SHREERAM SHANKAR ABHYANKAR Automorphisms of analytic local rings

Publications mathématiques de l'I.H.É.S., tome 36 (1969), p. 139-163 http://www.numdam.org/item?id=PMIHES_1969_36_139_0

© Publications mathématiques de l'I.H.É.S., 1969, tous droits réservés.

L'accès aux archives de la revue « Publications mathématiques de l'I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

AUTOMORPHISMS OF ANALYTIC LOCAL RINGS

by Shreeram Shankar ABHYANKAR (1)

§ 1. Introduction.

Let K be any valued field. Let X_1, X_2, \ldots be indeterminates. For every nonnegative integer d let A_d be the ring of convergent power series in X_1, \ldots, X_d with coefficients in K, and let A'_d be the ring of formal power series in X_1, \ldots, X_d with coefficients in K. By an analytic local ring over K we mean an overring A^* of K such that there exists a K-epimorphism $A_d \rightarrow A^*$ for some d. (Note that K is allowed to be discrete, and in that case: K is simply an arbitrary field; $A'_d = A_d$; and an analytic local ring over K is exactly a complete local ring with coefficient field K).

The group $G_{K}(A_{d})$ of all K-automorphisms of the convergent power series ring A_{d} , for d>0, is quite large. Namely, $g\mapsto(g(X_{1}),\ldots,g(X_{d}))$ gives a bijection of $G_{K}(A_{d})$ onto the set of all ordered *d*-tuples of elements of A_{d} which constitute a basis of the maximal ideal $M(A_{d})$ in A_{d} .

The group $G(A'_d)$ of all automorphisms of the formal power series ring A'_d is even richer. Namely, any isomorphism of K onto any coefficient field of A'_d can be extended, in many ways, to an automorphism of A'_a . In fact, let H' be the set of all ordered *d*-tuples of elements of A'_d which constitute a basis of $M(A'_d)$, let H^{*} be the set of all monomorphisms $W: K \to A'_d$ such that W(K) is a coefficient field of A'_d , and let $H = \{(Y, W) : Y \in H' \text{ and } W \in H^*\}$. Then $g \to ((g(X_1), \ldots, g(X_d)), g \mid K)$ gives a bijection of $G(A'_d)$ onto H.

The genesis of the present investigation (including our forthcoming joint papers [3] and [4] with Moh and van der Put) was Zariski's discovery [10] that, like formal power series rings, saturated rings are also very rich in automorphisms.

Namely, let K' be an algebraically closed field of characteristic zero, and let B be a one-dimensional complete local domain with coefficient field K' such that B is saturated in the sense of [10]. Then:

I) B has infinitely many K'-automorphisms.

More precisely, given any transversal parameters Z and Z' of B (i.e., Z and Z' are elements in B such that, upon letting D to be the integral closure of B in its quotient

⁽¹⁾ This work was supported by the National Science Foundation under N.S.F.-GP-6388 at Purdue University.

field, we have $\operatorname{ord}_{D} Z = \operatorname{ord}_{D} Z' = \min \{ \operatorname{ord}_{D} r : r \in M(B) \}$ there exists $g \in G_{K'}(B)$ such that g(Z) = Z' [10, Theorem (1.11)].

And:

II) Any isomorphism of K' onto any coefficient field of B can be extended to an automorphism of B.

More precisely, given any transversal parameter Z of B and any monomorphism $w: K' \rightarrow B$ such that w(K') is a coefficient field of B, there exists $g \in G(B)$ such that g(Z) = Z and g(k) = w(k) for all $k \in K'$ [10, Theorem (1.16)].

Now II) is all the more striking in view of the following two well-known facts: (') For every algebraically closed field K^* we have that $G(K^*)$ is infinite and

Inv $G(K^*)$ = the prime subfield of K^* , where Inv $G(K^*)$ denotes

 $\{k \in \mathbf{K}^* : g(k) = k \text{ for all } g \in \mathbf{G}(\mathbf{K}^*)\};$

(see (2.8)).

(") If the characteristic of K is zero, K is not algebraic over its prime subfield, and R is any analytic local ring over K with $R \neq K$, then R has infinitely many coefficient fields (see (2.20)).

We want to find out as to how far I) and II) can be generalized to analytic local rings.

The results to be reported are positive in the direction of I), and negative in the direction of II).

First consider II).

In § 5 we shall prove

Theorem 1. — Let L be any subfield of K such that L is finitely generated over the prime subfield of K. Then there exists a one-dimensional analytic local domain R over K with emdim R=2 such that for every $g \in G(R)$ we have $g(k)-k \in M(R)$ for all $k \in L$; whence, in particular, if g(K)=K then g(k)=k for all $k \in L$.

In our forthcoming joint paper [4] with van der Put, the following theorem will be proved:

Theorem 1'. — If R is any analytic local ring over the complex number field C such that R has a nonunit nonzerodivisor, then for any $g \in G(R)$ we have: g(C) = C and g(r) = r for every real number r. More generally, if $t : R^* \rightarrow R$ is any local homomorphism of analytic local rings over C such that $t(M(R^*))$ contains a nonzerodivisor of R, then: t(C) = C and t(r) = r for every real number r.

Theorems 1 and 1' relate to II) in view of (') and ('').

Now we turn to I).

We start off by proving

Theorem 2. — Let R be any complete local domain such that dim R>0 and R has the same characteristic as R/M(R). Let J be any nonzero ideal in R. Let R' be the integral closure of R in its quotient field; (it is known that then R' is a complete local domain and R' is a finite R-module). Assume that R' is regular; (note that this assumption is automatically

satisfied if dim R = I). Then G(R, J) is infinite (where G(R, J) denotes the "inertia group " $\{g \in G(R) : g(r) - r \in J \text{ for all } r \in R\}$). If, moreover, F is a coefficient field of R which can be extended to a coefficient field of R' then $G_F(R, J)$ is infinite (where $G_F(R, J)$ denotes $G_F(R) \cap G(R, J)$; note that if R'/M(R') is separable over R/M(R) then, by Hensel's lemma, every coefficient field of R can be extended to a coefficient field of R'.

Proof. — By Cohen's theorem R' has a coefficient field E; in case F is a given coefficient field of R which can be extended to a coefficient field of R' then we take E to be such an extension. Let C be the conductor of R in R', i.e., $C = \{c \in R : cr' \in R \text{ for all } r' \in R'\}$. Since R' is a finite R-module, we know that C contains a nonzero element. Now CJ is a nonzero ideal in R and it remains an ideal in R'. Since CJ is an ideal in R', we have that $G_E(R', CJ)$ is a subgroup of $G_E(R')$ (see (2.1)). Given any $g \in G_E(R', CJ)$, we have $g(r') - r' \in CJ$ for all $r' \in R'$; since CJ ⊂ R, it follows that $g(r) \in R$ for all $r \in R$, i.e., $g(R) \subset R$; since $G_E(R', CJ)$ is a subgroup of $G_E(R')$, we have $g^{-1} \in G_E(R', CJ)$ and hence also $g^{-1}(R) \subset R$; therefore g(R) = R. Thus g(R) = R for all $g \in G_E(R', CJ)$; since CJ ⊂ J, it now suffices to show that $G_E(R', CJ)$ is infinite. By assumption R' is regular, and hence we may regard R' to be the ring of formal power series in X_1, \ldots, X_n with coefficients in E, where $n = \dim R'$. For every $y \in (CJ) \cap M(R')^2$ we have a unique $g_y \in G_E(R')$ such that $g_y(X_i) = X_i + y$ for $1 \le i \le n$; moreover, $g_y \in G_E(R', CJ)$ (see (2.9)). Now $(CJ) \cap M(R')^2$ is clearly infinite, and hence $G_E(R', CJ)$ is infinite.

In (4.2), (4.3) and (4.4) we shall prove, respectively, Theorems 3, 4 and 5 stated below; the actual versions of these theorems which we shall prove there will be more detailed than as stated below.

Theorem 3. — Let R be an analytic local ring over K such that dim R=0 and $R \neq K$. Let J be any nonzero ideal in R. Then we have the following.

1) If K is infinite then $G_{K}(R, J)$ is infinite.

2) $G_{K}(R, J) = \{I\} \Leftrightarrow G(R) = \{I\} \Leftrightarrow R$ consists of four elements.

Theorem 4. — Let R be an analytic local ring over K such that dim R>0. Assume that the zero ideal in R has an isolated primary component Q such that upon letting $P = rad_RQ$ we have that $Q \neq P$ and:

(*) there exists a K-epimorphism $u: A_d \rightarrow R$, for some d, such that $u^{-1}(Q)$ is contained in the second symbolic power $(u^{-1}(P))^{(2)}$ of $u^{-1}(P)$.

Let J be any ideal in R with $J \notin Q$. Then $G_{K}(R, J \cap P) \cap G_{K}[R, Q]$ is infinite (where $G_{K}[R, Q]$ denotes the "splitting group " $\{g \in G_{K}(R) : g(Q) = Q\}$).

Theorem 5. — Let R be an analytic local ring over K. Let $J, Q_1, \ldots, Q_a, (a>0)$, be ideals in R such that Q_1, \ldots, Q_a are primary and $J \cap Q_1 \cap \ldots \cap Q_a = \{0\}$. Let $P_i = \operatorname{rad}_R Q_i$. Let $v : R \to S$ be a K-epimorphism where S is an analytic local ring over K and Ker $v = P_1 \cap \ldots \cap P_a$. Assume that:

(**) there exists a K-epimorphism $u: A_d \rightarrow R$, for some d, such that $u^{-1}(Q_i)$ is a symbolic power of $u^{-1}(P_i)$ for $1 \le i \le a$.

Then v induces an epimorphism of

$$\begin{split} \mathbf{G}_{\mathbf{K}}(\mathbf{R},\mathbf{J}) &\cap \bigcap_{i=1}^{a} \mathbf{G}_{\mathbf{K}}[\mathbf{R},\mathbf{P}_{i}] \cap \bigcap_{i=1}^{a} \mathbf{G}_{\mathbf{K}}[\mathbf{R},\mathbf{Q}_{i}] \\ \mathbf{G}_{\mathbf{K}}(\mathbf{S},v(\mathbf{J})) &\cap \bigcap_{i=1}^{a} \mathbf{G}_{\mathbf{K}}[\mathbf{S},v(\mathbf{P}_{i})]. \end{split}$$

onto

In (3.4) and (3.6) we shall give intrinsic formulations of the above conditions (*) and (**) respectively.

In our forthcoming joint paper [3] with Moh and van der Put, we shall prove several other results about automorphisms of analytic local rings. There, in addition to the methods of the present paper, we shall use Samuel's [7] technique by which he proved the algebraicity of an algebroid hypersurface with an isolated singularity. The following two theorems are a sample of the results which are proved in [3]:

Theorem 2'. — Let R be an analytic local ring over K such that dim R>0. Assume that there exists an isolated primary component P of $\{0\}$ in R such that P is prime and R/P is analytically separably generated over K (for definition see (2.21)). Then $G_{K}(R)$ is infinite.

Theorem 3'. — Assume that K is perfect (the characteristic of K may or may not be zero), and let R be any analytic local ring over K such that $rad_{R}\{o\} = \{o\}$. Then Inv $G_{K}(R) = K$.

§ 2. Terminology and preliminaries.

I) Splitting and inertia groups. — For a ring (commutative with identity) R and a subring K of R we set:

$$\begin{split} & G(\mathbf{R}) = \text{the group of all automorphisms of } \mathbf{R}; \\ & G_{\mathbf{K}}(\mathbf{R}) = \text{the group of all K-automorphisms of } \mathbf{R} \\ & = \{g \in G(\mathbf{R}) : g(k) = k \text{ for all } k \in \mathbf{K}\}. \end{split}$$

By analogy with Hilbert's ramification theory, for any ideal Q in R we set:

$$G[R, Q] = \text{the splitting group of } Q \text{ in } R$$

={g \epsilon G(R) : g(Q) = Q};
$$G_{K}[R, Q] = \text{the splitting group of } Q \text{ in } R \text{ over } K$$

= G_{K}(R) \circ G[R, Q];
$$G(R, Q) = \text{the inertia group of } Q \text{ in } R$$

={g \epsilon G(R) : g(r) - r \epsilon Q for all r \epsilon R};
$$G_{K}(R, Q) = \text{the inertia group of } Q \text{ in } R \text{ over } K$$

= G_{K}(R) \circ G(R, Q).

Clearly G[R, Q] and $G_K[R, Q]$ are subgroups of G(R) and $G_K(R)$ respectively. We claim that also

(2.1) G(R, Q) is a subgroup of G[R, Q].

Namely, for any $g \in G(\mathbb{R}, \mathbb{Q})$ we have $g(r) - r \in \mathbb{Q}$ for all $r \in \mathbb{R}$, and hence $g(r) \in \mathbb{Q}$ for all $r \in \mathbb{Q}$. Thus $g(\mathbb{Q}) \subset \mathbb{Q}$ for all $g \in G(\mathbb{R}, \mathbb{Q})$. For any $g \in G(\mathbb{R}, \mathbb{Q})$ and any $r \in \mathbb{R}$,

upon letting $s=g^{-1}(r)$, we have $s\in \mathbb{R}$ and $g^{-1}(r)-r=g^{-1}(r)-g(g^{-1}(r))=s-g(s)\in \mathbb{Q}$; consequently $g^{-1}\in G(\mathbb{R},\mathbb{Q})$, and hence $g^{-1}(\mathbb{Q})\subset\mathbb{Q}$; since $g(\mathbb{Q})\subset\mathbb{Q}$ and $g^{-1}(\mathbb{Q})\subset\mathbb{Q}$, we get $g(\mathbb{Q})=\mathbb{Q}$. For any g and h in $G(\mathbb{R},\mathbb{Q})$ and any $r\in\mathbb{R}$, we have (gh)(r)-r=(g(h(r))-h(r))+(h(r)-r) and $g(h(r))-h(r)\in\mathbb{Q}$ and $h(r)-r\in\mathbb{Q}$, and hence $(gh)(r)-r\in\mathbb{Q}$; consequently $gh\in G(\mathbb{R},\mathbb{Q})$. Thus $G(\mathbb{R},\mathbb{Q})$ is a subgroup of $G(\mathbb{R})$, and $G(\mathbb{R},\mathbb{Q})\subset G[\mathbb{R},\mathbb{Q}]$.

It follows that also $G_{K}(R, Q)$ is a subgroup of $G_{K}[R, Q]$. Also note that:

(2.2) If Q^* is any ideal in R with $Q^* \subset Q$ then clearly $G(R, Q^*) \subset G(R, Q)$ and $G_{\kappa}(R, Q^*) \subset G_{\kappa}(R, Q)$.

We remark that the splitting groups and inertia groups of the galois theory of local rings [1, § 7] are special cases of $G_K[R, Q]$ and $G_K(R, Q)$ respectively; also, Hilbert's higher ramification groups [8, chapter V, § 10] are special cases of $G_K(R, Q)$.

We may now restrict our attention to $G_K(R)$, $G_K[R, Q]$, $G_K(R, Q)$, because the case of G(R), G[R, Q], G(R, Q) would then follow by taking K to be the prime subring (i.e., the smallest subring) of R.

Let $v: R \to S'$ be a ring homomorphism, let S = v(R), and let L = v(K) (note that if K is the prime subring of R then L is the prime subring of S). For any $g \in G_{K}[R, \operatorname{Ker} v]$ we have a unique $g' \in G_{L}(S)$ such that: g'(v(r)) = v(g(r)) for all $r \in R$; we say that g' is *induced* by g. Thus we have a unique map $w: G_{K}[R, \operatorname{Ker} v] \to G_{L}(S)$ such that: w(g)(v(r)) = v(g(r)) for all $g \in G_{K}[R, \operatorname{Ker} v]$ and all $r \in R$; we again say that w is *induced* by v.

(2.3) Clearly $w: G_{K}[R, \text{Ker } v] \to G_{L}(S)$ is a group homomorphism,

and

Ker
$$w = G_{\kappa}(R, \text{Ker } v)$$
.

(2.4) Let P be any ideal in R. Then

and

and

$$w(G_{K}[R, \operatorname{Ker} v] \cap G_{K}(R, P)) \subset G_{L}(S, v(P)),$$

$$w(G_{K}[R, \operatorname{Ker} v] \cap G_{K}[R, P]) \subset G_{L}[S, v(P)].$$

If moreover $\operatorname{Ker} v \subset P$ then

$$w^{-1}(\mathbf{G}_{\mathbf{L}}(\mathbf{S}, v(\mathbf{P}))) \subset \mathbf{G}_{\mathbf{K}}(\mathbf{R}, \mathbf{P}),$$

$$w^{-1}(\mathbf{G}_{\mathbf{L}}[\mathbf{S}, v(\mathbf{P})]) \subset \mathbf{G}_{\mathbf{K}}[\mathbf{R}, \mathbf{P}].$$

Namely, everything except the last inclusion is obvious. The last inclusion follows by noting that for any $g \in G_K[R, \text{Ker } v]$, assuming $\text{Ker } v \subset P$, we have the following: 1) if $w(g)(v(P)) \subset v(P)$ then clearly $g(P) \subset P$; 2) if $w(g) \in G_L[S, v(P)]$ then, since w is a homomorphism, also $w(g)^{-1} = w(g^{-1}) \in G_L[S, v(P)]$.

(2.5) Let J be any ideal in R with Ker $v \in J$, and let G be any subset of $G_{K}[R, \text{Ker } v]$ such that for each $g \neq h$ in G we have $g(x_{gh}) - h(x_{gh}) \notin J$ for some $x_{gh} \in R$. Then upon letting $y_{gh} = v(x_{gh})$, for every $g \neq h$ in G we clearly have $y_{gh} \in S$ and $w(g)(y_{gh}) - w(h)(y_{gh}) = v(g(x_{gh}) - h(x_{gh})) \notin v(J)$. Whence, in particular, w induces an injection of G.

(2.6) Let $u: A \to R$ be a ring epimorphism and let K' be a subring of A such that u(K') = K. Let $t: G_{K'}[A, \operatorname{Ker} u] \to G_{K}(R)$ be the homomorphism induced by u. Let v' = vu and let $w': G_{K}[A, \operatorname{Ker} v'] \to G_{L}(S)$ be the homomorphism induced by v'. Then for any $h \in G_{K'}[A, \operatorname{Ker} u] \cap G_{K'}[A, \operatorname{Ker} v']$ we clearly have $t(h) \in G_{K}[R, \operatorname{Ker} v]$, and w(t(h)) = w'(h).

For any subset H of G(R) we set:

Inv H = {
$$r \in \mathbf{R} : g(r) = r$$
 for all $g \in \mathbf{H}$ };

note that then

(2.7) Inv H is a subring of R; moreover, if T is any subfield of R then $(Inv H) \cap T$ is a subfield of R.

Namely, for any $o \neq x \in (Inv H) \cap T$ and any $g \in H$ we have:

I/x = (I/x)g(I) = (I/x)g((x)(I/x)) = (I/x)g(x)g(I/x) = (I/x)(x)g(I/x) = g(I/x),

and hence $I/x \in (Inv H) \cap T$.

(2.8) Let E be an algebraically closed field, let F be a subfield of E, and let F^* be the algebraic closure of F in E. Then we have the following:

1) Inv $G_F(E) \subset F^*$, and if F^* is separable over F then Inv $G_F(E) = F$.

2) If $F^* \neq E$ then $G_F(E)$ is infinite. If F^* is separable over F and $[F^*:F] = \infty$ then $G_F(E)$ is infinite.

[Note that it follows that if F is the prime subfield of E then Inv $G_F(E) = F$ and $G_F(E)$ is infinite.]

To prove 1) and 2), take any transcendence basis $\{x_b\}_{b\in B}$ of E over F^{*}. Let g be any element in $G_F(F^*)$ (for instance g = the identity). Given any $o \neq f \in F^*$, there exists a unique $h_i \in G_F(F^*(\{x_b\}_{b\in B}))$ such that $h_i(r) = g(r)$ for all $r \in F^*$ and $h_i(x_b) = fx_b$ for all $b \in B$. Since E is an algebraic closure of $F^*(\{x_b\}_{b\in B})$, there exists $g_i \in G_F(E)$ such that $g_i(r) = h_i(r)$ for all $r \in F^*(\{x_b\}_{b\in B})$. Now F^{*} is infinite, and hence we see that if $F^* \neq E$ (i.e., if B is nonempty) then $G_F(E)$ is infinite; since we may assume that the transcendence basis $\{x_b\}_{b\in B}$ includes any given element in E which is not in F^{*}, it also follows that $Inv G_F(E) \subset F^*$. We have just seen that given any $g \in G_F(F^*)$ there exists $g_1 \in G_F(E)$ such that $g_1(r) = g(r)$ for all $r \in F^*$; therefore the proof is now completed by noting that by ordinary galois theory we have the following: if F^{*} is separable over F then $Inv G_F(F^*) = F$; if F^{*} is separable over F and $[F^*:F] = \infty$ then $G_F(F^*)$ is infinite.

For any ideal Q in a ring R, by $rad_{R}Q$ we shall *denote* the radical of Q in R.

II) Local rings. — For a (noetherian) local ring R we set: dim $R = \max n$ such that there exists a chain $P_0 \subset P_1 \subset \ldots \subset P_n$ of distinct prime ideals in R; M(R) = the maximal ideal in R; endim R = the vector space dimension of $M(R)/M(R)^2$ as a vector space over R/M(R). Recall that for any $N \subset M(R)$ we have: $NR = M(R) \Leftrightarrow NR + M(R)^2 = M(R)$; whence, in particular, emdim R = the number of elements in any irredundant basis of M(R). For any $x \in \mathbb{R}$ we set: $\operatorname{ord}_{\mathbb{R}} x = \max j$ such that $x \in M(\mathbb{R})^{j}$; recall that: $\operatorname{ord}_{\mathbb{R}} x = \infty \Leftrightarrow x = 0$. Recall that: dim $\mathbb{R} = \min d$ such that there exist d elements in \mathbb{R} which generate an ideal which is primary for M(R); whence, in particular, emdim $\mathbb{R} \ge \dim \mathbb{R}$; recall that by definition, \mathbb{R} is regular \Leftrightarrow emdim $\mathbb{R} = \dim \mathbb{R}$. By a system of parameters of \mathbb{R} we mean a sequence (x_1, \ldots, x_d) of elements in M(R) such that $d = \dim \mathbb{R}$ and $(x_1, \ldots, x_d)\mathbb{R}$ is primary for M(R). Given a homomorphism v of \mathbb{R} into another local ring S, we say that v is local if $v(M(\mathbb{R})) \subset M(S)$.

Note that clearly $G(R) = G[R, M(R)^i]$ for all *i*; whence, in particular, the canonical epimorphism $R \to R/M(R)$ induces a homomorphism $G(R) \to G(R/M(R))$.

By a coefficient field of R we mean a subfield K of R such that K gets mapped onto R/M(R) by the canonical epimorphism $R \rightarrow R/M(R)$.

(2.9) Assume that R has a coefficient field K. Let $N \subset R$ be such that NR = M(R), let J be an ideal in R, and let $g \in G_K(R)$ be such that $g(x) - x \in J$ for all $x \in N$. Then $g \in G_K(R, J)$.

Proof. — By induction on m (m any positive integer) we shall show that if x_1, \ldots, x_m are any elements in N then $g(x_1 \ldots x_m) - x_1 \ldots x_m \in J$; by assumption this is true for m=1; so now let m > 1 and suppose true for m-1; upon letting $x' = x_2 \ldots x_m$ we have $g(x_1) - x_1 \in J$ by assumption, and $g(x') - x' \in J$ by the induction hypothesis; now

$$g(x_1...x_m) - x_1...x_m = g(x_1)g(x') - x_1x'$$

= $g(x_1)g(x') - g(x_1)x' + g(x_1)x' - x_1x'$
= $g(x_1)(g(x') - x') + x'(g(x_1) - x_1),$

and hence $g(x_1...x_m) - x_1...x_m \in J$. Since g is a K-automorphism, it now follows that $g(y) - y \in J$ for all $y \in K[N]$. Let any $z \in R$ be given. Given any nonnegative integer *i* we can find $y_i \in K[N]$ with $z - y_i \in M(R)^i$; now $g(y_i) - y_i \in J$ and $g(M(R)^i) = M(R)^i$; whence $g(z) - z \in J + M(R)^i$. Thus $g(z) - z \in \bigcap_{i=0}^{n} (J + M(R)^i) = J$.

(2.10) Assume that R has a coefficient field K. Then $K + rad_R\{o\} = the$ integral closure of K in R (where, as usual, $K + rad_R\{o\}$ denotes $\{k + x : k \in K, x \in rad_R\{o\}\}$). Whence in particular: K is integrally closed in $R \Leftrightarrow R$ has no nonzero nilpotent element.

Proof. — For any $z \in \operatorname{rad}_{R}\{o\}$ we have $z^{d} = o$ for some positive integer d, and hence z is integral over K; since every element in K is certainly integral over K, it follows that every element in $K + \operatorname{rad}_{R}\{o\}$ is integral over K. Conversely, let any $y \in R$ be given such that y is integral over K. Since $y \in R$ and K is a coefficient field of R, we can write y = k + x with $k \in K$ and $x \in M(R)$. Now k is certainly integral over K and by assumption y is integral over K; consequently x is integral over K. Therefore there exists a positive integer n and elements k_0, k_1, \ldots, k_n in K with $k_0 = 1$ such that $k_0x^n + k_1x^{n-1} + \ldots + k_n = 0$. Let e be the largest nonnegative integer $\leq n$ such that $k_e \neq 0$. Now $o \neq k_e \in K$ and

$$k_0 x^e + k_1 x^{e^{-1}} + \ldots + k_e = k_e + \text{an element in } x\mathbf{R}$$

= $k_e + \text{an element in } \mathbf{M}(\mathbf{R})$

and hence $k_0x^e + k_1x^{e-1} + \ldots + k_e$ is a unit in R; since $k_0x^n + k_1x^{n-1} + \ldots + k_n = 0$, we must have $e \neq n$, i.e., n - e > 0. Now

$$x^{n-e}(k_0x^e+k_1x^{e-1}+\ldots+k_e)=k_0x^n+k_1x^{n-1}+\ldots+k_n$$

=0

and $k_0 x^e + k_1 x^{e-1} + \ldots + k_e$ is a unit in R, and hence $x^{n-e} = 0$. Therefore $x \in \operatorname{rad}_{R}\{0\}$, and hence $y \in K + \operatorname{rad}_{R}\{0\}$.

(2.11) Assume that R has a coefficient field K. Let N be any subset of R with NR = M(R). Let S be any other local ring with coefficient field K. Let $u: R \rightarrow S$ and $v: R \rightarrow S$ be any local K-homomorphisms such that u(x) = v(x) for all $x \in N$. Then u = v.

Proof. — Now u(x) = v(x) for all $x \in K[N]$; also $u(M(R)^i) \subset M(S)^i$ and $v(M(R))^i \subset M(S)^i$ for all *i*. Let any $y \in R$ be given. Since K is a coefficient field of R, given any nonnegative integer *i* we can find $x_i \in K[N]$ with $y - x_i \in M(R)^i$; by what we have just said we now get $u(y) - v(y) \in M(S)^i$. Thus $u(y) - v(y) \in \bigcap_{i=0}^{\infty} M(S)^i$, and hence u(y) = v(y).

In the following two Remarks we recall some known facts about the uniqueness of coefficient fields.

Remark (2.12). — Assume that R/M(R) is a perfect field of characteristic $p \neq 0$, and R is of characteristic p. Then R has at most one coefficient field.

Namely let $w: \mathbb{R} \to \mathbb{R}/M(\mathbb{R})$ be the canonical epimorphism, and let K and K' be any coefficient fields of R. Given any $z \in \mathbb{R}/M(\mathbb{R})$, let $x \in \mathbb{K}$ and $x' \in \mathbb{K}'$ be the unique elements such that w(x) = z = w(x'). For any positive integer *n* we have $x^{p^{-n}} \in \mathbb{K}$, $x'^{p^{-n}} \in \mathbb{K}'$, and $w(x^{p^{-n}}) = z^{p^{-n}} = w(x')$; consequently, $x^{p^{-n}} - x'^{p^{-n}} \in \mathbb{M}(\mathbb{R})$; now $x - x' = (x^{p^{-n}} - x'^{p^{-n}})^{p^n}$, and hence $x - x' \in \mathbb{M}(\mathbb{R})^{p^n}$. This being so for all *n*, we must have x - x' = 0, i.e., x = x'. Thus $\mathbb{K} = \mathbb{K}'$.

On the other hand:

Remark (2.13). — Assume that R is henselian (for definition see [2, § 12 A]), $M(R) \neq \{0\}$, R has the same characteristic as R/M(R), R/M(R) is not algebraic over its prime subfield, and R/M(R) possesses a separating transcendence basis over its prime subfield (note that the last assumption is automatically satisfied if R/M(R) is of characteristic zero). Then R has infinitely many coefficient fields. In fact, let $w : R \rightarrow R/M(R)$ be the canonical epimorphism, and take any subfield L of R and any nonempty family $\{x_a\}_{a \in A}$ of elements in R such that the elements $\{w(x_a)\}_{a \in A}$ are algebraically independent over w(L) and R/M(R) possesses a separating transcendence basis $\{z_b\}_{b \in B}$ over $w(L)(\{w(x_a)_{a \in A}\})$. Let $D = \{r_a\}_{a \in A}$ be any family of elements in M(R) (with the same indexing set A). Then there exists a coefficient field K_D of R such that $L[\{x_a+r_a\}_{a \in A}] \subset K_D$. (Namely, take $y_b \in w^{-1}(z_b)$, and let $L' = L[\{x_a+r_a\}_{a \in A}, \{y_b\}_{b \in B}]$; then for every $o \neq s \in L'$ we clearly have $w(s) \neq o$ and hence s is a unit in R; consequently R contains the quotient field L^* of L'; by Zorn's lemma, L^* is contained in a maximal subfield K_D of R; now R/M(R) is separable algebraic over $w(L^*)$ and hence, since R is henselian, by a standard argument (see the proof of [9, Corcllary 2 on page 280]) we see that K_D

is a coefficient field of R.) Now M(R) is infinite and hence there are infinitely many distinct families $D = \{r_a\}_{a \in A}$ of elements in M(R). Moreover, if $D = \{r_a\}_{a \in A}$ and $D' = \{r'_a\}_{a \in A}$ are any two families of elements in M(R) then for any $a \in A$ we clearly have that: $x_a + r'_a \in K_D \Leftrightarrow r'_a = r_a$.

III) Analytic local rings. — Let K be a valued field, and let X_1, X_2, \ldots be indeterminates. For every nonnegative integer m we set:

 $K[[X_1, \ldots, X_m]] =$ the ring of formal power series in X_1, \ldots, X_m with coefficients in K; $K((X_1, \ldots, X_m)) =$ the quotient field of $K[[X_1, \ldots, X_m]];$

 $K[\langle X_1, \ldots, X_m \rangle] =$ the ring of convergent power series in X_1, \ldots, X_m with coefficients in K;

$$K(\langle X_1, \ldots, X_m \rangle) =$$
 the quotient field of $K[\langle X_1, \ldots, X_m \rangle]$.

Note that if K is discrete then $K[\langle X_1, \ldots, X_m \rangle] = K[[X_1, \ldots, X_m]].$

By an *analytic local ring* over K we mean an overring R of K such that there exists a K-epimorphism of $K[\langle X_1, \ldots, X_q \rangle]$ onto R for some q.

For properties of analytic local rings see [2]. It should be remarked that although in [2] we assumed K to be complete, in all the relevant (algebraic as opposed to the function theoretic) material this assumption was never used; alternatively it suffices to note that, upon letting K^{*} to be the completion of K, we have $K[\langle X_1, \ldots, X_m \rangle] = K^*[\langle X_1, \ldots, X_m \rangle] \cap K[[X_1, \ldots, X_m]]$. In particular then $K[\langle X_1, \ldots, X_m \rangle]$ is an *m*-dimensional regular local ring with coefficient field K. We also remark that in case K is discrete, an analytic local ring over K is exactly a complete local ring with coefficient field K.

Now let R be an analytic local ring over K. Clearly then R is a local ring with coefficient field K.

For every nonnegative integer *m* let $A_m = K[\langle X_1, \ldots, X_m \rangle]$.

We observe that given any finite number of elements x_1, \ldots, x_n in M(R) there exists a unique local K-homomorphism $v: A_n \to R$ with $v(X_i) = x_i$ for $1 \le i \le n$. Namely, the uniqueness follows by (2.11). To see the existence, note that by definition there exists a K-epimorphism $s: A_q \to R$ for some q; take $f_i(X_1, \ldots, X_q) \in s^{-1}(x_i)$ for $1 \le i \le n$; now define v by taking

$$v(f(\mathbf{X}_1,\ldots,\mathbf{X}_n)) = s(f(f_1(\mathbf{X}_1,\ldots,\mathbf{X}_q),\ldots,f_n(\mathbf{X}_1,\ldots,\mathbf{X}_q)))$$

for all $f(X_1, \ldots, X_n) \in A_n$. For any $f(X_1, \ldots, X_n) \in A_n$ we define $f(x_1, \ldots, x_n)$ to be $v(f(X_1, \ldots, X_n))$; also we set: $K[\langle x_1, \ldots, x_n \rangle] = v(A_n)$ and $K(\langle x_1, \ldots, x_n \rangle) =$ the total quotient ring of $K[\langle x_1, \ldots, x_n \rangle]$. For the case of a complete local ring with coefficient field K we may denote the corresponding objects by $f(x_1, \ldots, x_n)$, $K[[x_1, \ldots, x_n]]$, and $K((x_1, \ldots, x_n))$ respectively.

Note that given any finite number of elements x_1, \ldots, x_n in M(R) and any nonnegative integer $e \le n$, upon letting $v: A_n \to R$ and $t: A_e \to R$ to be the unique

local K-homomorphisms with $v(X_i) = x_i$ for $1 \le i \le n$ and $t(X_i) = x_i$ for $1 \le i \le e$, we clearly have t(f) = v(f) for all $f \in A_e$.

The following lemma is quite useful.

(2.14) Given any finite number of elements x_1, \ldots, x_e in M(R), let $t: A_e \to R$ be the unique local K-homomorphism with $t(X_i) = x_i$ for $1 \le i \le e$. Then we have the following:

1) $(x_1, \ldots, x_e) \mathbb{R}$ is primary for $M(\mathbb{R}) \Leftrightarrow \mathbb{R}$ is integral over $\mathbb{K}[\langle x_1, \ldots, x_e \rangle] \Leftrightarrow \mathbb{R}$ is a finite $\mathbb{K}[\langle x_1, \ldots, x_e \rangle]$ -module.

- 2) If (x_1, \ldots, x_e) R is primary for M(R) then: dim $R = e \Leftrightarrow t$ is injective.
- 3) $(x_1, \ldots, x_e) \mathbf{R} = \mathbf{M}(\mathbf{R}) \Leftrightarrow t$ is surjective.

4) If R is a domain and (x_1, \ldots, x_e) is a system of parameters of R, then, for any $z \in M(R)$, upon letting F(X) to be the minimal monic polynomial of z over $K(\langle x_1, \ldots, x_e \rangle)$ (where X is an indeterminate) and D to be the degree of F(X), we have $F(X) - X^D \in M(K[\langle x_1, \ldots, x_e \rangle])[X]$. (Note that by 1) we know that if R is a domain and (x_1, \ldots, x_e) is a system of parameters of R, then the quotient field of R is a finite algebraic extension of $K(\langle x_1, \ldots, x_e \rangle)$.)

Proof. — Take a basis (x_{e+1}, \ldots, x_n) of M(R) and let $v: A_n \to R$ be the unique local K-homomorphism with $v(X_i) = x_i$ for $1 \le i \le n$. Now 1), 2) and 4) follow by applying [2, (23.3) and (23.10)] to the ideal Ker v in A_n . To prove 3), note that if $(x_1, \ldots, x_e)R = M(R)$, then, upon letting $R' = K[\langle x_1, \ldots, x_e \rangle]$ we clearly have R = R' + M(R')R as R'-modules and by 1) we have that R is a finite R'-module, and hence R = R' by Nakayama's lemma. Q.E.D.

(2.15) Given any nonnegative integer n and any basis (Y_1, \ldots, Y_n) of $M(A_n)$, upon letting $h: A_n \to A_n$ to be the unique local K-homomorphism with $h(X_i) = Y_i$ for $1 \le i \le n$, by (2.14) we have that $h \in G_K(A_n)$. Thus we have a bijection of $G_K(A_n)$ onto the set of all ordered n-tuples (Y_1, \ldots, Y_n) of elements in $M(A_n)$ with $(Y_1, \ldots, Y_n)A_n = M(A_n)$.

It may be remarked that the Implicit Function Theorem [2, (10.8)] and the Inversion Theorem [2, (10.10)] can be deduced directly from (2.15).

Another immediate consequence of (2.14) is that:

(2.16) There exists a K-epimorphism $A_n \rightarrow R \Leftrightarrow n \ge \text{emdim } R$.

Moreover, all these epimorphisms can be derived from one of them in the following manner:

(2.17) Let $v: A_n \to R$ and $t: A_e \to R$ be any K-epimorphisms where n is any nonnegative integer and $e = \operatorname{emdim} R$. Let $b: A_n \to A_e$ be the K-epimorphism defined by taking $b(f(X_1, \ldots, X_n)) = f(X_1, \ldots, X_e, 0, \ldots, 0)$ for all $f(X_1, \ldots, X_n) \in A_n$. Then there exists $h \in G_K(A_n)$ such that tbh = v. (Note that if n = e then we get th = v.)

Actually, we shall prove the following slightly stronger version of (2.17):

(2.18) Let $v: A_n \to R$ and $u: A_m \to R$ be any K-epimorphisms where n and m are any nonnegative integers with $n \ge m$. Let $b: A_n \to A_m$ be the K-epimorphism defined by taking $b(f(X_1, \ldots, X_n)) = f(X_1, \ldots, X_m, 0, \ldots, 0)$ for all $f(X_1, \ldots, X_n) \in A_n$. Then there exists $h \in G_K(A_n)$ such that ubh = v. (Note that if n = m then we get uh = v.) *Proof.* — Let $x_i = u(X_i)$ for $1 \le i \le m$, and let e = emdim R. Since $u: A_m \to R$ is an epimorphism, we have $(x_1, \ldots, x_m)R = M(R)$ and hence there exists a permutation $(a(1), \ldots, a(m))$ of $(1, \ldots, m)$ such that $(x_{a(1)}, \ldots, x_{a(e)})R = M(R)$. Since $v: A_n \to R$ is an epimorphism, we can take $Z'_{a(i)} \in M(A_n)$ with $v(Z'_{a(i)}) = x_{a(i)}$ for $1 \le i \le e$; now the elements $x_{a(1)}, \ldots, x_{a(e)}$ are K-independent modulo $M(R)^2$, and hence the elements $Z'_{a(1)}, \ldots, Z'_{a(e)}$ are K-independent modulo $M(A_n)^2$; consequently there exists a basis (Z_1, \ldots, Z_n) of $M(A_n)$ such that $Z_{a(i)} = Z'_{a(i)}$ for $1 \le i \le e$. By (2.15) we can now take $h' \in G_K(A_n)$ such that $h'(X_i) = Z_i$ for $1 \le i \le n$. Now $vh': A_n \to R$ is a K-epimorphism and $vh'(X_{a(i)}) = x_{a(i)}$ for $1 \le i \le e$. Let $t: A_e \to R$ be the unique local K-homomorphism with $t(X_i) = x_{a(i)}$ for $1 \le i \le e$. By (2.14) we know that t is surjective, and hence there exist

$$\mathbf{F}_i(\mathbf{X}_1, \ldots, \mathbf{X}_e) \in \mathbf{M}(\mathbf{A}_e) \text{ and } f_i(\mathbf{X}_1, \ldots, \mathbf{X}_e) \in \mathbf{M}(\mathbf{A}_e)$$

such that

$$\begin{split} & \operatorname{F}_{i}(x_{a(1)}, \, \ldots, \, x_{a(e)}) = vh'(\operatorname{X}_{i}) \quad \text{ for } \quad 1 \leq i \leq n, \\ & f_{i}(x_{a(1)}, \, \ldots, \, x_{a(e)}) = x_{i} \qquad \text{ for } \quad 1 \leq i \leq m. \end{split}$$

and Let

and

$$\mathbf{Y}_{i} = \begin{cases} \mathbf{X}_{i} - \mathbf{F}_{i}(\mathbf{X}_{a(1)}, \dots, \mathbf{X}_{a(e)}) & \text{for } m < i \le n, \\ \mathbf{X}_{i} & \text{for } i \in \{a(1), \dots, a(e)\}, \\ \mathbf{X}_{i} - \mathbf{F}_{i}(\mathbf{X}_{a(1)}, \dots, \mathbf{X}_{a(e)}) + f_{i}(\mathbf{X}_{a(1)}, \dots, \mathbf{X}_{a(e)}) & \text{for } 1 \le i \le m \text{ with } i \notin \{a(1), \dots, a(e)\}. \end{cases}$$

Then clearly (Y_1, \ldots, Y_n) is a basis of $M(A_n)$, and

 $vh'(\mathbf{Y}_i) = x_i$ for $1 \leq i \leq m$, and $vh'(\mathbf{Y}_i) = 0$ for $m \leq i \leq n$.

Since (Y_1, \ldots, Y_n) is a basis of $M(A_n)$, by (2.15) we can take $h^* \in G_K(A_n)$ with $h^*(X_i) = Y$ for $1 \le i \le n$, and then we have

$$vh'h^*(\mathbf{X}_i) = x_i$$
 for $1 \le i \le m$, and $vh'h^*(\mathbf{X}_i) = 0$ for $m \le i \le n$.

Let $h = h^{*-1}h'^{-1}$, and let $X'_i = h'h^*(X_i)$ for $1 \le i \le n$. Then $h \in G_K(A_n)$, (X'_1, \ldots, X'_n) is a basis of $M(A_n)$,

$$v(\mathbf{X}'_{i}) = vh'h^{*}(\mathbf{X}_{i}) = x_{i} = u(\mathbf{X}_{i}) = ubh(\mathbf{X}'_{i}) \quad \text{for} \quad \mathbf{I} \leq i \leq m,$$

$$v(\mathbf{X}'_{i}) = vh'h^{*}(\mathbf{X}_{i}) = \mathbf{0} = ubh(\mathbf{X}'_{i}) \quad \text{for} \quad m < i \leq n.$$

Thus $ubh: A_n \rightarrow R$ and $v: A_n \rightarrow R$ are both local K-homomorphisms,

$$(\mathbf{X}'_1, \ldots, \mathbf{X}'_n)\mathbf{A}_n = \mathbf{M}(\mathbf{A}_n),$$

and $ubh(X'_i) = v(X'_i)$ for $1 \le i \le n$; consequently by (2.11) we get ubh = v. Using (2.17) we shall now prove

(2.19) Let $v: A_n \to R$ be any K-epimorphism where n is any nonnegative integer, let J be any ideal in A_n , and let $w: G_K[A_n, \text{Ker } v] \to G_K(R)$ be the homomorphism induced by v. Then $w(G_K[A_n, \text{Ker } v] \cap G_K(A_n, J)) = G_K(R, v(J)).$

Proof. — Let e = emdim R, and take a basis (x_1, \ldots, x_e) of M(R). Let $t: A_e \to R$ be the unique local K-homomorphism with $t(X_i) = x_i$ for $1 \le i \le e$; by (2.14) we know that t is surjective. Let $b: A_n \to A_e$ be the K-epimorphism defined by taking $b(f(X_1, \ldots, X_n)) = f(X_1, \ldots, X_e, 0, \ldots, 0)$ for all $f(X_1, \ldots, X_n) \in A_n$. By (2.17) we can find $h \in G_K(A_n)$ such that tbh = v.

Let any $g' \in G_K(\mathbb{R}, v(J))$ be given. Then $g'(x_i) - x_i \in v(J) = tbh(J)$ for $1 \le i \le e$, and hence there exists

(1)
$$Z_i^* \in J$$
 for $1 \le i \le e$

such that upon letting

(2) $Z_i = h(Z_i^*)$ for $1 \le i \le e$

we have $g'(x_i) - x_i = tb(\mathbf{Z}_i)$ for $1 \le i \le e$. Now (3) $t(\mathbf{X}_i + b(\mathbf{Z}_i)) = g'(x_i)$ for $1 \le i \le e$;

since g' is an automorphism of R, we have $(g'(x_1), \ldots, g'(x_e))R = M(R)$ and hence the elements $g'(x_1), \ldots, g'(x_e)$ are K-independent modulo $M(R)^2$; since $t: A_e \to R$ is an epimorphism, in view of (3) we deduce that the elements $X_1 + b(Z_1), \ldots, X_e + b(Z_e)$ are in $M(A_e)$ and they are K-independent modulo $M(A_e)^2$. Therefore $(X_1 + b(Z_1), \ldots, X_e + b(Z_e))A_e = M(A_e)$; now $b: A_n \to A_e$ is an epimorphism with Ker $b = (X_{e+1}, \ldots, X_n)A_n$ and $b(X_i + Z_i) = X_i + b(Z_i)$ for $1 \le i \le e$; consequently, we must have $(X_1 + Z_1, \ldots, X_e + Z_e, X_{e+1}, \ldots, X_n)A_n = M(A_n)$. By (2.15) we now get $h' \in G_K(A_n)$ such that

(4)
$$h'(\mathbf{X}_i) = \mathbf{X}_i + \mathbf{Z}_i \text{ for } i \leq i \leq e, \text{ and } h'(\mathbf{X}_i) = \mathbf{X}_i \text{ for } e \leq i \leq n$$

Since $t(\mathbf{X}_i) = x_i$ for $1 \le i \le e$, by (3) and (4) we see that

for
$$1 \le i \le e$$
: $tbh'(\mathbf{X}_i) = g'(x_i) = g't(\mathbf{X}_i) = g'tb(\mathbf{X}_i)$,
for $e \le i \le n$: $tbh'(\mathbf{X}_i) = \mathbf{o} = g'tb(\mathbf{X}_i)$;

and

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$$

thus

(5)
$$tbh'(\mathbf{X}_i) = g'tb(\mathbf{X}_i) \quad \text{for } \mathbf{I} \leq i \leq n.$$

Let

(6)
$$g=h^{-1}h'h$$
, and $X_i^*=h^{-1}(X_i)$ for $1\leq i\leq n$.

Then $g \in G_{\kappa}(A_n)$, and

(7)
$$(X_1^*, \ldots, X_n^*)A_n = M(A_n).$$

By (2), (4), and (6) we get

$$g(X_i^*) = X_i^* + Z_i^* \text{ for } 1 \le e \le i, \text{ and } g(X_i^*) = X_i^* \text{ for } e \le i \le n;$$

consequently, in view of (1) and (7), by (2.9) we see that $g \in G_{K}(A_{n}, J)$. Since tbh = v, by (5) and (6) we get that for $1 \leq i \leq n$:

$$vg(\mathbf{X}_{i}^{*}) = (tbh)(h^{-1}h'h)h^{-1}(\mathbf{X}_{i}) = tbh'(\mathbf{X}_{i}) = g'tb(\mathbf{X}_{i}) = g'(tbh)h^{-1}(\mathbf{X}_{i}) = g'v(\mathbf{X}_{i}^{*}).$$

Thus $vg(X_i^*) = g'v(X_i^*)$ for $1 \le i \le n$; now $vg: A_n \to R$ and $g'v: A_n \to R$ are both local K-homomorphisms, and by (7) we have $(X_1^*, \ldots, X_n^*)A_n = M(A_n)$; therefore by (2.11) we get

$$vg = g'v$$
.

From this it follows that $g \in G_K[A_n, \text{Ker } v]$ and g' = w(g).

Since, in view of (2.4), we have

$$w(\mathbf{G}_{\mathbf{K}}[\mathbf{A}_n, \operatorname{Ker} v] \cap \mathbf{G}_{\mathbf{K}}(\mathbf{A}_n, \mathbf{J})) \subset \mathbf{G}_{\mathbf{K}}(\mathbf{R}, v(\mathbf{J})),$$

we now conclude that

$$w(\mathbf{G}_{\mathbf{K}}[\mathbf{A}_n, \operatorname{Ker} v] \cap \mathbf{G}_{\mathbf{K}}(\mathbf{A}_n, \mathbf{J})) = \mathbf{G}_{\mathbf{K}}(\mathbf{R}, v(\mathbf{J})).$$

Remark (2.20). — By [2, (20.6)] we know that R is henselian. Whence, in particular, Remark (2.13) is applicable to R.

Definition (2.21). — An analytic local domain S over K is said to be analytically separably generated over K if there exists a system of parameters (y_1, \ldots, y_d) of S such that the quotient field of S is separable over $K(\langle y_1, \ldots, y_d \rangle)$. Given a prime ideal P in R, R/P can be considered to be an analytic local domain over K by identifying K with its image under the canonical epimorphism $R \rightarrow R/P$, and hence the above definition applies to R/P.

Equivalently, upon regarding R/P to be a K-algebra, in view of (2.14) we have that: R/P is analytically separably generated over K \Leftrightarrow there exists a local K-monomorphism $u: A_m \rightarrow R/P$, for some *m*, such that R/P is integral over $u(A_m)$ and the quotient field of R/P is separable over the quotient field of $u(A_m)$ (note that we must then have $m = \dim R/P$).

It is known that if K is perfect then every analytic local domain over K is analytically separably generated over K. For the case when K is an infinite perfect field see for instance [2, (24.5)]. In [3] we shall give an elementary proof of this which applies also when K is finite.

It may be noted that in case of characteristic zero, by definition every field is considered to be perfect and every algebraic extension is considered to be separable.

For some other criteria of analytic separable generation reference may be made to [5] and [6, Exercises 1 to 4 on page 202].

§ 3. Symbolic powers.

Recall that for a primary ideal Q in a noetherian ring R: exponent_RQ=min *n* for which $(\operatorname{rad}_{R}Q)^{n} \subset Q$; and $\operatorname{length}_{R}Q = \max n$ for which there exists a chain of distinct ideals $Q_{1} \subset Q_{2} \subset \ldots \subset Q_{n}$ in R such that Q_{1}, \ldots, Q_{n} are primary for $\operatorname{rad}_{R}Q$ and $Q_{1}=Q$. Also recall that for a prime ideal P in a noetherian domain R, the *n*-th symbolic power of P is denoted by $P^{(n)}$, i.e., $P^{(n)} = M(R_{F})^{n} \cap R$; also note that if Q is an ideal in R which is primary for P, then upon letting $e = \operatorname{exponent}_{R}Q$ we have that: Q is a symbolic power of $P \Leftrightarrow Q = P^{(e)}$. As usual, by $\binom{i}{i}$ we denote binomial coefficients. (3.1) Let A and R be noetherian rings, let $u: A \to R$ be an epimorphism, and let Q be a primary ideal in R. Then $\operatorname{exponent}_{R}Q = \operatorname{exponent}_{A}u^{-1}(Q)$, and $\operatorname{length}_{R}Q = \operatorname{length}_{A}u^{-1}(Q)$.

Proof. — The assertion about length is obvious. The assertion about exponent follows by checking that if Q' and Q^{*} are any ideals in R and n is any positive integer then: $Q^{*n} \subset Q' \Leftrightarrow (u^{-1}(Q^*))^n \subset u^{-1}(Q')$.

(3.2) Let P and Q be ideals in a regular local ring A such that P is prime and $Q \subset P^{(2)}$. Then $Q \subset M(A)^2$ and emdim $A/Q = \dim A$.

Proof. — Suppose if possible that there exists $x \in P^{(2)}$ with $x \notin M(A)^2$. Now A_P is a regular local ring with dim $A_P = \dim A - \dim A/P$, A/xA is a regular local ring with dim $A/xA = \dim A - 1$; P/xA is a prime ideal in A/xA, and $(A/xA)_{P/xA}$ is a regular local ring with dim $(A/xA)_{P/xA} = \dim A/xA - \dim (A/xA)/(P/xA)$; consequently

$$\operatorname{emdim}(A/xA)_{P/xA} = \operatorname{dim}(A/xA)_{P/xA}$$
$$= \operatorname{dim} A/xA - \operatorname{dim}(A/xA)/(P/xA)$$
$$= \operatorname{dim} A/xA - \operatorname{dim} A/P$$
$$= (\operatorname{dim} A - I) - \operatorname{dim} A/P$$
$$= (\operatorname{dim} A - \operatorname{dim} A/P) - I$$
$$= \operatorname{dim} A_P - I$$
$$= \operatorname{emdim} A_P - I.$$

Also, by the permutability of residue class ring and quotient ring formations we know that $(A/xA)_{P/xA}$ is isomorphic to A_P/xA_P ; whence we get that

emdim $A_p/xA_p =$ emdim A_p-I .

However, $x \in P^{(2)} \subset M(A_p)^2$ and hence

emdim
$$A_{\rm P}/xA_{\rm P}$$
 = emdim $A_{\rm P}$

which is a contradiction.

Thus we must have $P^{(2)} \subset M(A)^2$. Therefore $Q \subset M(A)^2$ and hence emdim A/Q = emdim A = dim A.

(3.3) Let P and Q be ideals in a regular local ring A such that P is prime and Q is primary for P. Then:

$$Q \subset P^{(2)} \Leftrightarrow \dim A = \operatorname{emdim} A/Q = \operatorname{emdim} (A/Q)_{P/Q} + \dim A/Q.$$

Proof. — Since Q is primary for P, we have $\dim A/Q = \dim A/P$; also emdim $A_P = \dim A_P = \dim A - \dim A/P$; consequently,

$$\operatorname{emdim} A_{\mathrm{P}} = \operatorname{dim} A - \operatorname{dim} A/Q.$$

Also, by the permutability of residue class ring and quotient ring formations we know that A_P/QA_P is isomorphic to $(A/Q)_{P/Q}$, and hence

$$\operatorname{emdim} A_{P}/QA_{P} = \operatorname{emdim}(A/Q)_{P/Q}$$

Clearly : dim A = emdim(A/Q)_{P/Q} + dim A/Q \Leftrightarrow dim A - dim A/Q = emdim(A/Q)_{P/Q}, and hence by the above two displayed equations we get that

dim A = emdim $(A/Q)_{P/Q}$ + dim A/Q \Leftrightarrow emdim A_P = emdim A_P/QA_P.

 $\label{eq:Clearly: QCP^{(2)} \Leftrightarrow QA_P \, {\sf C}\, M(A_P)^2 \Leftrightarrow emdim \; A_P = emdim \; A_P/QA_P, \mbox{ and hence by the } A_P \, {\sf C}\, M(A_P)^2 \Leftrightarrow emdim \; A_P = emdim \; A_P/QA_P, \mbox{ and hence by the } A_P \, {\sf C}\, M(A_P)^2 \Leftrightarrow emdim \; A_P \, {\sf C}\, M(A_P)^2 \, {\sf C}\,$ above displayed implication we get that

$$Q \subset P^{(2)} \Leftrightarrow \dim A = \operatorname{emdim}(A/Q)_{P/Q} + \dim A/Q.$$

Our assertion follows from this in view of (3.2).

Proposition (3.4). — Let P and Q be ideals in a local ring R such that P is prime and Q is primary for P. Then we have the following.

1) If $u: A \rightarrow R$ is any epimorphism such that A is a regular local ring and $u^{-1}(Q) \subset (u^{-1}(P))^{(2)}$, then dim A = emdim R.

2) Now assume that there exists an epimorphism $B \rightarrow R$ such that B is a regular local ring with dim B =emdim R (note that by (2.16) we know that this assumption is satisfied if R is an analytic local ring over a valued field K). Then the following three conditions are equivalent:

There exists an epimorphism $u: A \rightarrow R$ such that A is a regular local ring and (*) $u^{-1}(\mathbf{Q}) \subset (u^{-1}(\mathbf{P}))^{(2)}$.

(**) If $u: A \rightarrow R$ is any epimorphism such that A is a regular local ring with dim A = emdim R, then $u^{-1}(Q) \subset (u^{-1}(P))^{(2)}$.

emdim $R = emdim R/Q = emdim (R/Q)_{P/Q} + dim R/Q$. (***)

Proof. — Follows from (3.3) by noting that if $A \rightarrow R$ is any epimorphism such that A is a regular local ring, then

dim A \geq emdim R \geq emdim R/Q.

(3.5) Let P and Q be ideals in a regular local ring A such that P is prime, Q is primary for P, and $Q \neq P$. Then the following two conditions are equivalent:

(*) Q is a symbolic power of P.

(**)
$$\dim A = \operatorname{emdim} A/Q$$

and
$$\operatorname{length}_{A/Q}\{o\} = \begin{pmatrix} \operatorname{emdim} A/Q - \operatorname{dim} A/Q + \operatorname{exponent}_{A/Q}\{o\} - I \\ exponent_{A/Q}\{o\} \end{pmatrix}.$$

а

Proof. — Since Q is primary for P, we have $\dim A/Q = \dim A/P$; also $\dim A_P = \dim A - \dim A/P$; consequently: if $\dim A = \operatorname{emdim} A/Q$ then

emdim $A/Q - \dim A/Q = \dim A_P$.

Therefore, in view of (3.1) and (3.2), we see that our assertion would follow from the following:

(1) Q is a symbolic power of
$$P \Leftrightarrow \text{length}_A Q = \begin{pmatrix} \dim A_P + \text{exponent}_A Q - I \\ exponent_A Q \end{pmatrix}$$
.

To prove (1), let $e = exponent_A Q$. Then $P^{(e)} \subset Q$ and hence

(2)
$$Q = P^{(e)} \Leftrightarrow \text{length}_A Q = \text{length}_A P^{(e)}$$
.

Also:

(3) Q is a symbolic power of
$$P \Leftrightarrow Q = P^{(e)}$$
.

Now $A_{\rm P}$ is a regular local ring, and hence

(4)
$$\operatorname{length}_{A} \mathbf{P}^{(e)} = \begin{pmatrix} \dim \mathbf{A}_{\mathbf{P}} + e - \mathbf{I} \\ e \end{pmatrix}$$

Now (1) follows from (2), (3) and (4).

Proposition (3.6). — Let P and Q be ideals in a local ring R such that P is prime, Q is primary for P, and $Q \neq P$. Then we have the following:

1) If $u: A \to R$ is any epimorphism such that A is a regular local ring and $u^{-1}(Q)$ is a symbolic power of $u^{-1}(P)$, then dim A = emdim R.

2) Now assume that there exists an epimorphism $B \rightarrow R$ such that B is a regular local ring with dim B = emdim R (note that by (2.16) we know that this assumption is satisfied if R is an analytic local ring over a valued field K). Then the following three conditions are equivalent:

(*) There exists an epimorphism $u : A \to R$ such that A is a regular local ring and $u^{-1}(Q)$ is a symbolic power of $u^{-1}(P)$.

(**) If $u: A \to R$ is any epimorphism such that A is a regular local ring with dim A = emdim R, then $u^{-1}(Q)$ is a symbolic power of $u^{-1}(P)$.

(***)
$$\operatorname{emdim} R = \operatorname{emdim} R/Q$$

and
$$\operatorname{length}_{R/Q}\{o\} = \begin{pmatrix} \operatorname{emdim} R/Q - \operatorname{dim} R/Q + \operatorname{exponent}_{R/Q}\{o\} - I \\ exponent_{R/Q}\{o\} \end{pmatrix}$$

Proof. — Follows from (3.5) by noting that if $A \rightarrow R$ is any epimorphism such that A is a regular local ring, then

dim A \geq emdim R \geq emdim R/Q.

§ 4. Proof of Theorems 3, 4 and 5.

Let K be a valued field. Let R be an analytic local ring over K. Let X_1, X_2, \ldots be indeterminates, and for every nonnegative integer d let $A_d = K[\langle X_1, \ldots, X_d \rangle]$. By card we shall denote cardinal number; note that for any infinite set N, card(N) = card(N) - I.

(4.1) Let d be a positive integer. Let P be a nonzero prime ideal in A_d . Let Q be an ideal in A_d such that Q is primary for P, and $Q \subset P^{(2)}$. Let J be an ideal in A_d such that $J \notin Q$. Let $G_0 = G_K(A_d, J \cap P) \cap G_K[A_d, Q]$. Then we have the following: 1) There exists $G' \subset G_0$ with $card(G') \ge card(K) - 1$ such that $g(X_1) - h(X_1) \notin Q$ for all $g \neq h$ in G'.

2) If there exists $Z \in J \cap M(A_d)$ with $Z \notin Q$ such that either $Z \in M(A_d)^2$ or $Z \notin X_1A_d + M(A_d)^2$, then there exists $G^* \subset G_0$ with $card(G^*) \ge card(K)$ such that $g(X_1) - h(X_1) \notin Q$ for all $g \neq h$ in G^* .

3) $G_0 \subset G_K(A_d, Q) \Leftrightarrow d = 1, \operatorname{card}(K) = 2, \text{ and } Q = P^{(2)}.$

4) If $P \neq M(A_d)$ then there exists an infinite subset G of G_0 such that $g(X_1) - h(X_1) \notin Q$ for all $g \neq h$ in G.

Proof. — Since $J \notin Q$, there exists $Z \in J$ with $Z \notin Q$; in the general case we fix any such Z, and in case of 2) we take $Z \in J \cap M(A_d)$ with $Z \notin Q$ such that either $Z \in M(A_d)^2$ or $Z \notin X_1 A_d + M(A_d)^2$. Since Q is primary for P, there exists a positive integer *m* such that $P^m \subset Q$, and then $ZP^m \subset Q$; now $ZP^0 \notin Q$; therefore there exists a unique nonnegative integer *n* such that upon letting $B = ZP^n$ we have $B \notin Q$ and $BP \subset Q$. Since P is a nonzero prime ideal, we must have $M((A_d)_P) \neq 0$; consequently $M((A_d)_P) \neq M((A_d)_P)^2$, and hence $P \neq P^{(2)}$; since $Q \subset P^{(2)}$, we get $P \notin Q$. Now Q is primary for P, $BP \subset Q$, and $P \notin Q$; therefore $B \subset P$. Since $B = ZP^n$, it follows that $B \subset J \cap P$.

Let any $H \in G_K(A_d, B)$ and any $q \in Q$ be given. Since $B \subset P$ and $H \in G_K(A_d, B)$, by (2.1) and (2.2) we see that H(P) = P. Since $q \in Q \subset P^{(2)}$, we can write

$$rq = \sum_{i=1}^{e} y_i z_i$$
 with $r \in \mathbf{A}_d$, $r \notin \mathbf{P}$, $y_i \in \mathbf{P}$, $z_i \in \mathbf{P}$.

Now

$$\begin{aligned} H(r)(H(q)-q) &= q(r-H(r)) + H(rq) - rq \\ &= q(r-H(r)) + \sum_{i=1}^{e} (H(y_i z_i) - y_i z_i) \\ &= q(r-H(r)) + \sum_{i=1}^{e} (H(y_i)(H(z_i) - z_i) + z_i(H(y_i) - y_i)); \\ H(z_i) - z_i \in B \quad \text{and} \quad H(y_i) - y_i \in B \quad \text{for} \quad 1 \le i \le e \end{aligned}$$

also

because $H \in G_{K}(A_{d}, B)$, and

$$H(y_i) \in P$$
 and $z_i \in P$ for $1 \le i \le e$

because H(P) = P; therefore

$$H(r)(H(q)-q) \in Q + BP.$$

Since $BP \subset Q$, we thus get $H(r)(H(q)-q) \in Q$; since $r \notin P$ and H(P) = P, we must also have $H(r) \notin P$; since Q is primary for P, we conclude that $H(q) - q \in Q$, and hence $H(q) \in Q$.

Thus we have shown that $H(Q) \subset Q$ for all $H \in G_K(A_d, B)$. Given any $H \in G_K(A_d, B)$, since $G_K(A_d, B)$ is a subgroup of $G_K(A_d)$ by (2.1), we have $H^{-1} \in G_K(A_d, B)$; consequently by what we have just shown we get that $H(Q) \subset Q$ and $H^{-1}(Q) \subset Q$;

therefore H(Q) = Q. Thus $G_K(A_d, B) \subset G_K[A_d, Q]$; since $B \subset J \cap P$, by (2.2) we also have $G_K(A_d, B) \subset G_K(A_d, J \cap P)$. Therefore

(5)
$$G(A_d, B) \subset G_0.$$

If d=1 and $\operatorname{card}(K)=2$ then for any basis (X'_1) of $M(A_d)$ we would have $X'_1 - X_1 \in M(A_d)^2 = P^{(2)}$. Therefore, in view of (2.9) we get the following:

(6) If
$$d=1$$
 and $\operatorname{card}(K)=2$ then $G_K(A_d)=G_K(A_d, P^{(2)})$.

Since $B \not\in Q$, we can take $Y \in B$ with $Y \notin Q$. Since $Y \in B$ and $B \subset P \subset M(A_d)$, we have $Y \in M(A_d)$.

For a moment suppose that $P \neq M(A_d)$. Then $X_j \notin P$ for some *j*. For every positive integer *t* we have $M(A_d) = (X_1 + X_j^t Y, X_2, \ldots, X_d)A_d$ and hence by (2.15) we get $h_i \in G_K(A_d)$ with $h_i(X_1) = X_1 + X_j^t Y$ and $h_i(X_i) = X_i$ for $2 \leq i \leq d$; now $X_j^t Y \in B$ and hence by (2.9) we see that $h_i \in G_K(A_d, B)$. For any integers $0 \leq t \leq s$ we have $h_t(X_1) - h_s(X_1) = X_j^t Y(1 - X_j^{s-i})$; since $X_j \notin P$, $Y \notin Q$, and Q is primary for P, we get that $X_j^t Y \notin Q$; also $1 - X_j^{s-t}$ is a unit in A_d , and hence $h_i(X_1) - h_s(X_1) \notin Q$. In view of (5), this completes the proof of 4).

Now, reverting back to the general case (i.e., without assuming $P \neq M(A_d)$), in view of (5) and (6) we see that 1), 2) and 3) would follow from 1'), 2') and 3') respectively:

1') There exists $G' \subset G_K(A_d, B)$ with $card(G') \ge card(K) - 1$ such that

$$g(\mathbf{X}_1) - h(\mathbf{X}_1) \notin \mathbf{Q}$$

for all $g \neq h$ in G'.

2') If $Z \in M(A_d)$ and either $Z \in M(A_d)^2$ or $Z \notin X_1 A_d + M(A_d)^2$, then there exists $G^* \subset G_K(A_d, B)$ with $card(G^*) \ge card(K)$ such that $g(X_1) - h(X_1) \notin Q$ for all $g \neq h$ in G^* .

3') If either $d \ge 2$ or $card(K) \ge 2$ or $Q \neq P^{(2)}$, then $G_K(A_d, B) \notin G_K(A_d, Q)$.

We now proceed to prove 1'), 2') and 3').

Since $Y \in M(A_d)$, there exist unique elements k_1, \ldots, k_d in K such that

(7)
$$\mathbf{Y} + k_1 \mathbf{X}_1 + \ldots + k_d \mathbf{X}_d \in \mathbf{M}(\mathbf{A}_d)^2.$$

Let

(8)
$$\mathbf{K}_{0} = \begin{cases} \{k \in \mathbf{K} : k \neq 1/k_{1}\} & \text{if } k_{1} \neq 0 = k_{2} = \ldots = k_{d}, \\ \mathbf{K} & \text{otherwise.} \end{cases}$$

If $k_2 = \ldots = k_d = 0$ then let $(X'_2, \ldots, X'_d) = (X_2, \ldots, X_d)$; and if $k_j \neq 0$ for some j with $2 \leq j \leq d$ then let $(X'_2, \ldots, X'_d) = (X_2, \ldots, X_{j-1}, Y, X_{j+1}, \ldots, X_d)$. Now $M(A_d) = (X_1, X'_2, \ldots, X'_d)A_d$ and hence by (2.15) we get $g^* \in G_K(A_d)$ with $g^*(X_1) = X_1$ and $g^*(X_i) = X'_i$ for $2 \leq i \leq d$. For any $k \in K_0$ we have $M(A_d) = (X_1 + kY, X'_2, \ldots, X'_d)A_d$ and hence by (2.15) we get $g^*_k \in G_K(A_d)$ with $g^*_k(X_1) = X_1 + kY$ and $g^*_k(X_i) = X'_i$ for For any $k \neq k'$ in K_0 we have $g_k(X_1) - g_{k'}(X_1) = (k - k')Y$; now $Y \notin Q$ and k - k' is a unit in A_d ; consequently $g_k(X_1) - g_{k'}(X_1) \notin Q$. Thus

(10) for all
$$k \neq k'$$
 in \mathbf{K}_0 we have $g_k(\mathbf{X}_1) - g_{k'}(\mathbf{X}_1) \notin \mathbf{Q}_0$

By (8) we have $\operatorname{card}(K_0) \ge \operatorname{card}(K) - 1$, and hence 1') follows from (9) and (10). Now $Y \in \mathbb{Z}A_d$; consequently by (7) and (8) we see that if $Z \in M(A_d)$ and either $Z \in M(A_d)^2$ or $Z \notin X_1 A_d + M(A_d)^2$ then $K_0 = K$; therefore 2') also follows from (9) and (10).

Now only 3') remains to be proved.

By (9) and (10) we see that if $card(K_0) > 1$ then $G_K(A_d, B) \notin G_K(A_d, Q)$; since always $card(K) \ge 2$, by (8) we see that $card(K_0) \ge 1$; therefore we get the following:

(11) If
$$\operatorname{card}(\mathbf{K}_0) \neq \mathbf{I}$$
 then $\mathbf{G}_{\mathbf{K}}(\mathbf{A}_d, \mathbf{B}) \notin \mathbf{G}_{\mathbf{K}}(\mathbf{A}, \mathbf{Q})$.

By (8) we get (12) and (13):

(12) If
$$card(K) \neq 2$$
 then $card(K_0) \neq 1$.

(13) If
$$card(K_0) = I$$
 then $k_1 \neq 0 = k_2 = \ldots = k_d$.

If $d \ge 2$ and $k_2 = 0$ then $M(A_d) = (X_1, X_2 + Y, X_3, ..., X_d)A_d$ and hence by (2.15) we get $g' \in G_K(A_d)$ such that $g'(X_1) = X_1$, $g'(X_2) = X_2 + Y$, and $g'(X_i) = X$ for $3 \le i \le d$; since $Y \in B$, by (2.9) we have $g' \in G_K(A_d, B)$; since $Y \notin Q$, we also have $g' \notin G_K(A_d, Q)$. Thus we have proved the following:

(14) If
$$d \ge 2$$
 and $k_2 = 0$ then $G_K(A_d, B) \notin G_K(A_d, Q)$.

If d=1 and $k_1 \neq 0$ then clearly $YA_d = X_1A_d = M(A_d) = P$; since $Y \in B$ and $BP \subset Q \subset P^{(2)}$, we then must have $Q = P^{(2)}$. Thus we have proved the following:

(15) If
$$d=1$$
 and $k_1 \neq 0$ then $Q = P^{(2)}$.

Now 3' follows from (11), (12), (13), (14) and (15).

Theorem (4.2). — Assume that dim R=0 and $R \neq K$ (i.e., equivalently, dim R=0 and $M(R) \neq M(R)^2$). Let x be any element in M(R) with $x \notin M(R)^2$. Let J be any nonzero ideal in R. Then we have the following.

I) $G_{K}(R, J) = \{I\}$ \Rightarrow emdim R = I, card(K) = 2, and $M(R)^{2} = \{o\}$ \Rightarrow card(K) = 2 and R is K-isomorphic to $A_{1}/(X_{1}^{2}A_{1})$ \Rightarrow card(K) = 2 and R is isomorphic to $A_{1}/(X_{1}^{2}A_{1})$ \Rightarrow card(R) = 4 \Rightarrow G(R) = $\{I\}$ \Rightarrow G_K(R) = $\{I\}$

2) There exists $G' \subset G_K(R, J)$ with $card(G') \ge card(K) - 1$ such that $g(x) \neq h(x)$ for all $g \neq h$ in G'.

3) If there exists $0 \neq z \in J \cap M(R)$ such that either $z \in M(R)^2$ or $z \notin xR + M(R)^2$, then there exists $G^* \subset G_K(R, J)$ with $card(G^*) \ge card(K)$ such that $g(x) \neq h(x)$ for all $g \neq h$ in G^* .

4) If either emdim $R \neq I$ or $M(R)^2 \neq \{o\}$, then there exists $G \subset G_K(R)$ with $card(G) \geq card(K)$ such that $g(x) \neq h(x)$ for all $g \neq h$ in G.

5) If $card(R) \neq 4$ then there exists $g \in G_{K}(R)$ such that $g(x) \neq x$.

Proof. — Upon letting $d = \operatorname{emdim} R$, we can take x_2, \ldots, x_d in R such that $M(R) = (x, x_2, \ldots, x_d)R$. Let $v: A_d \to R$ be the unique local K-homomorphism with $v(X_1) = x$ and $v(X_i) = x_i$ for $2 \le i \le d$; by (2.14) we know that v is surjective. Let $Q = \operatorname{Ker} v$. Now Q is primary for $M(A_d)$, $Q \subset M(A_d)^2 = M(A_d)^{(2)}$, $v^{-1}(J) \notin Q$, and $G_K(A_d, v^{-1}(J) \cap M(A_d)) = G_K(A_d, v^{-1}(J))$. Also, we have the following:

6) If z is any nonzero element in $J \cap M(R)$ such that either $z \in M(R)^2$ or $z \notin xR + M(R)^2$, then upon taking any $Z \in v^{-1}(z)$ we have that $Z \in v^{-1}(J) \cap M(A_d)$, $Z \notin Q$, and either $Z \in M(A_d)^2$ or $Z \notin X_1A_d + M(A_d)^2$.

Let $G_0 = G_K(A_d, v^{-1}(J)) \cap G_K[A_d, Q]$. By (4.1) we get 1'), 2') and 3'):

I') $G_0 \subset G_K(A_d, Q) \Leftrightarrow d = I$, card(K) = 2, and $Q = M(A_d)^2$.

2') There exists $G'_0 \subset G_0$ with $\operatorname{card}(G'_0) \ge \operatorname{card}(K) - I$ such that $g(X_1) - h(X_1) \notin Q$ for all $g \neq h$ in G'_0 .

3') If there exists $Z \in v^{-1}(J) \cap M(A_d)$ with $Z \notin Q$ such that either $Z \in M(A_d)^2$ or $Z \notin X_1 A_d + M(A_d)^2$, then there exists $G_0^* \subset G_0$ with $card(G_0^*) \ge card(K)$ such that $g(X_1) - h(X_1) \notin Q$ for all $g \neq h$ in G_0^* .

Let $w: G_{K}[A_{d}, \text{Ker } v] \to G_{K}(R)$ be the homomorphism induced by v. Then by (2.3) and (2.4) we have $\text{Ker } w = G_{K}(A_{d}, Q)$ and $w(G_{0}) \subset G_{K}(R, J)$. In view of (2.5), 2) now follows from 2') by taking G' to be $w(G'_{0})$. In view of (2.5) and 6), 3) follows from 3') by taking G^{*} to be $w(G'_{0})$.

Since Ker $w = G_K(A_J, Q)$ and $w(G_0) \subset G_K(R, J)$, by 1') we get that:

 $G_{K}(R, J) = \{I\} \Rightarrow d = I, card(K) = 2, and M(R)^{2} = \{o\}.$

Clearly: d = 1, card(K) = 2, and M(R)² = {0}

⇒ card(K)=2 and R is K-isomorphic to $A_1/(X_1^2A_1)$ ⇒ card(K)=2 and R is isomorphic to $A_1(X_1^2A_1)$ ⇒ card(R)=4;

and: $G(R) = \{ I \} \Rightarrow G_K(R) = \{ I \} \Rightarrow G_K(R, J) = \{ I \}.$

For a moment suppose that $\operatorname{card}(R) = 4$; now $\operatorname{card}(K) \ge 2$, $x \notin K$, $1 + x \notin K$, and $x \neq 1 + x$; therefore we must have $\operatorname{card}(K) = 2$ and $R = \{0, 1, x, 1 + x\}$; for any $g \in G(R)$ we must have g(0) = 0 and g(1) = 1; also g(x) = x because $M(R) = \{x\}$; hence also g(1+x) = 1 + x; therefore g is the identity automorphism. Thus: $\operatorname{card}(R) = 4 \Rightarrow G(R) = \{1\}$. This completes the proof of 1).

To prove 4) assume that either $d \neq 1$ or $M(R)^2 \neq \{0\}$. If $d \neq 1$ then let $z = x_2$; if d = 1 and $M(R)^2 \neq \{0\}$ then let z be any nonzero element in $M(R)^2$. Now in both cases $0 \neq z \in M(R)$ and either $z \in M(R)^2$ or $z \notin xR + M(R)^2$. So take J to be zR and apply 3).

Finally, 5) follows from 1), 2), and 4).

Theorem (4.3). — Assume that dim $R \neq 0$. Let Q be an isolated primary component of $\{0\}$ in R, and let $P = rad_RQ$. Let $Q' = Q'_1 \cap \ldots \cap Q'_b$ where Q'_1, \ldots, Q'_b are any finite number of primary ideals in R with $Q'_i \notin P$ for $1 \leq i \leq b$. Let J be any ideal in R with $J \notin Q$. Let x be any element in M(R) with $x \notin M(R)^2$. Assume that $Q \neq P$ and:

(*) there exists a K-epimorphism $u: A_d \rightarrow R$, for some d, such that $u^{-1}(Q) \subset (u^{-1}(P))^{(2)}$.

Then there exists an infinite subset G of $G_{K}(R, J \cap P \cap Q') \cap G_{K}[R, Q]$ with $card(G) \ge card(K)$ such that $g(x) - h(x) \notin Q$ for all $g \neq h$ in G.

(Note that by (2.1) and (2.2) we then have $G \subset G_K[R, P]$ and $G \subset G_K[R, Q'_i]$ for $1 \le i \le b$.)

(For an intrinsic formulation of (*) see (3.4).)

(Note that if we assume Q = P but keep all the other assumptions unchanged, then: $P = Q = \{o\} \neq J \cap Q' \cap M(R)^2, d > o$, and *u* is an isomorphism. In view of (2.15) we can now identify R with A_d so that *x* gets identified with X_1 . We can take $o \neq y \in J \cap Q' \cap M(R)^2$. For every positive integer *n* and every $k \in K$, in view of (2.9) and (2.15), we get $g_{k,n} \in G_K(R, J \cap Q')$ with $g_{k,n}(x) = x + ky^n$ and $g_{k,n}(X_i) = X_i$ for $2 \leq i \leq d$. Clearly $g_{k,n}(x) \neq g_{k',n'}(x)$ whenever $(k, n) \neq (k', n')$.

Proof. — By (3.4) we know that $d = \operatorname{emdim} R$, and hence we can take x_2, \ldots, x_d in R such that $M(R) = (x, x_2, \ldots, x_d)R$. Let $v: A_d \to R$ be the unique local K-homomorphism with $v(X_1) = x$ and $v(X_i) = x_i$ for $2 \le i \le d$. By (2.14) we see that v is surjective, and then by (3.4) we see that $v^{-1}(Q) \subset (v^{-1}(P))^{(2)}$. Now $d > 0, v^{-1}(P)$ is a nonzero prime ideal in A_d with $v^{-1}(P) \neq M(A_d)$, and $v^{-1}(Q)$ is primary for $v^{-1}(P)$. Since Q is an isolated primary component of $\{0\}$ in R, we have $\{0\} = Q \cap Q^*$ with $Q^* = Q_1^* \cap \ldots \cap Q_a^*$ where Q_1^*, \ldots, Q_a^* are primary ideals in R with $Q_i^* \notin P$ for $1 \le i \le a$. Let $J_0 = J \cap Q^* \cap Q'$. Then $J_0 \notin Q$ and hence $v^{-1}(J_0) \notin v^{-1}(Q)$. Let

$$\mathbf{G}_{0} = \mathbf{G}_{\mathbf{K}}(\mathbf{A}_{d}, v^{-1}(\mathbf{Q}^{*})) \cap \mathbf{G}_{\mathbf{K}}(\mathbf{A}_{d}, v^{-1}(\mathbf{J} \cap \mathbf{P} \cap \mathbf{Q}')) \cap \mathbf{G}_{\mathbf{K}}[\mathbf{A}_{d}, v^{-1}(\mathbf{Q})].$$

Now $G_{K}(A_{d}, v^{-1}(Q^{*})) \cap G_{K}(A_{d}, v^{-1}(J \cap P \cap Q')) = G_{K}(A_{d}, v^{-1}(Q^{*}) \cap v^{-1}(J \cap P \cap Q'))$ and $v^{-1}(Q^{*}) \cap v^{-1}(J \cap P \cap Q') = v^{-1}(J_{0}) \cap v^{-1}(P).$

Therefore by (4.1) there exists an infinite subset G' of G_0 with $card(G') \ge card(K)$ such that $g(X_1) - h(X_1) \notin v^{-1}(Q)$ for all $g \neq h$ in G'.

By (2.1) we have

and clearly
$$G_{K}(A_{d}, v^{-1}(Q^{*})) \subset G_{K}[A_{d}, v^{-1}(Q^{*})],$$
$$G_{K}[A_{d}, v^{-1}(Q^{*})] \cap G_{K}[A_{d}, v^{-1}(Q)] \subset G_{K}[A_{d}, v^{-1}(Q^{*}) \cap v^{-1}(Q)]$$
$$v^{-1}(Q^{*}) \cap v^{-1}(Q) = \operatorname{Ker} v.$$

Therefore $G_0 \subset G_K[A_i, \text{Ker } v]$. Let $w : G_K[A_i, \text{Ker } v] \to G_K(R)$ be the homomorphism induced by v. Now, in view of (2.4), we see that

$$w(\mathbf{G}_0) \subset \mathbf{G}_{\mathbf{K}}(\mathbf{R}, \mathbf{J} \cap \mathbf{P} \cap \mathbf{Q}') \cap \mathbf{G}_{\mathbf{K}}[\mathbf{R}, \mathbf{Q}].$$

In view of (2.5) we see that w induces an injection of G', and $g(x) - h(x) \notin Q$ for all $g \neq h$ in w(G'). Therefore it suffices to take G to be w(G').

Theorem (4.4). — Let J, Q_1, \ldots, Q_a ($a \ge 0$) be any ideals in \mathbb{R} such that Q_1, \ldots, Q_a are primary and $J \cap Q_1 \cap \ldots \cap Q_a = \{0\}$. Let $P_i = \operatorname{rad}_{\mathbb{R}} Q_i$. Let $v : \mathbb{R} \to S$ be a K-epimorphism where S is an analytic local ring over K and Ker $v = P_1 \cap \ldots \cap P_a$. Let $w : G_{\mathbb{K}}[\mathbb{R}, \operatorname{Ker} v] \to G_{\mathbb{K}}(S)$ be the homomorphism induced by v. Let

$$\begin{split} \mathbf{G} &= \mathbf{G}_{\mathbf{K}}(\mathbf{R}, \mathbf{J}) \cap \bigcap_{i=1}^{a} \mathbf{G}_{\mathbf{K}}[\mathbf{R}, \mathbf{P}_{i}] \cap \bigcap_{i=1}^{a} \mathbf{G}_{\mathbf{K}}[\mathbf{R}, \mathbf{Q}_{i}], \\ \mathbf{G}' &= \mathbf{G}_{\mathbf{K}}(\mathbf{S}, \mathbf{v}(\mathbf{J})) \cap \bigcap_{i=1}^{a} \mathbf{G}_{\mathbf{K}}[\mathbf{S}, \mathbf{v}(\mathbf{P}_{i})]. \end{split}$$

and

Assume that:

(*) there exists a K-epimorphism $u: A_d \rightarrow R$, for some d, such that $u^{-1}(Q_i)$ is a symbolic power of $u^{-1}(P_i)$ for $1 \le i \le a$.

Then w(G) = G'.

(Note that clearly $G_K[R, P_1] \cap \ldots \cap G_K[R, P_a] \subset G_K[R, \text{Ker } v]$, and hence it makes sense to talk about w(G).)

(Note that (*) is automatically satisfied if $Q_i = P_i$ for $1 \le i \le a$, because then we can take u to be any K-epimorphism $A_d \rightarrow R$. For the case when $Q_i \neq P_i$ for some i, for an intrinsic formulation of (*) see (3.6).)

Proof. — Let $t: G_K[A_d, \text{Ker } u] \to G_K(R)$ be the homomorphism induced by u. Let v' = vu and let $w': G_K[A_d, \text{Ker } v'] \to G_K(S)$ be the homomorphism induced by v'. Let any $g' \in G'$ be given.

Clearly $v'(u^{-1}(J)) = v(J)$, and hence by (2.19) there exists $h \in G_K[A_d, \text{Ker } v']$ such that $h \in G_K(A_d, u^{-1}(J))$ and w'(h) = g'. By (2.1) we see that $h(u^{-1}(J)) = u^{-1}(J)$.

Now Ker $v' \subset u^{-1}(\mathbf{P}_i)$ and $v'(u^{-1}(\mathbf{P}_i)) = v(\mathbf{P}_i)$, and hence by (2.4) we get that $h \in \mathbf{G}_{\mathbf{K}}[\mathbf{A}_d, u^{-1}(\mathbf{P}_i)]$, i.e., $h(u^{-1}(\mathbf{P}_i)) = u^{-1}(\mathbf{P}_i)$. Therefore there exists a unique automorphism of the quotient ring \mathbf{B}_i of \mathbf{A}_d with respect to $u^{-1}(\mathbf{P}_i)$ such that $h_i(x) = h(x)$ for all $x \in \mathbf{A}_d$. For every positive integer n we now have

$$h(\mathbf{M}(\mathbf{B}_i)^n \cap \mathbf{A}_d) = h_i(\mathbf{M}(\mathbf{B}_i)^n \cap \mathbf{A}_d) = h_i(\mathbf{M}(\mathbf{B}_i)^n) \cap h_i(\mathbf{A}_d) = \mathbf{M}(\mathbf{B}_i)^n \cap \mathbf{A}_d;$$

since $u^{-1}(\mathbf{Q}_i)$ is a symbolic power of $u^{-1}(\mathbf{P}_i)$, we conclude that $h(u^{-1}(\mathbf{Q}_i)) = u^{-1}(\mathbf{Q}_i)$.

Thus
$$h(u^{-1}(J)) = u^{-1}(J)$$
 and $h(u^{-1}(Q_i)) = u^{-1}(Q_i)$ for $1 \le i \le a$; clearl
Ker $u = u^{-1}(J) \cap u^{-1}(Q_1) \cap \dots \cap u^{-1}(Q_a)$,

and hence h(Ker u) = Ker u. Thus $h \in G_{K}[A_{d}, \text{Ker } u]$ and upon letting g = t(h), in view of (2.6), we see that $g \in G_{K}[R, \text{Ker } v]$ and w(g) = w(t(h)) = w'(h) = g'. Now

 $h \in G_{K}(A_{d}, u^{-1}(J)), h \in G_{K}[A_{d}, u^{-1}(P_{i})]$ for $1 \leq i \leq a$, and $h \in G_{K}[A_{d}, u^{-1}(Q_{i})]$ for $1 \leq i \leq a$; consequently, in view of (2.4), we have $g \in G$.

Thus we have shown that, given any $g' \in G'$ there exists $g \in G$ with w(g) = g'. Now, in view of (2.4), $w(G) \subset G'$, and hence we conclude that w(G) = G'.

§ 5. Rigid subfields.

Let K be a valued field. Let $A = K[\langle X \rangle]$ where X is an indeterminate.

Let z_1, \ldots, z_e be any given finite number of elements in K. Let L be the field generated by z_1, \ldots, z_e over the prime subfield of K.

Take $z_0 = 1$. We can take positive integers m, n, q, d such that: q + qe < m; m + q + qe < n; n is not divisible by the characteristic of K; $n + m \le d$; and n and d are coprime. Now we can take $Y = Y(X) \in A$ such that the coefficient of X^d in Y(X) is nonzero and

$$Y = X^{n+m} + \sum_{i=0}^{\circ} z_i X^{n+m+q+qi} + Y' \quad \text{with} \quad Y' \in X^{n+m+q+qe+1} A.$$

Let $R = K[\langle X^n, Y \rangle]$. Then clearly R is a one-dimensional analytic local domain over K, with emdim R = 2.

(5.1) A is the integral closure of R in the quotient field of R.

Proof. — Clearly A is the integral closure of R in $K(\langle X \rangle]$, $K(\langle X^n \rangle)$ is contained in the quotient field of R, and $[K(\langle X \rangle) : K(\langle X^n \rangle)] = n$; consequently it suffices to show that $[K(\langle X^n \rangle)(Y) : K(\langle X^n \rangle)] \ge n$. Let K' be an algebraic closure of K. Let v be a primitive n-th root of I in K'. We have a unique K'-automorphism h_j of K'[[X]] such that $h_j(X) = v^j X$; h_j extends uniquely to an automorphism of K'((X)) which we continue to denote by h_j ; clearly h_j is then a K'((Xⁿ))-automorphism of K'((X)). Now $Y = \sum_i y_i X^i$ with $y_i \in K$ for $i=0, 1, 2, \ldots$, and $y_d \neq 0$; we have $h_j(Y) = \sum_i y_i v^{ij} X^i$; since n is not divisible by the characteristic of K, and n and d are coprime, we see that v^{d1}, \ldots, v^{dn} are pairwise distinct; since $y_d \neq 0$, we get that $h_1(Y), \ldots, h_n(Y)$ are pairwise distinct. Thus Y has n distinct $K'((X^n))$ -conjugates in K'((X)), and hence $[K'((X^n))(Y) : K'((X^n))] \ge n$. Since $K(\langle X^n \rangle) \subset K'((X^n))$, we must also have $[K(\langle X^n \rangle)(Y) : K(\langle X^n \rangle)] \ge n$.

(5.2) Let $r \in \mathbb{R}$ be such that $0 \leq \operatorname{ord}_{A} r \leq 2n$. Then $\operatorname{ord}_{A} r = either n \text{ or } n+m$.

Proof. — Since $r \in \mathbb{R}$ and $\operatorname{ord}_{A} r > 0$, we can write $r = aX^{n} + bY + r'$ where $a \in \mathbb{K}$, $b \in \mathbb{K}$, and $r' = sX^{2n} + tX^{n}Y + uY^{2}$ with $s \in \mathbb{R}$, $t \in \mathbb{R}$, $u \in \mathbb{R}$. Since $\operatorname{ord}_{A}Y = n + m > n$, we have $\operatorname{ord}_{A}r' \ge 2n$. Since $\operatorname{ord}_{A}r < 2n$, we see that $\operatorname{ord}_{A}r = \operatorname{ord}_{A}(aX^{n} + bY) = \operatorname{either} n$ or n + m.

(5.3) Let g be any automorphism of R. Then $g(z) - z \in M(R)$ for all $z \in L$. Whence, in particular, if g(K) = K then g(z) = z for all $z \in L$.

(Note that by (2.12) we know that if K is a perfect field of nonzero characteristic then g(K) = K for all $g \in G(R)$.)

Proof. — In view of (5.1), we can uniquely extend g to an automorphism of A which we continue to denote by g. Now $\operatorname{ord}_A g(X) = 1$ and hence there exists $o \neq k \in K$ with $\operatorname{ord}_A(g(X)-kX) > 1$.

Suppose if possible that $\operatorname{ord}_A(g(X) - kX) \leq m$. Then $g(X) = kX(I + EX^u)$ where u is an integer with o < u < m and E is a unit in A. Now

 $g(\mathbf{X}^n) = k^n \mathbf{X}^n (\mathbf{I} + n \mathbf{E} \mathbf{X}^u + \mathbf{an} \text{ element in } \mathbf{X}^{u+1} \mathbf{A});$

since *n* is not divisible by the characteristic of K, we get that $\operatorname{ord}_{A}(g(X^{n})-k^{n}X^{n})=n+u$; since $n \le n+u \le n+m \le 2n$ and $g(X^{n})-k^{n}X^{n} \in \mathbb{R}$, we have a contradiction by (5.2).

Therefore $g(X) = kX(I + DX^m)$ with $D \in A$. Now

$$k^{-n-m}g(\mathbf{Y}) = k^{-n-m}g(\mathbf{Y}') + \mathbf{X}^{n+m}(\mathbf{I} + \mathbf{D}\mathbf{X}^m)^{n+m} + \sum_{i=0}^{e} g(z_i)k^{q+qi}\mathbf{X}^{n+m+q+qi}(\mathbf{I} + \mathbf{D}\mathbf{X}^m)^{n+m+q+qi};$$

since $\mathbf{Y}' \in \mathbf{Y}^{n+m+q+qe+1}\mathbf{A}$ we have

since $Y' \in X^{n+m+q+qe+1}A$, we have

$$g(\mathbf{Y}') \in \mathbf{X}^{n+m+q+qe+1}\mathbf{A};$$

also, for all $j \ge 0$ we have

 $\mathbf{X}^{n+m+j}(\mathbf{I} + \mathbf{D}\mathbf{X}^m)^{n+m+j} = \mathbf{X}^{n+m+j} +$ an element in $\mathbf{X}^{n+2m+j}\mathbf{A}$ = $\mathbf{X}^{n+m+j} +$ an element in $\mathbf{X}^{n+m+q+qe+1}\mathbf{A}$ because q + qe < m.

Consequently $k^{-n-m}g(Y) - Y = \sum_{i=0}^{e} (g(z_i)k^{q+qi} - z_i)X^{n+m+q+qi} + an$ element in $X^{n+m+q+qe+1}A$.

Since $k^{-n-m}g(Y) - Y \in \mathbb{R}$ and $n+m+q+qe \le 2n$, in view of (5.2) we now conclude that $g(z_i)k^{q+qi} - z_i \in M(A)$ for $0 \le i \le e$.

Since $z_0 = 1$, we have $g(z_0) = 1$; consequently $k^q - 1 \in M(\mathbb{R})$ and hence $k^q = 1$. Therefore $k^{q+qi} = 1$ for all *i*, and hence

$$g(z_i) - z_i \in \mathbf{M}(\mathbf{A}) \quad \text{ for } \quad \mathbf{1} \leq i \leq e.$$

Let $w: A \to A/M(A)$ be the canonical epimorphism. Now g(M(A)) = M(A) and hence g induces $g' \in G(w(A))$. Since $g(z_i) - z_i \in M(A)$, we get that $w(z_i) \in Inv\{g'\}$; by (2.7) we know that $Inv\{g'\}$ is a subfield of w(A), and hence we must have $w(L) \subset Inv\{g'\}$. Therefore

$$g(z) - z \in M(A) \cap R = M(R)$$
 for all $z \in L$.

Purdue University, Lafayette, Indiana, U.S.A.

REFERENCES

- [1] S. S. ABHYANKAR, Ramification theoretic methods in algebraic geometry, Princeton, Princeton University Press, 1959.
- [2] S. S. ABHYANKAR, Local analytic geometry, New York, Academic Press, 1964.
- [3] S. S. ABHYANKAR, T. T. MOH and M. VAN DER PUT, Invariants of analytic local rings, Publ. math. I.H.E.S., nº 36 (1969), p. 165-193.

- [4] S. S. ABHYANKAR and M. VAN DER PUT, Homomorphisms of analytic local rings, forthcoming in \tilde{j} . für die reine und angew. Math.
- [5] M. NAGATA, Note on complete local integrity domains, Memoirs of the College of Science, University of Kyoto, vol. 28 (1953-1954), pp. 271-278.
- [6] M. NAGATA, Local rings, New York, John Wiley and Sons, 1962.
- [7] P. SAMUEL, Algébraïcité de certains points singuliers algébroïdes, *Journal de Mathématiques*, vol. 35 (1956), pp. 1-6.
- [8] O. ZARISKI and P. SAMUEL, Commutative algebra, vol. I, Princeton, Van Nostrand, 1958.
- [9] O. ZARISKI and P. SAMUEL, Commutative algebra, vol. II, Princeton, Van Nostrand, 1960.
- [10] O. ZARISKI, Studies in equisingularity: III. Saturation of local rings and equisingularity, American Journal of Mathematics, vol. 90 (1968), pp. 961-1023.

Manuscrit reçu le 14 février 1969.