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ON A THEOREM OF BOCHNER
by P. L. FALB (1)

i« Introduction.

Let G be a locally compact abelian group and let H be a separable complex
Hilbert space. A well-known theorem of Bochner ([i], [2]) states that a mapping ^
of G into C is positive definite and continuous if and only if there is a unique non-
negative finite regular Borel measure ^ on G (the dual group of G) such that
^(^)= ^CY? §)^^M where (y, g) denotes the action of the character y on g. Here

J Gr

we shall extend this theorem to the context of maps ofG into oSf(H, H) where oSf(H, H)
is the space of bounded linear maps of H into itself. Combining this extension of
Bochner's theorem with the transform theory on L^(G, oSf(H, H)) developed in [3],
an inversion theorem and a Plancherel theorem for Hilbert-Schmidt class operators
can be proved and applied to the solution of certain integral equations of convolution
type arising in the study of the stability and control of systems described by parabolic
partial differential equations [4]. We shall not, however, consider these matters here.

2. Bochner's Theorem.

We first recall that a mapping/of G into C is positive definite if, for any integer N,
N N

any ^, . . ., ̂  in C and any ^, . . ., gy in G, the inequality S S c^c^f{g^—gj^o
is satisfied. This leads to

Definition (2.1). — A mapping ^ of G into oS^(H, H) is positive definite if the mappings ̂
of G into C given by

(2.2) W-^^hy

are positive definite for all h in H (2).
Lemma (2.3). — Let ^ be a positive definite mapping of G into JS (̂H, H). Then

(i) ^(o) is a positive element o/'oS^H, H), i.e., <^(o)A, A>^o for all h in H;
(ii) +(—?) =^)'$ and,
(iii) ||^)[|^2|l^(o)|| for all g i n G.

(1) This research was supported by NSF under Grant n° GK-2788.
(2) This is equivalent to the following condition: for any integer N, any c^ ..., c^ in C, and any g^ ..., gy

N N

in G, S S CnCni^{gn—gm) is a positive element of « (̂H, H).
n=lw=l
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6o P. L. F A L B

Proof. — Let h be any element of H. Since ^ is positive definite, we have

<^{o)h,hy=^{o)== 2; S i .T<^(o—o)A,A>^o and so, (i) is established. Now, note
u = 1 w == 1

that for N=2,^=^,^=o,Ci=i and ^=X,

(2.4) <^(o)A, A>+X<^)A, A>+X<^(-^)A, hy+\\\\^{o)h, A > ^ o

and hence, that X<^)A, A>+X<^(-^)A, ^> is real for all \ in C. Letting X = = i and
^=z, we find that <^(-?)/?, A>== <^)A, A>=<^(^) 'A, A>. However,

<+(-^ ^>=i/4«^(-^)(A+A;), (A+A;)>-<^(-^)(A-^), (A-A)>
+^+(-?)(A+^), {h+ik)Y-i^{-g)(h-ik), (A-^)»=

^/4«W(^+^ (^+^>-<W(A--^), (A-^)>
+i<W{h+ik), {h+ik)Y-i^{gY{h-ik), (A-^)»=

<4^)*M>

for all A, A in H and so, (ii) is established. If ^(o) = o, then setting \=—^g) in (2.4),
we deduce that -2\^{g)\2'^o so that ^)=o-^(o). If, on the other hand,
^(°)+o. then, setting ^-AC^/^o) in (2.4), we deduce that ^(o)2--] ̂ ) [^o
so that ^(o)^|^(^)| for all A in H and g in G. It follows that if | |A| |=i and
P[|=i, then |<^)M>|^2|l<Ko)||. Since

^•^ 1 1 ^ ) 1 1 = sup {|<^)M>[},
1 1 ^ 1 1 = 1 , 1 | A | | = 1

(iii) is established.
Now let S(G) denote the o-field ofBorel sets of G. Any weakly countably additive

set function [L mapping S(G) into H shall be called a vector measure (cf. [5]). A vector
measure [A is said to be regular if the set functions To^i mapping 2(G) into C are regular
complex valued measures for all T in H*. We now have

Definition (2.6). — A mapping M of S(G) into oS^(H, H) is a positive regular measure if

(i) the mapping M^ of S(G) into H given by M^(E)=M(E)A for Eei;(G) is a regular
vector measure for all h in H, and
(ii) M(E) is a positive element of JSf(H, H) for every E in i; (G).

M is bounded if there is an A>o such that |[ M(E) ||^A for all E in 2(G).
This is the notion of measure that we shall use in extending Bochner's theorem.

We also require a notion of continuity for maps of G into oSf(H, H) which is "compa-
tible55 with definition (2.6). Now, let ^ be the weakest topology on oSf(H, H) for
which all the functions 0^ ^ given by

(^P) ^,.(S)=<SA,/;>

where SeJ^H, H) and h and k are in H, are continuous. The topology y is a locally
convex topology on .Sf(H, H) since it is generated by the family of seminorms
^(s)= I <SA, A > ( . Continuity of maps ^ of G into J^(H, H) is understood to be with
respect to the topology ^r. Thus, a map ^ of G into ̂ (H, H) is continuous if, given s>o
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ON A THEOREM OF/ BOCHNER 61

and any h and k in H, there is a neighborhood Ng^ of o in G such that ifg—g' is
in N^^5 then [ <(+(<?)— +C?'))^ A:>[<£. We now have the following extension of
Bochner's theorem:

Theorem (2.8). — A mapping ^ of G into oSf(H, H) is positive definite and continuous
if and only if there is a bounded positive regular measure M^ mapping S(G) into -Sf(H, H) SUCH
that

(2.9) ^)A=Jg(T^(M,(y)A)

for all h in H and g in G.
Proof. — Suppose first that ^ is positive definite and continuous. Then the

function ^(') is a positive definite and continuous map of G into C. By the standard̂
Bochner theorem, there is a unique non-negative finite regular Borel measure [JL^ on G
such that

(2.10) <+(^,A>=Jg(Y^)^(Y)

for all g in G. IfE is an element ofS(G), then we let m^(h) be the mapping of H into R
given by

( 2 . 1 1 ) OT^)=^(E)

and we let T^{h, k) be the mapping of H X H into C given by

/ (h+k\ (h-k\\ I (h+ik\ (h-ik\\
(2.12) B^A;)=^^j-m,^J+^^^j-m^-^jj.

We note that

(2.13) <^)M>=Jg(T,,?)^(Y)

where y.^ is the map of S(G) into C given by

(2.14) ^,,(E)=BE(A, A;)=^,^(E)-(X,_,(E))+^_^(E)-(Z,^(E)).
2 2 2 2

We claim that, for each fixed E in S(G), BE (A, k) is a bounded Hermitian bilinear
functional on H. To verify this claim, we first observe that

<^(g){h,+h^+k), (^+^+A:)>-<^)(Ai+^-A), {h,+h^-k)Y
==Wg){h,+k), {h,+k)y-^{g){h,-k), (A,-A)»
-Wg){fh+k), {fh+k)>-^{g){h^-k), (h^-k)Y)

and
iWg)^+h^+ik), ̂ +^+ik))-^{g){h^+h^-ik'), {h^h^-ik)^)

=i{Wg){h,+ik), {h,+ik]>-^{g){h,-ik), (h,-ik)^)
+{W{h,-}-ik}, {h,+ik^-^[g){h,-ik), (^-^)»).

Since ^ is unique for every h in H, it follows that ^+t,,t(E)=^^(E)+p,^^(E) for
all Ai, h^, k in H. Similarly, (Ji^^(E)=a^^(E) for all h^ k in H and a in C. In

61



62 P. L. F A L B

other words, Eg (A, A;) is linear in h. Since <+(,?)(—A), (—A)>=<^(^)A, A> and
<+(^W,(^)>=z .z<+(^^A>=<^(^A,A>, we also have ^h,K)=^(k,h) so that
BE(A, k) is Hermitian and conjugate linear in k. Thus, to show that B^A, A;) is bounded,
it will be enough to show that B^A, K)\ ̂  \\ ̂ (o)[[ p|[2 for all h in H. Since
<4^)(^), {ah))= [ a l2^^, A> for all a in C and ̂  is unique, pi^= [ a |2^. It follows
that [B^,A)|=[^(E)|^|1^|[ where

ll^Jl=^(G)=Jg^(Y)=Jg(T,o)^(Y)=<+(o)A,A>

is the total variation of ^ (note that ^ is nonnegative and finite). But
<^(o)A, A > ^ [ I ^(o)|[ | [ A [ [2 and so, B^A, k) is bounded independently of E.

Since B^A, A;) is, for fixed E, a bounded Hermitian bilinear function on HxH,
there is a unique self-adjoint element M^(E) ofcSf(H, H) such that B^A, A;) =<M^(E)A, A;>.
Moreover, since || M^(E)[| = | [ B E ( - , - ) | | and B^, A;) is bounded independently of E,
the mapping M^ is bounded. We shall show that the mapping M^ ofS(G) into -Sf(H, H)
is a positive regular measure such that (2.9) is satisfied.

Since < M^(E)A, h > == B^A, A) = ̂ (E) ^ o, M^E) is a positive element of oSf(H, H)
for every E in S(G). Now let A be a given element ofH and consider the mapping ]VL ^
of S(G) into H given by M^(E) = M^(E)A. If A; is any element of H* (= H) and {EJ

^ 00

is a sequence of disjoint sets in S(G) with F= U Ey^, then

A;(M^(F))=<M^(F)A,A;>=Bp(A,A;)=(^^(F)-pL^(F))+^^^^
2 2 2 2

But ^ is countably additive for all h in H. It follows that
00

(2.15) <M^(F)A, ^>=^(([X,^(EJ-^_,(EJ)+^(^_^(EJ-(A,^(EJ))
n 2 2 2 2

00 00

=S(,^(EJ=S<M,(EJA,A>(1)
n==l n==l

or, in other words, that M^ ^ is a vector measure. Since
A;(M^(E)) = <M^(E)A, A;> = ̂ ,(E)

for all E in S(G) and since the complex valued measure [L^ ^ is regular, M^ ^ is a regular
vector measure. So, all that remains for this part of the proof is to show that (2. g)
is satisfied.

Suppose, for the moment, that (y, g) is integrable with respect to M^ ^(y) so that
(-(y? g)^^^,hM exists as an element of H. Then, by the property of vector measures
under linear transformations ([5], p. 324),

(2. l6) <J^(Y, ̂ M^(y), A;> = J^(Y, ̂ <M^(y), ky

=Jg(T,^)^,(y)=<+(^,A>

(1) The series can be rearranged as it is absolutely convergent, due to the finiteness of pi.
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ON A THEOREM OF BOCHNER 63

for all k in H. It follows immediately that (2.9) is satisfied. Now let us show that^"\
jf(Y) = (y, g) is integrable. Since G = G, fis continuous on G (afortiori a Borel function)
and |y(y)|==i for all y m G- Thus, f is measurable with respect to the vector
measure M^. It follows that there is a sequence (^) of M^-simple functions with
|^(y)| ̂ 2 M^-almost everywhere, such thatj^ converges to f M^ ^-almost everywhere.
Since 2 is M^, ^-integrable, /is integrable with respect to M^ by virtue of the dominated
convergence theorem.

Now let us suppose that M^ is a bounded positive regular measure and that the
mapping ^ of G is given by (2.9). Then, ^>(g) maps H into H and ^{g) is linear since
M^){ah^+bh^=aM^)h^-}-bM^)h^ as M^(y) is in JSf(H.H) (note that the set
consisting ofy alone is closed). Let | |M^J | ( - ) denote the semi-variation of the vector
measure M^ [5]. Then

| lM,,J | (G)^4sup{| |M^(E) | | )^4sup{| lM,(E) | |} | |A| i^4A| |A|[
E<=G Ec=G

for some A>o since M^ is bounded. Since 1 1 ^{g)h | [ ^ i. 1 1 M^ 1 1 (G) ^ 4A [ | h \ |, ^{g)
is an element ofJSf(H, H). If A is an element of H, then, by the property of vector mea-
sures under linear transformations,

(2. i7) <+W A>=Jg(v, ̂ <M,(y)A, A>

for all g in G. Letting [JL^(E)==<M^(E)A, A> and noting that M^ is regular and
that M^(E) is a positive element of JSf(H, H), we deduce that ^ is a nonnegative regular
Borel measure on G. Since | ^(E) |^ [ [ M^(E) [| . | | A | [ 2 and M^ is bounded, ^ is
finite. It then follows from Bochner's theorem and (2.17) that ^(-)= < 4 > ( - ) A , A> is
continuous and positive definite. Thus, the mapping ^ of G into o§^(H, H) is continuous
and positive definite. This completes the proof.

Theorem (2.8) suffers from the drawback that the mapping My of S(G)
into »Sf(H, H) need not be an ^(H, H)-valued measure so that the formula
^{g)= ^(y? S^^-^W need not make sense. In the next section, we prove two
theorems relating to this drawback.

3. Two Theorems.

A mapping M of S(G) into °Sf(H, H) shall be called an operator measure if M is
weakly countably additive. An operator measure M is said to be regular if the set
functions ToM mapping S(G) into C are regular complex valued measures for all T
in JSf(H, H)*. We then have

Definition (3.1). — A mapping M of S(G) into oS?(H, H) is a positive strongly regular
operator measure if
(i) M is a regular operator measure',
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64 P. L. F A L B

(ii) M(E) is a positive element o/'oSf(H, ti)for every E in S(G); and,
(ni) given s>o, there is a compact set Cg in G such that |[M||(G—GJ<£.

Theorem (3.2). — Let M^ be a positive strongly regular operator measure and let

(3.3) ^)-Jg(Y^W(Y).

Then ^{-) is positive definite and continuous with respect to the uniform topology on oS^(H, H).
Proof. — The integrability of (y, g) =/(y) with respect to M^ follows from the

Lebesgue dominated convergence theorem [5] just as in the proof of Theorem (2.8).
Thus, ^)eJSf(H,H).

Now, M^(.)A is a regular vector measure for all h in H, for if k is an element
of H*, then the mapping AH-<AA, A;>, AeJSf(H, H), is an element of oSf(H, H)*
which implies that <M^( . )A,A:> is a regular complex valued measure and that
<M^(E)A,A;>=S<M^(E,)A,A;> for E=UE, (disjoint). Since the mapping Ah^AA,
AeJ§f(H, H), is a bounded linear transformation of oS^(H, H) into H, we have
^{g}h==fg(^g)dM^)h ([5], p. 324). Furthermore, if ketl\ then

<+(^^>=Jg(Y^)^<M,(Y)A,A;>.

Let ^ ^(E)=<M^(E)A, A>. Then (JL^ is a non-negative regular Borel measure. Since
I ^,/»(E)1 ^ 11^(E)[[ ||A||2 and since operator valued measures are bounded,
|^^(E)| ^ a | | /s[[2 for some a>o. In other words, [L^ ̂  is finite. It then follows from
Bochner's theorem that <^Q?)A, A>= [-(y? g^^^hM ls a positive definite and conti-
nuous function for all A in H (1).

We now show that ^ is continuous with respect to the uniform topology. Let g
be an element of G and let e>o be given. Then there is a compact set G in G such
that [[MJ|(G—C)<£/4 and we have

(3.4) +^)-+te/)==J,((T^)~(T^/))rfM,(Y)+Jg_,((Y^)-(Y^'))^(Y)

for all g ' in G. Since |(Y^)—(Y5,?')1 ^ 2? lt: follows that

(3.5) ll^)-^')ll^sup(|i-(Y,^-^)|)||MJ|(G)+£/2
rec

for all g ' in G. Letting g — g ' be in the neighborhood N(G, s/2 || M^ ||(G)) of o in G
determined by C and s/21[ MJ[ (G), we immediately deduce that ^ is continuous.
Thus, the theorem is established.

Now let %7 denote the ideal of compact operators in oSf(H, H). Then it is well-
known [6] that JSf(H,H)*==^e^1 where <^1 is the annihilator of V and oSf^ is

(1) Thus ^ is continuous with respect to the topology y even if M<^ does not satisfy condition (iii) of
definition (3.1).
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ON A THEOREM OF BOGHNER 65

the set of mappings S given by S(0)== S <0^, ^> where 0 is in JS^(H, H), ^, .̂ are
j= i

in H and S || ̂ H^oo, S || ̂ .H^oo. We note that if S is in JSf^, then S(0) can also be
3 3 oo oo

written in the form S(0)= S X,<<D^, A,> with \ =1 and S |[AJ ^oo. We have

Lemma (3.6). — Let M be a mapping o/'S(G) into V (i.e. M(E) is a compact operator
for all E in S(G)). ^M^ z'j ^ regular vector measure/or all h in H, ^A^ M is a regular operator
measure.

Proof. — We first show that M is weakly countably additive. To do this, it is
enough to show that SoM is countably additive for all S in oSf^. If E == U E^ (disjoint),
then

00

(3.7) SM(E)=^X/M(E)^>
00 00

= Sx,(S<M(E^,^»
r==l i==l

00

since M^ is a vector measure. But | SM(E)[ ^ ( S || A, ] ] 2 ) ! ] M(E)|[<oo and so,
(3.7) can be rearranged to give

(3.8) SM(E)= S ( S \<M(E^, ̂ »= S SM(E,).
i=l r=l z==l

To show that M is regular, we again need only consider SoM for S in JSf^. Since
00

|SM(E)|^( S 1 1 A, 112) 11 M(E) 1 1 and since the measure M is bounded [5], there is
r —^ oo

an A>o such that |SM(E)|^A( S | | A 1 | 2 ) for all E. Now let F be an element of S(G)
r = l 00

and let £>o be given. Then there is an N for which ( S [ ] AJI^A^/s and so,
oo r =N +1

| S X,<M(E)A, ,A,>[<£/2 for all E in S(G). But < M ( . ) A , , A , > is a regular measure.
r = N + l N

It follows that S \<M(-)Ay. , h^ is a finite regular complex measure. Thus, there is

a compact set K and an open set U with K c F c U such that if E c U — K , then
N

| S X,<M(E)A,, A,>|<s/2 and hence,
r=l

[ SM(E)| ̂  ^<M(E)/^, h^\ + |^S^<M(E)^, ^>|<s.

In other words, M is regular and so the lemma is established.
Theorem (3.9). — If the mapping ^ of G into JSf(H, H) is positive definite and continuous

and if the corresponding measure M^ of theorem (2.8) maps S(G) into ^5 then

(3.io) ^(g)=S^g)dM,M

for all g in G.

65
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66 P. L. F A L B

Proof. — By the lemma, M^ is a regular operator measure. Moreover, (y, g) is
integrable with respect to M^ so that |^(y, g)dM^{y) exists. Since the mapping
Oh-^OA, $eJSf(H, H), is a bounded linear transformation of oS^(H, H) into H, we have

(3.ii) (S^g)dM^)h=f^g)dM^)h=^g)h

for all A in H which proves (3.10).

In view of theorem (3.9)5 it is of interest to determine direct conditions on ^ which
insure that M^ maps S(G) into ^. A typical condition is that ^ be (c approximable "
by finite dimensional maps. More precisely, we have

Definition (3. la). — Let {e^ ...} be an orthonormal basis ofH. Let H^ be the span
of{e^, ..... ̂ } and let P^ be the projection ofH onto H^. An element ^ ( - ) ofL^G, oSf(H, H))
is approximate if

(3.13) ^f5ll4'(Y)-k(Y)ll^(y)=o

wA^ ^{')==P^{')'P^ m{^) is Haar measure on G, and the superscript ^ indicates the Fourier
transform (1).

Lemma (3.14). — If ̂  is positive definite, continuous and approximate, then the corres-
ponding measure M^ of Theorem (2.8) maps S(G) into %7.

Proof. — Let M=M^ and M^=P^M^P^. Since Py, is a projection, the map ^n
is positive definite and continuous. Moreover, it is clear that the measure M^ corres-
ponding to ̂ is simply M^. Now, if EeS(G), then M^(E) has finite dimensional range
and is therefore compact. Thus, we need only show that

(3.15) Hm[|M(E)-M,,(E)||=o

for all E in S(G). Since || M(E)-M,,(E)||= sup | <(M(E)—M^(E))A, A;>|
and |IMI=Ulk|l=i

|<(M(E)-M,(E))A,A>|==|^,(E)-!.l»i(E)|^|^_^(E)-^(E)l
2 2

+1 ̂ (E)(V^(E)| +1 ̂ (E)(^(E)I + | ̂ (E)-(^(E)1
2 2 2 2 2 2

where (JL^ is the regular measure corresponding to 4'n? we have

(3.16) ||M(E)-M,(E)||^4 sup |^(E)-^)(E)[
l l ^ l l = i

(1) If0(.) is in Li (G,JS?(H,H)), then the Fourier transform 0(.) of0(.) is the mapping of G into-S?(H, H)
given by

®(Y)=f,(Y^)®te)'/"'te)
J (j

where rn(g) is Haar measure on G. Properties of the Fourier transform are given in [3]. Note that 0(.) may not
be in L.i(G, J^(H,H)) so that $(•), $„(.) in L,i(G, oS?(H,H)) is a tacit assumption in (3.13).
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ON A THEOREM OF BOCHNER 67

and so, we need only show that

(3.17) lim sup |^(E)-^(E)|=o
n-^oo ||fc||==l

for all E in S(G). Now, ^, ̂  are positive definite, continuous and in L.i(G, JSf(H, H)).
It follows that < A ( - ) A , A>, <^(-)A, A > are positive definite, continuous and in Li(G, G).
Let fnM-<^Mh,hy and A(n)(Y)=<t(Y)^ h\ Then ([2], [3]) /,(•)^(n)(•) are in

L,(G, C),

<+W ̂ -Jg^ ̂ (YWT^ <+nW ̂ -Jg^ ̂ (YWY)

and V^'),/^-) define finite, nonnegative regular Borel measures (JL^, [JL^ on G by

^(E)=J^(yWY), ^(E)=J^(Y)^(y).

By the uniqueness in Bochner's theorem, ^==^ and (JL^ == ^n). It follows that

|^(E)-^(E)|=|^(A(Y)~/^(T))^(Y)|^^

for all A in H (1). Since ^ is approximable, (3.17) and with it the lemma, are
established.

Corollary (3.18). — If ^ is positive definite, continuous and approximate, then

^)=Je(T^M,-
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(1) Thus, the notion of approximability can be weakened to the requirement

lim sup ^(fnW-f^WdmM =o
n-^oo |H|=1 J G
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