Theorem (5.1) is valid. Then
we define a map 9 of S(T)p into T by <p(&)=6(7r, v). By the preceding lemma, 9 is
injective. Moreover since b{n, u) is linear in u when ueV, 9(6)n==6(7^, y)n=&(7^, ^n)
for any n. We take n=pr and use the fact that ^eH^Tr) by Theorem (5.1). On the
other hand the argument of the preceding lemma showed that b{n, u)=i if z/eH(7i;),
and hence we deduce that 9(^=6(7^, z^)^. Thus since 9 is injective, S(T)p is cyclic
of order dividing n=pr. Since it clearly contains a cyclic group of order pr (S()(T) )
its order is exact y pr,

6) We are now left with the case when p (the characteristic of the residue class
field) is two. Our first result is the extension of Lemma (4.2) to this case.

Theorem (6. i). — If 6eS(T) is symmetric, then 6eSo(T) and hence b has order dividing
two.

Proof. — Since b is symmetric, b{x\y) = b[x,f} -==. i for all x andj^ by Lemma (3.2),
and hence b{x,jy) depends only on the classes of A: andj/ mod^*)2, the group of squares.
The group R is cyclic of order q—i prime to 2 and hence Rc(/Q2. Now let n
be any generator of p, and let n be an odd positive integer, JGR, and x e k " ,
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then b (TT, x) == b {s^ - ̂  x) = b {sn^ x) = b (^ (i —s^) x) = b (rr, (i —JT^) ̂ ). Therefore, by
continuity, b{n, x) depends only on the coset of x modulo H(TT) (H(7r) is defined in
Theorem (5.I)) , and hence b{-n:, x) depends only on the coset of A? modulo H(7i:).(A*)2.

Now let us suppose that k has characteristic two. Then by Theorem (5.1), H(7r) is
all ofUi and hence H(TT;) (A:*)2 is of index two in k*. Moreover TT is in the non-trivial coset,
and &(TT, Ti) ==6(7T, —n2) == b(n, i) == i, so that we conclude that b(n, x) === b{x, n) = i for
any n and all x. (The last statement follows since b is symmetric.) Finally let x = UT^
and y^vr^ be arbitrary elements of k* with u and yeU. If either n or 772 is odd, say ^,
then &(A:,j/)==6(OT,j^)==i since un is a generator of p. If n and TTZ are even,
b{x,y)==b{u, v), and since b{u, v) depends on the classes of ^,and v modulo squares,
if either u or v is not a square, say u, we can assume that u==i—Z/'TI;", ^'eU where n is
an odd integer* Then b{u, v)=b(u, (i—u)v)==b(u, u/vn:n)=b{u, u'vn) since % is odd.
Since U'VTC is a generator of p we see that b{u,v)=='i. Thus we have shown that
b{x^y) =i for all x andj/ in A:*, and this gives our assertion when k has characteristic two.

We assume now that k has characteristic zero; then there exists an unramified
element v since k has a square root of i. Ifn is any generator ofp, then by Lemma (5.1)
and Theorem (5.1)3 (H(TT) . (A*)2) n U\ is of index two in U\, and any unramified element v
is in the non-trivial coset. We complete the argument in the following lemmas.

Lemma (6. i). — Let k be of characteristic ^ero and b be symmetric. If b{n, y)==i for
some n and some unramified element v, then 6===i.

Proof. — By our preceding discussion b(n. A;) depends only on the coset of x modulo
H(TT) . (A*)2 and hence by our hypothesis, &(^, x) = i for all xeV^. Since Rc(^*)2,
we see at once that b(r:,x)=l if xeU also.

If ueV, then for suitable jeR, the element y '=i—su'1 ' ^2 6 is unramified where e
is the absolute degree of ramification (cf. Lemma (5. i), 2e=el{p—i)-^-e==l since p=2).
Then b{nu, v')=^b(nu[i—v'), v^^b^-Ksn26, v')^=b(^,v')==i since sn^e^)2. Since Ttu is
the most general generator of p and v ' is unramified, we deduce from the above that
^(Tc'3 ^')==i for any generator n' o fp and any u'eU. We can argue essentially as in
the case when k has characteristic two that b{x,y)==i for all x and jyek*. The only
modification is that not every element u ofU can be written as i—^TC", n odd, u'eU,
modulo squares. We must allow the case when u is unramified. Then ifv any element
of U, we can write u in the form u==i—svn26 for appropriate J&R. Then we must
show that b{u^ v) == i, but i == b{u, i) = b{u, i —u) === b(u, svn2^ == b{u, v) since sn^e^k*)2.
This remark concludes the proof of the lemma.

We want to show that 6eSo(T) and is of order two. We note that S()(T) contains
a symmetric element of order two, &o (the Hilbert symbol), and that ^(^ y) =t= i by the
preceding lemma since &o=t= i. Suppose that we could show that our symmetric element b
is of order two. Then if ^= t= i , b(n, y ) = t = l and then necessarily b(n, y)==^(7r, v), and
hence b^ = b by the preceding lemma. Thus it suffices to show any symmetric element
ofS(T) is of order two and by the lemma above, it suffices to show that b^TCyv)2^! for
any TC and an^ unramified element v.
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Corollary 3. — If (So(T))i is the sum of the components of So(T) of order prime to two,
then So(T)i=S(T)i.

Proof. — Since So(T)iCS(T)i and So(T)i is cyclic of order q—i, the result
follows from Corollary 2.

We are now reduced to the study of S(T)2, the two-primary component of S(T).
Lemma (6.3).—If beS{T)^y then b(sx,y)==-b{x^ sy)=b{x,y) for jeR and x,yek*.
Proof.—We recall that R is cyclic of odd order q—i so that s=t2. Thenb{x,t2)

and b{t2, x) are bilinear in x and t by lemma (3.2)5 and hence b{x, t2)n==b{t2^ x)n=I
for n odd. But b has 2-power order and so with s== t2, b{x, s) = b{s, x) == i for all xek*.
Our result follows now from Lemma (3.5).

The next step is the following fact.
Lemma (6.4). — If the characteristic ofk is two, S(T)2== (i); ifk is of characteristic ^ero,

and TC is a generator ofp, and v an unramified element, then b(n, v2) == i implies that b is symmetric.
Proof. — Let us say that x andj/ commute if b{x,^)==b{jy, x). By Lemma (3.2)3

this is equivalent to any one of the following: b^y^^b^y, x2)===b{y2, x)=^b{x, ̂ ^i.
Furthermore if E is the extension of k* by T defined by b, this also means that coset
representatives of x and y in E commute with each other.

First let us note that i==b{s'n;^\ i) ==b[s^\ I—STC^ and that

i == 6(1, s^) = A(i —sn^ sn^

if jeR, by definition (3.1) and a substitution of variables. We conclude by Lemma (6.3)
that i ==6 (r^, l—snn)=b{l—snn,nn), and hence that TT^ commutes with I—JTT^ If n
is odd it follows since b has order a power of two that n commutes with i —s^ for all jeR,
and n odd. Since the set of elements commuting with TT is a closed subgroup, we deduce
that n commutes with H(7r).

Thus if A: has characteristic two, H(rc) ==Ui so that n commutes with Ui. On the
other hand, Lemma (6.2) implies that TT commutes with R, and hence that n commutes
with U==UiXR. Since n clearly commutes with itself, this shows that n commutes
with all of A:*. If ueV, this also says that nu commutes with k* and hence that u does.
Finally we deduce that any element of A;* commutes with any other element; this says that b
is symmetric and then Theorem (6.1) says then that b is identically equal to one.

Now let k have characteristic zero. Then our hypothesis is that some fixed TC
commutes with some fixed unramified element v. Now as above, TT commutes with H(7r)
and hence with U^ by Theorem (5.1), the same argument as above shows that then TT
commutes with all of k*.

Now if u is an arbitrary element of U, then y^i—^"2^26 is unramified for
suitable seR. Then h(v', n2u2)=b{vf, (i-y')^2)^^2^2, v')^b(^\ y^-^i by
definition (3.1), Lemma (3.2) and Lemma (6.3). Therefore nu commutes with v ' and
the first part of the argument shows then that nu commutes with k\ Thus u commutes
with k* and it follows as above that b is symmetric as desired.

We now need the converse of Theorem (6.1).
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Lemma (6.5). — Any element of S(T)g or order two is symmetric.
Proof. — We may assume by Lemma (6.4) that k has characteristic zero. Let ^ be

the order of the two primary component of E and hence the order of S^T)^. By
Theorem (5.1), we can choose a generator TT such that H(TC) has index 2' in U^; now let v
be an unramified element, and let us assume that r = = i ; we see then that v2eH{n).

It was shown in the preceding lemma that TT commutes with H{n) or in other
words that b(r?,x)=.i if xeH{n). We claim now that b{n,x)=.i if xeH{n\ First

\m

let us take x^^x, with x^i-s^i, ^,eR, n, odd. If ^=H^ then we may
assume inductively on m that &(TT,^)==I. For simplicity, we write ^=1—^, and
then b^^^bisn^ i-^)^^, x). By Lemma (6.3) we can drop the factor ofs
so that b{nn,Jy)==b(71:n,x).

In view of ;he fact that b is of order two,

b^\ w)==b{^ w)2=l==b^ ̂ )=^, w2)2^!

Then by Lemma (3.5), b[^ w) depends only on the classes of x
sTow ifn above is congruent to i mod 4, the equation b(nn^) == b^, x)
=6(7r,j/)==i. On the order hand if 72=3 mod 4, we see that
However for any ^ we have by the cocycle identity,

by Lemma (3.2)
andjy mod (A;*)4. ]
becomes b{n, x)--
b{n\x)==b(n3^).

b(n\^b^n)--=b{n\^)b{n^).

By Lemma (3.2), b^\n)=i and b(n\ ̂ )==b(n2, n)b{n2, ^)==b{n2, ^), and we
find then that b(n\ ̂ =b(^\ ̂ b{n, ̂ ). Now if ^eH(Tr), b^^^i by our remark
above. Thus if we apply this to the equation b{n\ x)==b{n\jy), we deduce that
b(n,x)==b{n,jy)==:.

This shows that b{n,x)==i for any x in the semi-group generated by the
elements i—y^, and hence that b{n,x)=i for any x in the closure of the semi-group
since b is continuous. Since Ui is compact, the closure of this semi-group is a group,
and of course is exactly H(7r). Thus b{n,x)==i for any ^eH(Tr). Now under our
hypothesis that r = = i , and our choice ofrc, ^eH^) where v is any unramified element.
Thus b(n, y2)^ and our result follows from Lemma (6.4) when r===i .

Now we ass Lime that r> i where pr is the order of ^-primary component of E,
the roots of unity in E. In this case W^cS(T)^ contains an element c of order
exactly four, which is moreover bilinear. Now <;(TT, y2)^^, ^^—i. (It is of order
two in the circle group T and it is not +1 for then c would be symmetric by Lemma (6.4).)
Now let b be an element of order two in S(T). If b{n, y2)=i for some generator TC
and some unramified y, we are done by Lemma (6.3), so we can assume that b{n, u2) == — i
since b has order two. Then we form d=bc, an element of S(T)2, and observe that
^^)==i so that d is symmetric by Lemma (6.4), and hence of order two by
Theorem (6. i). Thus l===d2=b2c2==c2 which contradicts the fact that c has order four.
This completes the proof of Lemma (6.5).

The following lemma will then complete the proof of Theorem (3.1).
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Lemma ( 6 . 6 ) . — We have S(T)2=So(T)2.
Proo/'. — Recall that S()(T) 2 is cyclic of order ^r and is contained in S(T);2. We

may assume that A; has characteristic zero, and also that r>o, by virtue of the first
statment of Lemma (6.4). Now let beS(T)^ and choose TC so that H(7r) has index
7^=2 r in Ui by Theorem (5.1). If v is an unramified element, then {v2)m==vnetl(n)
where m^s^1.

By the argument of Lemma (6.4), TT commutes with H(7r), so that
b^x^^b^x)^!

if A:eH(Tc) (cf. Lemma (3.2)). We contend in fact that b{T:,x)=^i if xeH(n).
Let us first note that formula (7) of the appendix, b^y^y x)==b(y, x)b{^2^ x),
holds for any b. In particular, if xe]-l[n) and a==2c-{-i is odd, and jeR,
b {sTc", x) == b (TO, x) b ((Ti2) \ x) == b (TT, x) b (TC2 xY==b (TC, A:) . In order to prove that b (TT, A:) == i

r
if A'eH(7r), it clearly suffices to show that b(n,x)===i if A:== H (i—^n(t)), '̂) odd,
^eR. We proceed by induction on r starting at r=o (in which case x==i).
Let XQ==I—sr^y a odd, arid assume b(n,x)==i. Then by the above, we have
i == b(Tc, x) = b^s^y x) == b^s^y XQX) = b{n, x^x} which completes the induction.

Returning to our argument, we have vn==={^)me'H.{n), so that
b^V^ 6(77,^)^=1.

Therefore bm is symmetric by Lemma (6.4) and hence of order two by Theorem (6.1).
Thus bn==={bm)2=I, and we have shown that any element of S(T)g has order divi-
ding n==2r.

On the other hand, Lemma (6.5) and Theorem (6.1) together say that the
subgroup of 8(1% of elements with ^=i is exactly of order two. It follows by elemen-
tary group theory that S(T)g is cyclic of order dividing n = 2^ This completes the proof
of the Lemma and hence finally the proof of Theorem (3.1).

7) We now turn to uniqueness questions in global class field theory. By a global
field k, we shall mean either a finite algebraic extension of the field of rational numbers,
or a function field in one variable over a finite field of constants. We denote by v an
exponential valuation of A:, and ky the coitipletion o f k with respect to v. Then ^ is
either Archimedian and he.nce the real or complex field, or if non-Archimedian is one of
the fields discussed in sections 3 through 6. In any case we normalize (as usual) y, as a
valuation o f^as follows: if Ay is real, v is usual absolute value;, if ky is complex, v is the
square of the usual absolute value; i f^is non-Archimedian, and TT is a generator of the
maximal ideal of the! ring of integers in A^,, the normalization of v is determined by v{n)
which we set equal to ifq where ^.^^ is the cardinality of the residue class field of ky.

Then one has the classical product formula ([2], [5]), Hv{a)==i if aek*, where
the product is taken over all normalized valuations. One might inquire whether there
exists any other such formula; the fact that this is the only such formula is implicit in [5],
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but the proof below is rather short so that we shall present it, even though the result is
not used later. Namely let us suppose that

11 )̂̂ =1 for aek'

where n{v) is a non-negative real number for each valuation v.
Theorem (7 .1) .—I f Tlv^a)^^! for aek*, then n[v)==n is independent of v.
Proof. — Let I be the idele group of k, i.e. the restricted product [3] of the locally

compact groups k*y with respect to their compact open subgroups U^ (the units in the
ring of integers in ky). If v is Archimedian, Vy is undefined but this is irrelevant since
there are only a finite number of Archimedian v. If 7z(y-)_>o for each v, we see that the
map 9 defined oy ^(a)^^]"!^^)^, if a==(^), of I into the positive multiplicative
reals R*̂  is a continuous homomorphism. Let I^ denote the closed subgroup of ideles
of norm one, (i.e. oc==(^)eli if and only if IIy(^)==i). Now A;* do by the product
formula, and it is basic that k* is closed and that I^/A* is compact. (This is equivalent to
the finiteness of class number and the Dirichlet theorem ([2], [3]).) Now our hypothesis
is that (p(A;*)==(i^ and since I ^ / k * is compact, it follows that (p(Ii)=(i) since R^ has
no non-trivial compact subgroups. Thus we can interpret 9 as a homomorphism 9'
of I/I^ into R* However if 90(00) =--Fly (^,) when a==(<2j, then 90 defines in the

v

same way a homomorphism 90 of I/I^ into R* .̂ which is injective by definition of I^.
On the other hand, the image of 90 is all of R* .̂ if A; is a number field or the
group {{p^me. >} if A: is a function field and p is the characteristic of the constant field,
In either case 90 is a topological isomorphism onto its range, and it is absolutely clear that
any other continuous homomorphism 9' ofl/1^ into R* .̂ is of the form 9'=(90^ for some
non-negative rea number n. It is now clear that n-==n(v) where 9(a)==^y(^)n(v),
as desired.

Remark. — This proof makes it evident that the compacity of the group II/A* is
the key factor in the uniqueness of the product formula, since a compact group, or more
generally a locally compact group which is a union of compact subgroups, admits no
non-trivial continuous homomorphisms into R*^_.

The unique: less theorems which will be of interest to us in the sequel concern the
reciprocity law oi* global class field theory. The fundamental result in the local case
applied to each completion k^ is the existence of a continuous homomorphism (the reci-
procity homomorphism) 9 ,̂ of^ into G^, the Galois group of the maximal abelian exten-
sion of ky [33], sucn that the range of 9 ,̂ is dense, and 9 ,̂ has kernel equal to the connected
component of k*y. Then one notes that if G61 is the Galois group of the maximal abelian
extension of k, oir global field, then G^ may be viewed as a subgroup of Ga [3].
Moreover if ael, one may define 9(a)==n9^,(ffJ if a==(ffj since only a finite number
of terms are unequal to i. It is clear that 9 ,̂ vanishes on the connected component ofk^
and hence that 9 vanishes on the connected component IQ of I. The Artin reciprocity
law ([3], [33]), says that 9(A;*)=(i) where /;*cl, and moreover that 9 defines a continuous
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injection of C==I/Io.^ into G°. In characteristic zero, this map is a topological
isomorphism. Also in this case, I == IQ . I^, so that C == I^/ (Ig n Ii). A* is the connected
component of II/A;*, so that C is compact totally disconnected. In characteristic p^o,
lo^0)) a^d the range of 9 is dense in G". More precisely y is a topological isomor-
phism of Ii/A;* onto the subgroup of G" fixing the algebraic closure of the finite field
of constants in k, and 9 maps I/Ii, which as a group is the integers, onto the obvious dense
subgroup of the Galois group of the algebraic closure of the constant field.

Now we let E^, be the group of roots of unity in k y , and we let n(v) denote its order
with obvious conventions if ky is complex. Then Kummer theory [3] yields an isomor-
phism, ^, of (A:)/W onto Hom(G;,EJ; if a, bek^ (^ ̂ =^)(^)), where a
is the class of a in A^/^)^, is a bilinear function from k^xk^ into E^ which is by defini-
tion the norm residue symbol we have discussed previously. Let E denote the group
of roots of unity in the global field k, and let n be its order. Since E cE^ for all y, n\n{v)
and so define m(v)==?i{v) /^$ we observe that the msipf{v} of raising to the power m(v)
in E^, maps E^ onto E. We let b^x.y) -==f{v) ((^jQJ so that ^ is a map of k^ X k^ into E.
A corollary of the reciprocity law is the reciprocity formula which says that II b^x^y) = i

v
if x,jyek* [33]. We shall be simultaneously concerned with the uniqueness of the reci-
procity map <p of I into G" and with the uniqueness of the reciprocity formula.

Theorem (7.2). — Let p(y) be an integer/or each completion v of k and let g{v) be the map
of E into itself of raising to the power p(v). Then if }lg(v)(b^{x^y))==i, there exists p so

that p{v) =.p (mod n) for all non-complex places, (i.e. g(^v)=g is independent of v for all
non-complex places. Note that ^==1 if v is complex so that the value of p{v} is irrelevant.)

Theorem (7.3-). — Let ̂  be the local reciprocity map of k^ into G^ and let p[v) an integer
for each v. Then let (p/(a)=^(9y(^))p(u) be the corresponding homomorphism of I into G .̂

v

If q/fA*)^!), then there exists an integer p such that p{v)^p for all non-Archimedian v and
p(v) =p (mod 2) for real v. (Again the value p{v} for v complex is irrelevant as <p^= i in this case.)

We note that Theorem (7.3) says that the only global reciprocity mapping that can
be constructed out of the local ones are the powers of the usual global reciprocity homo-
morphism. Theorem (7.2) says similarly that the only identities relating the norm residue
symbols b^x^y) for n^ roots of unity in the various completions of k, are powers of the
known one. One may raise a more general uniqueness question concerning the norm
residue symbols. That is, suppose that h(v) is a homomorphism of Ey into the circle
group T, and suppose that Tlh{v)({a, 6)J==i, a, bek*, where ( , )^ is the norm residue
symbol for n(v)^ roots of unity in k^. Theorem (7.2) treats the case when h{v) =g(v)f(v)
whereby) is the map E^,->E given by raising to the power m(v}=n{v')ln and where g{v)
is a homomorphism of E into T, where we view E as a subgroup of T. The general
theorem is also valid.

Theorem (7.4). — If Tl^{v){{a, b\).=i for all a,bek\ then ^{v)==g{v)f{v) for

some homomorphisms g(v} ofE into itself [equivalently into T^, and hence g(v) is the map of raising
to the m^ power for some m for every non-complex v {by Theorem (7.2)).
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This result says that the only relations among the norm residue symbols for
n(v)^ roots of unity for the various completions are the powers of the reciprocity formula.
The proof of Theorem (7.4) involves in an essential way the ideas of [9] and [10].
We note here tha.t Theorems (7.2) and (7.4) are the results that allow us to compute
the relative fundamental groups TT^SL^A), SL^A)) where A is the ring of adeles of the
global field L

We now proceed to the proofs of Theorems (7.2) and (7.3). In both cases we
are given integers p{v), one for each completion ky of k. We form the mapping ^ of I
into I given on an idele a == (aj by ^(a) = (^(v)). It is clear that ^ is a continuous homo-
morphism of I into itself. Clearly Ig, the connected component of I is sent into itself
by 4'. On the ot ler hand, the multiplicative group k* of A: is a subgroup of I, and it is
absolutely clear t iat the hypothesis of Theorem (7.3) is equivalent to the assertion that
^(A*) cA;*.Io in vi?w of the Artin reciprocity law (i.e., that C^I/Io.A;* is injected into G0

by the Artin reci )rocity map).
Furthermore, let us denote by 1̂  the subgroup of I consisting of 772th powers where m

is an integer. It is well known that lQ.k*==C{ (I^.A;*) since I^.A;* is closed in I [3]. Thus
the hypothesis of Theorem (7.3) is also equivalent to the assertion that ^{k*)ck*.I^
for every w. We claim now that the hypothesis of Theorem (7.2), namely that
TIb^Xyjy)^ ==i for A: and y ^ k * , is equivalent to the assertion that ^{k*)ck*.l^ where n

v "

is the order of E, the group of roots of unity in A:. Indeed, let xek*, and let X be any
element of Hoir^G0, E). Now as above, Rummer theory yields an isomorphism s
of k*|{k*)n onto I^om^G^ E) so that X is of the form j(j5) for some y ^ k * , where the dot
indicates the class of y mod ^th powers. Now if 9 is the global reciprocity map of I
into G^, it is perfectly clear from the definition of&y above and class field theory [3], that

i^nb^x^^Ub^^)

-^)(9(4.M))=X(q)(^M).

Therefore every character of order dividing n of Ga vanishes on 9(^(^)), and so
<p(^(A:)) is an n^ Dower in G^. Since 9 is an injective map of C into G" and G^^^C)
is torsion free, this says that ^{x)ek*.l^ as desired.

Now we lei C^ =^1/^.1^ for any m, and observe that C^ is exactly C modulo
the subgroup G^ of its m^ powers. If ^ (A;*) C k*. 1 ,̂ then clearly ^ (A;*. 1 )̂ C k * . 1̂  so
that 4' induces a lomomorphism ̂  of C^ into itself.

Lemma (7. i). — Suppose that A (A*) cI^.A:* so that ̂  is defined. Then if U is any
closed subgroup of finite index in C^^I/I^./;*, ^(U)cU.

Proof. — Let U' be the inverse image of U in G so that U' is a closed subgroup of
finite index (divic ,ing m) in G. Then by the existence theorem, there exists a (unique)
finite abelian extension KofA: such that U' consists of the norms from K to k. Now for
each completion ^ we have an abelian extension K^, of k^ which is a completion of K.
The norm group N^ c k^ of norms from Ky is independent of the choice of Ky; moreover
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from the definitions of global class field theory, V ' = k " . (11 N^)//;:*. Ig. In order to show
that ^(U)cU it clearly suffices to show that ^(Z:*.n:N,) cA*.n:N,,, and this is clear

T-T . V V

since HN^Dl^ (K, is of degree dividing m over AJ, and since ^ (A*) c k\ 1 ,̂ and since
^(iiNj^nN^ciiN,.

V V V '• ,

Thus we must study a homomorphism ^ of G^" such that ^ maps every closed
subgroup of finite index into itself. In other words we have an endomorphism a of a
pro-finite abelian group A such that a(U) cU for every closed subgroup of finite index.
We note that any such A is a Z^-module where Z* denotes the compact ring of super-
natural numbers (the completion of the integers Z at all ideals). We write this action
as (n, x) l-̂ , xeA, neZ\ and note that the continuous endomorphism x^x" sends
every closed subgroup of finite index of A into itself. The following lemma says that
these are the only such continuous endomorphisms with this property.

Lemma (7.2). —Let A be a prqfinite abelian group and a a continuous endomorphism such
that a(U)cU for every closed subgroup of finite index in A. Then there exists a supernatural
number n such that ^{x)==xn.

In order not to interrupt the continuity of argument, we defer this proof until
the end and proceed with the proofs of Theorems (7.2) and (7.3). Then Lemmas (7.1)
and (7.2) tell us that whenever ̂  is defined, ^^^x8 for some supernatural number j,
Since C^ is a torsion group (of exponent m), it follows that we can choose s to be an integer,
whose residue modulo m is uniquely determined. Thus if ̂  is defined, ^{x)=x8 for
some integer j, for all xeC^'..

Now we have seen that the hypotheses of Theorem (7.2) imply that ^ is defined
where n is the order ofE, the roots of unity in L We lift the previous result back to the
idele group I, and deduce that if a el, then ^(o^a8.^.^ for some xel, and t^k\
Now if a=(0, recall that ^(a)=«^) so that 0^=0^.^ with t^k\ We are
trying to show that p(v) ==p (mod n) for some p and every non-complex place -u\ we in
fact claim that p{v)=s {modn). Suppose that p{v) 4= s (mod n) for some non-Archi-
median y. Now define an idele a, by a^==n where TT; is a generator of the maximal
ideal p^, and a^=i if u^v. Then by the above, for every u^v, we have i==i .^ .^
and so the element ^ has an n^ root in all completions ^ for u^= v. Since n is the
order of E, Grunwald's theorem ([3], p. 96) applies with no exceptional case, and it
follows that ^ has an n^ root in k. However in the completion k , n^ == TT' . x'1 t

x V J V 01

and since p{v) =f= s mod n, it is clear that ^ does not have an n^ root in ^. This
contradiction shows that p{v) =.s (mod n) for all non-Archi median v.

If ^ is a real completion of A, it follows necessarily that n==2. Then if
p(v)^smod2, we define an idele a by a^==—i and a^=i if u^v\ The same argu-
ment as above leads to the same contradiction, and hence Theorem (7.2) is proved.

We now consider Theorem (7.3); we hav^ seen that the hypotheses of this
tKeorem imply that ^ is defined for all m, and hence that for each w, there exists an
integer s{m) such that ^(^r^ for xeC"1, or equivalently that for each a==(<)£l,
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/ith ;vel and ^e^*- If 772 is odd, and ^ non-Archimedian, we claim
od 772), for if not, define anideleaby a^==n, a generator of the maximal
if u^ v. It follows as before that ^ has an 772th root in all comple-
u==v. Since 772 is odd, Griinwald's theorem ([3], p. 96) applies with

e, and says that ^ has an 72th root in k. We obtain the same contra-
in the completion ky. Thus we conclude that p{v) ̂ s(m) (mod 772)

nedian; hence if v and v ' are non-Archimedian, ?{?)=?{?') (mod 772)
teger 772. It follows immediately that p{v)==p(v'}, and hence that
e integer p for every non-Archimedian v. It remains to see that
if ky is real, and this is proved in exactly the same way as in

^P{v) _ ^s(w) ^m ^
^ — "v • A "•a

that p(v)=s(m) (:
ideal, and ^==1
tions k^ except foi
no exceptional case;
diction as before
if v is non-Archi]
for every odd in
p(v)=p for som
p{v)==p (mod 2)
Theorem (7.2).

We concluc e this argument with the proof of Lemma (7.2); this lemma was
stated without proof in the course of the argument above. We remark that in a sense
this lemma is a version of the fundamental theorem ofprojectiye geometry. We have
now a profinite a^elian group A and a continuous endomorphism a such that oc(U)cU
for any closed subgroup U of finite index in A. We want to know that oi(x)==xt for
some supernatural number ^eZ*. We denote by B the dual group of A, and by (B the
dual endomorphi sm defined by (B(6)(a)==&(a^)~1 for 6eB==A. Then B is a discrete
torsion group and the hypothesis on a translates by duality into the hypothesis that
(B(F)cF for every finite subgroup F of B. We notice that B, being a torsion group,
is a module for Z* and that this module structure is compatible with duality. Thus it
suffices to show tnat (B(&)== V for some ^eZ*.

Now if xelp, the group generated by x is a finite cyclic group of order o{x). It
follows then that p^)^.^^ for some integer 772 {x) which is uniquely determined
mod o{x). Let B^ denote the subgroup of all element^ in B of order dividing 72! so that B^
is a group of finite exponent k(n) dividing 72!. Let x be an element of order A:(72); then
p^)^^ for some integer 772==772(.r) unique modulo k{n). Ify is a power of A:, then of
course PO^^J^. On the other hand if j^eB^ is not a power of x, then the finite
group F generated by x and y has a basis of two elements, one of which c^n be
chosen to be x and the other to be of the form ^^y^y. Every element of F is of the
form Xs y1 and Xs^==1 if and only if j == o mod ^(72) and t==o (modo(^)), the order
of ^ Now (B;^)=(^)m(^)=A;w(^)^2)=p(^)p(^)=A;w^ Thus we must have
m(x^) =772 mod k{n), and m{x^) ==m{^) (mod o{^)). Thus m=m{^) (mod o(^)) since
o^)\k{n), and consequently (B^)^^. Now y^^x-01, so ^{y^^x-^^^ and
hence (B(j;)==j/^ for any J^=B^.

Note that p^cB^.^ and that UB^==B since B is a torsion group. Moreover
A:(72)|A:(72+i); we have shown above 'that there is for'each 72 an integer 772(72), unique
modulo A: (72), such that ^{x)=xm(n) for A:eB^. Now as B^cB^.^, we also have
p^)^'^1) for A:eB^ and hence 772(72+1) =772(72) (modA;(72)). It follows essentially
from the definition of Z* that there exists at least one supernatural number t such
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that t=m{n) modulo the ideal k(n)7^ of Z* for every n. (Note that t will be unique if
and only if the sequence k(n) is cofinal in the sense of divisibility; that is every integer a
eventually divides k(n).) It follows that if xe\, ̂ {x) = x^^ yf since t== m(n} (mod k(n)),
and hence ^(x)==xt for all A:eB. This completes the proof of the lemma.

We conclude now with the proof of Theorem (7.4). Recall that we are given a
global field k with completions k^ and homomorphisms (p(y) of Ey (the roots of unity
in k^) into the circle group T such that Tl(?{v) ((a, A)J = i, a, bek*, where ( , )^ is the norm

v

residue symbol for n^v)^ roots of unity in k^ {n(v} being the order of EJ. For notational
convenience let us agree that Ey=(o) ifv is complex so that we are really dealing with Ey
modulo its maximal divisible subgroup. Let n be the order of E, the roots of unity in k.
We want to show that ^(u)n=I so that ^(v) takes values in a cyclic subgroup of order n.

Let SQO be the set of Archimedian places, and let S be a finite non-void subset ofV,
the set of all places, which contains Soo. We let fO{S)=={x\xek, v{x)^_i for y^S}.
Then 0(S) is a Dedekind domain, and its maximal ideals are in one-one correspondence
with the places v not in S; to be precise Pv^^lj^^S), y(j^)<i} is the maximal ideal
corresponding to v [10]. Now let q be a non-zero ideal in 0(S) and let W^ be the set
{{a,b) :^eO(S),(^)=(i,o)mody, and ^.0(S)+6.0(S)=0(S)}, (see [10]). A
Mennicke symbol [10] is a function M(a; b) defined on Wg into a group C such that the
following conditions hold:

MS i. a) M(i ,o)==i .
b) M{a, b)==M{a, b+ta) if teq.
c ) M{a,b)=M{a+tb,b) if ^eO(S).

MS 2. M{a, &i)M(a, b^)=M{a, b^).

The following line of argument is really just a trivial modification of the technique
in [io]. If ffeO(S), let D(a) denote the set of its prime factors; that is, those v divi-
ding a, or v{a)>i. Given the hypotheses of the theorem and an ideal q, define for
(ff,6)eW^ M(a, 6)==n<p(y)((6, ff)J (yeD(a)), with the convention that M(a,o)==i.
This is a function from Wq into the circle group which we claim will be a Mennicke
symbol under appropriate conditions. To be precise, let F be the finite set of
places where Ey has order divisible by the characteristic of the residue class field
at v. (F==0 for function fields.) We claim that there is an ideal q containing only
primes in F such that if y^S, and x andj^ are elements ofO(S) which are units at v
(i.e. v{x)==v{y)==i) with x=y mod(qnpj, then {x, ̂ ==(j;, ̂  for all ^. Indeed if
z^F, it is clear that if x== i mod p^ then (x, ̂ =i. If z/eF, it is clear that we can
find an integer a{v)^i such that if x==i moda(v), then (^,^)y=i. Thus it suffices
to take q^Ilp^ (yeF), and in particular q==0(S) is the unit ideal if k is a function
field.

Lemma (7.3). — If q is as above and if 9(^=1 for yeS, and if the hypothesis of
Theorem (7.4) holds, then M is a Mennicke symbol on W^.
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Proof. — MS i a) is clear by definition, and MS 2 is also clear from the formula
for M. Also if ^,6eW^ and teq, then M{a, b+ta)==H^{v){{b+ta, a)^) (yeD(a)).
Now if yeD(fl),
D(a)nF==0, toeqp
is established.

^ is a unit at v since a and b are relatively prime and since aepy, and
q n p^. Thus by the choice of q, (& + to, a\== (&, fl)y and MS i b)

Finally we consider MS i c ) . By the assumed £( reciprocity formula " of the hypo-
thesis of the theorem and skew symmetry of {a, b)y, M{a, b)===Tl(f>{v){{a, b)^), yeV-D(ff).
We decompose V—D(a) into the disjoint union V—D(a)==(D(6 )—F)uFuSuH
where H is the complement of the first three sets. (Note that D(<z) nD(&)=^0 since a
and b are relatively prime.) Then M(a, b)= Mi.M2.M3.M4 where the four factors
represent the products taken over the four sets above. If yeH, a and b are units at v
and y ^ F u S so :hat [a,b)y==i so M4==i. If yeS, then y(y)==i by the hypothesis
of the lemma so that M3 == i. Finally if yeF, a==i mod q and since q == q n ?„ as py D q
(recall that F is void for a function field), we see that (<z, Z>)^==i . Thus M^i, and
we see that M{a, b)==Tl(^{v){{a, 6)J (yeD(6)—F), with obvious conventions if &==o.

If ^EO(S)

But now if veD{b)
Thus a-\-tb-=a mo<
and so the lemma

M{a+tb, b)=Tl^v)({a+tb, 6)J (z/eD(6)-F).

— F , a i s a unit at v and bep^ and also 6eq by definition of Wg.
i q n p ^ and so (a+^S b\=={a^ b)y. Now MS i ^ is established,
is proved.

We now turn to the proof proper of Theorem (7.4). Let A; be a number field;
and let S=Sgo. If A: is totally imaginary <p (&)==! for all yeS automatically so that M
is a Mennicke symbol on W^. It is shown in [9] (see also [10]) that any such symbol
has order dividing n, the order of the roots of unity in k. Thus M.1^ == i. If now k
is not totally imaginary, then E^ has order dividing two for each yeS, and upon replacing
<f>{v) by <p(y)2 for every y, we see that the hypothesis of the lemma is satisfied. Thus M2 is
a Mennicke symbol on Wq. However, it is shown in [9] (see also [10]) that any such
Mennicke symbole is trivial. Thus M^i, but we note that 72=2 since k has a real
place so that N ^= M^ i for a number field.

Thus if we ^et ^{v)=^v)n, we see that N(^, b)==n^{v){{a, b))^==i {veD{a)) for
v

We shall deduce that ^(z/)==i, which will prove our theorem for
the Dirichlet theorem will be useful here and we refer to [10], A.io,

L ibrmulation of this result. Since ^(v)==i if yeS, by construction,
tn y^F. We can find by the Dirichlet theorem a u^F (^=t= v) such that

p^p^==a.O(S) is a principal ideal, and such that a is congruent to i modulo q. Thus D(a)
consists of the points u and v so if b is a unit at u and v and is in q, (a, ^)^Wq and we
see that ^(^((^ ^^(^((^ ^OJ^1* Again by the Dirichlet theorem we can find a
beq such that & = s i mod p^ and such that the image of b in 0(S)/p^, is a generator of
the multiplicative group of this field. Then [a,b)^==i by construction since ^F,

every <z, 6eW^.
number fields.
for a convenient
we fix a y^S witi:

19]
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and so ^{v)({a, &)J==i. However by construction and properties of the local symbol;
(a, &)„ is a primitive TZ^)^ root of i in E^. Thus ^{v)==i for z^F.

Now the n^ power of the alleged reciprocity formula in the statement of the
theorem reads 11̂ ) {{a, b\) === i (z/eF). Let k^ denote the product of the local fields ^,
yeF. Then k* is injected diagonally into A^, and the image is dense by the Dirichlet
theorem (i.e. weak approximation). Since ^(z/)((^,A)J is continuous on ^x^, it
follows by density that n^(y)((^,, b^^)==i (z/eF) where ^ and ^ are arbitrary elements
of^. It is clear now that ^(z/)=i for veF as desired. This completes the proof for
number fields.

Now let A: be a function field. We choose S to consist of a single point v and
denote by n(v) the order ofE^. We now define ^(^^(w)^ for all weV. Then
the lemma applies to M{a, b}^ with q==0(S) the unit ideal since ^{y )= i . Now it
is shown in [9] (see also [10]) that any Mennicke symbol on W^ is trivial so that we
deduce that M(a, b)^ == i. We can apply exactly the same argument using the
Dirichlet theorem as in the case of a number field. The conclusion is that
^(^^(p^)^):^:! for v+w. (Note that F is void, and note that cp^^i by
construction.) Now if m==g.c .d . {n{v)), q^^^i implies that 9(^=1 for all v.
On the other hand m==-n is the order ofE the roots of unity in k, see [3], p. 12. This
completes the proof of the theorem.
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CHAPTER III

8) Let A: be a field and let G be a simply connected simple Chevalley group ([12],
[15], [i]). We denote by G^ the group of points of G in k. Among these groups one
has SL^, the unimodular group, Sp^ the group of 2nX2n matrices preserving a non-
degenerate skew-l;wo form, and Spin^, the spin group of a quadratic form of maximal
Witt index. Wit i the exception of SL^Zg), S^L^Z^), Sp^Zg) and G^{Z^) [15], where Z^
is the field ofn elements, all of the groups G^ are equal to their own commutator subgroups.
Therefore G^ witn these exceptions has a fundamental group, TCi(G^). We note that the
groups Gjc are simply connected as algebraic groups; that is, they have no algebraic cove-
rings, but they certainly might have non-trivial covering groups as abstract groups;
or when A is a topological field, they may have non-trivial topological coverings. One
point of view is then that ^i(G^) will reflect properties of the field A, and the fact that it
might be non-zero reflects some properties of k. Note that if k ==C the complex numbers,
then GQ is simply connected as topological group, whereas if A: is the real field Gp is not
simply connected In [40], Steinberg shows that 7^(G^)===o if A: is a finite field, at
least if we exclude a few fields of low cardinality.

In fact in [..o], Steinberg gives an explicit construction for the universal covering
group E(G^) of Gj; if one excludes again some small finite fields (to be precise, the cardi-
nality of A; must >e greater than 4, and in an addition unequal to 9 if G=SL,2). He
constructs these groups as extensions ofG^/Z where Z is the center ofG^, but in fact the
same group E(G^ will be the universal covering ofG^ by Lemma (1.6). These results
of Steinberg cleany supplied the motivation for the general discussion in Chapter I (1).

By construction ofG as group scheme over Z [16] we have a split Cartan subgroup H
ofGfc; we also fix n ordering on the roots of Gj, with respect to H. Thus we have distin-
guished nilpotent s ubgroups U^. corresponding to the positive roots, and U_ corresponding
to the negative roots. To be precise, each root a determines a one dimensional uni-
potent subgroup of Gj, : {x^{t), tek}, so that t\-^Xy(f) is a homomorphism of A;
into Gfe ([12], [15]). Then U^ is the group generated by x^t), a>o (resp. a<o).
Now Gjc is generated by the elements x^{t), aeS (the root system) and tek. Moreover,
one has

A) x^t+s)=x^t)x^s) and
B) [A<a(^5^M]:=^^+^(N^^^f^) if a+(3=t=o, where the product is taken of

iw. +j(B arranged in dictionary order and N^ p , . are certain integers.all roots of the fori

In fact an appropriate title for this entire paper would be ts Variations on a theme of Steinberg ".
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If G^SLg, then B) is vacuous and is replaced by B') below. For any root a,
define w^t)=x^t)x_^—t~l)x^t) and then

B') w^x^w^-^x^^-st-2) it G=SL^.
One defines ^(^)==^(^)w^(i)~1 and then
G) Wh^s)==h^ts) holds.
Now Steinberg [40] shows that in fact Gj^ is the group generated by Xy{t} subject

to exactly these relations A), B) (B7) if G=SL,2) and G). Then one defines the
group E(G^) to be the group generated by objects which we denote by x^(t) subject to
the same relations A) and B) (or B')), but not C). There is clearly a unique homo-
morphism 9 of E(G^) onto G^ such that ^(x^{t))==x^{t) for every ae2 and tek.
Steinberg [4] shows that E(G^) is simply connected and that the kernel of 9 is central
in E^. Hence E (G^) is the universal covering group of G^ and the kernel of 9 is just ^i(G^).

Let U^ denote the subgroup of E(G^) generated by the elements x^{t), oc>o,
(resp. ^(^),a<o). Then Steinberg shows that 9 restricted to U^ is an isomorphism
onto U^. Moreover we have elements w^(t), h^(f} ofE(G^) defined by the same formulas,
and we let H' be the subgroup generated by the elements h'^t), aeS, tek*, and
N' be the subgroup generated by the elements w^{t), aeS, tek*. Then H is normal
in N [40], and W=N'/H' ̂  N/H, where N is the group generated by w^{t), aeS, tek\
Then W is the Weyl group ofG relative to H, and we choose representatives w'[c) (creW)
for the cosets of H' in N', and for simplicity if a is a reflection in a positive root a, we
take w'(<?) = w^{i). Let 9(1^\a)) == w{a) be the images of these elements in G^;. Now
let Ft denote the set of simple roots in our ordering on S. Then every element of H
can be uniquely written as HhM^) (aell, t^k*) ([40], p. 122).

a

On the basis of these choices we want to define a cross section s of Gj^ into E(G^),
that is s{g) will be an element ofE(G^) such that (9°^)(^)===^. It oeW, let Ug be the
subgroup of U^ generated by the Xy{t} such that a>o and cr(a)<o. Then G^ has a
Bruhat decomposition ([15], [40])^ namely each element g is uniquely of the form
g==Uy.w{cj) .h.u where u^eVy, AeH, and z/eU^.. For fixed cr, the set of such elements
is the double coset B^((T)B where B==H.U^_. Now we observed that 9 : E(G^)-^G^
is an isomorphism ofU^ onto U_^.. We denote its inverse on U+ by s. Also h = fU^a)?

oc

aell, t^k*, and we define s{h)==Tlh^{t^)e'HL\ Then one defines for g==Uy.h.w[a) .u,
oc

.y(^)==j(^)j-(A)z£/((7).y(z/) so that s is a well defined map of G^ into E(G^) with 90^== id.
Now for g^ and g^G, b[g^ g^==s{g^s{g^g^)~1 is an element of the kernel of 9,

that is ^i(G^), and moreover b is an element ofZ^G^;, ^i(G^)) whose class is the universal
covering E(G^) ofG^. If A is any abelian group and if X is a homomorphism ofn^G^)
into A, then \ob is clearly an element ofZ^G^, A), and by Chapter I, if (Xofi) ' is the class
of \ob, the map X(->(Xo&) ' is the isomorphism of Hom(7^(G^), A) with H^G^;, A)
described in Theorem (1.1). We shall call the cocycles Xo6, Steinberg cocycles on G.

Recall that H' is the subgroup of E(G^) generated by the elements h^{t), and
recall that Steinberg [40] shows that 7^(G^)cH'. Now for any aeS, let

194



GROUP EXTENSIONS OF J&-ADIC AND ADELIC LINEAR GROUPS 43

^h^(ts); it is evident from the defining relation C) for Gj, that b^s, t}
that in fact b^s, t)=.b{h^{s), h^t)) is the restriction of the Steinberg
subgroup {h^t);tek^ We are interested in the structure of TT^G^)
fact will be very useful.

h.{Ws)==b^s
is in T^(G^) and
cocycle b to the
and the following

Lemma ( 8 . 3
roots) and s, tek*

proof. — I
by ([40], (7.7)),
^eH^ and by (

to show that H;

then by (8.2) oi
on n to show our

^1)^2)=^!

;). — The group ^(G^) is generated by b^s, t) for aeIT (the fundamental

iet H^ denote the subgroup of H' generated by h^(t), tek\ Then
H^ is normal in H' and H'^HH^. Thus if AeH', h ==11^ with

L 2) of [40], Ae^(Gfe) if and only if each ^ETT^G^). Thus it suffices

HTT^G^) is generated by the elements b^s.t). But if A==.n^,),
n i=l

[40], AeT^(G^) if an only if rU=i. We proceed by induction
r result, the case n==i being trivial. Now if n>i, observe that

n

^2)^(^2) so that H^(^)==i implies that
i = 1

^'= (̂ i, yr^^a^nTOeT^G,).
t — o

h' is in the group generated by the b^s, t), and hence so is A, by theThus by inductiop
definition of h' above.

Theorem (8
to HxH.

PTW/. — I]
all ^.eH', then
extension of G b^
a unique homomorph
to ^i(G^) is clearl'
into E(G^) and 1(
construction of 1
elements y^(f).
www-1^
satisfy relation C
that j is a homomorphi;
hence c==-\ by <

i). — A Steinberg cocycle c=\ob is uniquely determined by its restriction

view of our construction, it suffices to show that if c(h^ h^)=i for
:=i. Let c take values in the abelian group A, and let F be the
A defined by c. Then by the universal property of E(G^), there is
rphism of group extensions j of E(G^) into F. The restriction of j

y X by Chapter I. Let s be the canonical cross section chosen from G^
^ ^^O^C?). Then if we let J^)^^)) ^ ^ clear from the
i(G^) that the relations A) and B) (or B')) are satisfied by the
Moreover if we let l^t)==u{h^) for aeS, and tek\ then
/(^(^J))=X(,^(^J))==<;(^(^,^M)=I. Thus the elements y^t)

above, and since Gj, has only the relations A), B) and C), it follows
orphism of G,, into F. Hence the class of the cocycle c is trivial, and
Shapter I.

. i). — S(G^, A) is the group of all restrictions of cocycles of the form \ob,
to HxH. An element of this group is called a Steinberg cocycle (on H).

(8.1), it is clear that S(G^, A) is isomorphic to

Definition (d
XeHom(^(G^), A;

By Theorem

H^A^Hon^G^A).

^cle c may be thought of on the one hand as a function from H X H
certain identities; on the other hand, since TC^ (G^) is generated by the

A Steinberg cocy
into A satisfying
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elements b^{s, t), the homomorphism X of^(G^) into A corresponding to c is uniquely
determined by ^{b^{s, t))==c{h^s), h^{t)). Then it becomes absolutely clear that the
identities that c must satisfy in order to belong to S(G^, A) are exactly the relations among
the generators b^s, t). Thus determining necessary and sufficient conditions for a func-
tion c to be belong to S(G^, A) is exactly the same thing as determining all the relations
between the generators by{s^ t) ofTT^(G^).

Our next observation is that one may reduce substantially the number of generators
required for TT^(G^). Since G is simple, it is known that the roots aeS can have at
most two distinct lengths. Moreover the ratio between the squared lengths of any pair
of roots is either i, 2, 3 1/2 or 1/3. Thus if there are two lengths of roots we may speak
of long roots and short roots $ if there is only one length for the roots, any root is long by
convention.

Lemma (8.2). — The group ^(G^) is generated by b^{s, t), s, tek*^ for any fixed long
root p.

Proof. — Let D^ be the group generated by the elements b^{s, t). Now if oeW (the
Weyl group) let (B == cr(a); then (B is a root, and we claim that D^= Dp. Since W is gene-
rated by reflections in positive roots, it suffices to consider the case when a is reflection in a
positive root Y. Then by (7.3) b) of [40], we have ^( I)^a(^)WY(~ I)=^e(^)^3(^)
where Y] = ± i, independently of t. Then as w^{ — i) = w^{ i)-1,
(1 ) ^(l)^^^^^)^!)-1^^^^)^^^^^^^^.

But now the left hand side is exactly b^[t, s)w^{i)h^{ts)w^{i)~1 since b^(t, s) is
central in E(G^). However let us apply the same formula above to h^(ts)\ this yields

(2) ^^^^(l)^^)^!)-^^^^^^^)^^^.

Then we see by equating (i) and (2) and solving for b^{t, s) that
^(^^-^(^^(^^(^^(^r1.

Then by relation C) in G^;, and Lemma (8. i) it is clear that the right hand side is
in Dp. Thus D^cDp and by symmetry DpCD^, hence D^==Dp as asserted.

Now suppose that there is only one length of root in S. Then all roots are conjugate
under W and so D^=Dp for all a and (B and hence ^i(G^)==D^ for any a by
Lemma (8.1). Now if there are two lengths of roots, let [B be a long root. Since (B is
conjugate to any long root under W, it will suffice to show that D^cDp for any short
root a. We may replace a by any conjugate under W and hence assume that (a, (B)>o since
G is simple. Since (B is long, the Cartan integer 2(0, ,6) /((B, [B) is one and 2(0, (B) /(a, a) ==d
where d==2 or 3. Then by (7.3) e ) of [40]
(3) ^^ApMA,^-1^^-^^^.)^^^-1^^)-1

=^(^)-1.

Furthermore we find from the same formula that

(4) h^sWW-W-^b^s)-1.

196



GROUP EXTENSIONS OF p-ADIC AND ADELIC LINEAR GROUPS 45

hand sides of (3) and (4) are clearly inverses of each other we see
!•, ^)~1 which shows that D^cDp as desired.
s'nt in the preceding proof simultaneously yields an important set of
by b^s,t).

argument

Since the
that b^t,s)^b^

The argum
relations satisfied

Lemma (8.3 . — Let aeS and suppose there exists a root (B such that 2((B, a)/(p, P)==i.
\ilinear function of s and t.Then b^{t, s) is a I

Proof. — If
and we simply ol
(cf. Lemma (1.4^

our hypothesis is satisfied, formula (4) of the argument above holds,
:>serve that the right hand side is bilinear in s and t by Lemma (3.2)
))•

We note that by inspection of the root systems of simple Lie algebras that the
hypothesis on a in Lemma (8.3) is satisfied for every root in every simple algebra except
for the long roots of the algebras of type C^, n>_i. Also in this particular case b^{s, t)
may fail to be bilinear.

We denote by H^ the subgroup of HcG^; generated by the elements h^\ then
Lemma (8.2) yie ds the following fact.

Lemma (8.4!. — If a is a long root, any Steinberg cocycle on G^ is determined uniquely
by its restriction to H^.

Proof. — As before, let c be a Steinberg cocycle such that c(h^, Ag)=i if h^ A^eH^.
We must show that c==i . Now c restricted to H is of the form \ob where A is a homo-
morphism of T^(G^) into A, and b is the fixed cocycle describing the universal cove-

The hypothesis that c==i on H^ is clearly equivalent to the hypo-
thesis that X(&a(^ ^))==1 ^d hence that A = = I on D^, the group generated by b^{s, t),
s,tek*. Then by Lemma (8.2), D^=7^(Gfc) and hence X = = i on 7r:i(G^) and hence
^==1 by Theorem (8.1).

ring E(G,) of G,.

It is possible to view this result in a slightly different way; namely if a is any root,

homomorphism ^ of SLg(A:) into G^ such that if ;c^(^)==( )
^a{x±{t)}==x±oi(t)' There is a corresponding homomorphism e^ of

there is an i
/ /i rresp.
\ \o L
the universal
maps this gro
mental groups
into Hom(7Ti(

Lemma (
are injective for

Proof. -
the same wg
construction
range of (^
lemma.

njeccive

))
covering E^ of SL^A) into E(G^), and the restriction of ^ to ^(SLg^))

group into ^(G^), and is of course the induced homomorphism (ij on funda-
-e Chapter I). The dual map (^ of Hon^Gfc), A)^!! ,̂ A)
[A;)), A) for any A is of course the restriction map in cohomology.
). — The map {iy}^ is surjective, and hence the restriction homomorphisms (^)*
A, and a a long root.

(SL,

any
- If: is clear that T^(G^) is generated by elements &^(J, t) defined in

om the elements ~x^{t) of SL^A). Moreover it is clear from our
that ejb^s, t)) == {i^Jb^s,t))==b^ t). Hence by Lemma (8.1), the
^ contains D,, and hence is equal to ^i(G^). This establishes the

way
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This lemma indicates the key role played by the group of rank one, SLg(^). The
next section is devoted to the detailed treatment of this group.

9) If G^== SL^A:), the split Gartan subgroup H may be taken to be k*, the multi-
plicative group of the field k. There are two roots ±a, and we denote the corresponding
one parameter groups by x{t} andj/(^). We take the representative for the Weyl reflection
in Gj, and E(G^) to be w{i)=w^_^i) and w'(i)=w^(i). Then h{t)==w{t)w{i)~1,
and ^i(G^) is generated by elements by{s^ t) which we denote for simplicity by b{s, t).

Now every element of G^ is uniquely of the form gt{u, t)-==x(u)h(t)y uek, tek* or
of the form g^{u, t, v)==x(u)w(t)x(v)y u, vek, t^k* by the Bruhat decomposition. We
have elements g[(u^ t), g^u, t, v) in E(G^) defined by the same formulas with primes.
The canonical cross section s of section 8 of Gj^ into E(G^) is then s{g^(u, ^))==,§rl(^ ^5
s[g^(u, t, v))=-g^(u, t, v). The Steinberg cocycle b on G^xG^ into TTi(G^) is defined by
s{a^)s{a^)==b(a^, a^)s{a^) if a^eG^. Then Theorem (8. i) says in principle that b{a^ a^)
can be computed from its values on k * x k * y b{h{s), h{t))==b{s, t). In this simple case
it is possible by simple calculations to make this explicit. We omit the routine details
and record the results.
(1 ) b{g,{u, t, v),g,(u\ t\ v^^b^tw-^ ̂ -1)-1^-1, 0 (if w==-(v+u')^o)

and ==b{—t, —t')-1 if w==o.

(2) A(&^/^),^^/))-6^f-l)

(3) b^t)^^^'^^-^^

(4) î(^) î(^)) -b^t'Y

Lemma (9.1). — If fi?eS(G^ A) is any Steinberg cocycle on G^^SLg^) with values
in A, then d can be calculated from its values d{h\s), A'^))^^, t) on k*xk* by substituting d
for b in formulas (i)-(4) above,

Proof. — By definition d is of the form \ob for some homomorphism of ^i(G^)
into A, and the result is immediate.

Now the function b in the formulas above is a normalized cocycle; i.e.
b{a^ a^)b{a^ a^)b{a^ a^a^-^b^ ^g)-1^!, i(i, i)=i.

Then if we rewrite these expressions using (i)-(4), we obtain words W(^, a^y a^)
in the generators b{s, t) of 7Ti(G^).

Theorem (9.1). — The relations W(^, a^ 03)==! and b(i, i)==i hold for the gene-
rators b(s, t) ofn^G^). Moreover these relations generate all relations so that î(G .̂) is the free
group on generators b(s, t) subject to relations W(^ a^ ^3)==! and &(i, i)==i.

Proof. — It is clear that these relations hold; now let F be the free group on
objects b(s, t) subject to these relations. There is clearly a surjective homomorphism ^
ofF onto ^i(G^) sending generators to generators. Then b(s, t) is a function from k * x k *
into F. We extend b to a function from G^xGj^ to F by formulas (i)-(4), and it is
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iat it is a normalized cocycle with values in F. Let K be the group
r F which b defines. Then by the universal property of E(G^) there is

homomorphism j of group extensions of E(G^) into K. It is clear from the
j\b{s, t)) ==I(J, t) and since b{s, t) = ^(A(J, t)), it follows that j^ =- id,
is injective, and hence an isomorphism as desired.

absolutely clear t
extension of Gj^ b^
a unique homom
definition of b tha
and hence that ^

The problei
form. This is sin

Theorem (9.
s, tek* subject to i

(1 )
(2)

(3)
(4)

n then is to reduce the relations in Theorem (9.1) to a more usable
iply a routine but tedious calculation; see the appendix for the details.
2). — If Gj,==SL^k), then ^i(G^) is the free group generated by b(s, t),
he following relations

b{st, r)b(s, t)==b{s, tr)b{t, r), &(i, s)=b{s, i)=i

b{s,t)==b(t-\s)

b(s,t)==b{s,-st)

b(s,t)=b{s, {i-s)t).

is the normalized cocycle identity. Also Steinberg showed that a
holds in ^(G^) (see the calculation at the bottom of p. 121 of [40]).
that these properties are exactly the first four parts of definition (3.1)

We note that (i
special case of (4)
We note of course
of Chapter II, sc
Chapter II.

We recall
equivalently all
into A.

Corollary. -
satisfying (i)-(4)

proof. — I:
Conversely if d sa
morphism X of7^(
tion is established

We note the
real interest is the
is a topological fi

that Theorem (9.2) serves as the motivation for the discussion in

fiat S(G^, A) consists of all Steinberg cocycles from k * x k * into A, or
functions of the form {\ob)(s, t) where X is a homomorphism from TT^G^)

The group S(G^, A) for Gj,==SL^k) consists of all functions dfrom k'xk'
f Theorem (9.2) with b replaced by d.

fl?eS(G^,A), d==\ob so that a! satisfies (i)-(4) of Theorem (9.2).
tisfies these properties, then the map b{s, t) V->d[s, t) defines a homo-
Gj^) into A by Theorem (9.2). We clearly have d=\ob so our asser-

.t then S(G^, A) is the group we denoted by S^(A) in Chapter II. Our
subgroup S(A) consisting of the continuous functions in S^(A) when k

eld and when A is a topological group.

e a locally compact non-discrete field (a local field), and let Gj, denote
an arbitrary simply connected simple Chevalley group in k. Since Gj,
an algebraic group of matrices, G^ is a locally compact (separable)
also G^==[G^, G^]. In accordance with Chapter I we denote by G^

10) Let k b
the set of points oi
can be realized a
topological group
the group Gj^ vie\
and by ^(G^) th

Let A be a]
logical extension

ved as an abstract group, and by E(G^) its universal covering group,
e fundamental group of G^.
y locally compact separable abelian group and let E be a central topo-
of G^ by A. By the universal property of E(G^), there is a unique
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homomorphism of group extensions ^ ofE(G^) into E. Recall that s denotes the distin-
guished cross section of G^ into E(G^); then we define o-(<?)==+(.?(,?)) which is a cross
section of G^ into E. The Steinberg cocycle d of the extension E is then defined by the
equation Gr(^i)CT(&)==^(<?i? g^^^SiS^^ also d==^ob where b is the Steinberg cocycle
ofE(G^). We want to show first that the fact that E is a topological extension implies
certain topological properties of a and d.

Recall that U^ is the subgroup ofG^ generated by the elements x^{t), aeS^, tek.
Lemma (10. i). — IfE is a topological extension^ then a is a continuous function on U^

and U_.
Proof. — It is always possible [25], [26] to choose a Borel map or' ofG^ into E such

that <po<7'==id where 9 is the projection of E onto G^. The commutator [(/(a), (^(^jeE
depends only on a and b and not on the choice of or' since E is a central extension of G^
by A; moreover it is clear that [a'[a), ^{b)] is a Borel function of a and b. Now if a
is a root, and if nek* with n?'==c^i (such an n exists if we omit the fields of 2 or
3 elements), then (s{x^t))==[c{h^n)), ff{x^t{{c~i))))] by [40], p. 123 where a is the
distinguished cross section of our lemma. Thus it follows that o- is a Borel function when
restricted to the subgroup U^ of elements of the form x^{t). Since U^ is clearly a closed
subgroup of Gj., U^ is locally compact separable, and it follows by a classical theorem
of Banach [7], p. 25 that o- is continuous on U^.

Every element u of the group U can be written uniquely as u==Tlx^), aeS4',
a

t^ek*, where tie product is taken in lexicographic order. It is also known that the
map u\-> (x^(t^)) is a homeomorphism onto the product II U^. Thus since G- is known

_ _ a
to be a homomorphism on U, (j(u)-===a{Tlx^{t^))==Tl(5{x^{t^)) is clearly a continuous

(X OC

function of u, as desired.
By definition, we have d==^oj, where s is the distinguished section of G^

into E(G^), and ^ is the projection of E(G^) into E. Also we know that for any a,
^(t)==s{x^t))s{x^^l))s{x^t)) and that h^^w'^w^—i). If a is a fundamental
root, we defined !(h^t))=h^t), and hence

(T(^^)=o(^J^)o(^(-I))-o(^))o^Jrl))^(^(^)a(^(-

so that a{hy^t)) is a continuous function of t by the previous lemma.
Corollary 1. — The cross section a is continuous on H.
Proof. — Every element A of H can be written uniquely as A==IIA^(^) (aell)

^_^ . . Q^ _______

where FI is the set of simple roots ([40], p. 122). Then we defined s{h)==Tlh^(t^) and
(X __

hence CT(A)==ricr(A^(/J). Since H is isomorphic as topological group to the product Tik*
by the map A(-^(^), it is clear from the preceding paragraph that (T is continuous on H.

Now if <zeW, the Weyl group, let D(a)==Bw(<z)B be the corresponding double
coset of B in G ;̂ where w{a) is the representative of a in N chosen in section 8.

Corollary 2. — The cross section a is continuous on each double coset D{a).
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Proof. — Each element g of D(a) can be uniquely represented as u^.w{a).h.u
with ^eU^, hell, ueV. Moreover the map g\->(u^ h, u) is a homeomorphism, as is
well known. Since by definition c(g)==G(Uo)w{a)(j{h)(5{u), the result follows from
Lemma (10.1) and Corollary i.

Now if a^y <^, ̂ W, let A(fli, a^, a^) be the subset of G^X G^ of all pairs g^ g^ such
that ^i£D(^), g^eD{a^) and ^i^^^^s)- Since each set D(^) is locally closed (the
intersection of an open and a closed set) it follows at once that A(^, a^, ^3) is locally
closed.

Corollary 3. — If E is a topological extension of G^ by A, and if c is the Steinberg cocycle
of this extension^ then c is continuous on each set A(^, ̂ , ^3)3 and hence c is a Borel function
on G^xG^.

Proof. — vVe have by definition c{g^, g^-==G{g^a{g^a{g^)~1, and the result
follows immediately from Corollary 2. Since G^xG^== UA(^, a^ a^) and each is a
Borel set, and since c is a Borel function on each A(^, ̂ , ^3), ^ is a Borel function.

Now if as before, A is a separable locally compact abelian group, it follows from
Theorem (2.3) tliat the natural homomorphism ofH^G;,, A) into H^G^, A) is injective
since [G^, GJ=G^. Thus we can view H^G/^ A) as a subgroup of H^G^, A), and to
each class aeH2^, A), there is associated a Steinberg cocycle c^ which we view as a
function on G^ X G ;̂ or on H X H since the values of ̂  on H X H determine c^ uniquely
by Theorem (8.1). (By Chapter I, a determines a unique homomorphism X ofT^(G^)
into A and c^=='\ob where b is the Steinberg cocycle for the universal covering E(G^)
of G^.) We are now in a position to say which Steinberg cocycles belong to classes
in H^G/g, A) in terms of their restrictions to HxH.

Theorem (10. i). — The following are equivalent for a Steinberg cocycle c :
(1) c is continuous on H^xH^ for some long root a.
(2) c is continuous on HxH.
(3) c is a Borel function on HxH.
(4) c is a Borel function on G^xG^.
(5) The class of c is in H^Gjc, A).
Proof. — (2) => (3) is clear since any continuous function is a Borel function. Also

(5) => (i) is a consequence of Corollary 3 above applied to the set A(i, i, i). Now if (4)
holds, there is by [25] a topological extension E ofG^ by A with c as a cocycle represen-
tative. Then c belongs to a class in H^G^;, A) as desired, so (4)^(5) holds.

Suppose now that (i) holds. We make use of the formulas developed in
Lemma (8.2) anc the general case of (7.3) e ) of [40], and one may obtain an expression
for c{h^ Ag), A,eH, in terms of its values c(h^{s), h^{t)) with a a long root. We omit the
details, but the result is that this formula exhibits c as a continuous function on HxH
provided it is continuous of H^xH^ so ( i )=>(2) holds.

It remains 10 consider (3)=>(4). If G==SLg then the explicit formulas (i)-(4)
preceding Lemma (9.1) show immediately that c is a Borel function on SL^A^xSL^A).
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For a general group Gj, one knows in principle that one can compute the values of c on
G^xG^ from its values on HxH, but explicit formulas seem too formidable; however,
the same basic idea will work. It clearly suffices to show that c is a Borel function on
each set G^xD((B) for each (BeW. Now any element w of W may be written as a
product of reflections in fundamental roots [22], and let us call the minimal number of
reflections needed l{w). We shall prove our statement above by induction on /((B).
Suppose that ^((B)^i; then any element g of the double coset D((B) may be written
uniquely as g=u^w{^)hu with z^eUp, AeH, ueU where ^(jB) is the representative of (3
chosen. Now by the construction of Steinberg cocycles it is absolutely clear that
c{x, yu) == c{x, y ) when ueV (see the formulas (i)-(4) of Lemma (9.1)). Thus it
suffices to show that c{x, u^w{^)h) is a Borel function of its variables. Now we can find
a reflection, a, in a fundamental root such that (B==YOC and / (y )==^(p )—i . Let w be
the representative for a in G^. Since any element w(t), teW, normalizes H, it follows
that if g==u^w{^)h is the second variable above, g==g'w where g ' is a Borel function
of g, and where ^eD(y) with / (Y)==/ ( (B)—I. Now by the cocycle identity,

^ g)^^x, gfw)==c{g\ w)-1^, w)c{x, g ' ) .

Now ^eD(y) and ^(y)<^(P) so that the third term on the right is a Borel function of x
and g^ and hence of x and g. It is quite evident now that it suffices to show that c{x, w)
is a Borel function of x, w being a reflection in a fundamental root, and to treat the case
when /((B)==o; that is to show that c{x, g) is a Borel function ofx and g when ^eB, the
Borel subgroup of G^. In both of these cases one may write down formulas for the
relevant values of the cocycle c in terms of its values on H X H quite analogous to the
formulas (i)-(4) of Lemma (9.1). These formulas, which we omit, show immediately
that c is a Borel function. This completes the proof of the Theorem.

Remark. — The description of topological extensions by Borel cocycles, rather than
by some other class of cocycles (e.g. those continuous at (^, e) in G X G or those continuous
in a neighborhood of {e, e) in G X G) is well adapted to this discussion, since the rather
natural selection of the Steinberg cocycle to represent a class leads to a cocycle that clearly
is a Borel function, but in general is not even continuous at (^, e) in G^xG^. Notice
that any Steinberg cocycle is continuous on a dense open set in G^xGj, by Corollary 3
of Lemma (10. i).

We change notation slightly from section 8 and denote by S(G^, A) the set of all
Steinberg cocycles of G^ with values in A viewed as functions -on HxH. Then
S(G^, A) ^ H^G^, A) for any A. Then if A is locally compact separable, S(G^, A) will
denote all such functions corresponding to topological extensions. By Theorem (10. i),
S(G^, A) consists of the continuous functions in S(G^, A). If now Gj,==Sl^{k), we have
an explicit description of S(SL2(^)a, A) by Theorem (9.2), and its Corollary. Now
S(SLg(A;), A), the continuous functions in the former group, will be denoted by S(A).

Theorem (10.2). — The group S(A) consists of all functions from k*xk* into A satis-
fying (i)- (4) of Theorem (9.2) which in addition are continuous.
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We remem 3er now that Theorem (3.1) of Chapter II describes the group S (A)
completely (cf. definition (3.1)). Thus since S(A) ^.tP^SL^k), A) for any A, we
have an explicit description Of this group of extensions. Recall that there is a cyclic
group B^ such that S(A) ^Hom(B^, A) and that Bc=(o), Ba==Z, and B^=E^ the
roots of unity in k if k is non-Archi median. Thus H^SL^C), A)==o and
H^SL^R), A) ^Hom(Z,A), both of which are well known results (cf. Chapter I).
Moreover we fina the following fact.

Theorem (10.3). — If k is non-Archimedian^ then H^SLg^), A) ^Hom(E^;, A) for
any separable locally compact abelian group viewed as a trivial SLg(A) 'module.

It is clear then that if SL^A;) as topological group has a fundamental group
in the sense of Chapter I, this group must be E^;. Our main result in the local case
includes this and more (see Theorem (10.5)). It is really a matter of putting the pieces
together.

Theorem (n».4). — If k is a local field, and G is a simple^ simply connected Chevalley
groups then G^ cs locally compact group, has a universal covering group E(G^). Moreover
E(G^)=F[E(G^), E(G^)] so that E(G^) is a covering group of G^ as abstract group. If k==C,
n^Gc)==o and if A;=R, ^i{G^)==Z^ (the integers mod 2) unless G is of type C^ (the sym-
plectic groups}, in which case ^i{G^)=Z,. If k is non-Archimedian^ 7r^(G^) is a finite cyclic
group of order dividing the order ofE^, the roots of unity in k, and finally TT^SL^A:)) ̂  E ;̂.

Proof. — I' k==C, the complex numbers, it is well known that G^ is simply
connected. If ^==R, the real number field, then Gp has a simply connected covering
group E(Ga) equal to its commutator subgroup by Theorem (2.2) ; moreover E(Ga)
is the usual topological universal covering group ofGg. That n^(Sii^(K))==Z. follows
from Theorem (^ . i ) and Theorem (10.2), not to mention the usual classical proof of
this fact. If G is arbitrary, let a be a long root of G, and let ^ be the corresponding
injection ofSLg into G (see Lemma (8.5)). In view of Lemma (8.5) and Lemma (2.5),
the induced map (^ : TT^SL^R)) -> ^(G^) is surjective. Thus ^(Gp) is cyclic and
generated by (ij^(^) where x is a generator of TCi(SL2(R)). Now by Theorem (3.1),
Theorem (9.2), and Theorem (10.2), TT^SL^R)) is generated by x==b{—i,—i).
Now by Lemma (8.5), (^) {b{—i,—i))==b^—i,—i)^ but by Lemma (8.3) which
is valid for the long roots of any group other than those of type G^, b^{s, t) is bilinear
in s and t. Hence by{—i, —i)2^ i, and ^(G^) has order at most two if G is not a
symplectic group. Now if G is of type G^ so GR==SP^(R), it is well known that
TT^(GR)=Z. Moreover an inspection of a list of simple groups reveals that ^(G^^Zg
in all other cases, We of course do not need this elaborate theory at all here, but we
feel it is significant in that it " explains 5? the empirically observed facts about ^i(Ga).

Suppose now that k is non-Archimedian. If G^== SL^A), then Tti(G^) is generated
by the elements b{s, t) subject to the relations of Theorem (9.2). We define a homo-
morphism a of 71:3 (G^) onto the roots of unity E^ by sending b{s, t) into (J, t), the norm
residue symbol in k. It is well known (cf. Chapter II) that (^, t) satisfies all relations
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satisfied by the elements b{s, t) so that a is well defined and surjective. By Chapter I,
aeHom(7T^(G^), E^) defines an element a' ofH^G^, E^) and so a central extension E(G^)
ofG^. The Steinberg cocycle of this extension is c{s, t)==y.{b{s, t))==={s, t) and is a
continuous function on k * x k * and hence E(G^) is a topological extension of SLg(A:) by
Theorem (10.1). Let D be the kernel of a in ^(SLg^)"). Then if G is any simple
simply connected Chevalley group, let (B be a long root ofG. Then by Lemma (8.2),
the map b{s, t) \->b^{s, t) defines a surjective homomorphism (ip)^ of n^SL^k)^ into
TTi(G^) (the induced map defined by the inclusion i^ : SLg^-^G^). Let (z'p)^(D)==D^
be the image ofD. Then L^=-n;i(G^)/Do is a finite cyclic group of order dividing the
order ofE^; and in fact a quotient group ofE^. Ifa^ is the natural projection of^{G^)
into L ;̂, then there is a unique Y£Hom(E^, L^) such that Yoa:: : :=aGO(^p)„• Since
^eHomfn^G^, L^;), it defines a central extension E(G^) ofG^ by Lj,. The Steinberg
cocycle c of this extension is simply oc^o^ where ^ is the Steinberg cocycle of E(G^).
Now if h==h^{t) and h'==h^[s) are in H^cH, then b{h, h')==b^{t, s) and hence
.(^ ̂ -(a^KA, ̂ )==a^, ̂ ))==ao(^(^, .))=Y(a(^, ^))=Y((^ ^) where ^ .) is
the norm residue symbol since Ya:=aG(^0)^ by construction. This shows that the
Steinberg cocycle c is continuous on HpXHp and hence by Theorem (10.1), E(G^) is
a topological extension. This extension could have easily been constructed by the
techniques in [31].

We contend now that E(G^) is simply connected as topological group. We first
consider the inflation homomorphism j : H^G^, A) -» H2(E(Gfe), A) for any A. We
view H^G,, A) and HP(E(G,), A) as subgroups of H^G^, A) and H2(E(Ga, A) respec-
tively. Since H^G^, A) ^ Hom(7Ti(G^), A) and E(G^) is a covering group of G^ as
E(G^)=E(G^)/DQ (D^C^G^)), it is clear from Theorem (1.1) that the kernel of the
inflation map^' viewed as a subgroup of Horn (^(G^), A) consists of exactly those homo-
morphisms vanishing on D(^. Now if ^eH^G^, A), let dbe its Steinberg cocycle. We
consider the restriction d ' of d to SL^A;) so that d ' is the Steinberg cocycle of the restric-
tion a' of a to SL^A;). Then viewing d ' as a function on H^xHp ((B is the long root
defining the injection of SLg(A;) into G^ and Hp is a split Gartan subgroup of the image
of SL^A)) and hence on k * x k " , d ' is the Steinberg cocycle of a topological extension.
Hence rfeS(A) (cf. Theorems (10.1) and (10.2)) and then by Theorem (3.1),
rfeSo(A)==S(A). But So(A) consists of all functions on k * x k * into A of the form cp((.y, t))
where (.$•, t) is the norm residue symbol and <peHom(E^, A). Thus d' viewed now as
the homomorphism of n^SL^k)^ into A which sends b{s, t) into d ' [ s , t}=d(h^{s), h^(t))
vanishes on D, the kernel of the projection a of ^(SLg^)") into E^;. Since d ' is the
restriction ofd to Hp ==/;*, it is clear that a? viewed as a homomorphism of 71:1 (G^;) into A
vanishes on (^(D)==DG. It follows then that the class of d, which is an arbitrary
class of H^G^, A^H^G^, A) is in the kernel of the inflation homomorphism j to
H2(E(G^,A)cH2(E(G^,A). We have shown the following.

Lemma (10.2). — The inflation homomorphism j : HP(G ,̂ A) -> H2(E(G^), A) is the
^ero map.

204



GROUP EXTENSIONS OF p-ADIC AND ADELIC LINEAR GROUPS 53

first step in showing that E(G^) is simply connected. We consider the
for the group extension E(G^) of Gj, by Lj,. The E^ term is
which is trivial since G^==[G^ GJ acts trivially on the coefficient

Thus the restriction-inflation sequence [30]:

This is the
spectral sequence
H^G,, H^L,, A))
module ?(4, A)

(*) o • ?(3,, A) -> H^G,, A) ̂  H^G,), A) -^ H^B,, A)

is the transgression and r is the restriction. If A==T is the circle
ero map since [E(G^), E(G^)]=E(G^) by Lemma (2.4), and so
. Since H1(E(G^), T)==o, we have already verified the first part
of Lemma (2.1).

is exact where t
group, r is the
HWG,),T)={o}
of the hypotheses

Now let A
H^G^A^o;
restriction homom
Since L^; is finite
sequence,

be any discrete abelian group. It will suffice to show that
. By the exact sequence (*) HP(E(G^), A) cH2^, A) via the

homomorphism. Let aeH2(E(G^), A) and let r(a) be its image in HP(L^, A).
;, there exists a finitely generated subgroup A' of A, or an exact

o -> A' -> A -> A"

o and hence that 6'll(a)eH2(E(G^)5 A") is zero. Thus there exists
;), A") with ^((B) == a, and so it suffices to show that ^^(Gfc), A) = (o)
lerated. In this case A==riA^ where A^ is cyclic (finite or infinite)
to show that H2(E(Gfc), A)==o if A is cyclic. We have seen that if
lE(Gfe), T)==(o), then H2(E(G^), B)==o for any compact B, and hence

)B. Thus it finally suffices to show that H2(E(Gfc), Z)=(o) where Z

such that ^(/"(a))
a class (BeH^G,
if A is finitely generated
and so it suffices tc
H^G^T^H2!!
for any finite group
is the integers.

We consider
(**)

now the exact sequence
o->Z->R->T-^o

sequence of E(G,)-modules. Since H^G,), T^H^G,), T)==(o),
exact cohomology sequence of (**) that

as an exact
we find from the

o-H^G,), Z)-^H2(E(G,), R)^o.

^),R) is a vector space, and IHP^G,,), Z), being isomorphic to a
L^;, Z), with L ;̂ a finite cyclic group, is a finite group. Thus

However H^E^
subgroup of H2

H^G^.Z^o
identifies ^i(G^) <
is equal to its own

as desired. This shows that E(G^) is simply connected, and hence
s described in the theorem. We have already observed that E(G^)
commutator subgroup.

in [10] have remarked that via the
of congruence subgroups (cf. Chapter

The authors
with the proble
following.

Theorem (]
if k is of characteristic

connection of this theory
IV), one may deduce the

5). — If G,=SL^), or G,=Sp,{k) for any n, then TT^G^E,
^ ^ero.
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Remark. — There seems to be considerable evidence now that T^(G^) ^ E^ for any
simple simply connected Ghevalley group for non-Archimedian k (1). Part of this comes
from the observed regularity of the fundamental groups ^(G^) for k==R, the real
field, when they are incidentally isomorphic to E^ the roots of unity in R, if G is not of
type C^. The anomaly for the symplectic groups is explained in Lemma (8.3), and is a
phenomenon which is not expected to occur in the non-Archimedian case, since
Steinberg cocycles even for SL^k) are already bilinear by Theorem (3.1).

We note two additional results which are obvious at this point.
Corollary 1. — If a. is a long root, the injection i^ ofS~L^{k) in G^ induces a surjective map

of TC^SL^A)) into 7ri(G^).
Let H be the fixed Gartan subgroup we have been using. Then we have the

restriction homomorphism r : H^G/,, T) -> HP(H, T).
Corollary 2. — If the characteristic of k is not two and if G is of type C^ (n^ i), then the

kernel of r is of order two. Otherwise r is injective.
Proof. — If G^SLg, then the result follows from Lemma (4.2). If G is not of

type C^, the result follows from Lemma (8.2) and (8.3). Finally if G is of type C^,
it follows from Lemma (8.2), that any element of order two in H^G^, T) is in the kernel
of r and that conversely any element of the kernel of r is of order two. It then suffices
to know that if k is not of characteristic two, then H^G^;, T) (G==GJ has a non-trivial
element of order two. However Well's classes [41] are non-trivial elements of order two,
and we are done.

Remark. —It seems to be more than an accident that the metaplectic coverings
found by Well in [41] are characterized by Corollary 2 above.

n) In addition to information about G^, k a local field, we shall also need some
facts about GQ where 0 is the ring of integers in k. By definition we shall denote by G^
the subgroup of Gj^ generated by the elements A^(^), aeS, te!D. We shall recall some
well known facts about this group. View G as a group scheme defined over the integers Z
as in [16] or [i] (lecture I-D, I-D'). Then we have a faithful representation p of Gj^
(defined over Z) on a vector space V^; and an admissible lattice L in V^ such that
p(^(^))(L)==L for every oceS and teC {op. cit., [14], [22]). Let K be the subgroup
of G^ of all elements g such that p(^) (L) = L. Then it is well known that K is an open
compact subgroup ([14], [22]). Also let K^ be the subgroup of all elements of K such
that p(^) induces the identity transformation on L/p^ where p is the maximal ideal
of L. These are clearly the (( congruence subgroups 53 of K of level i. We recall some
well-known facts.

Lemma (n. i). — K==G^ is a compact subgroup and K/K^ is isomorphic to G', the
group of points of G in the residue class field ky. Moreover K^ is a pro-p-group where p is the
characteristic of ky. If ky has at least four elements, then K==[K, K].

(1) Added in proof : H. Matsumoto has shown that this is in fact true; see [42].
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Proof. — As we have observed each of the generators x^(f) ofG^, teC, is contained
in K and so G^cK. But G^ is known to be a maximal compact subgroup ([14],
p. 36, and [22]), and so G^ = K. It is known by the construction of the group scheme G
over Z ([i6], [i]) that K/K^ is G', the group of points of G in k,. We note that Ki is
a subgroup of the group H of all endomorphisms of V leaving the lattice L fixed and
inducing the trivial map on L/pL. We observe that H is a pro-j^-group and hence
that Ki is a pro-^-group.

Finally if k^ the residue class field, has at least four elements we can find de'R.
the residue class system (which is cyclic or order at least three) such that c = d 2 ^ F I .
Then c—i and c are units in 0 and by [41], p. 123, x^t)==[h^(d), x^tl(c—i))] for
any tek. By the definition of w^x) and h^(x), it is clear that h^x)eG^=K if x is a
unit in 0. Thus if teC, (^—i))e0 and c is a unit, hence A^)e[K, K], and so
K==[K,K] since K is generated by elements x^{t), teQ.

It is appropriate to consider at this point when a compact group K has a funda-
mental group ^i(K). The following is more than we shall need.

Lemma ( 1 1 . 2 ) . — ffK-is compact and [K, K] is dense in K, then K has a simply connected
covering group. Moreover TT^K) is a compact totally disconnected group (i.e. a profinite group).

Proof. — This almost follows from Theorem (2.1), but we notice that in essence,
we have already constructed explicitly in [31], p. 380, the universal covering E of K,
and observed that the kernel of the projection ofE onto K is profinite. The only problem
is to show that E is simply connected. The commutator subgroup of E is dense for if
not then [E, E] covers K since E is compact, contrary to the properties of E in [31].
We showed in [31] that the inflation map: H^K,'!) -> H^E, T) is the zero map, and
this combined with the fact that [G, G] is dense in G and Lemma (2.4) shows that
H2^, T)==o. It suffices then to show that H^E, D)=o for any discrete group, but
exactly as in the proof of Theorem (10.4) and Lemma (2.2) of [30], it suffices to
consider the case when D=Z. We consider o->Z->R—^T—o as an exact sequence
ofE-modules and observe that H^E, T)=o by the above, and also that H^E, R)==o
so that it follows that H^E, Z) == o as desired.

We shall apply these results to the case when K = G^, the group of integral points
of a simple connected Ghevalley group in the integers 0 of a local field k.

Lemma (11.3). — If K==[K, K], in particular ifky has at least four elements, ^(K) is
a pro-p-group.

Proof. — Since TT^K) is the dual group ofH^K, T), it suffices to show that H^K, T)
is a ^-torsion group. If K^ is the principal congruence subgroup of level one as above,
Ki is a pro-j^-group and K/Ki==G', the group of points in G in the residue class field.
We have a spectral sequence E^ for the group extension ofG' by K^, and it suffices to
prove that E^', i+j==2, are ^-torsion groups. NowE^2 is a subgroup of H2^, T),
and since K^limK^K, it follows from [30] that H^K^, T)==lim H^K^/K,, T).
Since K^/K^ is a finite j&-group for each i, it follows that H2^, T) is a ^-torsion group.
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Now E^H^G', Hom(Ki, T)) and since Hom(K^ T) is a ^-torsion group, and G' is
finite, it follows that E^ is a ^-torsion group. Finally EjI'^H^G', T), and if one
excludes a finite number of examples where the residue class field ky has low cardinality,
Steinberg [40] shows that H^G', T)=(o). In all cases Steinberg shows that any
projective representation ofG' over a field of characteristic p, is equivalent to an ordinary
representation. Now if aeH^G', T) is of order prime to py a may be viewed as a
cocycle with values in Zy^ the cyclic group or order n with n prime to p. We may find
a finite field L of characteristic p such that Z^ may be identified to a subgroup L*, the
multiplicative group of L. Then we view a as a cohomology class of G" with values
in L*. Since G'^G'.G'] it suffices to show that a==i as a class in H^G', L*). Now
we can find a modular projective representation n of G' in a finite dimensional vector
space over L whose associated cohomology class is a. (The left regular a-representation,
for instance.) Since TT is equivalent to an ordinary representation, a is the trivial class.
This shows that the finite group H^G', T) has no elements of order prime to p, and hence
is a finite p-group. This completes the proof of the Lemma.

i2) We shall begin our discussion of the global or adelic situation with a discussion
of the cohomology of restricted products of groups. Thus let G^ be a countable family
of separable locally compact groups and let K^ be a compact open subgroup of G^ which
is defined for almost all a (i.e. except for a finite number of a). If one changes or leaves
undefined the group K^ for a finite set of a, the entire construction which follows is
unchanged. We denote by G the subgroup of the complete Cartesian product II G^

a

consisting of elements ^==(^J such that g^e'K^ for almost all a. This group is called
the restricted product of the groups G^ relative to (KJ and it can be given a separable
locally compact topology such that it is a topological group [ii]. If F is a finite set of
indices containing the exceptional set where K^ is undefined, let GF=nGQ( (aeF)

_ a

and let K^=IIK^ (a^F). Then GpXK^cG and is locally compact with the product
(X

topology. We topologize G by declaring that GpXK^ is an open subgroup with the
relative topology. (This is independent of the choice of F.) We denote by G^ the
restricted product of the groups G^ (a^F) so that then G==GpXG^.

Our object is to determine the fundamental group of G if it exists, in terms of the
fundamental groups of the factors G^, assuming that they exist. It will be necessary to
also assume that almost all K^ have fundamental groups, but in view of Lemma (11.2)
it will suffice to assume that [K^, KJ is dense in K^ for almost all a.

Now for almost all a the injection of K^ into G^ induces a continuous homomor"
phism^ of7T^(KJ into ^i(GJ. The range D^ of jy, is compact since 7^i(KJ is profinite,
hence closed and in fact totally disconnected. The quotient group T^(GJ/D^ is by
definition the relative fundamental group 7i;i(G^, KJ, and we assume that it is discrete
for almost all a or in other words, that D^ is open. We will see that this is a necessary
condition for the existence ofn^G). It is quite a reasonable hypothesis and may always
be true; in any case if K^ is normal in G^ it is automatically satisfied. Let E^ be the
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iiniversal covering of G^ and let L4 be the universal covering of K^. By the universal
property of L^, there is for almost all a a unique continuous homomorphism ^ of L^
into E^ compatible with the inclusion of K^ in G^. The image L^ of L'a is a compact
subgroup and L^/D^^K^. Moreover L^ is open since K^ is open in G^ and D^ is
open in T^(GJ for almost all a by hypothesis.

Theorem (12. i). — -^Goc A^J a universal covering group E^ for all a, aW z/' [K^, KJ
^ <fen^ ̂  K^y^r almost all a and if D^ (above) is open in ̂ i(G^) ̂ or almost all a, ^TZ ̂  restricted
product E <?/' ̂  groups E^ relative to their compact open subgroups L^ ij simply connected and
covers G. T^TX^ G Aa^ a fundamental group, and moreover ^(G) ij" isomorphic to the restricted
product of the groups î(GJ relative to their compact open subgroups D^.

Proof. — Let us notice that the product of two simply connected groups C and D
is simply connected since H^CxD, A)^^1^, A)xH?(D, A) and

H^C x D, A) ^ H^C, A) x H^D, A) x H^C, H^D, A))

for any trivial module A (see Chapter I), and all terms vanish since C and D are simply
connected. Thus the same holds for any finite product. So if F is any finite set of
indices a, E == Ep X Ep where Ep is the product ofE^ (aeF) and E^ is the restricted product
of the remaining factors, it suffices to show that E^ is simply connected. Thus we are
free to drop any finite set of indices, and consequently we may assume that the hypotheses
of the theorem hold for all a.

If XeH^E, T), let \ be its restriction to E^ viewed as a subgroup of E. Then
X^==i as [E^, EJ is dense in E^. Since the group generated by the E^ is dense in E,
X == i on a dense subgroup and hence X == i so H^E, T) == i. Now let A be any abelian
Lie group viewed as trivial E-module, and let aeH^E, A). Let L==IlL^ be our

a
compact open subgroup of E and let b denote the restriction of a to L. Then L = Lp X L^
where LF==riL^(aeF) and L^IlL^ (ai^F). Then as [L^, LJ is dense in L^, the

(X OC

same is true of Lp and L"p and so
(*) H^L, A) ^ H^Lp, A)XHP(LF, A).

On the other hand it is clear that L is the projective limit of the groups Lp relative to the
obvious projection maps. Then by Theorem (2.3) of [30], H^L, A) is the inductive
limit of the groups H^Lp, A) or in view of our special situation, H^L, A)== UH^Lp, A)
where H^Lp, A) is viewed as a subgroup of H^L, A) by (*). Thus if we choose F such
that AeH^Lp, A) it is clear that the restriction of b to H^Lp, A) will be the zero class.
Also the restriction of b to Lg for any HDF is zero.

Now suppose that H is any finite set of indices containing F. We form the group
E^E^xLH. Since Eg is simply connected, H^E^ A) ^ H^Lg, A) by the restriction
homomorphism. Now we started with a class aeH^E, A) and showed that there existed
an F such that if HD F, the restriction of a to Lg is zero. Thus the restriction a^ of a
to E11 is the zero class for all HDF. On the other hand, E=UE11 (HDF), and this

H
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is a countable union. We fix a Borel cocycle representative a o f ^ ; then if HDF there
is a (normalized) Borel one-cochain ^R on E11, such that a^S^11) on E^E11 where 8
is the coboundary operator. Since H^E^ A)==o and A is a trivial module, it follows
that 8 is injective and hence the cochain (B11 is unique. Hence if MDHDF, (311 is the
restriction of ^M to E^E", and so we may define a unique function (B on E by
jB(^) = (B11^) if j/eE11. Now each E11 is a Borel subset of E and each (B11 is a Borel function
and since E= UE11 is a countable union, it follows that (B is a Borel function for which

H
a=8((3). Thus a is a coboundary, and so the original class a is trivial.

We have shown then that H^E.A)^^) for any Lie group A. However to
show that E is simply connected it is enough to show that H^E, T^^H^E, D)=o for
the circle group T and for any discrete group D, both of which are Lie groups. This
completes the proof of Theorem (12.1).

We now apply Theorem (12.1) to the number theoretic situation at hand. Let k
be a global field (i.e. a finite extension of the rational field or a function field in one
variable over a finite field), and let ky denote its completions. Then the fields ky are
local fields, and if G is a simple, simply connected Chevalley group over k, denote by Gy
its points in A^,. Let K^ denote the group of points of G in Oy the ring of integers in ^,
which is defined for non-Archi median v, and in particular for almost all y. The restricted
product of the groups Gy relative to their compact open subgroups K^, is the group of
points G^ of G in the adele ring A of A;. More generally if S is any set of places (possibly
void), then G(S) will denote the restricted product of the groups G^,, y^S. If S==0,
G(S) == GA is the adele group of G.

Theorem (12.2). — The topological group G(S) has a fundamental group 7i;i(G(S)).
Moreover ^i(G(S)) ^UT^(G^) (z^S) (where II denotes direct sum), the isomorphism being
effected by the maps T^(GJ -^i(G(S)) induced by the inclusions G^ cG(S).

Proof. — Since Gy has a discrete fundamental group for each v by Theorem (10.4),
it suffices to show by Theorem (12.1), that for almost all y, [Ky, K.J==K^ and that for
almost all y, the induced map 7Ti(K.J ->7Ci(Gy) is the zero map.

First we note there are only a finite number of places v such that the residue
class field k^ has cardinality less than four and so [Ky, KJ==Ky for almost all v by
Lemma (11.1). Finally we observe that ^(GJ is a quotient group of Ey the roots of
unity in k^ for non-Archi median v. If A; is a number field, it is classical [3] that almost
all ky are absolutely unramified and hence that E^ is of order prime to ̂ , the characte-
ristic of the residue class field of^, for almost all y. If A; is a function field E^, is always
of order prime to p, the characteristic of A: and A^,. Thus as ^i(Ky) is a ̂ -primary torsion
group for almost all v by Lemma (11.3) and the comments at the beginning of the proof, the
induced map ^i(KJ ->^i(GJ is the zero map for almost all v. This completes the proof.

Now the group of points of G with coefficients in k, Gj^, is injected into each comple-
tion G^ by a map ^. Moreover if g^Gj^y then iy{g) which we can view as a matrix with
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coefficients in k (cf. Lemma (11.1)), will clearly have integral entries for almost all v.
Hence i^(g)e'K^ for almost all v and we can define an injection i of Gj^ into G(S) for
any S. We view G^ as a discrete group; then [G^, G^] = Gj^ so that G ;̂ has a fundamental
group 7i;i(G^). Moreover (the continuous map) i induces a homomorphism i of ^i(G^)
into 7Ti(G(S)). Since TC^(G(S)) is discrete, the range is closed, and the cokernel of i
is exactly the relative group TCi(G(S), G^).

Lemma (12 .1) . — If xen^Gj^), (z^) {x)==o for almost all v and i {x) viewed as an
element of TT^(G(S)) ^U^(GJ has components (^)^(^).

Proof. — Let^ denote the projection ofG(S) onto the Vth factor Gy. Then p^oi=i^
so that (^) =={pv) oi . However it is clear from Theorem (12.2) that (j&J is just the
projection of 7c:i(G(S)) ^TIn^G^) onto the Vth factor. Thus the Vth component
of i (J) is (^) {x) which is zero for almost all v.

We now have to discover in more detail what these induced maps are. Let G
be as above and let a be a fixed long root and consider the corresponding subgroup
isomorphic to SLg as embedded in G. We have natural generators b{s, t), j, tek*,
for the fundamental group of SL^A;) (Lemma (8.1)). The induced homomorphism
Y : ̂ (SL^A;)) into 7:i(G^) is surjective as we have shown and sends the generators b{s, t)
onto elements we denoted by b^s, t). Moreover by Theorem (10.2), ^i(GJ is generated
by elements b^{s, t), s, tek^ and (zj &^(j, t) == b^{s, t) as is perfectly clear. We also have
induced, maps ^ ; ̂ (SLg^)) -^^(GJ, and if ^(J, ^), s, tek^ denotes the canonical
generators of ^(SLg^,)), ^(^(J, ^)==^(j, t) by construction. Moreover ^(SL^y))
for v non-Archimedian is. identified with E^, the roots of unity in ky by ^(J, t) \-> (J, t}^
where (J, t)^ denotes the norm residue symbol for n{v)^ roots of unity {n(v) is the order
of Ey). Finally we let E denote the roots of unity in k and we denote by n its order.

Our main result below follows from the above and the global uniqueness theorems
in Chapter II.

Theorem (12.3). — Let k be a global field and S be a set of places, and G a simple., simply
connected Chevalley group. Then the relative group 7i:i(G(S), G )̂ is aero if S contains a non-
complex place. If S consists entirely of complex places 7^i(G(S), G ;̂) is cyclic of order dividing n
(the order of E, the roots of unity in k). If G == SLg, and S consists entirely of complex places^
^(SL,(S),SL^))^E.

Proof. — If a is a long root of G, then the map TT^SL^S)) -> 7Ti(G(S)) is surjective,
since the local maps at each completion are surjective. Moreover, the map
^(SL^A)) -> ^i(G^) is surjective by Lemma (8.1). It follows that ^i(G(S), G^) is a
quotient group of TT^SL^S), SL^A;)) and hence it suffices to prove our assertions for
G^SL^.

Let L(S) be the subgroup of homomorphisms of TT^SL^S)) into T (the circle
group) vanishing on the image of TC^SL^A:)). Then L(S) is simply the dual group of
TC^SL^S), SL^k)). Any homomorphism cp of ^(SL^S)) ^UT^SL^)) (z^S) into T
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is uniquely determined by a family 9^) ofhomomorphisms ofTr^SL^J) into T. Then
to say that 9 vanishes on i^SL^k)) is to say that i==(p(^(A(.?, t))) for ^ ^eA* or equi-
valently by Lemma (12.1), i==Tl^(v){i^^b(s, ^)=^9(y)(&v(^ t)) (z^S). For non-
Archimedian y we identify ^(SLg^)) with E,, by the map b\s, t) |-> (j, ̂ . We denote
by V the infinite places. Then we have i== Tl 9(^ /)(^(^^)• 11 <p(z0((.y, <)„).

<?ev-s o^suv
We notice now that since the second factor on the right is bilinear in s and t, the first
factor n^Ky^, t)) (yeV—S) is bilinear in s and t. Now the image of k* in II k\
is dense as is well known, and since 9^) {b\s, t)) is continuous for j, ^e^, it is immediately
clear that I^y)^^, ^)), ^, ^e^, is bilinear and hence that (p^)^.,.) is bilinear
for yeV—S. In that case, 9(2;) (^(J, t)) is of the form 9'(y)((^, ^)J where 9' is a homo-
morphism ofE^ into T by Chapter III. (Ify is complex this is automatic since b\s, t) = i
so the only content here is for real places.) We change notation and call ^ ' { v ) , 9^)
so that in all cases, 9(z/) is a homomorphism from Ey into T. Then our formula reads
i===Il9(y)((j, ^)J (z^S). Thus it is absolutely clear that the group L(S) is the group of all
(c reciprocity laws ?? with no contribution from S.

If 9==(9(z/)), y^S, satisfies the above, we may define 9(^)==i for yeS, and then
we have i == F^z/) ((J, t}^) with the product taken over all completions. Theorem (7.4)
concerns exactly this situation; to be precise, let us embed the cyclic group E in the
circle group by some mapj and let us denote by ^(v) the map of Ey onto E of raising
to the power n{v)jn with obvious conventions if v is complex. Then Theorem (7.4)
says that 9(y)==;(^(y))m for some integer m uniquely determined modulo n, with say
9(y)==i i fy is complex. Thus if we know 9^) for some non-complex y, 9 is completely
determined. Now suppose that S contains a non-complex place y; since 9^) = i if ueS
by definition this says that ^{w)==i for all w and hence that 9==!. Thus L(S)==(i)
and hence its dual group TC^SI^S), SLg(A;)) is trivial. If on the other hand, S contains
only complex places, let ^{v)==i for v complex, and 9(y)==;(+(y))m for m==o, i, . . .,n—i.
Then II 9 (^((J, <))„= i is the classical Artin reciprocity formula or a power
of it ([3], [33]). Since these are the only possible choices for 9^), it follows that L(S) is
cyclic of order n, and hence that TT^SL^S), SLg(A;)) is cyclic of order n. This completes
the proof.

A more careful analysis of the surjective homomorphism TT^SL^S)) -^i(G(S))
for any G mentioned in the first sentence of the proof together with the argument of the
above theorem for SLg yields a formula for the order of the relative group 7Ti(G(S), Gj^)
in terms of local data alone. Namely let l(v} denote the order of TT^GJ, so that
l{v)\n{v). It is absolutely clear by global class field theory [3] that 7z==g.c .d . {n(v)),
v not complex. Then let ^=g.c.d.(/(y)) v not complex so that I divides n.

Theorem (12.4). — I/every v in S is complex ^i(G(S), G^) has order I.
We noted in Theorem (10.5) that the authors in [10] show that l{v)^==n{v) if G is

of type A^ or C^ (the special linear or symplectic groups) and k^ is of characteristic zero.
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Theorem (12.5). — IfG is of type A^ or C^, and if every v in S is complex^ and ifk is
a number field

^(G(S),G,)=E.

The argument in [10] proceeds by showing by completely different methods that
for any totally imaginary number field and S consisting of all complex places,
TCi(G(S), G^) ^ E for G of type A^ or G^ (n^ 2). If one has a given local field k ' the
authors in [10] remark that one can find a totally imaginary field k such that k ' is
a completion of k and k and k' have the same roots of unity.

Remarks. — i) We remark that the determination of the kernel of the map
i : TTi(G^) -> 7Ti(G(S)) seems to be somewhat deeper. We have no information about it.

2) It seems a reasonable conjecture that the relative group 7Ti(G(S), Gj^) is isomor-
phic to E, the roots of unity in k if every veS is complex for any G. This conjecture
follows if one can solve the local problem. We note that this is exactly the " meta-
plectic " conjecture posed in [10] with slightly different notation.
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CHAPTER IV

t3) We want to indicate briefly in this final chapter the connection of the relative
fundamental groups ^i(G(S), G/g) with the problem of congruence subgroups ([8], [9],
[lo], [27], [28]). This connection is set forth in [10] and we briefly recall it here. Let k
be a global field and let S be a finite non-void set of places containing Soo, the Archimedian
places. Let <D(S)==[x\xek, v^x)^!, x^S}. Then 0(S) is a Dedekind domain [10] and k
is its field of fractions; ifk is a number field and S = S^, then 0(S) is simply the ring of
integers in k. We choose a faithful matrix representation of the group scheme G over
the integers Z as in section n. Then Xy{t) is a matrix with entries polynomials in t
with integral coefficients. We let G^ be the points in G^ with coefficients in 0(S).
Ifp is an ideal in 0(S), one has the congruence subgroup G^g^p) of matrices congruent
to the unit matrix mod p. One defines a topology then on G^ by taking as neighborhoods
of i, the congruence subgroups. Then G^ is a topological group, and we denote by G^
the completion with respect to this topology. On the other hand, an S-arithmetic
subgroup H of Gj^ is by definition a subgroup such that H n G^ is of finite index in
both G^(S) and H. One defines a topology of G^ by choosing the arithmetic subgroups
as neighborhoods of i, and completes G^ in the topology and arrives at a group G^.
Since every congruence subgroup is arithmetic, the identity map G^->Gj^ induces a
continuous homomorphism TT of the completions: G^->G^. It is shown in [10] that TT is
surjective and that G^, G^;, and the kernel C(G^g)) of n are locally compact and that
C(G^/g)) is in fact pro-finite. The congruence subgroup problem then is to deter-
mine C(G^). It is shown in [10] that C(G^g)) is central in G^ if G is of type A^
or G^ and ^^2, and presumably the argument of Matsumoto in [i] (lecture I-H)
would show that this is true for any G other than SLg (1).

Thus if G is of type A^ or C^, n^ 2, we have a central extension

I^C(G^)-^G,->G^I

and moreover the natural injection ofGj^ into G^ lifts to an injection of G^ into Gj^ since G .̂
is a completion of G^. Since [G/^., GJ==G^, it is clear that the commutator subgroups
ofGj^ and G^ are dense, and so we are in the context of relative fundamental groups, since
the class of the extension Gj^ of Gj^ splits upon restriction to G^;. More generally we may
factor G^ by [C(G^g)), GJ~ which will turn G^ modulo this subgroup into a central
extension of the same type for any G. We consider then an arbitrary G.

(1) Added in proof : Matsumoto has proved this ; see [42]. Serre has settled the problem for SLg.
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One observes then from [10] that the natural injection ofG^ into G(S) is a homeo-
morphism for the congruence topology and hence one may identify Gj, with the closure
of Gj, in G(S). If A: is a number field, the authors in [10] observe that G^=G,(S) by
theorems on strong approximation. (See Kneser's lectures in [i] if G=t=Eg.) We
observe that this is always the case.

Lemma (13. i). — If S a non-void set of places, containing all infinite places, Gj^ is dense
in G(S) if G is a simple simply connected Chevalley group.

Proof. — We denote by A(S) the adele ring ofk associated to the set S, so that A(S)
is the restricted product of the additive groups k^ relative to their rings of integers £\,
for y^S. The natural diagonal injection of k into A(S) is dense in A(S) •— this is strong
approximation for the Dedekind domain 0(S), or essentially the Chinese remainder
theorem. Let us consider the elements x^{t), tek, oceS (the root system of G) of Gj^.
Let x^{Q denote the corresponding elements ofG^,, t^eky. It'is clear by strong approxi-
mation in A(S), that the closure of the one parameter group Xy^t) in G(S) consists of
all elements ^==(^a(^))? v^•> wt^ ^ an arbitrary element of k^ almost all of which
belong to Oy. If we fix v, and take all t^=o except for w==v, the elements x^{Q fo Gy
viewed as a subgroup ofG(S) lie in the closure of G^. However these elements generate Gy
and so G^DGy for all y^S. Hence G^DGp==IlG,, (z/eF) for any finite set F. Since

v

the union of the groups Gp is dense in G(S), our result follows.
Thus we have an exact sequence

(*) I->C(G^)->G,->G(S)->I

with C(G.o(g)) central at least if G is of type A^ or C^ (n>^ 2). Moreover this extension
splits upon restriction to Gj^. We know from Theorem (12.2) and Chapter I that G(S)
has a universal covering split on G^ which is an extension of G(S) by 7Ti(G(S), G ;̂)

(**) , i->7Ti(G(S),G,)->E-^G(S)->i.

We now factor G^ by the closure of the subgroup [G^;, C(G.O(S))] so that we
convert (*) into a central extension (if it is not so already),

(***) I->B(G^)->G^G(S)^I

with B(G^)(S)) ^ G(G.Q(S))/[G^, C(G,Q(S))]~. The following result serves to tie up the
material of the first three Chapters with the theory of congruence subgroups. We are
deeply indebted to J.-P. Serre for pointing out this connection to us. The formulation
of the theorems in the first three Chapters was strongly influenced by this.

Theorem (13.1). — The group extensions (**) and (***) are isomorphic, and hence
B(GO(S)) ̂ (G(S), G,) and if C(G^) is central, C(G^)) ̂ (G(S), G,).

Proof. — By the universal property of the extension E in (**), there is a (unique)
homomorphism <p of group extensions of (**) into (***). Since Gj, is dense in 6^, the
range of 9 is dense. Let Ky be the maximal compact subgroup of integral matrices
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in G,, for y<^S, and let K=IlKy so that K is compact open subgroup. Then viewing G^
as a subgroup of G(S), G^g)==G^nK since an element of A: is in D(S) if and only if
it is local integer at all y^S. It is moreover clear that G^g) is dense in K. Now let L
be the inverse image in E of K; it is clear that ^(G^g^cL where i is the injection
of G^ into E assured by the definition of E. Let M be the closure of ^'(G^) in L.
Since 7Ti(G(S), Gj^) is finite, and K is profinite, L and hence M are profinite. Moreover
since the projection of ?(G^(g)) into G(S) is dense in K, it follows that M is also open
in E.

Now let N be an open subgroup of M and n^ the projection onto the finite
group M/N. Then n^oi is a surjective homomorphism ofG^ into the finite group M/N
and hence its kernel is an arithmetic subgroup of Gj^. Since the subgroups N of M
define the topology of E (M is open), it is clear that the closure of i(G^) in E is a
completion of Gj^ relative to a family of arithmetic groups containing all the congruence
subgroups. Also M is open in E so that the closure of i(G^) is open in E, and it follows
immediately that the closure of i{Gj^) in E is all of E (the projection of the closure of Gj^
into G(S) is open and contains the dense subgroup Gj^ and is hence all of G(S). Then
the closure of i{G^) is a central extension of G(S) splitting on G^ and by the universal
property of E, must be all of E.)

Since G^ is the completion of Gj^ with respect to all arithmetic subgroups, there is
a continuous homomorphism ^ of G^ into E, which is in fact surjective (since the image
contains M, an open subgroup of E) and is clearly seen to be a homomorphism of group
extensions. Since E is a central extension ofG(S), it is clear that +([G^, C(GC(S))])==I
so that ^ becomes a homomorphism ^j/ ofG^ onto E (as central group extensions ofG(S)).
On the other hand we have already constructed a homomorphism 9 of group extensions
of E into G^. It follows immediately that cpo^' and ^'09 are the identity maps
since [E, E] and [G^;, G^] are dense in E and G^ respectively. This completes the proof os
the Theorem.

Now we can make use of the results in [10]; in particular it is shown that if G if
of type A^ or G^ (n^ 2), then C(G^g)) is central in G^, and moreover that C(G^g)) ^ E,
the roots of unity in k provided that S consists entirely of complex places, and that
C(G^)(S)) = (o) otherwise. This then yields Theorem (12.5), and together with
Theorem (12.4) it also yields Theorem (10.5) so that all of the statements are completely
proved.
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APPENDIX

We shall concern ourselves here with the proof of Theorem (9.2) of Chapter III,
which characterizes Steinberg cocycles as those functions b on k * x k * into an abelian
group satisfying:

(1) b{st,r)b{s,t)=b{s,tr)b{t,r), b{s, i)==b{i,s)=i

(2) b^t)^b{t-\s)

(3) b{s,t)=b(s,-ts)

(4) b{s,t)==b{s,t{i-s)).

Let us first establish that these conditions are first of all necessary, it being
clear that (i) is necessary. Now for (3), we take r==s in Lemma (7.3 a)
of [40] and this becomes in our notation w^w^w^u)"1^!^^"1!^). Then we use
the substitution w{x)w{y)=h{x)h{—y)~l=^b{—xy~1^ —y)~lh{—xy~~1) and find that
b{—st~1, —t)==b(—st~1^ —s) which is (3) with a change of variables. We note also
that (i) and (3) yield
(5) b(yx, —x-^b^v, x}=b{v, —i) .

We put x==—v~1 in (5) and find that b{—i, v ) b { v , — v ' ^ ^ b ^ v ^ — i ) . Since
b{v,-v-1)^! by (3), b{-i,v)=b{u,-i). By (5) and (3),

b{st, ~^-1)-1^, -1)=^, t)==b{s, -st)=b{s2t, (^)-1)-16(A, -i)

and since b[—i, x)b[—i,—x)==b{—i,—i) by (i), and since b{x,—1)==^(—i? ^)? the
above becomes

6(-i, -s)b{st, -t-^=b{-i, -s^Wt^-n^Y

We transform the right hand side by (i) and use the fact derived from (3) that
^ _^-i)=^ —s2!), and find that b[st, —j^)==&(—j2^^-1^-1) which is (2).

Finally we note that the same argument verbatim as on the bottom of p. 121 of [40]
shows that h{av—av^h^a—av)~~l•==h{av)h(a)~l or in other words that b[v, a(i—v))==b{v,a)
which is (4). This establishes the necessity. We also note that by (2) and (3),
b{vx, —x'^^b^v, —x~ 1 ) so that (5) becomes
(6) b{v,x)b{v,-x-l)=b{v,-l).

Moreover we showed in Lemma (3.2) that 6(z2, xy)==b(^2, x)b[^,y) follows from ( i )—(3).
Now from (i), b (^2, x) b ̂ x, y ) === b (^2, x y ) b {x, y ) , and substituting in the above, we see that
(7) 6(^j0== b{^)b{x, y)

is a consequence of ( i )—(3).
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For sufficiency, we begin with a function b from A* x k* into an abelian group A
satisfying (i)-(4), and we extend it to a function from SL^k)xSL^{k) into A by the for-
mulas preceding Lemma (9.1). We must simply show that this function again denoted
by b is a cocycle. (That it is then the Steinberg cocycle of the corresponding group exten-
sion is implicit in Theorem (9.1).) In the language of Theorem (9. i) it must be shown
that each relation W(^, flg, ^3)==!, a^eSL^k) is a consequence of( i)—(4). Further exa-
mination shows that this decomposes into consideration of fifteen special cases depending
on the position of the a^. However, there is one case which we may speak of as generic.
Recall that each geSL^k) is uniquely of the form x(u)w(t}x(v) or x(u)h{t). The latter
set forms a subgroup B and the former its complement U which is in fact the double coset
Bw(i)B. We say that a^ a^, a^ are generic if a^ a^, ^3, a^, a^a^ a^a^ all are in U.

Lemma (A.i). — Ifa^ a^, a^ are generic, then W(^, ^, ^)=i if b satisfies (i)-(4).
Proof. — If a^-==x(u^w(t^x{y^, it is evident from

(**) ^(ai.fl^^co^co)-1^^-1,^) (if <o=-(^+^)+o)

that W(fli, flg, flg) does not depend on ^ or 2/3 and depends only on ^ and v^+u^ and
(^2 + u^ • Thus it is no loss of generality to take ^ = 2/3 == ̂  = ̂  == o. To say that (^, ̂ , ^3)
is generic means that ^ =(= o, ^3 =t= o, and that i —^r2^"14= o. We simplify our notation
and take a^==w{s)x{—u~~1), a^==w{t), a^x^—v'^wir) and put ^==i—^y. Then
W(^i, a^, ̂ 3)=! becomes by (**)
(A) b{su, u-^b^su, t)b(stuv^-\ v-^^b^utv^1, r)

==b(tv, y-1)-1^ r)b{su^-\ u-1^-^^-1, tvr).

The second and fourth terms on the right may be replaced using (i) by
b(sutv^1, r)b{su^~1, tv), and the first of these cancels out. Now we place the third
term on the left on the right side and use (i) to replace it times b{su^~1, tv) by
b{su^~1, t^)b{tv, v~1^). Finally we use the identities b[su^~1, u~l^)==b{—s, u~1^) and
b{su^~1, t^)=b{—sut, t^) which are derived from (2) and (3) to write (A) as
(B) b[su, u-^-^su, t)==b{tv, v-1)-1^ v^^b^-s, u^^-H^-sut, ̂ ).

Now by (i) we have

&(-y, ̂ ^)-i==&(-^ u^-n^-su-^ ^)-16(^-l, ̂
b{-sut, t^)==b{-sut, t)b[^mt\ ^)b{t, ̂ -1

b{tv, v^^b{tv, v-1^ ^)b{v-\ ̂ -\

and we may replace b{—s,u~1) and b{—sut, t) by b{su, u~1) and b{su, t) respectively
using (2) and (3). With these substitutions and the resulting cancellations, (B) becomes
(C) i^^y-1^)-1^-1^)^-^-1,^)-1^-^2,^.

Now by (7) above the final two terms may be replaced by b^t2, ̂ ) and this in turn may
be combined with the second term so that (G) becomes
(D) l=b{v-l^^lb{ut2^).
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Finally by (2) and (4) we may write this as

(E) i-^^i-^)-1^^),

and recalling that ^==i-—^y, we observe that y"^!—^)^^2. Thus (E) reduces
to 1=1 and the lemma is proved. We observe incidentally that this also provides a
proof of the necessity of condition (4).

One could complete the proof by considering each of the remaining fourteen
special cases, but this does not seem profitable even through none are as involved as the
above. There is however another method which avoids most of these calculations
and has some independent interest.
^ Theorem (A.i). — Let G be a group and U a subset of G such that U==U~1 and
ft ^U =h 0 for any finite set of points a^ in G. Let b be a function defined on the set of points X

consisting of all pairs {s, t) e G x G with s, t, ste U, taking values in an abelian group A satisfying
b{s, tr)b(t^ r)==b{st^ r)b[s, t) whenever s, t, r, st^ tr, streV. There exists an extension c of b to
G X G which is a cocycle. Moreover^ any two extensions differ by a coboundary.

Proof. — We can find a complex vector space W and a faithful representation
of A on W; we shall now simply view A as a subgroup of GL(W). Now if f and g are
two functions on G, we shall say that f==g almost everywhere (a.e.) if f==g on a set

n > ,

of the form Q ^.U. This is clearly an equivalence relation, and we denote by V
the set of equivalence classes of functions from G into W. Then V is a vector space
which is non zero under our hypothesis; we shall with the usual abuse write the same
symbol f for a function and its class. If a is function defined a.e. in G with values in A,
and ^eG, then {^if){x)==a[x)f{gx) is a well defined linear operator M on V. We
let H denote the group of all such transformations, and note that A is naturally a subgroup
of the center of H.

Now for each seU, we defined an element L(J) of H by {'L{s)f){x)==b(s,s~lx)f{s~lx)
where b is the function of the theorem. A simple calculation shows that

{L{s)L{t)f){x)=b^s,t){L{st)f){x)

for all s, t, x such that s, t, steV and xesV nU and hence that L(^)L(^)==&(J, ^)L(^)
if (^,^)eX. I f p is the natural projection of H into H/A, and J{s)===p(L{s)), then
]{s)J{t)=J(st) for {s, ^)eX. It follows from Lemma 6 of [41] thatj extends uniquely
to a homomorphism ofG into H/A. (The lemma in question asserts that G is naturally
isomorphic to the free group on symbols (J), .yeU, subject to the relations {^){t)==[st)
for all (j',^)eX.) We denote this extension by J, and choose for each seG an
element K{s) of H with p(K{s))==J{s) and with K(J)==L(J) if jeU. Then we must
have K{s)K{t)==c{s, t)K{st) for all (^)eGxG with c{s,t)eA. Evidently c==b on X
and c is a cocycle extending b.

Finally, if d is any extension of b as a cocycle to GxG, let us define
(M(^/)M=^,J-1^/^-1A:). Then evidently, M(s)M(t)^d{s, t)M{st) and so if
N(J) ==p(M{s)), N(J)N(^) =N(^); but on the other hand, if seV, d{s, s-^) ==b{s, s-^) a.e.,
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and so M{s)==L{s), and hence N(^)==J(^. By unicity, N=J, and it follows that
M(s)==a(s) .K(j-) where K is as above, and a is some function from G into A. We find
then that a(s)a{t)K{s)K{t)==d{s, t)a{st)K{st) and hence that c and d differ by the
coboundary of a. This completes the proof.

We note that a unique class in H^G, A) is determined by the above, and hence
an extension of G by A. It is absolutely clear from the proof that this extension E is
simply the subgroup of H generated by L(j-), seV, and A. This extension is equipped
with a partial cross section defined on U, namely j)-^L(j-).

We now apply the Theorem above to the situation of Lemma (A. i), taking U to
be the complement of the subgroup B. The hypothesis are fulfilled whenever B has
infinite index in SL^k); i.e. whenever k is infinite. (If k is finite, it follows from [40]
that any function satisfying (i)-(4) is identically one so there is nothing to prove in this
case anyway.) The proof of Theorem (9.2) will be complete once we show that b as
function on k* X k* is the Steinberg cocycle of the extension E produced by Lemma (A. i)
and Theorem (A. 2).

The Steinberg cocycle of any extension is computed as follows. We choose
representatives B(^)) and B(A(J)) for x(f) and h(s), and then the commutator
[B(A(J)), B(^))]==D(A;(^—^)) is a representative for x^t—t) independent of our
choices. Now if B(w(i)) represents ^(i), let D(j^))=B(^(i))D(A;(—^))B(^(i))-1 and
D(^(^))=D(^(^))D(^(-r l))D(^(^)), and finally D(^))=D(^))D(^(-i)). Then
the Steinberg cocycle c is defined by the equation D{h{s))D{h[t))==c{s, t)D{h{st)). At
this point we need to know in more detail some of the operators L{s) seV defined by
Lemma (A.i) and Theorem (A.i). ff g-=x(u)w{t)y{v), let x(g)==u, w{g)=t, and
then a simple calculation shows that for ^eU,

(LM/)(^)=&((^(^)-^(^))^M-1,-^M)-16((^(^)-^))^(^)-\ -W^MS-^).

Now clearly we may choose B{x{t))==L{w{—i))L(w{i)x{t)) and by using (2), (3) and (i),
this becomes (B(^))/)(^)=/(A'(-^). Also we may take B(A(J))=L(^))L(^(-i))
which upon simplification yields {'K{h{s))f){g)=b{s, —w^f^s)-^). Then compu-
tation of the commutator above shows at once that D{x{t))==B{x{t)). Furthermore
using the fact that b{x{t}s,y)=b{s,y}=b[sx(f), x{—t)y) for (^eX, we see that
D{x{t))L{s)==L{x{t)s) and L{s)D{x{t))==L{sx{t)) if seV. Since B(A(i))=i ,
L^i^'^L^—i)) and then we see that

D(^))=L(^(I))D(^(-^))L(^e;(I))- l=D(^(r l))L(^(r l))D^(r l))

and hence that 'D{w{t))==L[w{t)). Finally we see that

(D^M)/)(5)==(B(AM)/)(^=6(^-^(^)/(/^(.)-^).

Then calculation of D{h{s))D{h{t))D{h{st))~'1 yields b(s, t) and the proof is complete.
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