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GEOMETRY ON GRASSMANNIANS
AND APPLICATIONS TO SPLITTING BUNDLES

AND SMOOTHING CYCLES
by STEVEN L. KLEIMAN (1)

INTRODUCTION

Let k be an algebraically closed field, V a smooth ^-dimensional subscheme of
projective space over A:, and consider the following problems:

Problem 1 (splitting bundles). — Given a (vector) bundle G on V, find a monoidal
transformation f \ V'->V with smooth center CT such thatyG contains a line bundle P.

Problem 2 (smoothing cycles). — Given a cycle Z on V, deform Z by rational
equivalence into the difference Z^ — Zg of two effective cycles whose prime components
are all smooth.

Strengthened form. — Given any finite number of irreducible subschemes V, of V,
choose a (resp. Z^, Zg) such that for all i, the intersection V^n a (resp. V,n Zj) is proper,
and smooth if V^ is.

Problem i was first discussed by Atiyah-Serre (cf. [i], Part I, § 5) who proved
that if rank (G)>d== dim (V), then already G contains a line bundle (i.e., the case:
F=id, <7==0). Next, Schwarzenberger [6] proved that if V is a surface, then G is split
by a sequence of monoidal transformations with smooth centers. Hironaka ([4], Corol-
lary 2, p. 145) generalized Schwarzenberger's result to arbitrary dimension, but required
char(/;)=o.

The strengthened Problem i is solved below as follows. We may replace G by
any Serre twist GQ&). So we may assume G is generated by a finite number of global
sections^. With E==S/;^, there exists a surjection Ey==E®^Ov-^G, and G may be
viewed as a family parametrized by V of rank n quotients G(j^) (j^eV) of E. Hence,
there corresponds a map g of V into the grassmannian Grass^(E) of Tz-quotients of E
such that G is the pull-back g*Q^of the universal quotient Q^.

Problem i now divides in two: Let aeE be a fixed section of Q^, and a the scheme
(Schubert cycle) of zeros of a.

(1) Partially supported at the Institut des Hautes Etudes Scientifiques by a NATO postdoctoral fellowship,
and at Columbia University by NSF-GP-SgSS.
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Part I. — Let /: Z->Grass^(E) be the monoidal transformation with center CT,
and find a i-subbundle P of/*Q^.

Part I I . — Assume G(— i) is generated by its sections, and prove g is an embedding
and V n a is appropriate if a is sufficiently general.

Thus, Part I is Problem i for grassmannians, and Part II induces its solution
in V.

Problem 2, posed by Borel-Haefliger, is only partially solved and possibly false in full
generality. Hironaka [5] smoothed Z when dim(Z)^min(3, ( r f—-i ) /2 ) and char(A;)=o;
in any characteristic, he smoothed some multiple ofZ when dim(Z)<(rf—-i) /2. Below,
it is proved that if ^==codim(Z), then Q & — i ) ! Z may be strongly smoothed whenever
dim(Z)<(af-(-2)/2; in particular, 2-cycles on 4-folds and 3-cycles on 5-folds are
smoothed (without torsion).

The divisorial case is typical here. If G==0^(Z){n) with n so large that G(—i)
is generated by its sections, then G is very ample. Hence, Z is rationally equivalent
to Z^—^Zg where the Z^ are hyperplane sections for suitable projective embeddings,
and Bertini's theorem completes the strong smoothing.

For higher codimensions p, a bundle G is constructed using syzygies, whose p-th
Ghern class Cy{G) is the rational equivalence class of ( j&—i)!Z+7zL for some multiple nL
of a linear space section. Moreover, G(—i) is generated by its sections, so that G gives
rise to an embedding ^ o f V i n a grassmannian X such that Cp{G)=g*cp(QJ with Qthe
universal quotient. Finally, ^,(QJ is represented by a Schubert cycle a whose singular
locus has codimension 2p+2 in X, and g is sufficiently (< twisted " that V H C T be as
required if o- is suitably chosen.

Thus, both problems lead to grassmannians via their universal property (or functor
of points). To fix notation and ideas, the theory is developed after Grothendieck [3].

The common heart of both solutions is the generalization of Bertini's smoothness
theorem to sections of twisted subschemes of grassmannians by special Schubert cycles (1).
The remaining Bertini theorems (on geometric irreducibility, integrality, normality, etc.)
are easily verified by the same method, which is to prepare convenient local charts and to
extend the usual proofs (cf. EGA V). These proofs were pioneered in abstract algebraic
geometry by Zariski, to whom this article is respectfully dedicated.

§ i. Grassmannians.

(i. i) Let S be a ground scheme and E an r-bundle on S (i.e., E is a locally free
Og-module of rank r). Consider the following contravariant functor X from S-schemes T
to sets: Let X(T) be the set of r-quotients (bundles) G of Erp, where Erp is the pull-back
of E to T. (Equivalently, X(T) is the set of (r-%)-subbundles A of E^.) Clearly,

(1) Griffiths in a course at Princeton University has independently asserted a Bertini smoothness theorem for
the highest Chern class.
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GEOMETRY ON GRASSMANNIANS AND APPLICATIONS TO SPLITTING BUNDLES 283

X is a parish sheaf \ namely, for all S-schemes T and for all (Zariski) open coverings {T^}
ofT, the following sequence is exact:

X(T) -> nX(TJ if nX(T, n Tp);

i.e., the presheaf of sets Uh^X(U), where U is a (Zariski) open set of T, is a
sheaf.

Proposition (1.2). — The Grassmann functor X is represented by an S-scheme^
denoted Grass^(E), together with a universal n-quotient Q^ of EQ^SS^E) 5 i-e.,yor all ^-schemes T,
the morphisms f: T->Grass^(E) and the n-quotients G of Er̂  are in bijective correspondence

by G-fO
Indeed, since the question is local on S, we may assume E is trivial (i.e., free).

Let {e,} be an Og-basis for E. A set J of n indices i defines a decomposition E = E'<9E"
where E' (resp. E") is a subbundle of rank n (resp. r—n); thence, J defines a
subfunctor Xj of X: For an S-scheme T, let Xj(T) be the set of quotients G of E
such that the induced map ET->G is surjective.

The subfunctor Xj is open; i.e., for any S-scheme T, identified with its functor
of points Hom(—, T), and for any morphism of functors f: T—^X, the fiber product
Tj=XjXxT is (represented by) an open subscheme of T. Indeed, let/correspond
to a quotient G of E^. Then Tj may be identified with the set of teT at which the
map ET^-G is surjective; hence, Tj is open.

Since the map E^G is surjective if and only if it is bijective, Xj(T) may be
identified with the set of maps Erp-^Ey such that the induced map Ey-^Ey is the
identity; thence, with Hom^(E^, E;r). Explicitly, the canonical map u: Erp-^G
becomes the homomorphism v : Ey->E^ given by

(I.2.I) V={U\^)-1.{U\E^.

Thus, Xj is represented by Ag^"^.
Finally, as J runs through all sets of n indices, the Xj form a covering of X; namely,

for all S-schemes T, we have T==UTj . Therefore, the conclusion results from the
following lemma.

Lemma (1.3) (Grothendieck). — Let X be a contravariant functor from schemes
to sets. Suppose'.

(i) X is a ^ariski sheaf.
(ii) X is covered by representable^ open subfunctors X^.
Then X is representable.

Indeed, let X^=X^XxX^. By (ii), the map X^->X<, is an open immersion
of schemes, and the X^ patch along the X^p to form a scheme, which, by (i), represents X.

Remark (1.4). — (i) The natural correspondence between ^-quotients and
(y-^)-subbundles of E induces an isomorphism Grass^(E)^ Grass^_^(E*), where E* is
the dual of E.
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(ii) Grass^E) is simply P(E)=Proj(Sym(E)), with Op^(i) as universal quotient
(EGA II, (4.2.5)).

Proposition (1.5). — The Plucker morphism n : Grass^E) -> P(AE), <fe/tW <w

T-/wnfa by mapping an n-quotient G of E to the i -quotient AG o/ AE, (j a closed
immersion.

Indeed, the question being local on S, we may proceed under the conditions of the

proof of (1.2). The decomposition E=E'®E" defines a decomposition AE=AE'®F

where F=^©("AE'®AE"). Let Pj(T) be the set of i-quotients L of AE,p such that

the induced map AE^L is surjective. The subfunctors Pj form an open covering
ofP(AE).

Let G be an ^-quotient of E,,. The map E^G is surjective if and only if

AE^AG is; hence, F^Tt^Pj, and it is sufficient to prove TC : Fj->Pj is (repre-
sented by) a closed immersion.

Now, Pj(T) may be identified with Hom(F,r, AE^,), which equals H Hor^AE,;, H.)

where H..=Hom( A'E,,, AEy). Since the pairing AE^A1^ -^ AE'y is nonsingular,
H.=AET. Thus, 7r(T) : Fj(T) -^ Pj(T) becomes

Hom(ET, Ey -> Hom(ET, ET)xn^Hom(AET, AE^)
n i

<pH-yx.n A<p;

in this form, TC is the graph morphism of a morphism of affine S-schemes. Therefore,
7t is a closed immersion.

The proofs of (1.2) and (1.4) also establish the following proposition. Its last
assertion results in view of (EGA I, (2.2.4)).

Proposition (1.6). — Let E be the trivial r-bundle on S. Then a basis of E defines
a covering of Grass^(E) by open subschema U isomorphic to A^-< Eeach U corres-
ponds to one of the Q) decompositions E=E'©E" with rank(E')=», defined by the
basis. ^ Under the Plucker morphism n, U is the pre-image of the complement of the hyperplane

in P( AE) defined by AE'. The set U(T) of ̂ -points may be identified with Homo '̂, E,,),
which ifS is affine, is simply the set of nx(r—n) matrices {t^ with ^6r(T, 0^).

(i.7) For !=i,2, let E. be an r.-bundle, /.: T^Grass»;(E.) a morphism,
and G. the corresponding quotient of E(T. The quotient G^G^ of (E^Eg),?
corresponds to a morphism

/^••T^Grass,.^®^),

called the Segre product. In particular, the Segre morphism is defined as

^=Pi®?2 •• Grass,JEi)x Grassy) -^ Grass^E )̂
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GEOMETRY ON GRASSMANNIANS AND APPLICATIONS TO SPLITTING BUNDLES 285

where p^p^ are ̂  projections. Moreover, it is easily seen that

( i . 7 - i ) /i^-^C/i^).
To undertake a local analysis, suppose the E, are free. Let E,=E,'®E^ be

decompositions with rank(E,')==^, and consider the decomposition E^E^^E^E^eF
where F ={^[®^f)@{E[f®E^@{'E[f®E^). Let U, (resp. U) be the corresponding
affine open subsets of Grassy) (resp. Grass^E^E^)). For quotients G, of E,^,
the induced maps E^—G, are surjective if and only if the map (E^E^ -> G^Gg is.
Hence, UiXU^J-^U). Identifying the set U,(T) ofT-points x, with Hom(E^ E^)
(resp. U(T) with Horn^, (E^E^)), we have

(1 .7 .2 ) s{xxjy)==i®jy+x®i+x®y.

Therefore, s is a closed immersion. Finally, in view of ( i . 7. i), if one of the morphisms
f,:T — Grass^(EJ is an immersion, so is /i®/a-

2. Special Schubert cycles.

(2.1) Let S be a ground scheme, E an r-bundle on S, and A an a-subbundle of E
(i.e., A is locally a direct summand of rank^). For a nonzero integer p satisfying
max(o, a— n)<,p<, i + min(a, r—n), consider the subfunctor <7p(A) == Op(A, E) of
X==GrassJE) whose set of T-points consists of those ^-quotients G of Err such that the

a—p+l a—p+1
induced map A AT -> A G is o. (Intuitively, this condition requires that
ATnKer(ET-^G) have rank>^.)

Proposition (2.2). — The functor o-p(A) is (represented by) a dosed sub scheme o/'Grass^(E)
(called the p-th special Schubert cycle defined by A).

Indeed, CTp(A) is a Zariski sheaf. So, we may work locally on S and on Grass JE).
Suppose then that S is affine, that A (resp. E) is trivial, and that A is a direct summand
ofE. Let E=E'©E" be a decomposition with E' trivial of rank n, let U be the corres-
ponding open affine subscheme of Grass,, (E), and identify U(T) with Hom^E^, E^).
Then (<7p(A) nU)(T) becomes the set of te Horn (E^, E^) such that

a—p +1 a—p +1
(2 .2 .1 ) ( A (l+^))( A AT)=O,

a condition which may be expressed in terms of polynomials; whence, the assertion.
Proposition (2.3). — Suppose S is affine, and E is a trivial bundle with 0^-basis

^, . . ., ^. Let U be the open affine subscheme of Grass^(E) corresponding to the basis elements
e^ .. ., ̂ , and identify U(T) with the set of nx{r—n) matrices t=={t^ with ^er(T, Orr).

r

If A==0s/ where /= S ̂  with ^.er(S, Og), then (^(A)nU)(T) is cut out of U<T)

by the following set of linear equations:
r—n

s,+ S^,+^==o, i = i , . . . , n .
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n r r

Indeed, (2 .2 .1 ) becomes S s^+ S ^l:^=o; whence the conclusion.
i==l i == n + 1 j = 1

Aw^rA;(2.4).—(i) Letj&o=max(o,^-yz) and ^=i+min(<z, r-.^). Then,

^o(A)= ̂ ^(E) => <^+i(A) D . . . D o^(A) =0.

(n) ^(^^G^ss^E/A), and on T-points, its inclusion morphism into Grass^(E)
becomes the canonical map taking an ^-quotient of E/A to an Tz-quotient of E.

(iii) ^(A) may be interpreted as the scheme of zeros of the module A of" sections ?5

of the universal quotient Q on X=Grass^E), and for any morphism t : T-^X,
r^A) as the scheme of zeros of the module A^ of" sections 5? ofCX.

(iv) Suppose a=n, and embed Grass^E) in P( A E) via the Plucker immersion.
Then (^(A) is the hyperplane section that A A defines.

(v) For any base change R->S, ^{A^=a^A)x^R<^ Grass, (ER)=Grass,(E)XgR.
Lemma (2.5). — Let R be a ring, E an ^-module, A and B submodules of E,

and G==A+B. Assume that B is a direct summand of E and that B is a free ^-module.
Then for an integer ^o, the following three conditions are equivalent:

q q
(i) The canonical map AA->A(E/B) is o.

q q
(ii) The canonical map A(G/B)-^A(E/B) is o.
/ • • • \ -rr q+b ?+&

(in) The canonical map A C-> A E is o, where &=rank(E).

Indeed, since the canonical map A->C/B is surjective, its exterior power

AA->A(G/B) is surjective; it follows that (i) is equivalent to (ii). Let E=B®G

and D=CnG; whence, C=B@D. Then (ii) becomes the condition that AD-^AG
is o, or equivalently that ^A'D-^A'G is o for all z;>o. Since

TG- © (AB^T'D) and TE= © (AB^T^)
u^^-6 O^J^b n

it follows that (ii) is equivalent to (iii).
Proposition (2.6). — Let t be a T-point of Grass,(E), and B the corresponding

{r-n^subbundle of E^. Then t lies in ^(A)-(T^(A) if and only if the sheaf-theoretic
sum AT+B is an (a+(r—n)—p)-sub bundle.

Indeed, the following statements are equivalent:

(i) The point t lies in Grass^(E)— (7^i(A).
(ii) For all geometric points Spec(A;)->T, the map YA, -^(EJB,) is nonzero.
(iii) dim(A^+^>a+(r-n)-p.
(iv) Locally on T, there exists an (a+(r-7z)-^)-subbundle D of E^ such that

sheaf-theoretically D c A^ + B^.

Applying the equivalence (2.5) (i)o(iii) locally on T, we find the equivalence
of the following statements, and thus establish the assertion:
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GEOMETRY ON GRASSMANNIANS AND APPLICATIONS TO SPLITTING BUNDLES 287

a) The point t lies in <7y(A)—(^^(A).
a—p+l a—p+1

b) The map A Arp -> A (Erp/B) is o, and (i) holds.
? ^

c ) The map A (Arp + B) -> A Erp is o with q=a+r—n—p^i, and (iv) holds.
d ) The map AT+B-^E^/D is o.

(2.7) Let F=E/A, Y== Grass,, _^^(F), and R be the universal quotient on Y.
Define an ( r—n -\- a—p) -bundle K on Y via the following diagram:

Av K o

(2.7.1) Av E, F.

R R

Theorem (2.8). — Under the conditions of (2.7), there exists a canonical morphism f
yielding a diagram

Grass^(K)=^(A^K) ^_5 [^(A,., K)-a^(A,, K)]

Y= Grassn—a+p (E/A) ^(A) ^ [^(A)-o^,(A)]

^z^ cartesian square, and g the restriction offis an isomorphism.
Indeed, a T-point t of Grass^_^(K) corresponds to an (r—7z)-subbundle B ofKrp:
a—p+l a—jp+l a—p+l

since A (KT/B) is o, the map A Ary-> A (ET/B), which factors through it, is o.
So, B corresponds to a T-point f{t) of cr^(A). Thus f is defined. By (2.6)3 t lies in
C^(AY, K.)—(7^i(AY, K) (resp./(^) lies in (7p(A)—(Ty.^(A)) i f andon ly i fAr+B==KT;
hence, the square is cartesian.

It remains to construct an inverse h to g. Let then s be a T-point of
^(A)—^^.i(A). It corresponds to an (r—/z)-subbundle B of Erp such that Ap+B
is an {a+r—n—p) -bundle by (2.6). So, there exists a unique morphism T—^Y
such that AT+B==KT. The subbundle B of Kr? then defines a morphism
h[s) : T—^Grass^_^(K), completing the proof.
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Corollary (2.9). — (i) ^(A)-cy^(A) is smooth over S, of relative dimension
n(r—n)-{n-a+p)p.

(n) V ^i, then (Tp(A) is not smooth at any point of <7p+i(A).
Indeed, (i) results in view of (1.6). Hence the codimension of

/^(^(A^^^AY.K)

in Z=Grass^_y,(K) is p+i, and it follows that (ii) holds. For it suffices to consider
the geometric fibers over s and to apply the fact that, for a birational morphism
/: X-^Y with Y factorial, the exceptional locus is of codimension one in X.

Corollary (2.10). — Suppose r-n^a. Then ^_,(A)=Grass,^_,(A), and on
r!-points its inclusion morphism into Grass^(E) becomes the canonical map taking an (r—n)-
subbundle of Ay to one ofEy.

In particular, if r--n==i, then Grassy E)==P(E*) contains Oi(A)==P(A*) as a
linear subspace.

Remark (2. n). — Let A (resp. B) be the universal subbundle on Grass JE) (resp.
on Grass^(E)):

(i) (7p(A) defines an algebraic family of special Schubert cycles on Grass^(E)
parametrized by Grass^(E), and this family is universal in an obvious sense.

(ii) The canonical isomorphism Grass^E)xGrass^(E) ^ Grass JE) x Grassy E)
carries Op(A) isomorphically onto a (B).

Indeed, a T-point t of the product lies in (7p(A) (resp. in CT (B)) if and only if the
? q

map A(AT+BT)->AET is o with q==(r—n)+{r—m)—p+i in view of the equiva-
lence (2.5) (i)o(iii) applied locally on T.

(iii) Suppose r-m<r-n. Then <T, _JA) = ̂  _JB) is called the incidence cones-
pondence, a T-point of Grass^(E)x Grass JE) lies in it if and only if A^B^. It is the
bundle of grassmannians Grass^Ex/A) over X=Grass^(E), and Grass _ (B*) over
Grass, _JE')= Grass JE).

Proposition (2.12). — Under the conditions of (2.8) with j&=o, consider the
following diagram with canonical morphisms:

GrassJF)x[Grass,(E)-o,(A)]

ff \7i

^ ^

GrassJE) x Grass^(E) Grass^(F) x Grass^(F).

Let B (resp. J) be the universal subbundle on Grass^(E) (resp. on Grass _ (F)) Then
^\(B)=A-\(J).

Indeed, let P be the universal quotient on Grass JF). For any T-point t of

GrassJF)x(Grass,(E)-^(A)), g(t) lies on (Tp(B) if and only if the map ABy-^AP^
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GEOMETRY ON GRASSMANNIANS AND APPLICATIONS TO SPLITTING BUNDLES 289

? g.
is o with q={r—n)—p+i, and h(f) lies on (7y(J) if and only if the map AJrr-^APrr
is o with q=={r—a)—{n—a)—p+i. Since pr^) lies off (Ti(A), the map BT->JT is
surjective; whence, the conclusion.

Corollary (2.13). — Preserve the conditions of (2.12). Then:
(i) With respect to the inclusion Grass JF) <=-> Grass JE), a Gp(B<) OTZ Grass JE)

will in general (precisely when ^CTi(A)) induce a ^(J^) 0% Grass JF), and every (7p(J<)
zj- obtained in this way; in fact, this correspondence is simply the natural morphism
Grass,(E)-(T,(A) -> Grass,_,(F).

(ii) Let B' (resp. JT) be the universal subbundle on Grass^(E) (resp. on Grass^(F)).
With respect to the morphism Grass^E)-^(A) -^ Grass^(F), the inverse image of a
a (J^) on Grass^_^(F) is a uniquely determined ^(B^) on Grass^(E), restricted to the open
set; in fact, this correspondence is simply the inclusion Grass^(F) c:-> Grass^(E).

Proposition (2.14). — Under the conditions of (2.3), let A be generated by

el9 ' • ' 5 ea—p9 Jl^ ' • ">Jp
r

where f,= S s^e^ with ^er(S, Og). Then (^(A)nU)(T) is cut out by the linear
equations:

r —n

^+S^^=o (/=!,... , p and i=a-p+i, ...,^).

Indeed, let F be the bundle generated by ^, . .., e, with q==a—p+i, and U' the
affine subscheme of X'== Grass,, _^(F) corresponding to ^ , . . . ,^ . The natural
morphism Grass^E)—^^)-^' where A' is generated by ^, . . ., ^_i is easily seen
to become the projection U(T)->U'(T) given in coordinates by

/ * \ /
/ ————— \ / t."ql

^i

^ • • • • - / \tnlf

In view of (2.13) (ii), we may replace E by F, and/, by S sfe^ Thus, we may

assume p==a', whence, ^{A)=H ^(Og^), and the conclusion results from (2.3).

3. Bertini^s theorem.

Fix a ground scheme S, and an r-bundle E on S.
Definition (3.1). — An embedding V^Grass^E) is called twisted if it is the Segre

product of a morphism V->Grass^(E^) and an embedding 'VC—>'P{'E^.
Remark (3.2). — (i) If V is a twisted subscheme of Grass^(E), then so is any sub-

scheme VQ of V.

289
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(ii) Any embedding V-->P(E) is twisted, for it is the Segre product of the
structure map V->P(Og)=S and itself.

(m) Let S be affine, V quasi-projective over S with very ample sheaf Ox(i), and G
an TZ-bundle on V. Then for p>o, there exists a twisted embedding of V in a suitable
Grass^(E) such that the pull-back of the universal quotient Qis G{p). In fact, p need
only be so large that G{p—i) is a quotient of a trivial bundle E^ (EGA II, (4.5.5)).

Theorem (3.3) .— Let S be a noetherian scheme, V a twisted subscheme of X == Grass^(E)
of pure relative dimension d (resp. which is smooth over S), A the universal subbundU on
Y=Grass^_^(E), and p an integer satisfying

max(o, a—n)<p<^min{a, r—n).

Then there exists a dense open set W of Y such that the ^[-scheme
vwn (^p(Aw, E^)-<7^(Aw, E^))

has pure relative dimension d— {n—a+p)p (resp. is smooth); in particular, it is empty if (and
only if) d<{n—a+p)p.

Indeed, in view of the constructibility of the properties in question (EGA IV,
(9-5-6). ( t ? - ? - 1 1 ) ) ? it suffices to analyze the generic fibers; we assume therefore that
S=Spec(A;) with k a field, that E^E^Eg with A-basis e^e^^ef suitably ordered

r

{l=i, . . . , r ) , and that A^ is generated by elements / ,==S^.^.(t==i, . . . , ^ ) with
K==A(^.) purely transcendental. J= l

The questions being local, fix a point J^VK. Reordering the ef (z==i , 2), we
may assume y maps into the affine subscheme U, of Grassy) (resp. P(E2)) corresponding
to e^\ ....^ (resp. ^2)); then y lies in the affine subscheme UQ of Xi^Grass^E^)
corresponding to e^®ef, . . ., e^®e^ by (1.7). If J^^(AK), reordering the f, and
41^ • • • ? ̂  ^e may assume^ lies as well in the affine subscheme U of XK corresponding
to the basis parts f,, . . .,/,_^ e,_^,, . . . ,e , and e^, .. ., ^.

Let Q. be a universal domain for K, and let (j^, . . .^JoU^O) (m =7-2—1) be a
coordinatized point lying on (the image of) V in P(Ea). In view of ( i . 7.2), this ^-point
of V acquires the following coordinatization in Uo(^):

(3-3- i)

Suppose the point lies as well in U. In view of ( i . 2. i), its U-coordinatization is obtained
from (3.3.1) by premultiplication with an nxn matrix M which may be computed as
follows: Let u be the map E^->E^ corresponding to (3.3.1); then, M is the matrix
of (^|FJ-1 where F is generated by/^, . . .,/,_^, e,_^^ . . ., ̂ ; it follows that M has
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/ * I 0 '
—) where I is the {n—a+p) -identity. Therefore the U-coordinatiza-the form

tion is:

(3-3-2)

( î, •••^J
n—a+p

(^i, • ••^J

[a—p)m

By virtue of (2.14), UH^AK) is cut out by the linear equations

^+SAj=i IJ+n^ij—° (;=^—^+i,...,^ and i==a—p+i,...,n)

where the s[. are certain, obvious, generic linear combinations of the jy.
Consider the subscheme V^p of V^oU cut out by the above equations for

{a-p+i, a-p+i)^ ^(oc, P)

ordered lexicographically; for example, V^^VKHU. In view of (3.3.3), V^p is
cut out of VK n U in U n Uo by the equations

mp r —n

^.+(S+ S )j^^;,=o for {a-p+i,a-p+i)^(i,l)^{a., P).
j=l j=wn+l

So, U being defined over k'=k(sy\i^a-p), then V^nUo (a>ff-j&) is defined over
^p^.p)-!^,,!.^01' ra+OT(a-l)+l, . . ., »+wa)

where (a, (?)-! equals ( o c — i , a ) if ^=a—p+i (resp. (a, P — i ) otherwise) and
^_p^=A;'(^.|j'=K+i, ...,n+{a—p)m,n+mn, . . . , r ) . Moreover, in view of (3.3.2),
the projection of U onto Spec(^p[^^_i)+i, . .., ^,»J) embeds V^gnUg. There-
fore, the conclusion results by induction on (a, j3) from the following lemma applied
with V=V^nUo.

Lemma (3.4). — Let k be afield, A=k[t^, ..., t^\ a polynomial ring, U=Spec(A)
affine 'N-space, and V an irreducible subscheme of U of dimension d (^o). Let s, s^, ..., s^
be indeterminates, L==^, . .., ̂ ), and K==L(^). Let feA^, and W=V^{f=s}.
Then, dim(W)^—i.

Let TC : U^U'=Spec(A[^, . . ., Q) be the projection. Suppose TT : V-^U' is an
embedding and f has the form

f=s^+... +V»+/i with f^k[t^+t, . . . , ty}.

Then dim(W)=rf—i, and W is smooth if V is.
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Indeed for convenience, we may assume k is algebraically closed. Let 0. be a
universal domain for K. If (^, . . .,j^)eW(Q), then ^eL(j;,); hence,

(3.4.1) ^.deg(L(j;,)/L)^i.

However, V(^) contains points (j;,) algebraic over L. Thus, dim(W)^—i.
Suppose the additional hypotheses hold. Let (j^)eV(^) be a generic point

over L, and set s'=f[y^ Then s ' lies in L(^), which is a regular extension ofL. If s ' is
algebraic over L, then s'eL; hence, j;,, . . .,y^k, for /;(j;,) and L are linearly disjoint
over k (1). As 7r |V is an embedding, it follows that d=o. Thus if d^i, then s ' is
transcendental over L, and an L-automorphism of Q. which maps s ' to s will map ( y )
to a point in W(£2). Therefore, dim(W)==rf—i.

Suppose Vis smooth at (^,)eW(Q). Reordering ^,..., ̂ , take g,^ .. .,^^(V)

with full-rank jacobian J=(^|^+i^^^N) where ^.=-^(^) as follows:
a^'

Take ^+i? • • •5<?m e A [^5 • • .5 ^1 vanishing on ^(V) with full-rank jacobian
{^\d+i<,iJ<my, they exist because ?c(V) is smooth at (^i,...,^J. Take
<?m+i? • • -^N^/cC^) with full-rank jacobian (^.[ w+i^^^N); they exist because
the projection of the normal space to V at (j/,) into the space ofA^i,... ,^ is surjective,
n | V being an embedding.

It remains to prove that for j=i, . . ., d, the jacobian determinants

•^d+r ' •°N

^+l , j

a/
are not all o, where s, == , . (^). Suppose they are o. Then tr. deg(L(^) lk{^))<, m—d.
Consider the diagram '

L(^)

W L

In it, tr.deg(A:(j^)/A:)^ because (j/,)eV(^S), and tr.deg(L/A:)=w by construction.
Therefore tr.deg(L(^)/L)==o, which contradicts (3.4.1).

(1) The elements /, ^, ...,^, i e L become linearly dependent over A;(j^), so there exist elements
^i, . . . , a ^ a e k such that /==^^+ .. .-\-s^a^a. Since ^i, ...,^, i are linearly independent over k,
ji=^i, .. .,J^==^,/i(^)=^.
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Corollary (3.5). — Under the conditions of (3.3)5 suppose p==mm{a, r—n) or
d<{n—a-}-?-{-i){p+i). Then V^n^(A^) has pure relative dimension d—(n—a-\-p)p
(resp. is smooth}.

Corollary (3.6). — Let k be an infinite field, V a pure d-dimensional, algebraic k-scheme
equipped with an ample sheaf Oy(i), and G an n-hundle on V. Let a be a general section of G{p)
for some p^o. If d<n, then a has no ^eros; if V is smooth, then a meets the ^ero section
transversally; i.e., the scheme a of ^eros of a is smooth of codimension n.

Indeed, k being infinite, the ^-points of the projective space parametrizing the
sections a are dense, rendering " general 3? meaningful. The assertions result imme-
diately from (3.2) (iii), (2.4) (iii) and (3.5) with a==p=i.

Remark (3.7). — Modified slightly, the argument of (3.9) shows that for
an arbitrary subscheme V of Grass^(E) of relative dimension d, there exists a dense
open set W of Y== Grass,. _^(E) such that V^nc^(A^) has pure relative dimension
<^d—{n—a+p)p.

The inequality may however be strict. For example, suppose E=A®F, and
r—n>n and n—a^a. Then the intersection of V==c^._^(F) and c^(A) is empty,
although d={n—d)(r—n)^_na.

4. Splitting bundles.

(4.1) Employing the notation of (2.7), set Z==Grass^_p(K), let P be the
universal quotient on Z, and define an Tz-bundle G on Z via the following diagram:

o o o

o —> L —> Ky —> P —> o

( 4 . 1 . 1 ) o —> L —> Ez —> G —> o

o —> Rz -ld^ Rz —> o

0 0

a—p+1 a—y+1 a—p+1
Since A P^o, the map A A^ -> A Qg, which factors through it, is o. There
exists therefore a canonical morphism Z->(7p(A) such that G=Q^ and L==B^ where Q^
is the universal quotient on X ==Grass^(E) and B the universal subbundle; this morphism
is simply the morphism/of (2.8).
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Diagram (2.7.1) now yields the following diagram:

o —> Az —> Ez -^ FZ -^ o

I k |
Y y 4'

o —> Kz -̂  Ez -̂  R^ —> o

It together with the last two columns of (4. i. i) gives rise to the diagram:

o -^ Az -^ Ez —> FZ -^ o
C4.*.a) j | Jf f 4'

0 —^ PZ —> Q.z -^ Rz —> o

which is universal in the sense specified in the next theorem.
Theorem (4.2). — Preserving the notation of (4.1), consider a morphism

<:T-^X=Grass^(E).

Then a commutative diagram with exact rows

o —> AT —> By — ^ F T — > o
( 4 - 2 - x ) | j [

Y y 4'

0 ——^ PI -̂  Q.T -̂  RI ——> 0

w^ ̂  Pi ij an {a-p)-subbundle of ̂ , uniquely defines a factorization of t through
/:Z=Grass.,_p(K) ^Op(A); OTorw^r, P^P^ and RI-RT, and ^.2.1) is the pull-
back of (4.1.2).

Indeed, the map F^Ri being surjective, there exists a unique map
'^^^a^n-a+^F) such that R^Rj. So (4.2.1) yields the diagram

0 ——> ET -"i-> E,, ——^ 0

I I i
O — ^ P I ^ Q . T — > R T — ^ O

whose exact serpent (homology) sequence reduces simply to o-^By^K^-^P^o. Conse-
quently, there exists a unique map t'-.T^Z such that PI=PT and B^==Ly. The
middle line of (4. i. i) then shows that t^= t'*^; hence, T-^Z^X is indeed a facto-
rization of t.

Corollary (4.3). — In the notation of (4.1), there exists a canonical, cartesian diagram
of schemes over X=Grass^(E),

^s.-^QJ ̂  Grass,._^(Ex)

t D J

Z=Grass,_p(K) ———> a^)
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Indeed, the assertion is but a reformulation of (4.2).
Theorem (4.4). — Preserving the notation of (4.1), take p=o, let M be the

n-bundle (AQJ^AAx on X=Grass^(E), and let I be the natural image of M in Ox,
which is the ideal of CTi(A). Then the morphism f: Z == Grass^(K) ̂ X is the birational
blowing-up of I, i.e., the monoidal transformation with center CTi(A).

Indeed, for convenience, we may assume S==Spec(Z), for the assertion is local
on S, and locally on S, the objects under discussion come from corresponding objects
over Z, which are flat; then the schemes in question are all reduced.

The Plucker morphism embeds Grass^(Qx)= ̂ ^(Qx) in p(AQ+x) ^P(M).
In view of (4.3) and (2.8), we obtain an embedding of Z in P(M) as the closure of the
section over U == X — CTi(A) defined by the map Mu-»0u, which is surjective by (2.6);
whence, the assertion.

Corollary (4.5). — The monoidal transformation of Grass,. _l(E)=P(E' l t) with the
linear space a^A)=P(A*) as center is the projective space bundle P(V^) over Y^P^E/A)*)
with K=Ker(Ey^OY(i)) .

Remark (4.6). — By (2.9) (i), the codimension of /"^((^(A^^^+^AY, K)
in Z=Grass^_y(K) is p+i. It follows that if p>_i, then/is not the monoidal
transformation with center Oy^(A).

Theorem (4.7) (splitting bundles). — Let k be an infinite field, V a d-dimensional
quasi-projective k-scheme, and G an n-bundle on V:

i) Suppose d<n. Then G contains a subbundle P of rank n—d. In fact, P may be
taken of the form O^—p)®^-^ where Ox(i) is ample and p>o.

ii) Suppose V is smooth. Let a^i, and suppose a=i or a<n+2—(dl2). Then
there exists a monoidal transformation f: V'->V with smooth center a such that f*G contains a
subbundle P of rank a. In fact, given any finite number of irreducible subschemes V, of\, a may
be taken such that for all i, V,n<j has pure codimension n—a+i in V,, and is smooth if'V, is.

Indeed, replacing G by G{p) for p > o, we may assume V is a twisted subscheme
of a suitable Grass^(E), and G is the restriction of the universal quotient by virtue
of (3.2) (iii). Let A be a general a-dimensional A-subspace of E; it exists by (2.6)
and the denseness of the rational points of A^. By (3.5), ^(A) has appropriate inter-
section with V and the V,; take (T^VHCT^A). Finally, the assertions result from (4.4),
(4.1.2), and the following fact: If /: Z-^X is a monoidal transformation with center S,
then for any subscheme V ofX, the closure of /^(V—S) in Z is the monoidal transform
of V with center the scheme-theoretic intersection V n 2.

Remark (4.8) (Serre). — Let k be an infinite field, V an arbitrary algebraic ^-scheme
of dimension d, and G an ^-bundle on V. Suppose G is generated by its global sections.
If d<n, then G contains a trivial bundle A of rank n— d, in fact, A may be taken as the
bundle generated by n—d general sections.

Indeed, let E be the A;-space freely spanned by a finite number of sections genera-
ting G, and let /: V->Grass^(E) be the corresponding map. The assertion results
from (3.7) with p==i applied to/(V).
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5. Smoothing cycles.

Let k be an algebraically closed ground field, and work in the category S of
connected, smooth quasi-projective A-schemes V with given embeddings in projective space.
Let A(V)=®A*(V) denote the Chow ring of cycles (with integer coefficients) modulo
rational equivalence, and for a sheaf G on V, let c,(G)eA\V) denote its i-th Ghern class.

(5.1) Fix VeS, and let HeA^V) be the class of a hyperplane section. Fix
p^i, and let /^ be the set of all (vector) bundles G on V such that

c,(G)=n,H* for i<p

where the n, are suitable integers. For any subset / of /^ let c { / ) be the set of all
ZeA^V) of the form

Z=c,(G)-nH"

for some Ge/ and integer n. Finally, let ;̂ be the set of Ge^, such that
rank(G)^dim(V) and G(-i) is generated by its global sections.

Theorem (5.2). — Under the above conditions, c{/'^ is a subgroup of A^V) containing

Indeed, the conclusion results formally from the following three lemmas.
Lemma (5.3). — c(^) is a group.
Indeed, given Z.=Cp(G..)-ra.IP {i=i, 2) with G,e^, let G=G^G^. Then

c.(G)=Sc,(Gi)c._,.(G2); so, Ge^p and Z^+Z^=c{G)-n-HP for some n. Now,
construct an exact sequence

o-^G'^O^-m^^G^o.

Then, c,(G[)=m^Hi-^{G'^c^{G^ for some m,; so, by induction on i, G[e/^

and —Z^c^G^—OT'lP for some m'.
Lemma €5.4). — If ZeA^V), ^CT (/>—i) \Zec{/^).
Indeed, by (5.3), we may assume Z is the class of a closed integral subscheme Z

(abusing notation). Using the syzygy theorem, construct a finite, locally free resolution
of the form

o-^G-^O^-^)®"^... -^0^-m^-^O^o.

Grothendieck ([2], p. 151 , formula (16); [5], p. 53, Lemma (2)) computed that
^<(0z)=o(o<^) and ^(Oz)=(-i)^-i) !Z. As in (5.3), it follows that Ge/
and ±(^-i)!Z=Cp(G)-HHP for some n.

Lemma (5.5). — c(/'^=c{/^.

Indeed, let Ge/,. If rank (G)> dim (V), then by (4.7) (i), there is an exact
sequence

o^O^-m^-^G^G'^o

with G' a bundle of rank=dim(V). As in (5.3), it follows that G'e^, and
^(^^((^"H" for some n. Finally, a standard formula shows that for any m
G(CT)e^p and c^G{m))=c^G)+nW for some n; whence, the assertion.

296



GEOMETRY ON GRASSMANNIANS AND APPLICATIONS TO SPLITTING BUNDLES 297

Proposition (5.6) (Chern). — Let SeS. Let E be an r-bundle on S, and Q^the universal
quotient on X = Grass^(E). Let A. be a subbundle of E of rank o< n, and set p=n — a +1.
If A ^ ^m^Z, ^TZ <7i(A) represents ^(QJ.

Indeed, on U ==X—^i(A), the map Ay^Qjj ls a locally-split injection by virtue
of (2.6); let R be its cokernel. Since A is trivial, ^,(Qjj)==^(R)3 however,
rank(R)==n—fl<j&, so ^,(R)==o. In view of (2.8), o-i (A) is irreducible of codimension^.
Therefore, ^,(QJ is represented by some multiple m of o^(A).

To prove m=i, we may restrict S and assume E is free. Choose an
(r—n— i) -subbundle G of E such that A+C is an (a+ r—^—i)-bundle, and consider
the natural inclusion Y = Grass^E/G) ̂ X. In view of (2.13) (i) and the functoriality
of Chern classes, we may replace X by Y, and thus assume r = n +1. Then X == P(E*),
<ji(A) is a linear space by (2.10), and the universal sequence is o->0x(—i)->E->Q->o;
whence, the assertion.

Remark (5.7). — Here, (5.6) is viewed in the light of Grothendieck's [2] theory
of Ghern class; however, its statement was the definitional starting-point of Chow's
(unpublished) theory.

Theorem (5.8) (smoothing cycles). — Let k be an algebraically closed field, and V a
connected, smooth quasi-projective k-scheme of dimension d. Let Z be a cycle on V of codimension p,
and L a section of V by a linear space of codimension p. Then for a suitable integer n, the cycle
[p — i) !Z+ n1L is rationally equivalent to an effective cycle o-i whose singular locus o-g is of dimension
d—{p+i)2', in particular, a^ is smooth if dim(Z)<(a?+2)/2. Moreover, given any finite
number of irreducible subschemes V, o/V, a^ may be taken such that for all i, V, n (̂  (resp. V, n c^)
is of pure codimension p (resp. (^+1)2) in V,, and V,n (^1—^2) ls smooth ̂ V, is.

Indeed by virtue of (5.2), there exists a twisted embedding of V in a suitable
grassmannian over k such that the pull-back of the p-th Chern class of the universal
quotient is the rational equivalence class of {p—i)!Z+^L for some n. Therefore the
assertions result from (5.6) and (3.3).
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