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STABILITY OF C°° MAPPINGS, IV :
CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS

by JOHN N. MATHER

INTRODUCTION

Let f: (N, S) -^ (P,^) be a germ of a C°° mapping, where S is a finite subset
of N and j^eP. (We assume that N and P are finite dimensional manifolds.)

Let the ring homomorphism f*: Gy->Cg be defined as in III (i.e., Stability
ofG00 Mappings, III), § i, ( i . 11). Thus, Gg is the R-algebra of germs at S of C00 functions
(i.e. C00 mappings into R) on N, and/* is given by f\u)=uof. Let (co/ tf, A, B, 6(/))
be as defined in III, §3, (3.3) et (3.4); that is to say, let A denote the Cy-moduleofgermsatj/
of 0°° vector fields on P, let B denote the Gg-module of germs at S of C°° vector fields
on N, let 6(/) denote the Cg-module of germs at S of C00 vector fields along/, and
let G)/:A--8(/) and ^/:B—6(/) be given by CO/(T])== T]O/ and ^)=T/o^.

We say that /is infinitesimal'ly stable if

(i) co/(A)+/(B)=6(/).

This is the notion for germs corresponding to the notion of infinitesimal stability of
mappings that we introduced in II. In a later paper, we will define the notion of a
stable germ and show that if is equivalent to the notion of an infinitesimally stable germ.
However, for the purposes of this paper, we will take cc stable 5? as a shorthand expression
for " infinitesimally stable 5?.

The problem that we consider in this paper is to classify stable germs up to isomor-
phism. If/': (N'3 S') --> (P',y) is a second C00 map-germ, we say/and/' are isomorphic
if there exist invertible G00 map-germs h: (N, S) -^ (N', S') and h' : (P,jQ --> (P',./)
such that /^A/A"1. The main result reduces the problem of classifying stable germs
up to isomorphism to a problem of classifying certain finite dimensional R-algebras up
to isomorphism.

We define the following R-algebras:

Q(/)=Gs//*(m,)Cs,
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224 J O H N N . M A T H E R

where nty denotes the unique maximal ideal in Cy:

^{f)=W)l^\
where m denotes the intersection of the maximal ideals in Q,(/) (which is a semi-local
ring, i.e. has only finitely many maximal ideals); and

Q,(/)=lmiQA/).

Clearly, if f and f are isomorphic, then Q(./) is isomorphic as an R-algebra
to Q,(y /), and similarly for Q^ and Q^in place ofQ^. The main result is that the converse
is true for stable map-germs.

Let x^y . . . 5 Xg be the distinct points of S and let x[ 3 . . ., Xg, be the distinct points
of S'. Let /.==/|(N,;^) : (N, x,) --> (P,j0 and define // similarly. Let ^ (resp. n,)
denote the dimension of N at ^ (resp. of N' at ^'), p (resp. p ' ) the dimension of P
atj^ (resp. P' at_/).

Theorem A. — Suppose that f and f are stable, that s==s\ p=p\ ^==^5 and that
(for ^ - ^ _ i ^ _ s ) there is an isomorphism

(2) C^(/)^Q^(/.')

of J^-algebras. Then f is isomorphic to f. Moreover we can choose invertible C30 map-germs
h: (N, S) --> (N', S') and h1 : (P,̂ ) --> (P',V) not only so that f^h'fh-1, but also so that
h^x^==x^ for i^i^s.

The hypothesis that f and f are stable is essential: consider for example the two
map-germs/, /' : (R2, o) --^ (R2, o) given by

f{x,y) ==^x,f+xyY

f^y)=<^f>
then Q^/^Q^/^RE^]]/^).

On the other hand/is stable and/' is not (as we will show in (1 .9)) ; hence/is
not isomorphic to/'. (It is trivial to verify that if/and/' are isomorphic and/is stable,
then so is /'.)

The rings Q,^(/) and Q,(/) can be described explicitly. The canonical decompo-
sition of Cg into a Cartesian product

Cs=C^X...xG,,

(where ^, . . ., Xg are the distinct points of S) gives rise to a canonical decomposition
of Q,(/) into a Cartesian product

(3) a(/)^QiA)x...xQ.(/),

where /==/|(N, x^) : (N, ^) --> (P,^). This, in turn, gives rise to canonical decompo-
sitions of Q^(/) and 0.(/) lnto Cartesian products.

Thus to describe Qjc(/) and Q,(/) it suffices to consider the case when S is a point,
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 225

say x. Let x^ . . ., x^ be a local system of coordinates for N, null at A; and letj/i, . . .,j^
be a local system of coordinates for P, null at y. The natural isomorphism

C^m^RE^,...,^]]^1

(where nip denotes the unique maximal ideal of Gp and n denotes the unique maximal
ideal of R[[^]]== R[[^, . . ., A:J]) gives rise to a natural isomorphism of Q^(/) with
the quotient of R^]]/^4"1 by the ideal generated by the canonical images of

y*(^i)? • • " > / * { } ' ? ) ' Since the canonical image of/*(j^) in Rf^jj/n^'^1 depends only on
the A:-jet of/ at x, we obtain that CL;(/) depends only on this A-jet. This still holds in
the general case, when S is not necessarily a point. Thus it follows from theorem A
that a stable map-germ is (p-^-i) -determined. Actually this result will be a step in the
proof of theorem A. Note that QjcC/) is finite dimensional as an R-algebra.

The natural isomorphism described above gives rise to a natural isomorphism

(4) w) ̂  R[k,.. .^jj/crc^.. .^(jp)).
The proof of Theorem A will be finished in § 6. In the last section (§ 7) we will

consider the problem of characterizing the R-algebras that come from stable mappings.
We will characterize the R-algebras which are isomorphic to Q,C/) for some stable
/: (N, S) -^ (P,jQ. (By Theorem A, the isomorphism type of Q,(/) determines that
off (for/stable), since it determines that of the Q,p+i (/•)•)

We begin by considering the case when S is a single point x. For any quotient
of a formal power series ring over R:

A=R[[^,...,<|]/3,

we define (.(A) as a—by where b is the minimum number of elements in a set of
generators of 3. Note that i(A) depends only on the R-algebra structure on A; it is
independent of the particular representation of A as a quotient of a formal power series
ring. This may be shown in the same way as we show in § 7 that ^c(A) depends
only on A and not on the presentation of A as a quotient of a formal power series ring.
Clearly
(6) Wf))^n-p

where ^==dimN, ^==dimP, whether f: (N, x) --> (P,j^) is stable or not.
Let A be a quotient of a formal power series ring over R and let c be an integer

which is less than or equal to (.(A). Then there is a unique number p^(^) (which may
be a non-negative integer or oo) with the following property. For any 0°° map-germ
/: (N, x) -^ (P,jQ such that ^=dimN—dim P and Q^(/)»A, we have

(7) ^(A)^(/,JH,

where ^(/,Jf) is as defined in III, (3.5). (See Theorem (7.2)).
Theorem B. — Let n and p be given positive integers and let A be the quotient of a formal

power series ring over R. Then there exists a stable C00 map-germ f: (N, x) -^ (P^)? with
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aa6 J O H N N . M A T H E R

dimN=w, dimP==/», and A»Q^(f) if and only if (6) is satisfied for A in place
of OX/), and

(8) ^-p(A)^.

More generally, we have:
Addendum. — Let T^, . . ., n^ and j& be given positive integers. Let A^, . . ., Ag be

quotients of formal power series rings. Then there exists a stable C°° map-germ
f: (N, S) --> (P,^) such that S is a set with s points x^, . . ., x^ the dimension ofN at x ,
is 7^, dimP==j&, and A^Q(^) if and only if

^OD)^-^
and ^_,{W^p, i^i^s.

The proof of Theorem B and its addendum is relatively easy. It is carried out
in § 7.

The number ^n-p0^{f) (defined for a C°° map-germ /: (N, x) --> (P,jQ) can be
interpreted in terms of the action of the group jf^ on J^ (defined in III, § 3), for k suffi-
ciently large. First, since ^-n-pQ/jO =d(f,J^), saying that [^n-p0^{f) ls finite is the same
as saying that f is finitely determined relative to JT (by III, Theorem (3.5)). Suppose
that p-n-pQ, (/) is finite and that^is ̂ -determined relative to jf. Then we have two results.
First, if/' : (N, x) --> (P,J^) is a second 0°° map-germ, then Q,(/) w Q^[f') if and only
iff^ (i.e., the A-jet of/at x) is in the same orbit as/'^ under the action ofjf^ on Jk

(by Theorem (2.1) and III, (2.3)). Second, the codimension, relative to J^, of the
orbit off^ under the action ofjf^ is given by the formula:

(9) codim^./^=^_^(/)+n-^;

except in the trivial case when/is a submersion (by Theorem (2.5) and formula (7)
above). This formula shows that (8) is equivalent to saying that the codimension of
the ^^-orbit which corresponds to A is ^ n.

The theory we develop in this paper permits us to find a <( normal form 59 for a
stable C00 map-germ; see the remark following Theorem (5.10).

Our results are still valid if " C00 ?? is replaced throughout by (< real analytic 5?,
or if (c G'° " is replaced throughout by e < complex analytic 59 and cc R-algebra ?? is
replaced throughout by (< C-algebra ".

i. Conditions for a C00 map-germ to be stable.

Let f: (N, S) --> (P,^) be a G00 map-germ, where S is a finite subset ofN and j^eP.
(We consider the general case when the dimension of N may vary from point to point
ofS.)
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 227

Proposition ( 1 .1 ) . — f is stable if and only if

(*) ^(B)+co/(A)+(/+(m,)+mrl)e(/)=e(/).

Proof. — It suffices to show that (*) implies (^f{A)J^tf{'K)==Q(f). But this is an
immediate consequence of III (1.13).

Corollary. — Whether f is stable depends only on the {p-{-i)-jet off.
Let x^, . . ., x, denote the distinct points ofS and let /»=/[ (N, x,) : (N, x,) --> (P,j/).

Clearly if/is stable, then/ is stable. Conversely, we want to know: assuming/, . . .,/
are stable, under what conditions is f also stable ?

Definition (1.3) . — We set

T(^)-ev,((co/;.)-l(^(rn,)e^.)+^(B,))),

where B, denotes the set of germs at x^ of C00 vector fields on N, and eVy : A-^TPy is defined
by evy (•/])== T] (j/).

This definition makes sense, because CD/^ maps A into 6(/) and tf^ maps B^ into 6(/).
Then r(/) is an R-vector subspace of TPy.

There is a simple geometric interpretation of T(/), when / is stable. We will
not use it at all, but it may help to motivate some of the arguments. Let / be a repre-
sentative of/, so/ is a C'° mapping of a neighborhood U of ^ into P. Let L be the
set of all xeV such that the germ of/ at x is isomorphic to the germ of/ at x^. Then L
is a submanifold and (/i|L : L—^P is an immersion (except in the trivial case when^
is of rank p at x^). Hence, if U is taken small enough, (/(L) is a submanifold of P.
Then r(^) is precisely the tangent space at y to ^(L).

Note that r(/J CT/,(TNJ, but is not generally equal to it.
Definition (1.4). — Let E^, . . ., Eg be vector sub spaces of a finite dimensional vector

space F. We will say E^, . . ., Eg have regular intersection {with respect to F) if

codim (E^ n . . . n Eg) == codim E^ + • • • + codim Eg

{where codim denotes the codimension in F).
Lemma (1.5). — E^, . . ., Eg have regular intersection if and only if the natural mapping

F^(F/E,)®. . .®(F/EJ

is surjective.
Proof. — The kernel of this mapping is E^ n . . . n Eg, so the lemma follows from

comparison of dimensions.
Proposition (1.6). — f is stable if and only if each f^ is stable and r(^), . . ., ̂ {fs) have

regular intersection with respect to TP .
Proof. — uf:A->Q{f) induces a mapping

co/: TP,=A/m,A^e(/)/(/+(m,)e(/)+^(B))-ge(^/(/;(m,)e(/)+^^^
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228 J O H N N . M A T H E R

It follows from ( i . i) and the definition of stability that/is stable if and only i o/is
surjective. Similarly G/ : A—>-6(/) induces

co/: TP^e(/)/(/;(m,)6(/)+^(B,)),

and/ is stable if and only if co/ is surjective. Furthermore

a) ^/h)=co/(7])e. . .CG)/^)

for any 7]eTPy. Hence ifo/is surjective then each co/ is surjective, which shows that
if/is stable, then each/ is stable.

Conversely, assume that each/ is stable. Then co/ induces an isomorphism

.,: TP,/r(/) ̂  e(/)/(/;(m,)6(/)+^(B,))

(since co/ is onto and r(/) is the kernel ofco/, by definition). Then/is stable if and only if

(^-1®. . .©^OCO/: TP,-> (TP,/T(/))®. . .®(TP,/T(/,))

is surjective, since e^l@...@e^l is an isomorphism. By a), this is the cc natural
mapping " referred to in Lemma (1.5); hence, by Lemma (i .5),/is stable if and only
if r(/), .. ., r(/) have regular intersection.

Throughout the rest of this section, we will assume that S is a point x. By the
last proposition, we have practically reduced the problem of determining whether / is
stable to this case.

We can choose local coordinates ^, . . ., ̂  for N, null at x andj/i, . . .,jy for P,
null at j/, such that / has the form

/ . \yz°f=^ ^i^r
{ l ' 7 ) ^/)W=o, r+i^i^p,

where d denotes the differential and r is the rank of / at x. For choose the
coordinates y^ • • • ^ J p such that fl^jE, . . . ,^JE are linearly independent and
^+JE=. . .=^[E==o, where E==T/(TNJ. Then the second condition is satisfied.
Set ^=j^o/ i^^y. Then dx^, . . ., dx^ are linearly independent at x, so x^ . . ., Xy
extends to a local system of coordinates x^ . . ., x^ null at x. These give the desired
systems of coordinates.

For/in the form (i . 7)3 we will set /==^o/ r+i^ i<_p. The mapping tfis given
by

yf-8-Ul-L/+ S ̂ L/, ,<,<,'w w ' i-^w W - -
P I r,r\ I ? \

= S W\^- o/ r+.<i<p.
i-+iWW J ) ' --p

We set ^ = = ( ^ , . . . , ^ ) and x'-=={x^^ ..., A:p) and let ^ denote the ring of
germs at o of C^ functions in the variables x^^, . . ., x^. Let ^~r denote the free

528



CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 229

^.-module with basis £ i , . . . , £ p _ , . For any ueG^ let u ' ^ S ^ , be denned by
u\x^^ . . . ,^)=^(o, . . . , 0,^+1, . . . ,^). Define TC : 6(/) -> ̂ -r by

( r / ^ \ p / ^ \ \ ^. s^/- + s ^o/)}= s ^_,
t= l \a^; z = r + l ^ ' / / .=r+l

(where the ^eCJ. This definition makes sense, because tf^jSx^, . . ., tf(c>18x,),
(^/^r+i)0/. ••• .( a /^)0 / form a free basis of 6(/), considered as a C^-module.
We will set f=(f^^ . . .,/,) and /;==(/;+i, ...,/;). It is easily verified that
^^W^-V^m^eC/)) depends only on/;; we will denote it by ^(/./). In fact fi(/;)
is the ^-submodule of S^~r generated by

f p 8f; }
S -J-£, , : i=r+i, . . . , y z[j=r+ia^ J-r 5 ' I

and {/^.:z=r+i, ...,^j=i, ...^-r}.
We let y denote the r-tuple <B,/, . . ., a,/>, where Ve^-r is defined by

V=J^(^/^,yc,_,.

For any y-<^, . . ., y,>, where ^e^-', we let [v]=[v,, . . ., y,] denote the R-vector
subspace of ^-r spanned by ^, . . ., y,. I fV i s any subset of ^-r, we let V^ denote
the image ofV under the projection ^ : ̂ -r -> ̂ -'/m^1^-'. We shall denote the
last named module by ^"rt(A;).

Proposition (i. 8). — Let k>p. Iff is of the form (1.7), then f is stable if and only if
(*) ^(/;)w+[y](&)-Tn^^-r•w
where rn^ denotes the unique maximal ideal of S^,.

Proof. — In any case:

"(/;)(')+[^]wcm,,^-r'^,
so (*) holds if and only if

(**) ^(/:)(fc)+[a/]w+^„ ..., s,.̂ ^-^).
Since

(p,o7^)-l(Q(/;)w+[a/]w+[s„ ..., s^j^^^^+co^^+^^+m^^e^),
(**) holds if and only if the right hand side of the above equation is equal to 6(/}, which
is equivalent to the condition that/be stable, by (1.1) and the definition of stability.

Example (1.9). — Let n<,p and let/be given by
/*(^)=^, i^i^n-i

/*(A)=^+1+^^
k

f\yn+i}= . ̂ ki+j-l^n . ^^^P—n,
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230 J O H N N . M A T H E R

where T-^k^nKp—n-\-i). Then f is stable. This may be checked either by
applying (1.8) or by applying (1.1) directly.

In particular the mapping f given (in the case n ==p == 2) by

rui)= ̂  rw =4+ ̂ 2
is stable, whereas the mapping given by

rw==^ rw-xi
is not. This is the example mentioned in the introduction, following Theorem A.

Example (i.io). — Let n>p and let/be given by

/•(7<)==^ ^i<P-i

/*(^)=±^±.. .±xl_,±^^ S x^,
J'=l

where i^k^p. Then f is stable. Again this may be checked by applying (1.8) or
by applying ( i . i) directly.

2. The Jf^ orbits-general properties.

Let the Lie group jf^ the G00 manifold J\ and the G00 action of ^ on Jk

be defined as in III, § 7. Thus for example, Jk is the set of A-jets of C30 map-
germs (N, S)--^ (P,j/). Let Jfo denote the subgroup of Jf consisting of those
H : (N x P, S Xjy) - -> (N x P, S xy) in jT such that H| (S Xjy) = identity. Let Jf^ denote
the image ofJfo under the projection jT—^jf^. Let x^y . . ., x^ be the elements of S.
Let J^ denote the G00 manifold consisting ofA;-jets of map-germs (N, ^) -^ (P,J^). ThenJ^
is naturally diffeomorphic to the Cartesian product J^X. . . xj^. Similarly Jf^ is natu-
rally equivalent to a Cartesian product jf^x. . .X^T^, where Jf^ is the group which
corresponds to jf^ when S is replaced by x^ The action of Jf^ on J^ splits up into a
direct product:

<H^, . . . , H ^ > < ^ , . . . , ^>==<H^, . . . ,H^^>.

As a result questions concerning the structure of the orbits of Jf^ on f can be reduced
to the case when S is a point.

Throughout the rest of this section, we suppose that S is a single point x.
Theorem (2.1). —Letf, f : (N, A;) - -> (P,j^) be G00 map-germs and let k be an integer J> i.

Thenf^ andf'^ are in the same orbit under the action of^ if and only if the J^-algebras Qj,(/)
and Qj^y) are isomorphic,

Proof. — Suppose Q^(j0 » CLC/7). Then/and/' have the same rank at x, say r.
Let ^, . . ., x^ be a local system of coordinates for N, null at x, andj^, . . .,jp a local
system of coordinates for P, null atj/. Without loss of generality, we may suppose that/
and/' have the form (1.7). For r-\-i<^i<^n, let ^ denote the image of x, in Qjc(/)
under the canonical projection C(N)^—^Q^(/) and let ~x\ denote the image of x^ in Qjc(/')
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 231

under the projection C^N^-^Qj^y'). Let <p : Q^C/) ^ CLcC/') be an isomorphism of
R-algebras. For r+1^^^? we can express <p(^) as a polynomial ̂ (x7) in ^_(. ̂ , . . ., ̂ .
Define h: (N,^) - ->(N,^) by

x^o h== x^ i_<^ ̂  r

=Pi{x)^ r+i<i<^n.

Then A is invertible, since the fact that 9 is an isomorphism implies that the matrix
/BA\
(— is invertible. Furthermore the following diagram commutes:
\CXj/ r+l^_i,j^_n

C(N), £ C(NL

proj. proj.

Q..(/) ^ (W)
Hence, replacing f by f o h~1, we may suppose that

/*(m,) C,+ m^1 =/'*(m,) C,+ m^1.

Replacing f by another map-germ having the same A-jet, we may suppose that

/•(̂ )G,=r(m,)c,.
Then it follows from (III, Proposition (2.3), (ii) => (i)) that f and f are in the same ^f-
orbit, so that/(/c) and/'^ are in the same Jf^-orbit.

Conversely, suppose/w and /fw are in the same jT^-orbit, say fW^HWf^
with Hejf. Then

a^-Q^H/^QA/)
where the last isomorphism is a consequence of (III, Proposition (2.3), (i) => (ii)) and
the fact that jf is the semi-direct product of SS and ^.

(2.2) It follows from Theorem (2.1) that if/, /' : (N, x) --> (P,j/) are two C00

map-germs thenf^ and/'^ are in the same orbit of the action ofjf1 on J1 if and only
if they have the same rank at x. For any integer r, sup(o, n—p^^r^n^ we let SyC^
(where ^ denotes the set of C00 map-germs /: (N, x) -^ (PjQ, as in III, § 2)3 denote
the set of C30 map-germs /: (N, x) --> (P,j^) having rank n—r at x. We let S^Cj^
denote the image of 2,. under the canonical projection ^~->Jk.

The codimension of 2^ in Jk is the same as the codimension of the set of all matrices
of rank n—r in the set of all nxp matrices. Hence:

(2.3) codimS^^^—n-{-r)r.

By (2.2), the sets S^ are precisely the orbits of the action ofJT1 on J1. This is
true in the complex case (where we consider jets of holomorphic mappings) as well as
in the real case (where we consider jets of C00 mappings).
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232 J O H N N . M A T H E R

Next we show:
Lemma (2.4). —f^^ is finitely determined rel. Jf if and only if the ideal

/*(Tn,)C,+/(/)

in G^ contains a power of the maximal ideal ̂  where J{f) denotes the ideal generated by all pxp minors
of the matrix

i^°n\\ —^— i 5
\ J ^<i'i^.P^^3<in

where j^, .. .^y is a local system of coordinates for P, null aty, and x^y . . ., x^ is a local system
of coordinates for N, null at x. (Clearly f{f) is independent of the choices of coordinates.)

Proof. — By (III, (3.5) and (3.6)) the necessary and sufficient condition that/
be fin. det. rel. jf is that there exist an integer k such that

(*) /*(Tn,)6(/)+^(B)Dm^(/).

Assume that (*) holds. Let u==u^. . .Uy, where each ^em^. By (*), there exist a^eC^
such that

î̂ î̂  = uk^ mod ̂ m^5

for i^j, k^p. Since the determinant of the p x p matrix (^8^) is u, it follows that u
is congruent (mod.y*(rrty)CJ to a linear combination (with coefficients in G^) of
p x p minors of the matrix (^(j^0/)/^,). Hence

/*(m,)G,+/(/)3m^.

Conversely an application of Gramer's rule shows that

/*(Tn,)C,+/(/)Dm^
implies (*).

Theorem (2.5). — If f^^ is k-det. rel. Jf and not a submersion^ then

(*) d{f, JT) = codim Jf^./^- n +p

where codim means the codimension in Jk.
Proof. — The hypothesis that f is k det. rel. jf implies

r^W^+tf^m^Dm^W)

by the formula for the tangent space to an orbit ofjf^4'1 (III, (7.4)) and Nakayama's
lemma. Hence, the formula for the tangent space at/^ to Jf^./^ (Ill, (7.4)) yields

m.6(/)
codim jTV^WimRT(m,)e(/)+^m,B)
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 233

Using this and the definition ofd{f, Jf) (III, (3.5)), one see easily that (*) is equivalent to

,. rw(f)+tfw
"/•W^+fcB)-"-

In other words, if ^eB and

(**) ^)^(m,)6(/)+^(m,B),

then ^em^B. Suppose the contrary: there exists ^eB satisfying (**) such that ^m^B.
Then there exists ^err^B such that tf(^—^o)^f*{v^y)Q(f}' Since ^-—^ntpB, we
may choose local coordinates ^, . . . ,^ for N, null at A:, such that S—^o=^/^ .
Let j^, ...,J^, be a local system of coordinates for P, null at y. The equation
y(^/^)e/*(m^)6(y) means that there exists u^em^ (i^iyj^p) such that

tf(±\^_^(L.f\
'[SxJ i 9x, \9y, J ]

=^of)[^f\

1 8 \
Since the |—ofl form a free basis of 6 (_/), this means

W /

(...) ^-f".^^'-
Setting 'y)i(^^):= (.)'»°./) (^i ? o? • • •; o), we obtain a system of ordinary differential

equations

.̂ v
^=:s^-

Since ^(o)==o the uniqueness theorem for solutions of ordinary differential equations
implies ^(^i)==o for all x^ near o. In other words, f maps the x^ axis into o.

a(^,o/)
Setting 7]^(^) == ———— [x^ o, . . ., o), we obtain a system of ordinary differential

ox^
equations for each a, i^a^j&:

^a v^r?^
by differentiating both sides of (***), by ^/^, and using the fact that •y^==o in a
neighborhood of ^. It follows from the theory of ordinary differential equations that
the rank of the matrix (-/j^) is constant in a neighborhood of o. But the rank of ('^a(^i))
is the same as the rank of the mapping f at the point (^1,0, . . ., o).

Now suppose f is not a submersion. By what we have shown, f maps the x^ axis
into o, and the rank of^is <p on the x^ axis in a neighborhood ofo (since it is constant
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and <p at o). Hence any element of the ideal /'(my)C^+/(/} vanishes on the ̂  axis,
which by Lemma (2.4) contradicts the hypothesis that/is fin. det. rel. JT.

This contradiction shows that if ^eB and satisfies (**), then ^em^B, and thereby
proves the theorem.

Corollary (2.6). — If fe^- and ge^Tf then d{f, jT) == d(g, jT).
Proof. — If/is a submersion, then g is also, and d(f, JT) -= d(g, JT) == o. In the

case/is not a submersion, but </(/, Jf) is finite, then/is fin. det. rel. JT, by (III, (3.5)),
say A-det., and ^ is also A-det. rel. Jf. Since /w and ̂  are in the same orbit of JT^
the result follows from (2.5). Finally if d(f, JT) = oo, then d{g, JT) = oo; for otherwise ̂
would be finitely determined rel. JT, and therefore/would also be finitely determined
rel. JT, so by (III, (3.5)), we would have rf(/,jT)<oo.

3. Stable map-germs are (j&+i)-determined.

Throughout this section we let /: (N, S) --> (P,j/) be a stable C00 map-germ.
We will show/ is {p +1)-determined, where p = dim P. More precisely, we will show
that/is Q&+i)-det. rel. ^ff, where ̂  is defined as ^XJS^, where 8^ is the set of all
invertible G00 map-germs h: (N, S) -^ (N, S) such that A |S== identity and A is orien-
tation preserving in a neighborhood of each point of S, and J§^ is the set of all invertible
orientation preserving map-germs h' : (P,j^) -^ (P,jQ. Clearly ^CJ^. Letting ja^
denote the image ofja^ under the canonical projection j^->^, one sees easily that ̂ k

is precisely the connected component of ^k containing the identity.
To prove that/is (p+i) -determined, we need only consider jets of finite order,

since we already know that/is finitely determined (III, (3.7)). We need:
Lemma (3.1). — Let a : G X U ->U be a G00 action of a Lie group G on a G30 manifold U,

and let V be a connected G30 submanifold ofV. Then necessary and sufficient conditions for V to be
contained in a single orbit of a are that:

a) T(G^DTV,, if veV.
b) dim T(G^)y is independent of choice of yeV.

Necessity is trivial.
Condition a) by itself is not enough for sufficiency. For example, let G be the

subgroup of GL(2, R) consisting of all linear transformations of the x, y plane into
itself which leave the ^-axis invariant. Let U=R2 and let a be the canonical action
of G on U (given by the inclusion of G in GL(2, R)). Let V be the subset of R2 defined
by jy=x2. Then a) is satisfied, but V is not contained in an orbit.

Now we prove sufficiency. For each yeU, let ay : G->U be defined by
^C?)^0^v)9 Let T(J;! denote the tangent space to G at the identity. From
Ta^(TiG)===T^(Gy), it follows that a) and b) are equivalent to:

a ' ) Ta,(T,G)DT,V, if veV.
b ' } dimTay(TiG) is independent of the choice of yeV.
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Provide T^G with a Hilbert norm and for each yeV, let L^, be the orthogonal
complement of ker(Ta, : T^G -> T^V) in T^G. Let LcVxT^G be U (^xLJ.
By b 1 ) ^ L is a sub-vector bundle over V of VxT^G. Let

Lo^U^Ta^CT^nLJ.

By a ' ) , Lo is a sub-vector bundle over V of L and the mapping U (TaJ : L() --> TV is
an isomorphism of C°° vector bundles. Let (B : TV->L() be the inverse of this mapping
and let n : VxT^G -> T^G denote the projection. Then no (B : TV -> T^G is a C'°
mapping and

Ta,(7ro(B(7]))=:7], for any 7]eT^V.

To prove that V is contained in a single orbit of V it is enough to show that any
two points v^, ^ of V are contained in the same orbit. Since V is connected there is a
smooth curve y in V with ^ and ^ as endpoints, i.e. a G00 mapping y : [°5 i j—^V such
that y(o)=^ and ^{i)==v^. It is enough to show that for any ^E0? I]? there is an £>o
such that if ^ — £ < ^ < ^ + £ then y(^) is contained in the same orbit as y^o)-

Let Y{t)eT^V denote the derivative ofy(^) with respect to t. Let

X(^7ro[B(y^))eT,G.

Clearly X{t) is a C00 function of ^ and

e) T^(X^)=Y^),

by ^. From the existence theory for ordinary differential equations it follows that
there exists a curve t^\±(t) in G (defined for t^— z< t< ̂ + £ for a suitable s>o) such
that [JL(^)==I and

/^ ^=+X,(tx(()),

where X^ is the unique right invariant vector field on G which extends X(^).
To prove the lemma, it suffices to show that ^(t)~l•>{{t) == y(^o) ^ to~ £<^t<^ ^o+ £?

since this implies that y(^) is in the same orbit as y(^) for all t within this range. Using
the obvious abbreviations, we have:

^ W-rW = ̂  W-1)^) + ̂ )-1 y(t) = + ̂ t)-1. (- ̂  v-W-^W + y{t)\.

By f) and the fact that X^ is right invariant, the quantity inside the brackets becomes

-X(^)+T'(^.

d
~dt

^(^"^(^^Y^o) ^or ^~ -£<^^^o+£5 and thereby completes the proof.

u.

By ^, this is o. Hence - . ( ( JL(^)~~ l Y(^))=o . Since pi(^)==i, this shows that
at

535



236 J O H N N . M A T H E R

In our application of Lemma (3.1), it will be unnecessary to verify condition b ) ,
by the following corollary. By a G-space (where G is a Lie group) we will mean a C30

manifold U, together with a C30 action of G on U. By a G-submersion f: U—U' of
G-spaces, we mean a C30 submersion such that

Agu)=gfW. for geG, ueV.

Corollary (3.2). — Let /: U^U' be a G-submersion, let u'eV, and let V=f-l{uf).
Suppose V is connected. Then the necessary and sufficient condition for V to be contained in a single
orbit of G is that ( (3 .1 ) , a}} be satisfied.

Proof. — Since/is a submersion V is a submanifold, so that ((3. i), a)) makes sense.
Necessity is clear. On the other hand ((3.1), a)) implies

dim T(Gy),=dim TV.+dim T(G^,,

for any yeV. The right hand side is clearly independent of the choice of yeV; hence,
the conclusion follows from Lemma (3.1).

Now let's see what we have to do to show that/is (^+i)-det. rel. ja^. First,
we know that/is fin. det. rel. ̂  (by III, (3 .7)) ; hence it is finitely determined rel. ̂
(since ^c^). Say it is/-det. rel. ̂ . Let V^TT-^/^^), where 'n::]1^^1 is
the projection. Since/is /-determined, it is enough to show that V is in a single orbit
of the action of ̂  on J1.

By Corollary (3.2), it is enough to show that

T(^.^DTV,

for all yeV. Using the formula (III, (7.4)) for the tangent space to ^v (which is
the same as the tangent space to j^y, since ̂ l is open in ^), we see that the above
inclusion is equivalent to the inclusion

(3.3) ^(m^+^ms^+m^^^Dmr^te),

where g : (N, S) --> (P,j) is any representative for v.
The argument that we have just given shows that in order to prove that / is

(j&4-i)-det. rel. s/^ it suffices to show that (3.3) is satisfied for any ge^ having the
same (j&+i)-jet as/. We now show that this is the case.

First, we remark that such a g is stable by ( i . i). Since

^(m,A)c^(m,)6^),
the fact that g is stable implies

codim(^(B)+^(Tn,)e(^))^codim(^(B)+^(m,A))^

where codim means the codimension in Q{g). By (III, (1.6)), it follows that

m§6(^)c^(B)+^(m,)6^).
Multiplying both sides of this equation by trig, we obtain

(*) ^r^c^m^+^m^).
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On the other hand, the fact that g is stable implies

(3.4) ^(msB)+^(m,A)==^(msB)+^(m,)6^).

To show this, it is enough to show that g*(my)Q{g) is in the left hand side. But:

^«TO =g^) (o^(A) + tg(B)) = ̂ (m,A) + W(m,)B),
which gives the desired result.

Now (3.3) follows from (*) and (3.4), which completes the proof of the following:
Proposition (3.5). — Iff is stable then f is {p + ̂ -determined rel. ^ft.
We conclude this section by remarking that (3.4) and the formulas for the tangent

spaces at/^ of jf^ and J</W (see III, (7.4)) imply that

T(^==T(^,

where ^=/^, in other words, that the orbits ofjf^ and ̂  through /(;) have the same
dimension. Since j^^Cjf^, this yields:

Lemma (3.6). — ^f^ is an open subset of ̂ f^ (where we assume, as always in this
section, that f is stable).

4. Reduction of theorem A to a result about jets.

Let ^]\ where l^p+i and let fe^ be a representative of-s. It follows from
proposition (1.1) that whether/is stable depends only on ^. We will say ^ is stable
if/is. We let St1 denote the set of all stable jets in J1.

From Proposition (1.1) it follows that J^—St^ is a closed algebraic subset ofj.
In other words, choosing local coordinates y, .. .,y for P, null atj/, and for each z,
(i.<^[S|) choosing local coordinates ^, ..., x^ for N, null at x, (where x^ ..., x,
are the points of S), J^—St1 is the set of zeros of a family of polynomials in {^ A
where {j^ ^} is the global system of coordinates for J1 defined by

a^'f^'on
^.^)=———^)•C7A'^

Let C^\ be defined as in the beginning of§2. Let 39 Q denote the group of invertible
G00 map-germs h: (N, S) --> (N, S) such that h\S =identity. Let ^==^xJSfCj^
and let ^\ denote the image of ̂  under the projection s/-^^\

In proving Theorem A, we may assume, without loss of generality, that N = N',
P==P', y==y and x^x[ for i<:i<s.

In this case it follows from Theorem (2.1) that the hypothesis that

Qp+i(/^Q^i(//) (for i^rQ)
is equivalent to assuming that/^4"15 and /'^41) are in the same orbit under
the action ofjf^4'1. By our remarks above, the hypothesis that/and/' are stable is
equivalent to assuming that/^15 and/^-^ are stable. Finally it follows from Propo-

537



238 J O H N N . M A T H E R

sition (3.5) that the conclusion of Theorem A is equivalent saying thaty^4"3^ 3Lndff[p+l)

are in the same orbit under the action of j^41. Since St^1 is invariant under the
action of ^p+l, it follows from these remarks that Theorem A is equivalent to:

(4.1) ^+l^==j^;+l<:nStp+l, for any ^eSt^4-1.

Thus to prove Theorem A, it suffices to prove (4.1). As a start, we have:
Lemma (4.2). — If zeSt^S then ^+1^ is open and closed in J^^n St^
Proof. — Consider the partition of jf^^nSt^4'1 into orbits under the action

ofc^4'1. Since ^(P+1)C^+1, it follows from Lemma (3.6) that each member of this
partition is open. Taking complements, one obtains that each member is also closed.

Remark. — Everything that we have done up to now works (with neither more nor
less difficulty) in the complex case (where the symbol " G'0 5? is replaced throughout
by the word <( holomorphic " or <c complex analytic 55, and the symbol c< R " is replaced
throughout by the symbol <( C 95). In contrast, the proof of Theorem A is much easier
in the complex case. For in the complex case, the group jf^ +1 is connected. Since JTg +1

is a complex analytic group, J^4'1 is a complex analytic manifold, and the action ofJT^1

on JF^ 1 is holomorphic, it follows that JT^ ̂  is a connected complex analytic submanifold
ofj^4"1. Since J^'^—St^1 is a closed algebraic subset of Jp+\ it follows that
jf^+i^—St774 '1 is a closed analytic subvariety of ̂ +1^. Furthermore Jf^^—St^1

is a proper subvariety of ̂ p+l^, provided ^ is stable (since in this case ^ is not contained
in this subvariety). Since the complement of any proper closed complex analytic
subvariety of a connected complex analytic manifold is connected, it follows that
^p+l^nStp+l is connected, if ^eSt^4"1. Thus (4. i) follows from Lemma (4.2), which
completes the proof of Theorem A in the complex analytic case.

5, Proof of theorem A in case S is a point.

Throughout this section, we will suppose that S is a point, say x.
By the remarks in § 4, it is enough to show (4. i). Note that in the case S==x,

we have J^o==j^ and ^o===Jf.
Let x^, . . ., x^ be local coordinates for N, null at x, andj^, .. .,j^, local coordinates

for P, null atj^. Let Ay denote the set of all ^ej?'^1 such that there is a representative
/: (N, x) -^ (P,j/) of ^ of the form (1.7).

Fix ^ e J F ' ^ 1 throughout this section and let r == rank ^ == rank (at x) of the repre-
sentative / of ^. Clearly any ^/p+l orbit of ^ intersects Ay; hence to show (4.1), it is
enough to consider points of Ay.

Let X : Ay -> TTt^"^^ be defined by

^(y^)^/:)^
for any f of the form (1.7). (Here, we are using the notation which we introduced
in § i following (1.7). We shall continue to use this notation throughout the rest of
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this proof.) Let V^jT^^nA, and let V'=X(V). To prove (4.1) it is enough to
show

(5.1) VcSt^C^^1^ for any yeVnSt^1.

Let D denote the set of all rx(p-r) matrices with entries in m^/m^4'1. If/has
the form (1.7), we let {Sf^eD denote the rx{p—r) matrix whose (z,j)-th entry is

W^M^ {^i^r,i^j<p-r).

Note that the z-th row of the matrix {Bf)^ can be regarded as a member of
m,^"^, since it is a (j&—r)-tuple of elements ofrn^/m^1. As such, it is equal to f^/)^
(as defined in § i, following (1.7)). In particular it follows that

(5.2) [(W-m^
where the left hand side denotes the R-vector subspace of m^^~r'{p} spanned by the
rows of the matrix (Sf)^, and the right hand side is as in Proposition (1.8).

For any weAy, let 8weD be defined as (^y^, where / is any representative
of w of the form (1.7). Clearly 8w is independent of the choice of representative/.

In this section, we will say that a continuous mapping 9 : X-^Y is trivial if there
exists a homeomorphism h: X-^YxR^, for a suitable non-negative integer k, such that
the following diagram commutes:

X w YxR'
cp \> /proj.

^ /
Y

It is easily seen that the mapping

<X, B> : A,^ m^-^^x.D

is trivial: in terms of the Taylor series expansion (to order p+i) of we Ay, X(w) picks
out certain coefficients, and 8{w) picks out others.

It is easily seen that V^X^V. For if veAy and XyeV, then there exists y'eV
such that Xy'==Xy. It is easily seen that Xy'^.y implies Q,{v) w Q(y') (where for
any we]1, Q^(w) denotes Q^i{g) for any representative g of w). Thus v and v ' are in
the same Jf^^-orbit, by Theorem (2.1). Since y'eV, this implies yeV.

It follows that the mapping

(5.3) O.^IVrV-^V'xD

is trivial.
Let y'eV. Choose veV such that X(y)=z/ and/of the form (1.7) such that

y==/(P+1). Set
Q^)=t2(/;)^
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where the right hand side is defined as in the paragraphs preceeding Proposition (1.8).
Note that 0.^) depends only on v\ For it follows from ^eSt^4'1, yejf^4'1^, and
Corollary (2.6), that for a suitable representative / of v, we have d[f,^)<,p. Then

(*) Tn^-c^/;).

Since this inclusion is true for one representative / of v (in the form (1.7)), it is true for
every such representative (by Nakayama's lemma). With the aid of this inclusion, one
sees that the fact that Q(y') depends only on v ' follows immediately from the definitions.

By definition iQ(y') is an R-vector subspace of m^^"^^. Its dimension is inde-
pendent of the choice of y'eV. For, from the inclusion (*), it follows that the
codimension of ^(z/) in m,/^"^ is equal to the codimension of £2(/') in m^"7',
which (by the definitions) is equal to d{f, jT)—(^—r). Then the fact that this number
is independent of the choices made (including the choice of y'eV) follows from
Corollary (2.6).

In computing this number, we may take / as a representative of ^, since d(f, jT)
is independent of the choice of/in a given JT orbit. Since ^eSt^'1"1, /is stable; hence/
is (j&+i)-determined (by § 3); hence writing

(5-4) ^^codimjT^+^—Tz+r

(where codim means codimension in J^) we obtain that Q(z/) has codimension c(^), by
Theorem (2.5). Hence, letting G denote the Grassmannian of 6-(^)-codimensional
vector subspaces of nt,^"^, we see that we have defined a mapping

H :V'-.G.

This mapping is clearly continuous.
Let veV. By Proposition (1.8) the necessary and sufficient condition that yeSt^^

is that

(5.5) "(^[^-m^f-^.

Clearly, the set of <z/, fl?>eV'xZ) such that

n^+^j^m^-^
(where [d] denotes the subspace of m^^"^^ spanned by the rows of d) is a locally
trivial bundle over V; the fiber has one component if ^)<r, or r==o, and two
components if c[^)=r>o. (Note that c[^)>r is impossible by the hypothesis that ^
is stable: if c{^)>r the relation (5.5) can never hold for yeV (since Q.(\v) has codi-
mension c(^) and [Ov] is spanned by r elements), but there exists yeSt^1 n V). Applying
the fact that the mapping (5.3) is trivial, we obtain:

Lemma (5.6). — The bundle (Vn St^, \ V) is locally trivial9, a fiber has one compo-
nent if c{^)<r or r=o, it has two components if c{^)==r>o. We never have c{^)>r.
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Next, we show:
Lemma (5.7). — Any fiber of the bundle (VnSt23"^1, X, V) is contained in a single

orbit of ̂ p+l.
Proof. — In the case the fiber is connected, this follows from Lemma (4.2). Hence

we may suppose ^(^)===r>o. It follows from Lemma (4.2) that it is enough to show
that there is an orbit of ^/p+l which meets both components of the fiber. Let
h: (N, x) --> (N, x) and h' : (P,j) --. (P,jQ be defined by

x^oh===—x^, x^oh==x^ for z>i
j^oA'=—^, y^h'=y^ for i>i.

It is easily verified that if yeVnSt^1 and y'^A^^oyo^^, then X(y')==X(y) and By'
is the matrix whose first row is the negative of the first row of c)v and whose other rows
are the same as the corresponding rows of 8v. It follows that v and v ' are in the two
different components of A-^) n St^1 (which is the fiber of the bundle (Vn St^, X, V)
over \v). This proves Lemma (5.7).

The next step is to analyze the connected components of V. We do this by
showing that V is an orbit of a certain group ^"{p+l} which acts on m^^"^^4"^. We
introduce manifolds N'CN and P'CP defined by

N'={^=...-^=0} P'={^=...=j^o}.

Then we can identify S^, with the set of germs at x of G00 functions on N, since €^, is
the ring of germs at o ofG°° functions in ^4-1, ..., x^ and {^+1, . . ., ̂ } is a local system
of coordinates for N', null at x. We identify m^^"7' with the set y ofC00 map-germs
(N', x) --> (P',j^) by identifying (/, .. .,fp-r) wltn tne map-germ/ defined by

yi°f-fi-r. r+i<,i^p.

This gives rise to an identification of m .̂?""^^ with the setj'^4'^ of (^+i)-Jets of
such map-germs. Now the group ̂ '(p+l) is defined just as ̂ (p+l), but with N' in place
of N and P' in place of P. It is easily verified that a point

y'em^r^^W^

is in V if and only if Q^') w Q(^) $ thus, it follows from Theorem (2.1) that V is an
orbit of the action of ^f{p+l) on J^-^).

Since ^/(p+l) has four components, it follows that V has at most four components.
Now consider again the problem of proving (5.1). By Lemmas (4.2) and (5.7),
X'^Vo) n St^"1"1 is contained in a single orbit of ^/p+l for any connected component V^
of V.

Define ^ ' and ^/(p+l) in the same way as ^ and ^p+l, except with N' in place
of N and P' in place of P. Clearly ^'(p+l) meets each component ofjT'^4'^. Thus
we may prove (5.1) as follows. Take y, ^eVn St^. Since V is an orbit of^T^-^,
there exists r^e^^F^^ such that X(^)==7]X(y). Take •y^ej^4'^ which is in the same
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component ofjT'^4'^ as T). Let <A, h^e^ be a representative of-/^ and let <A, A'>ej^
be an extension of < A, h' > such that ^ o ̂  = ̂  j^ o P =j^., for i :< r< r. Let
?h=<^ A^^W^. Then ^i(^)=^X(y). Hence >^(y) is in the same component
(say Vo) ofV as 7]X(y)==X(^). Since X-^Vo) nSt^1 is contained in a single orbit
ofea^1 it follows that ^v and ^ are contained in the same orbit of ̂ p+l; hence v and ^
are in the same orbit. This completes the proof of (5. i) and therefore of Theorem A
in the case S is a point.

As a corollary of what we have just proved and Proposition (i .8), we can obtain
a " normal form " for stable map-germs. To describe this normal form we need to
introduce some notation.

Let R[|Y]] = R[[^r+i? • • • 3 ^J] denote the ring of forma] power series in indeter-
minates ^+1, . . .,^ and let m denote its unique maximal ideal. Let q=^, . . ., q _^>
be a (j&—r)-tuple of polynomials in x^^ . . ., ̂  and suppose ^em2. Let (y) denote
the ideal in R[[A;']] generated by {^, ...,^,_,}. For r+i<^i<^n, let

a•'-(S••••^)emw•
Set

Y(<7)=R[M]{^i<7, ..., ̂ W^W-

Then T(y) is an R[[^']]-submodule of mRE^']]^'. Let

c=c{q)=dim (mR[K|p--W<7)).

Suppose c<,r. Let ^, . . . , y , be a set of elements of mRtlX]?"^ whose canonical
images in mR[[y]^~r/Y(^) form a basis (where mREIYJp-'/Y^) is considered as
an R-vector space); write ^.==<^, . . ., v^_^ where ^.emR[[^']]; and suppose
that v^ is a polynomial.

Define /: (R^, o) -^ (R^, o) as follows:

^ 9 ^^^

(5.8) Vi-f- -,
^-r+.^^^z-r, r+I^Z^.

Lemma (5.9). — Iffis given by (5.8), where q and v are as above, then f is stable.
Proof. — This is a matter of checking that the conditions given in Proposi-

tion (1.8) are satisfied. The image of Y(^) under the canonical homomorphism
R[|y]p-r -^ ^-r.W is i^/;)^); the image of v, is BJW; hence the hypothesis that the
canonical images of ^, . . ., Vy in mR^'JF'^/Y^) span this R-vector space implies
that

^(/:)w+mw=Tn^rr'w
which implies/is stable, by (1.8).

Note that the mapping in examples (1.9) and ( i . 10) are of the form (5.8).
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Theorem (5.10) (Normal form for a stable map-germ). — If f: (N, x) --> (P,^)
is a stable map-germ whose rank at x is r, and q^, ..., q^_^ and z^, ..., v, are as above and
furthermore

(*) R[M]/(^tp+2+(?))^Q.^l(/)

then there exist local coordinates ^, ..., x^for N, null at x, andjy^, .. .,j^/or P, null aty, such
that f has the form (5.8).

Proof. — In any case there exists /' : (IT, o) --> (R^, o) such that /' has the
form (5.8). Then the hypothesis (*) amounts to saying that Q,p+i(/') w Q,p+i(/). By
hypothesis, / is stable; by Lemma (5.9),/' is stable. Then/and/' are isomorphic,
by Theorem A, which is another way of stating the conclusion of the theorem.

Remark. — If /: (N, x) -^ (P,j/) is a stable map-germ, we can find polynomials
?i^ •••^p-r6^2 ^d ^em{i<:i<c, ̂ <j<:p~r) such that with respect to suitable
local coordinate systems/has the form (5.8)), as follows. Since/has rank r, there
exists a surjective R-algebra homomorphism

T^R^T/m^^Q^C/).

From the definition of Q,p+i(/), it follows that ker n is generated by p—r or fewer
elements; let ^, .. ., q^_y be a set of generators of ker TT. Then the isomorphism (*)
holds. Furthermore, c(q) == </(/, Jf) —p + r<^_ r, so we can choose ^, ..., v, as required.

Next, we state and prove a lemma which we will use in the next section. For
any weSt^4'1 and any representative/of^, we set

T(^)=T(/)

(cf. Definition (1.3)). This is independent of the choice of representative/, since weSt^"1"1

implies/is stable, which implies

mW)c/-(m,)6(/)+^/(B).

Let W denote the set of weStp+lr^^p+l^ such that T(^)=T(^).
Lemma (5. n). — Suppose ^>dim r(^)>o. For any w^ z^eW, there exists a number

a(w^,w^ (which is ±i) such that the following holds. If A'eJ? is such that TA'(T(^))==T(^)
and the automorphism of TPyf^^) which h' induces is orientation preserving (in the case
(j{w^, w^)=+i) or orientation reversing {in the case or(^, ^)==—i) then there exists heSS
such that <A, h'^^^w^ is in the same arcwise connected component </W as w^.

Proof. — Let oS^ denote the subgroup of ,Sf consisting of those h' for which
TA'(T(^))CT(^). Let S^ denote the image of oSf* under the projection ^->^.
Let ^^^XJS^. From (4.1), it follows that WC^+^, which is easily seen to
imply V^ea^4-1^. Hence, there exists h^e^ and h^SS such that <^o, Ao>(p+l)^=W2.
We set or(^, w^)== +i if the automorphism of TPy/r(z) which h'^ induces is orientation
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preserving and we set 0(^,^2)==— i otherwise. Now let h' be as in the lemma.
Choose h^Si so that hho'1 is orientation preserving or reversing according to whether

T^Ao-1)!^):^)-^)

is orientation preserving or reversing.
To show that <A, h'^^^w^ is in the same connected component of W as w^ it is

enough to show that there is <A^ A^)^"1"1^^^4'^ which is in the same connected compo-
nent of ^ft(p+l) as <^hho'\ h'ho~1^, and which satisfies <h^ h^^^w^w^ since

<A, h'^w,=<hho-\ h'ho-i^^w,.

In the case T^h^t) |r(^) is orientation preserving, we may take Ai== identity,
AI = identity. To see that < hho'1, A' AQ -1 > is in the same component of ^{p+1) as < h^, h[ >,
it is enough to observe that the automorphisms of r(^) and TPy/r(^) induced by h1 ho~1

are orientation preserving and that hho'1 is orientation preserving.
In the case T^h'ho~l)\^^) is orientation reversing, we choose a representative

/: (N, x) --> (P,J^) of w^ and local coordinates such that / has the form (5.8) (which
we may do by Theorem (5.10) and the remark following it). It is easily seen that
r(/) = r(-e) is the subset of TPy defined by dy^==... == dy^= dy^ ̂ =... == dy^== o. The
hypothesis that dimT(^)>o implies that c<r. If we define h^ and h[ by

x^oh^==x^ i^^^ i+c+i
=—x^ i==c+i

^0^=^., i<:i<:p, i 4=^+1
==—^0 z = ^ + i

then it follows from the fact that/has the form (5.8) that h[ofoh^l=f, and therefore
that ^i,^)^"1'1^^^. To see that ^o'S^o"1) is in the same component of ^ft(p+l)

as <Ai, ^>, it is enough to observe that the automorphisms of r(^) that h[ and h' ho~1

induce are both orientation reversing, that the automorphisms of TPy/T(-s) that h[ and
h'ho~1 induce are both orientation preserving, and that the automorphisms ofTN^ that h^
and hho~1 induce are both orientation reversing.

6. Proof of theorem A in general.

In this section, we return to the general setting where S is an arbitrary finite
set of points of N, say {^, ..., A*J. We recall that Jk=J^x... Xj^, where J^ denotes
the set of A;-jets of C00 map-germs (N, x,) -- (P,jQ. Similarly Jf^=Jf^X... XJT^,
^ == j^ x. .. X ̂  and the actions of these groups on Jp are compatible with the product
decompositions.

For any -^ej^ we write ^=<^i, . . . ,^s>, where ^ej^. We let r(^)CTPy be
defined as in the previous section. By (1.6), if ^eJP+l then ^eSt^^ if and only if
each ^eSt?4'1 and r(^), . . . ,T(^) have regular intersection in TPy.

By the remarks in § 4, it is enough to show (4.1) in order to prove Theorem A.
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To this end, we consider w, ̂ eSt2^1 and suppose w and ^ are in the same orbit ofjf^1.
For i^i^s, we let W, denote the set of all ^'eSt^nJf?4'1^ such that T(^')=T(^).

Lemma (6 .1 ) .—There exists (hyh^e^/Q such that, for i^i<:s, ^h,, h'^^^w, is
in the arcwise connected component of W^ which contains ^.

Proof. — Let F be the dual of TPy (considered as an R-vector space); let E^CF
denote the annihilator of r(^), and let E.'CF denote the annihilator of r(^). Since
r(^), .... r(^) have regular intersection (by (1.6)) the sum Ei+ . .. + Eg is a direct sum.
Similarly the sum E[ +... + E^ is a direct sum. Furthermore, since ^ and w, are in
the same orbit of ^^+1 (by Theorem A in the case S is a point), it follows that E^ and E '̂
have the same dimension. Hence there exists an automorphism L : F—^F such that
L(E,)=E,', i<_i<,s. Let h[: (P,j/) -^ (P,j^) be such that Th[: TPy -> TPy is the dual
of L, and let w^h^-^^w. From L(E,)=E^ it follows that T(^.)=T^(T(^))=T(<:,).

Note that we may assume that for each i, i^i^s, j&>dim T(^)>O. In the case
dim r(^) =p, we have that ^ is the jet of a submersion, so it suffices to prove the lemma
for S^={^, .. ., x^ . . ., Xg} in place of S. Then we may assume that ^>r(^) for
all i. Using this assumption we see that if dimr(^)=o for some z, the hypothesis
that T(^), . . . ,r(^) have regular intersection implies that ^ is the only point in S$
thus, we see that the problem reduces to the case when S is a point.

Now we assume j&>dim r(^)>o. Clearly w\ eW,. Therefore the number a(w^ ^)
of Lemma (5.11) is defined; we may choose an automorphism Lo of F such that
Lo(E^)=E^ and L o [ E ^ : E ^ — ^ E ^ is orientation preserving or reversing according to
whether a(w^ ^) is 4-1 or — i -

Let h'Q : (P,j^) --> (P,j;) be such that TAo : TPy -> TPy is the dual of Lo. Then
TAo(r(^))=T(^) and the automorphism of TPy/r(^) which h^ induces is orientation
preserving or orientation reversing according to whether CT(^,^)==+I or — i .

Hence, by Lemma (5. n), we may choose h,e^ such that <A,, Ao^4'1^ is in the
same connected component of W, as ^. Let h==^h^y ..., Ag>E^ and let h' ==Aoo^ejSf.
Then < A, h' > e j^ and

<^,A'>^+l)^=<A„Ao>(p+l)^

is in the same connected component of W^ as ^, which proves the lemma.
Now we may complete the proof of Theorem A, or rather of (4.1)3 which as we

have seen, implies Theorem A. By Lemma (6.1), we may suppose that for each z,
w^ is in the arcwise connected component of W^ which contains ^. Let y^ : [o, i] -> W^
be a continuous mapping such that ^^o)=w^ and Y^.(i)==^., for i^i<^s. Let
Y : [o, i] ->J^+1 be defined by Y^^Y^)^.]?4'1. By Lemma (4.2) it is sufficient to
show that ^(t)e^+l^r\Stp+l for all ^e[o, i], in order to show that w=^{o) and
^=Y( i ) are in the same orbit of ^^+1. But it follows from the definition of W^ that
y^e^T4'1^; hence y^)6^4'1^- ^so by the definition of W,, Y(^Stf+1 and
"^T^i)? • • • 5 T ( Y ( ^ s ) have regular intersection in TPy (since T(Y(^)==T(^.)) ; hence by
Proposition (1.6), y^)6^4-1.
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This shows that w and ^ are in the same orbit of ̂ +1 and therefore (by (4.1))
completes the proof of Theorem A.

7. Proof of theorem B.

We begin defining the number pi, (A), whose existence was asserted in the intro-
duction. Let A denote the quotient of a formal power series ring over R:

C7-i ) A=R[[^,...^J]/(/,...,/).

Let C<,L(A), where (.(A) is the number defined in the introduction. We may suppose
that the representation (7. i) of A as the quotient of a formal power-series ring is chosen
so that c==a—b. Let Y denote the A-submodule of A6 generated by the canonical
image of

^ ^U ^A.
n^3---5^/^,,^ l n A-

We set

^(^dim^/Y.

Theorem (7.2). — The number pi,(A) depends only on c and A, not on the particular choice
of presentation (7.1). Furthermore if f: (N, x) --> (P,j/) is a G00 map-germ, then

^{W))=d(f^).

Proof. — The latter sentence is obvious from the definitions and Nakayama's lemma.
To prove the first sentence, we consider a second presentation of A:

(7- 1 ) ' A=R[K,... ,<,]]/(//,... ,/^),

where we assume that a'— V=c. We carry out the proof in two steps: first, we suppose
a = a' and b = V ; then we give the proof in general. Let Y' be the A-submodule of A6

defined in the same way as Y except with/' in place off, and x[ in place of^. From the
assumption that a=^a' and (7.1) and (7. i)' it follows that there exists an isomorphism

cp:R[[^, ...,<]]-^R[k,...,^]]
mapping the ideal generated by//, ...,/' onto the ideal generated by/, ...,/. Such
an isomorphism is necessarily given by a (< substitution 3? ^==^(^, . . . , A ; J ; thus,
setting ^cp^), we have &(^, . . ., ^)==/'(^, . . . ,^); by the " chain rule "

^^^.
Sx, j ^Xj dx, 9

thus ¥' is the submodule of A6 generated by the canonical image of

1^ ^\l ^^
^^5•>•^^/^... . , . l n A -
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From the fact that /i,...,/ and ^i , . . . ,^ generate the same ideal in
R[[^, . . . ,A;J] it follows that there exists an invertible matrix ([jiy) with entries in
R[|)VI, . . ., x^]] such that /=S(Ji^.. Hence letting 9 : A^A6 be the A-module
automorphism given by

cp(^)=S^.,

(where s^==<o, . .., o, i, o, . . ., o>, with the i appearing in the z-th place), we see

cp(Y')=T,

which completes the proof in case a==a\ b==b\
For the proof in general, we may suppose a^ a ' . By what we have just shown,

it is enough to show that for a given presentation of the form (7.1) there is one presen-
tation of the form (y . i ) ' which gives the same value of ^(A). Let the presentation
of the form (7.1)' be given by x,=x^ i^i^a, //=/, i<:i<,b, /'=^_^, b<i^b\
Then it is trivial to verify that these two presentations give the same value of ^(A).

Proof of Theorem B. — ec Only if " is clear. We show <( if ". Let m denote the
maximal ideal of A, and let a=dim^{mlm2). Our first step is to show a<_n. There
is a representation of A in the form (7.1); since a^dim^m/m2), we necessarily have
/i, . . .,j^em2. The hypothesis that ^{A)^n—p implies that we can choose b so that
a—b==n—p. Clearly dim^TnA^^A6)^^; on the other hand, it follows from the
definition of T that dim^y+Tn'A^/m'A6)^. It follows that

(^-I)T^_,(A)=^_,(A)^.

Now suppose a<,n is not satisfied. Then a>^n-\-i, b>^p+i, so we have

^+i)-<(^-i)^A
which is evidently impossible. Hence a<_n.

Now we set a=n—r, where T\>O. Then b=p—r. We write the presenta-
tion (7.1) of A in the form

(7-3) A»R[[^+i, ...,<|]/(^, ...,^-,).

It follows from (III, (3.5)) (applied in the case y=^) that we can take ^, . . ., ^,_,
to be polynomials. It is then easily seen that ^=<^, . . ., q^_^ satisfies the hypotheses
we imposed on q in order to obtain the canonical form (5.8); moreover:

^)=^-p(A)-0&-r),

so the hypothesis that ^_p(A)^ implies that c[q)<,r. Hence we can find ^, . . ., v,
as required to obtain a stable/in the form (5.8) (cf. Lemma (5.9)). For/in this form,
we clearly have Q^(y)»A, which completes the proof of Theorem B.

It is clear that if /: (N, x) --> (P,j/) is stable, then

(*) ^(/,jr)=dim^(TP,/T(/)).
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With this remark, Theorem B, and Proposition (1.6), it is easy to show the addendum.
" Only if " is immediate. To show < ( if " we observe first that we can choose stable
fi: (N, Xi) --> (P,J^) such that A,wQ,(^) by Theorem B. By the second inequality
that we assumed in the proposition and (*), we can choose the^ so that r(^), . . ., rQ/g)
have regular intersection in TPy. By Proposition (1.6) this implies that f: (N, S) - -> (P,j^)
(defined by /[(N, ^)=/D is stable.
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