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STABILITY OF C” MAPPINGS, IV :
CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS

by Joun N. MATHER

INTRODUCTION

Let f:(N,S) -~ (P,») be a germ of a G* mapping, where S is a finite subset
of N and yeP. (We assume that N and P are finite dimensional manifolds.)

Let the ring homomorphism f*:C,—Cs be defined as in III (i.e., Stability
of C* Mappings, IIT),§ 1, (1.11). Thus, Ggis the R-algebra of germs at S of C* functions
(i.e. C* mappings into R) on N, and f* is given by f*(u)=uof. Let (of, tf, A, B, 0(f))
be as defined in I11, § 3, (3. 3) et (3.4) ; that is to say, let A denote the C -module of germs at »
of C” vector fields on P, let B denote the Cg-module of germs at S of C* vector fields
on N, let 0(f) denote the Cg-module of germs at S of C* vector fields along f, and
let of: A—>0(f) and ¢f:B—6(f) be given by of(n)=mnof and if(£)="TLfoL.

We say that f is infinitesimally stable if

(1) of (A)+ ¢ (B)=0(f).

This is the notion for germs corresponding to the notion of infinitesimal stability of
mappings that we introduced in II. In a later paper, we will define the notion of a
stable germ and show that if is equivalent to the notion of an infinitesimally stable germ.
However, for the purposes of this paper, we will take ¢ stable > as a shorthand expression
for ¢ infinitesimally stable .

The problem that we consider in this paper is to classify stable germs up to isomor-
plasm.  If f': (N, S")—> (P", ") is a second C® map-germ, we say f and f* are isomorphic
if there exist invertible G* map-germs £ : (N, S) - (N, 8’) and 4" : (P,») —> (P’, ')
such that f'=#'fh~!'. The main result reduces the problem of classifying stable germs
up to isomorphism to a problem of classifying certain finite dimensional R-algebras up
to isomorphism.

We define the following R-algebras:

Q(f)=Cs/f*(m,)Cs,
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224 JOHN N. MATHER

where m, denotes the unique maximal ideal in C,:

Q. (f)=Q(f)m"*1,

where m denotes the intersection of the maximal ideals in Q (f) (which is a semi-local
ring, i.e. has only finitely many maximal ideals); and

Q(f)=lim Q,(f).
Clearly, if f and f’ are isomorphic, then Q (f) is isomorphic as an R-algebra

to Q (f"), and similarly for Q, and Q in place of Q. The main result is that the converse
is true for stable map-germs. ’
Let x;, ..., x, be the distinct points of S and let x;, ..., x,, be the distinct points
of 8'. Let fi=f|(N,x):(N,x)—->(P,») and define f; similarly. Let n; (resp. n})
denote the dimension of N at x; (resp. of N’ at x;), p (resp. p’) the dimension of P
at y (resp. P’ at y').
Theorem A. — Suppose that [ and f' are stable, that s=s', p=p’, n,=n, and that
(for 1<i<s) there is an isomorphism
(2) Qp+1(fi) ® Qprs(f)
of R-algebras. Then f is isomorphic to f'. Moreover we can choose invertible G*° map-germs
h:(N,S)—»> (N, S) and &' : (P,p) —> (P’,)') not only so that f'=Hh fh~*, but also so that
h(x) =z, for 1<i<s.
The hypothesis that f and f’ are stable is essential: consider for example the two
map-germs f, f': (R2 o) —> (R% 0) given by
fx,9) =<{x,°+ 2>
S (%) =<%">
then Q;5(f) » Qs(f) # RIDII()-
On the other hand f is stable and f” is not (as we will show in (1.9)); hence f is

not isomorphic to f'. (It is trivial to verify that if f and f* are isomorphic and f is stable,
then so is f".)

The rings Q,(f) and Q (f) can be described explicitly. The canonical decompo-
sition of Cg into a Cartesian product

Cy=C, x...xGC,

(where x,, ..., x, are the distinct points of S) gives rise to a canonical decomposition
of Q(f) into a Cartesian product

(3) Q) = QU)X - xQ(f),

where f;=f|(N, x,) : (N, x,) —> (P, »). This, in turn, gives rise to canonical decompo-
sitions of Q,(f) and Q (f) into Cartesian products.
Thus to describe Q ,(f) and Q(f ) it suffices to consider the case when S is a point,
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 225

say x. Let x, ..., x, be a local system of coordinates for N, null at x and let y,, ..., 5,
be a local system of coordinates for P, null at . The natural isomorphism
Co/m; 2 R[x;, ..., ]} m*!

(where m, denotes the unique maximal ideal of C, and n denotes the unique maximal
ideal of R[[x]]=R[[x,, ..., x,]]) gives rise to a natural isomorphism of Q,(f) with
the quotient of R[[x]]/n**' by the ideal generated by the canonical images of
S ), - f*(9,). Since the canonical image of f*(y,) in R[[x]]/n*** depends only on
the £-jet of f at x, we obtain that Q) ,(f) depends only on this £-jet. This still holds in
the general case, when S is not necessarily a point. Thus it follows from theorem A
that a stable map-germ is (p+1)-determined. Actually this result will be a step in the
proof of theorem A. Note that Q,(f) is finite dimensional as an R-algebra.
The natural isomorphism described above gives rise to a natural isomorphism

(4) Q) AR, o, K], - 7 (2))-

The proof of Theorem A will be finished in § 6. In the last section (§ 7) we will
consider the problem of characterizing the R-algebras that come from stable mappings.
We will characterize the R-algebras which are isomorphic to Qf ) for some stable
f:(N,S)-> (P,»). (By Theorem A, the isomorphism type of Q (f) determines that
of f (for f stable), since it determines that of the Q. ,(f).)

We begin by considering the case when S is a single point x. For any quotient
of a formal power series ring over R:

AZR[[xl: s xa]]/S;

we define 1(A) as a—b, where b is the minimum number of elements in a set of
generators of J. Note that 1(A) depends only on the R-algebra structure on A; it is
independent of the particular representation of A as a quotient of a formal power series
ring. This may be shown in the same way as we show in § 7 that p,(A) depends
only on A and not on the presentation of A as a quotient of a formal power series ring.
Clearly

(6) (Q(f))zn—p

where n=dim N, p=dim P, whether f: (N, x) —> (P,») is stable or not.

Let A be a quotient of a formal power series ring over R and let ¢ be an integer
which is less than or equal to ((A). Then there is a unique number p,(A) (which may
be a non-negative integer or o) with the following property. For any C* map-germ
f:(N,x) —> (P,») such that c=dim N—dim P and Q(f)~A, we have
(7) w(A)=d(f, ),

where d(f, ") is as defined in III, (3.5). (See Theorem (7.2)).
Theorem B. — Let n and p be given positive integers and let A be the quotient of a formal
power series ring over R.  Then there exists a stable C* map-germ f: (N, x) —> (P, »), with
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226 JOHN N. MATHER

dimN=n, dimP=p, and AxQ(f) if and only if (6) is satisfied for A in place
of Q(f), and
(8) tn—p(A) <P

More generally, we have:

Addendum. — Let n,, ..., n, and p be given positive integers. Let A, ..., A, be
quotients of formal power series rings. Then there exists a stable C* map-germ
S+ (N,S) -~ (P, ») such that S is a set with s points x,, ..., ¥,, the dimension of N at x,

is n,, dimP=p, and A;xQ(f,) if and only if
(Q ) Zn—p
and ‘ .Elun,-_p(Q(ﬁ))Sp, 1<i<s.

The proof of Theorem B and its addendum is relatively easy. It is carried out
in § 7.

The number p.n_pQ(f) (defined for a C® map-germ f: (N, x) —> (P, »)) can be
interpreted in terms of the action of the group #* on J* (defined in III, § 3), for £ suffi-
ciently large. First, since ;Ln_pQ( f)=d(f,A), saying that y.,,_pQ( f) is finite is the same
as saying that f is finitely determined relative to 4" (by III, Theorem (3.5)). Suppose
that p.,,_pQ (f) is finite and that f'is k-determined relative to.#". Then we have two results.
First, if £ : (N, ) —> (P, ») is a second C* map-germ, then Q (f)~Q (f") if and only
if f® (i.e., the k-jet of f at x) is in the same orbit as f"*® under the action of ™ on J*
(by Theorem (2.1) and III, (2.3)). Second, the codimension, relative to J*, of the
orbit of f® under the action of 2™ is given by the formula:

(9) codim o*. fB=p, O (f)+n—p;

except in the trivial case when f is a submersion (by Theorem (2.5) and formula (7)
above). This formula shows that (8) is equivalent to saying that the codimension of
the o *-orbit which corresponds to A is <n.

The theory we develop in this paper permits us to find a ¢ normal form ” for a
stable C* map-germ; see the remark following Theorem (5.10).

Our results are still valid if ¢ G® ” is replaced throughout by “ real analytic
or if “ G® ” is replaced throughout by “ complex analytic ”
replaced throughout by «“ C-algebra ”’

bl
3

and ¢ R-algebra ” is

1. Conditions for a C* map-germ to be stable.

Let f:(N,S)-» (P, ») bea C® map-germ, where S is a finite subset of N and yeP.
(We consider the general case when the dimension of N may vary from point to point
of S.)
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 227
Proposition (x.x). — f is stable if and only if
(*) i (B) + oof (A) +(f*(m,) + m§+H)0(f) =8(f).

Progf. — 1t suffices to show that () implies «wf(A)4#(B)=0(f). But thisis an
immediate consequence of IIT (1.13).

Corollary. — Whether f is stable depends only on the (p —+1)-jet of f.

Let x,, ..., x, denote the distinct points of S and let fi=f| (N, x;) : (N, x;) -> (P, »).
Clearly if f'is stable, then f; is stable. Conversely, we want to know: assuming f;, ..., f,
are stable, under what conditions is f also stable?

Definition (x.3). — We set

T(f) =ev,((f) (£ (m,)8(f)) + #:(B)),

where B; denotes the set of germs at x; of G vector fields on N, and ev,: A—TP, is defined
by ev,(n)=2(»).

This definition makes sense, because wf; maps A into 6( f;) and #f; maps B, into 6(f).
Then 7(f;) is an R-vector subspace of TP,.

There is a simple geometric interpretation of ©(f;), when f; is stable. We will
not use it at all, but it may help to motivate some of the arguments. Let £ be a repre-
sentative of f;, so f; is a C* mapping of a neighborhood U of x; into P. Let L be the
set of all xeU such that the germ of Fatxis isomorphic to the germ of fiatx,. ThenL
is a submanifold and tf~1|L : L—>P is an immersion (except in the trivial case when f;
is of rank p at x;). Hence, if U is taken small enough, tﬁ(L) is a submanifold of P.
Then <(f,) is precisely the tangent space at y to tﬁ(L)

Note that =(f;) CTf(TN,,), but is not generally equal to it.

Definition (x.4). — Let E,, ..., E, be vector subspaces of a finite dimensional vector
space ¥. We will say E,, ..., E, have regular intersection (with respect to F) if

codim (E;n...nE,)=codim E, 4 ... 4 codim E,

(where codim denctes the codimension in F).
Lemma (x.5). — E,, ..., E, have regular intersection tf and only if the natural mapping

F— (FIE)®...®(F[E,)
s surjective.
Proof. — The kernel of this mapping is E;n...nE,, so the lemma follows from
comparison of dimensions.
Proposition (x.6). — f s stable if and only if each f; is stable and <(f,), ..., ©(f,) have
regular intersection with respect to TP,.
Proof. — of : A—>6(f) induces a mapping

of : TR,=Afm,A > 6(f)/(f*(m,)0(f) +¢(B) = D 6(£) /(£ (m,)0(f) +H(B).
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228 JOHN N. MATHER

It follows from (1.1) and the definition of stability that f is stable if and only i wf is
surjective. Similarly «f;: A—>0(f,) induces

of;r TR, > 8(£) /(£ (m)0(f) + #:(B)),
and f; is stable if and only if «f; is surjective. Furthermore

a) of(n)=wfi(n)®. .. Oaf(n)

for any neTP,. Hence if wf is surjective then each wf; is surjective, which shows that
if f is stable, then each f; is stable.
Conversely, assume that each f; is stable. Then wf; induces an isomorphism
- *
i TR (f) = 8(/)[(fi'(m,)0(f) + #(B)
(since wf;is onto and t( f;) is the kernel of wf;, by definition). Then fis stable if and only if
(('@...@g Nowf: TP, — (TP, [x(f))®...® (TP, /(1))

e

is surjective, since ¢ '®...@¢ ' is an isomorphism. By a), this is the * natural
mapping ”’ referred to in Lemma (1.5); hence, by Lemma (1.5), fis stable if and only
if ©(f}), ..., ®(f;) have regular intersection.

Throughout the rest of this section, we will assume that S is a point x. By the
last proposition, we have practically reduced the problem of determining whether f is
stable to this case.

We can choose local coordinates #, ..., %, for N, null at x and y;, ..., , for P,

null at », such that f has the form
\yio f=1;, 1<i<r
(x.7) _ .
ldef) =0, r+1<i<p,

where d denotes the differential and r is the rank of f at x. For choose the
coordinates 3, ...,J, such that d@y|E, ..., dy|E are linearly independent and
dy,.|E=...=dy|E=o0, where E=Tf(TN,). Then the second condition is satisfied.
Set x;=yp;of, 1<i<r. Then dx, ..., dx, are linearly independent at x, so x, ..., x,
extends to a local system of coordinates x,, ..., x,, null at x. These give the desired
systems of coordinates.

For fin the form (1.7), we will set fi=y,0f, r+1<i<p. The mapping #fis given

2 2 ®o(of\ (@ ,
)=l 25 (5) s =i

by

Y /i

LAY )
F——] Z —J — 10 <.< .
j=r+1(3x) (6))].) S Thisisy

i

We set x=(x;,...,%) and x'=(x,, ...,%) and let &, denote the ring of
germs at o of C” functions in the variables x,,,, ..., x,. Let &Z~" denote the free
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 229

&,-module with basis ¢, ...,¢ For any ueC,, let u'e&, be defined by

s Sp—re

U (X 415 oo os %)=u(0, ..., 0, % 44, ..., %). Define ©:0(f)—> &L~ by

S+ = ol S u
T‘(i=1“itf(5;) +¢=r+1ui(5¢°f)) = i=r+1uisi—r

1,

(where the u;eC,). This definition makes sense, because &f(9/dx,), ..., tf(8/ox,),
(0/p11)ofs -+ (2]0p,)of form a free basis of 0(f), considered as a C,-module.
We will set f,=(f11,---»0) and f/=(f'yy, .-, f,). Tt is easily verified that
m(¢f (B)+/"(m,)0(f)) depends only on f,; we will denote it by Q(f). In fact Q(f))
is the &,-submodule of &2~ " generated by

P ’
{ 2 i?Jie:-_,:izr—l—l, ,n}

i=r+10x; °

and {figii=r41, ... nj=1,...,p—r1}
We let 9f denote the r-tuple <9, f, ..., 0, f), where 0,fe&?~" is defined by

14
of= I (%),

For any v=<v, ..., 0,>, where 9,e&t™", welet [v]=[v, -..,v,] denote the R-vector
subspace of &2~ " spanned by o, ...,v,. If Vis any subset of &2~7, we let V¥ denote
the image of V under the projection g, : &%~ " — &L~ "/mkF 16—, We shall denote the
last named module by &2~"®,

Proposition (x.8). — Let k>p. If f is of the form (1.7), then f is stable if and only if
(%) Q)+ 1M =m, EL~"H,

where m,, denotes the unique maximal ideal of &, .
Proof. — In any case:

Qf)¥+of 1P S m, 6277,
so (*) holds if and only if
(%) QO+ 19+ [eys - o, g, = E270,
Since
(eeo ) THQUN LN+ [ey, - - -, 5 W) = (B) + oof (A) +(f*(m,) +mFH)0(f),
(*%) holds if and only if the right hand side of the above equation is equal to 6( f), which
is equivalent to the condition that f be stable, by (1.1) and the definition of stability.
Example (1.9). — Let n<p and let f be given by
S O)=x, 1<5i<n—1
PO+ B
k

f*(.yn+i)=j§1xki+j—lx£n ISZSI’—”,
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230 JOHN N. MATHER

where 1<k<n/(p—n+1). Then f is stable. This may be checked either by
applying (1.8) or by applying (1.1) directly.
In particular the mapping f given (in the case n=p=2) by

S Od=x,  [()=x+x%
is stable, whereas the mapping given by
ST Ood=x, STn)=x

is not. This is the example mentioned in the introduction, following Theorem A.
Example (x.10). — Let n>p and let f be given by

S ) =x, 1<i<p—1
k—1
fOp=tg%. . .tx_ 0"+ B g,
iz

where 1<k<p. Then f is stable. Again this may be checked by applying (1.8) or
by applying (1.1) directly.

2. The X™ orbits-general properties.

Let the Lie group 2% the C® manifold J*, and the C® action of 4™ on J*
be defined as in III, § 7. Thus for example, J* is the set of k-jets of C*° map-
germs (N, S) -~ (P,y). Let A, denote the subgroup of £ consisting of those
H: (NxP,Sxy) —> (NxP,Sxy) in# such that H|(S xy) =identity. Let %" denote
the image of &', under the projection A —X%"* Let x,, ..., x, be the elements of S.
Let J* denote the C* manifold consisting of k-jets of map-germs (N, x,) —> (P, »). Then J*
is naturally diffeomorphic to the Cartesian product Jix...xJ¥. Similarly #7 is natu-
rally equivalent to a Cartesian product #%x...x%#™*, where #% is the group which
corresponds to ™ when S is replaced by x;. The action of #% on J* splits up into a
direct product:

<Hy, .., )<z, oo g0 =Hzy, ..., Hizd.

As a result questions concerning the structure of the orbits of 4 on J* can be reduced
to the case when S is a point.

Throughout the rest of this section, we suppose that S is a single point x.

Theorem (2.1). — Let f, f': (N, x) —> (P, y) be C* map-germs and let k be an integer > 1.
Then f® and '™ are in the same orbit under the action of ™ if and only if the R-algebras Q ,(f)
and Q,(f") are isomorphic.

Proof. — Suppose Q.(f)=~Q,(f’). Then fand f” have the same rank at x, say r.
Let x, ..., x, be a local system of coordinates for N, null at x, and y, ..., , a local
system of coordinates for P, null at . Without loss of generality, we may suppose that f
and f’ have the form (1.7). For r+1<:<n, let x; denote the image of x; in Q,(f)
under the canonical projection G(N),—Q ,(f) andlet x; denote the image of x; in Q ,(f')
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 231

under the projection C(N),—Q,(f"). Let ¢:Q,(f)=Q,(f’) be an isomorphism of

R-algebras. For r+1<:<n, we can express () as a polynomial p;(x") in %, {, ..., %,.
Define 4: (N, x) -> (N, x) by

xoh=x;, 1<:i<r
=pi(x), r+1<:i<n.

Then £ is invertible, since the fact that ¢ is an isomorphism implies that the matrix

op;
(—t) is invertible. Furthermore the following diagram commutes:
3xj r+1<i,j<n

C(N), ~ C(N)
|

proji
\

Q) * Q)
Hence, replacing /' by f'ok™', we may suppose that
Sfrm)Cot g =" (m, ) mg ™
Replacing f’ by another map-germ having the same k-jet, we may suppose that
S (m)C,=f"(m,)C,.

Then it follows from (III, Proposition (2.3), (ii) = (i)) that f and f” are in the same %-
orbit, so that f® and f'® are in the same 2 *-orbit.

Conversely, suppose f® and f® are in the same 2 ™-orbit, say f'®=H®f®,
with HeX". Then

Qi(f) = Qu(HS) = Qu(f)

where the last isomorphism is a consequence of (III, Proposition (2.3), (i) = (ii)) and
the fact that £ is the semi-direct product of # and ¥.

(2.2) It follows from Theorem (2.1) that if £, f': (N, x) —> (P,») are two C®
map-germs then f*) and '™ are in the same orbit of the action of #™ on J' if and only
if they have the same rank at x. For any integer r, sup(o,n—p)<r<n, we let X CHF
(where # denotes the set of C* map-germs f: (N, x) —> (Py), asin III, § 2), denote
the set of C* map-germs f: (N, x) -~ (P, ») having rank n—r atx. We let Z¥C]J*
denote the image of X, under the canonical projection % —J*.

The codimension of =¥ in J¥ is the same as the codimension of the set of all matrices
of rank n—r in the set of all nXp matrices. Hence:

(2.3) codim Z¥=(p—n-+1)r.

By (2.2), the sets =) are precisely the orbits of the action of ¢ on J'. This is
true in the complex case (where we consider jets of holomorphic mappings) as well as
in the real case (where we consider jets of C* mappings).
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232 JOHN N. MATHER

Next we show:
Lemma (2.4). — feF s finitely determined rel. A" if and only of the ideal

S (m)C4- T (f)

in G, contains a power of the maximal ideal, where J () denotes the ideal generated by all pXp minors
of the matrix

2(piof)

3
( axj )1_<_1'Sp,1_<_j§n

where pq, . .., , is a local system of coordinates for P, null at y, and x,, ..., x, is a local system
of coordinates for N, null at x. (Clearly J(f) is independent of the choices of coordinates.)

Proof. — By (III, (3.5) and (3.6)) the necessary and sufficient condition that f
be fin. det. rel. 2" is that there exist an integer £ such that

(*) S (m)0(f) + ¢ (B) 2 m;6(f).

Assume that (x) holds. Let u=u,...u,, where each wem;. By (), there exist a;eC,
such that

T aika(ijf)
i=1 ox;

I3

= uksjk mod f*(my)cz:

for 1<j, k<p. Since the determinant of the pXp matrix () is u, it follows that u
is congruent (mod.f*(m,)C,) to a linear combination (with coefficients in C,) of
pXp minors of the matrix (9(y;0f)/dx). Hence

S1m) G+ T (f) 2 me?.
Conversely an application of Cramer’s rule shows that

f1m)Co+J(f)2m;
implies ().
Theorem (2.5). — If feF s k-det. rel. A" and not a submersion, then

(%) d(f, #)=codim A*. f®B—n | p

where codim means the codimension in J*.
Proof. — The hypothesis that f is £ det. rel. 2" implies

S (m)0(f) + ¢ (m,B) 2 mz*16(f)

by the formula for the tangent space to an orbit of #**! (IIl, (7.4)) and Nakayama’s
lemma. Hence, the formula for the tangent space at f® to ™. f® (II1, (7.4)) yields

| . m,0(/)
COdlmfk'ﬂﬂ*dlmnf‘(my)e(f)+tf(m,B)'
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CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 233

Using this and the definition of d( f, ") (II, (3.5)), one see easily that (%) is equivalent to

dion LB+ (B)
®Fm)0(/) +f (m.B)

In other words, if £eB and
() (&) ef*(m,)0(f)+ ¢ (m,B),

then £em,B. Suppose the contrary: there exists £€B satisfying (*#) such that £¢m,B.
Then there exists E,em,B such that #f(§—&))ef*(m,)0(f). Since E—&¢m,B, we
may choose local coordinates x,,...,x, for N, null at », such that &—&;=29/0x,.
Let »,...,7, be a local system of coordinates for P, null at y. The equation
tf(0]0x,)ef"(m,)0(f) means that there exists uzem, (1<¢j<p) such that

4 2(yiof)
tf(&vl) i 0x (éﬁy1 f)

0

0
Since the (8_0 ) form a free basis of 6(f), this means
Vi

9(yiof) D
() o, =3 g2 of)-
Setting  n;(%;)= (y;of)(x;, 0, ..., 0), we obtain a system of ordinary differential
equations
dn;
Zh_y
dx, i M-

Since w;(0)=o0 the uniqueness theorem for solutions of ordinary differential equations
implies 7,(x,)=o0 for all x, near o. In other words, f maps the x, axis into o.
0(y;of)

0x,
equations for each o, 1<a<p:

Setting  m,,(x,) = (%, 0, ..., 0), we obtain a system of ordinary differential

by differentiating both sides of (%*x), by 0/dx,, and using the fact that =n,=o in a
neighborhood of x;. It follows from the theory of ordinary differential equations that
the rank of the matrix (v;,) is constant in a neighborhood of 0. But the rank of (v,,(,))
is the same as the rank of the mapping f at the point (x, 0, ..., 0).

Now suppose f is not a submersion. By what we have shown, f maps the x, axis
into o, and the rank of fis <p on the x, axis in a neighborhood of o (since it is constant
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and <p at o). Hence any element of the ideal f*(m,)C,+ J(f) vanishes on the x, axis,
which by Lemma (2.4) contradicts the hypothesis that f is fin. det. rel. .

This contradiction shows that if £eB and satisfies (#*), then £em,B, and thereby
proves the theorem.

Corollary (2.6). — If feF and geXf then d(f, X)=d(g, X).

Proof. — If fis a submersion, then g is also, and d(f, #)=d(g, #)=o0. In the
case fis not a submersion, but d( f, ) is finite, then f'is fin. det. rel. #", by (III, (3.5)),
say k-det., and g is also k-det. rel. #". Since f™ and g are in the same orbit of o#"®
the result follows from (2.5). Finallyif d(f, #")= o, then d(g, #")=co0; for otherwise g
would be finitely determined rel. ¢, and therefore f would also be finitely determined
rel. o, so by (III, (3.5)), we would have d(f, #)<co.

3. Stable map-germs are (p- 1)-determined.

Throughout this section we let f: (N, S)-- (P,y) be a stable CG*® map-germ.
We will show fis (p +1)-determined, where p=dim P. More precisely, we will show
that fis (p +1)-det. rel. /¥, where o## is defined as %¥x %% where %* is the set of all
invertible G* map-germs 4 : (N, S) —> (N, S) such that k|S =identity and % is orien-
tation preserving in a neighborhood of each point of S, and ## is the set of all invertible
orientation preserving map-germs 4 : (P, ») —> (P, ). Clearly o/%c.o/. Letting o/¥
denote the image of 7% under the canonical projection .o —.o7* one sees easily that .o/#
is precisely the connected component of 2/* containing the identity.

To prove that fis (p+1)-determined, we need only consider jets of finite order,
since we already know that f is finitely determined (III, (3.7)). We need:

Lemma (3.1). — Let oo : GXU—U be a C® action of a Lie group G on a G manifold U,
and let V be a connected C* submanifold of U.  Then necessary and sufficient conditions for V to be
contained in a single orbit of o are that:

a) T(Gv),2TV,, if veV.

b) dim T(Guv), is independent of choice of veV.

Necessity is trivial.

Condition a) by itself is not enough for sufficiency. For example, let G be the
subgroup of GL(2, R) consisting of all linear transformations of the x, » plane into
itself which leave the x-axis invariant. Let U=R? and let « be the canonical action
of G on U (given by the inclusion of G in GL(2, R)). Let V be the subset of R? defined
by y=2x% Then a) is satisfied, but V is not contained in an orbit.

Now we prove sufficiency. For each veU, let «,: G—>U be defined by
o,(g)=a(g,v). Let TG, denote the tangent space to G at the identity. From
T, (T,G)=T,(Gv), it follows that a) and &) are equivalent to:

a') Ta,(T,G)2T,V, if veV.

b') dim T, (T,;G) is independent of the choice of veV.
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Provide T,G with a Hilbert norm and for each veV, let L, be the orthogonal
complement of ker(T«,: TG - T,V) in T,G. Let LcVxT,G be oyv (vx L,).

By 5'), L is a sub-vector bundle over V of VXT,G. Let
L= U ((T«)"Y(T,V)nL,).

vEV
By a’), L, is a sub-vector bundle over V of L and the mapping ULEJV(T%) :Ly—>TV is

an isomorphism of C” vector bundles. Let £ :TV—L, be the inverse of this mapping
and let ©:VXT,G— T,G denote the projection. Then nof:TV - T,G is a C?
mapping and

Tay(wop(n))=x, for any 7eT,V.

To prove that V is contained in a single orbit of V it is enough to show that any
two points v, v, of V are contained in the same orbit. Since V is connected there is a
smooth curve y in V with »; and v, as endpoints, i.e. a C* mapping ¥ : [0, 1]—V such
that y(o)=v, and y(1)=uv,. Itisenough to show that for any fe[o, 1], thereisan >0
such that if f—e<t<{4¢ then vy(¢) is contained in the same orbit as vy(Z,).

Let y'(t)eT,,V denote the derivative of y(¢) with respect to #. Let

X(t)=moB(y'(¢))eT,G.
Clearly X(¢) is a C® function of ¢ and
‘) T, , (X(0)=v'(0),

by d). From the existence theory for ordinary differential equations it follows that
there exists a curve tp(t) in G (defined for #,—<<¢<{f,+e¢ for a suitable €>0) such
that p(f{)=1 and

d.(t) %
Ny 7:—!—}(:(@(0):
where X, is the unique right invariant vector field on G which extends X(#).

To prove the lemma, it suffices to show that w(t)~'y(¢)=v(¢) for t)—e<t<t)+e,
since this implies that y(¢) is in the same orbit as y(#,) for all ¢ within this range. Using
the obvious abbreviations, we have:

d d w(2)

d
207 Y0) = 2 (O () + w07 Zx(®) =+ u(®) " (— L e0 70 + %Y(‘))'

By f) and the fact that )Nit is right invariant, the quantity inside the brackets becomes
— X)) +v'(0).

d
By ¢), this is o. Hence Zt(pt(t)"y(l))=o. Since u(f,)=1, this shows that

w®) "'y ()=v(%) for #,—e<t<i+e, and thereby completes the proof.
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In our application of Lemma (3.1), it will be unnecessary to verify condition 5),
by the following corollary. By a G-space (where G is a Lie group) we will mean a C*
manifold U, together with a G action of G on U. By a G-submersion f:U—-U’' of
G-spaces, we mean a C” submersion such that

flgu)=gf(u), for geG, ueU.

Corollary (3.2). — Let f: U—U’ be a G-submersion, let u'eU’, and let V:f“(u’).
Suppose V is connected.  Then the necessary and sufficient condition for V to be contained in a single
orbit of G is that ((3.1), a)) be satisfied.

Proof. — Since f'is a submersion V is a submanifold, so that ((3.1), a)) makes sense.
Necessity is clear. On the other hand ((3.1), 4)) implies

dim T(Gv),=dim TV, +dim T(G«'),,,

for any veV. The right hand side is clearly independent of the choice of veV; hence,
the conclusion follows from Lemma (3.1).

Now let’s see what we have to do to show that fis (p+1)-det. rel. oZ¥. First,
we know that fis fin. det. rel. o7, (by III, (3.7)); hence it is finitely determined rel. o/¥
(since o7, c/¥). Say itis [-det. rel. &%, Let V=="1(f?Y) where = :J'—JP+! is
the projection. Since f'is [-determined, it is enough to show that V is in a single orbit
of the action of .&7# on J.

By Corollary (3.2), it is enough to show that

T(o%.0),2TV,
for all »eV. Using the formula (III, (7.4)) for the tangent space to .o/'v (which is

the same as the tangent space to o/#y, since «/# is open in '), we see that the above
inclusion is equivalent to the inclusion

(3-3) wg(m,A)+tg(mgB) +ms"'0(g) 2mE*0(g),

where g: (N, S)-> (P,») is any representative for .

The argument that we have just given shows that in order to prove that f is
(p+1)-det. rel. /% it suffices to show that (3.3) is satisfied for any geZ# having the
same (p-+1)-jet as f. We now show that this is the case.

First, we remark that such a g is stable by (1.1). Since

wg(m,A) Cg'(m,)0(g),
the fact that g is stable implies

codim (#g(B) + g"(m,)0(g)) < codim (¢g(B) + wg(m,A)) <p,
where codim means the codimension in 0(g). By (III, (1.6)), it follows that
m§6(g) Cig(B)+£"(m,)8(g).
Multiplying both sides of this equation by mg, we obtain
(%) m§*160(g) Cig(msB) +g°(m,)B(g).
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On the other hand, the fact that g is stable implies
(3-4) tg(msB) + wg(m,A) =ig(msB) 4 g"(m,)0(g).
To show this, it is enough to show that g"(m,)0(g) is in the left hand side. But:
£'(m,)0(g) = g'(m,) (wg(A) + 1g(B)) = wg(m,A) + g(g"(m,)B),
which gives the desired result.
Now (3.3) follows from (%) and (3.4), which completes the proof of the following:
Proposition (3.5). — If f is stable then f is (p -+1)-determined rel. <%,

We conclude this section by remarking that (3.4) and the formulas for the tangent
spaces at f¥ of #'f" and o/'f" (see III, (7.4)) imply that

T(A2),=T (%),

where z=/", in other words, that the orbits of #” and /¥ through f" have the same
dimension. Since ¥ Cx”? this yields:

Lemma (3.6). — /%0 is an open subset of A f® (where we assume, as always in this
section, that f is stable).

4- Reduction of theorem A to a result about jets.

Let zeJ', where [>p-+1 and let feZ be a representative of z. It follows from
proposition (1.1) that whether f is stable depends only on z. We will say z is stable
if fis. We let St' denote the set of all stable jets in J'.

From Proposition (1.1) it follows that J'—St' is a closed algebraic subset of J.
In other words, choosing local coordinates y', ..., »? for P, null at », and for each i,
(1<i<|S|) choosing local coordinates xy, ..., 4 for N, null at x; (where #,, ..., x,
are the points of S), J'—St' is the set of zeros of a family of polynomials in {y, ,},
where {}, ,} is the global system of coordinates for J' defined by

dl°l(yiof)
W (%)

)’(J;‘),m(f) =

Let A7} be defined as in the beginning of § 2. Let £, denote the group of invertible
C® map-germs h: (N, S) —> (N, S) such that k|S=identity. Let &/ =%,x¥CA
and let &7, denote the image of &/, under the projection &/ — o/,

In proving Theorem A, we may assume, without loss of generality, that N=N’,
P=P, y=y and x=x; for 1<:i<s.

In this case it follows from Theorem (2.1) that the hypothesis that

Qi 1(f) ®Qpia(fi)  (for 1<i<ys)

is equivalent to assuming thatf®*! and f®*Y are in the same orbit under
the action of # %', By our remarks above, the hypothesis that f and f' are stable is
equivalent to assuming that f®+! and f'P*1) are stable. Finally it follows from Propo-

537



238 JOHN N. MATHER

sition (3.5) that the conclusion of Theorem A is equivalent saying that fP*%) and f'?+1)
are in the same orbit under the action of &Z2**. Since St?*! is invariant under the
action of &%, it follows from these remarks that Theorem A is equivalent to:

(4.-1) AT z=HPt 2AStPTY,  for any zeStPt.

Thus to prove Theorem A, it suffices to prove (4.1). As a start, we have:

Lemma (4.2). — If zeStP*tY, then oZ8% 1z is open and closed in A1z StPHEL

Proof. — Consider the partition of #?+t'znSt?*! into orbits under the action
of Z/2*1, Since Z#PHUC /21 it follows from Lemma (3.6) that each member of this
partition is open. Taking complements, one obtains that each member is also closed.

Remark. — Everything that we have done up to now works (with neither more nor
less difficulty) in the complex case (where the symbol “ C” ” is replaced throughout
by the word ¢ holomorphic > or ¢ complex analytic ’, and the symbol ¢“ R ” is replaced
throughout by the symbol ¢ G *’). In contrast, the proof of Theorem A is much easier
in the complex case. For in the complex case, the group #?* 'is connected. Since #3*!
is a complex analytic group, J?*!is a complex analytic manifold, and the action of #?*!
on JP*1is holomorphic, it follows that # 2z is a connected complex analytic submanifold
of JP+L Since JP*!'—StPt! is a closed algebraic subset of J?*!) it follows that
HPT1z—StP+1 is a closed analytic subvariety of #2+'z. Furthermore #?*1!z;—StP+?!
is a proper subvariety of # 2 %'z, provided z is stable (since in this case z is not contained
in this subvariety). Since the complement of any proper closed complex analytic
subvariety of a connected complex analytic manifold is connected, it follows that
APz StPT! is connected, if zeSt?T!. Thus (4.1) follows from Lemma (4.2), which
completes the proof of Theorem A in the complex analytic case.

5. Proof of theorem A in case S is a point.

Throughout this section, we will suppose that S is a point, say x.

By the remarks in § 4, it is enough to show (4.1). Note that in the case S=x,
we have &= and A=A .

Let x,, ..., x, be local coordinates for N, null at x, and y,, ..., », local coordinates
for P, null at y. Let A, denote the set of all z€J?*! such that there is a representative
f:(N,x)-=> (P,») of z of the form (1.%).

Fix zeJ?*! throughout this section and let r=rank z=rank (at x) of the repre-
sentative f of z. Clearly any &/?*! orbit of z intersects A,; hence to show (4.1), it is
enough to consider points of A,.

Let A: A, - m2&2~"®+1 be defined by

)\(f(p-# 1)) — (f.')(p+1),

for any f of the form (1.7). (Here, we are using the notation which we introduced
in § 1 following (1.7). We shall continue to use this notation throughout the rest of

538



CLASSIFICATION OF STABLE GERMS BY R-ALGEBRAS 239

this proof.) Let V=X4"7*1zn A, and let V'=%A(V). To prove (4.1) it is enough to
show

(5-1) VAaStPtica?tly,  for any veVnaStP+h

Let D denote the set of all rx(p—r) matrices with entries in m, /m2™*. If f has
the form (1.7), we let (9f)PeD denote the rx(p—r) matrix whose (7,)-th entry is

(& fox)®  (1<i<r, 1<j<p—1).

Note that the i-th row of the matrix (9f)® can be regarded as a member of
m, &%~ " ) since it is a (p—r)-tuple of elements of m,, /mP*1. Assuch, itis equalto (9, f)*
(as defined in § 1, following (1.7)). In particular it follows that

(5-2) [(2f)"]=[2f1",

where the left hand side denotes the R-vector subspace of m, &2~ " spanned by the
rows of the matrix (9f)™, and the right hand side is as in Proposition (1.8).
For any weA,, let dweD be defined as (9f)?), where f is any representative
of w of the form (1.7). Clearly ow is independent of the choice of representative f.
In this section, we will say that a continuous mapping ¢ : X—Y is #rivial if there
exists a homeomorphism #: XY x R*, for a suitable non-negative integer £, such that
the following diagram commutes:

h
X &~ YxR*
[ proj.

Y

It is easily seen that the mapping
(MO A, — mi,é”;’,—fy(p+1)xp

is trivial: in terms of the Taylor series expansion (to order p-+1) of weA,, A(w) picks
out certain coefficients, and 9(w) picks out others.

It is easily seen that V=2"'V’. Forif veA, and aweV’, then there exists v’eV
such that A'=2av. It is easily seen that Av'=iv implies Q (v) ~ Q (v') (where for
any we]', Q (w) denotes Q,(g) for any representative g of w). Thus » and 2’ are in
the same #P*!-orbit, by Theorem (2.1). Since »'€V, this implies veV.

It follows that the mapping

(5-3) (Y| V:VsV'XD
is trivial,

Let v’eV’. Choose veV such that A(v)=0" and f of the form (1.%) such that
p=f"+1  Set

Q@)=0(f)",
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where the right hand side is defined as in the paragraphs preceeding Proposition (1.8).
Note that Q(v') depends only on o'. For it follows from zeSt?*! pef?+lz, and
Corollary (2.6), that for a suitable representative f of v, we have d(f, #)<p. Then

(%) mg &L CQ(f]).

Since this inclusion is true for one representative f of v (in the form (1.7%)), it is true for
every such representative (by Nakayama’s lemma). With the aid of this inclusion, one
sees that the fact that Q (") depends only on o’ follows immediately from the definitions.

By definition Q(v") is an R-vector subspace of m, &2~ "), Its dimension is inde-
pendent of the choice of »’eV’. For, from the inclusion (%), it follows that the
codimension of Q(z') in m, &2~ " is equal to the codimension of Q(f’) in m, &2,
which (by the definitions) is equal to d(f, #)—(p —r). Then the fact that this number
is independent of the choices made (including the choice of »'eV’) follows from
Corollary (2.6).

In computing this number, we may take f as a representative of z, since d(f, #’)
is independent of the choice of fin a given & orbit. Since zeSt?*?') fis stable; hence f
is (p+1)-determined (by § 3); hence writing

(5-4) ¢(z) =codim APtz —n+tr

(where codim means codimension in J¥) we obtain that Q(v') has codimension ¢(z), by
Theorem (2.5). Hence, letting G denote the Grassmannian of ¢(z)-codimensional
vector subspaces of m, &%~ ") we see that we have defined a mapping

Q:V' >G.

This mapping is clearly continuous.
Let veV. By Proposition (1.8) the necessary and sufficient condition that veSt?*!
is that

(5-5) Q (W) - [90] = m,, 2",
Clearly, the set of <v’,d»eV'xD such that
Q@) +[d]=m, &~ "

(where [d] denotes the subspace of m, &%~ ") spanned by the rows of d) is a locally
trivial bundle over V’; the fiber has one component if ¢(z)<r, or r=o, and two
components if ¢(z)=r>0. (Note that c¢(z)>r is impossible by the hypothesis that z
is stable: if ¢(z)>r the relation (5.5) can never hold for eV (since Q(Av) has codi-
mension ¢(z) and [9v] is spanned by r elements), but there exists veSt?*'nV). Applying
the fact that the mapping (5.3) is trivial, we obtain:

Lemma (5.6). — The bundle (VaStPT™Y, A, V') is locally trivial; a fiber has one compo-
nent if ¢(z2)<r or r=o, it has two components if ¢(z)=r>o0. We never have c¢(z)>r.
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Next, we show:

Lemma (5.7). — Any fiber of the bundle (VaStP*™, %, V') is contained in a single
orbit of o/PH1,

Proof. — In the case the fiber is connected, this follows from Lemma (4.2). Hence
we may suppose ¢(z)=r>o0. It follows from Lemma (4.2) that it is enough to show
that there is an orbit of «/?*! which meets both components of the fiber. Let
h:(N,x)-> (N,x) and #':(P,») - (P,») be defined by

Xoh=—x, xo0h=x, for i>1
yloh'=—y1, )’¢°’2'=)’n for i>1.

It is easily verified that if veVAStP™ and o' =#P*YoyohlP*1) then A(v')=A(v) and o0’
is the matrix whose first row is the negative of the first row of d» and whose other rows
are the same as the corresponding rows of dv. It follows that v and v’ are in the two
different components of A~*(Av) nSt?** (which is the fiber of the bundle (VA StP™1 3, V')
over Av). This proves Lemma (5.7).

The next step is to analyze the connected components of V. We do this by
showing that V' is an orbit of a certain group #”'(?*%) which acts on m, &L=+, We
introduce manifolds N'CN and P’'CP defined by

N'={x=...=x=0} P={p=...=y=0}

Then we can identify &, with the set of germs at x of C* functions on N, since &, is
the ring of germs at o of C® functions in %, , , ..., %, and {x,,, ..., x,} is a local system
of coordinates for N’, null at x. We identify m, &%~ " with the set #’ of C* map-germs
(N, x) —> (P’, ») by identifying (f;, ..., f,—,) with the map-germ f defined by

yiof=fi_p, r+15iZp.

This gives rise to an identification of m, &L~ *1 with the set J'®*Y of (p-1)-jets of
such map-germs. Now the group P+ is defined just as #"*!), but with N’ in place
of N and P’ in place of P. It is easily verified that a point

vem ,gp,—r,(p+1)=J'(p+1)
T z

is in V' if and only if Q (¢') # Q (z); thus, it follows from Theorem (2.1) that V' is an
orbit of the action of J#'®*+1 on J'(r+1),

Since 2P+ 1 has four components, it follows that V' has at most four components.
Now consider again the problem of proving (5.1). By Lemmas (4.2) and (5.7),
A 1(Vy) nStP*! is contained in a single orbit of &/?*! for any connected component V;
of V.

Define &/’ and &7'?*1) in the same way as &/ and /7', except with N’ in place
of N and P’ in place of P. Clearly &/'?*% meets each component of #”*+1, Thus
we may prove (5.1) as follows. Take v, 0,6V nStP*t, Since V' is an orbit of P 1)
there exists neX”P*Y such that A(z)=nA(v). Take wnes'P*Y which is in the same
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component of #'#"*Vas n. Let (h, h'>ess’ be a representative of n, and let <%, B'>ess/
be an extension of <A, k> such that x0 %:x,., ;0 = 9, for 1<i<r. Let

=<k, B Y+ Vea/?*t, Then 2%,(v)=nA(v). Hence \%(v) is in the same component
(say Vi) of V' as wA(2)=A(z). Since A '(Vy)nSt?*! is contained in a single orbit
of &P *1it follows that %;» and v, are contained in the same orbit of .2/?**; hence v and v,
are in the same orbit. This completes the proof of (5.1) and therefore of Theorem A
in the case S is a point.

As a corollary of what we have just proved and Proposition (1.8), we can obtain
a “ normal form > for stable map-germs. To describe this normal form we need to
introduce some notation.

Let R[[#]]=R[[*,,4, ..., %,]] denote the ring of formal power series in indeter-
minates %, 4, . .., %, and let m denote its unique maximal ideal. Let ¢=<{g¢;,...,¢,_,>
be a (p—r)-tuple of polynomials in x,,, ..., x, and suppose ¢;em2 Let (¢) denote
the ideal in R[[x']] generated by {g;, ..., ¢,_,}. For r+1<i<n, let

g, 0q,—
d.g=| 2 ... 2Pt ) cinR[[x]17P .
iq <3x > ox. >€ [[x1]

Set
Y(g)=R[*']11{% 114, - - -, &g} +(9)R[[x']]" "
Then ¥(¢) is an R[[x]]-submodule of mR[[x']]*~". Let
¢=¢(g)=dim (mR[[x]]"7"/¥(g)).

Suppose ¢<r. Let v, ...,0, be a set of elements of mR[[x"]]*~" whose canonical
images in mR[[x']]?~"/¥(¢) form a basis (where mR[[x]]?~"/¥(q) is considered as
an R-vector space); write v;=<{vy, ...,7,_,»> where v;emR[[x]]; and suppose
that v, is a polynomial.

Define f: (R" 0) —> (R? 0) as follows:

% , 1<i<r

.8 o] = ¢
(5-8) st Gi—rt ,Elxj”j,i—n r+1<:<p.
j=

Lemma (5.9). — If f is given by (5.8), where q and v are as above, then f is stable.
Proof. — This is a matter of checking that the conditions given in Proposi-
tion (1.8) are satisfied. The image of ¥(g) under the canonical homomorphism
R[[x]]P~" = &~ "® is Q(f/)™; the image of v; is 9, f®; hence the hypothesis that the
canonical images of v, ..., 7, in mR[[x]]?~"/¥(w) span this R-vector space implies
that
Q(f)P-[8f 19 =m, £2-",

which implies f is stable, by (1.8).
Note that the mapping in examples (1.9) and (1.10) are of the form (5.8).
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Theorem (5.10) (Normal form for a stable map-germ). — If f: (N, x) -> (P, )
is a stable map-germ whose rank at x is v, and ¢, ..., q,_, and vy, ..., v, are as above and
Sfurthermore

(%) R[#]]/(m"**+(9)) # Qp41(Sf)

then there exist local coordinates x,, .. ., %, for N, null at x, and y,, ..., y, for P, null at y, such
that f has the form (5.8).

Proof. — In any case there exists f':(R", 0) —> (R?,0) such that f’ has the
form (5.8). Then the hypothesis (%) amounts to saying that Q , . ,(f")~Q,,(f). By
hypothesis, f is stable; by Lemma (5.9), f’ is stable. Then f and f’ are isomorphic,
by Theorem A, which is another way of stating the conclusion of the theorem.

Remark. — If f: (N, x) —> (P,») is a stable map-germ, we can find polynomials
Qs oo or gp_,em® and gyem (1<i<¢, 1<j<p—r) such that with respect to suitable
local coordinate systems f has the form (5.8)), as follows. Since f has rank r, there
exists a surjective R-algebra homomorphism

m: R[[&]]/mP*2 > Q. (f)-

From the definition of Q ,.,(f), it follows that ker = is generated by p—r or fewer
elements; let ¢;, ..., q,_, be a set of generators of ker =. Then the isomorphism ()
holds. Furthermore, ¢(¢)=d(f, #)—p-+r<r, so we can choose v,, ..., v, as required.

Next, we state and prove a lemma which we will use in the next section. For
any weSt’™! and any representative f of w, we set

T(w)=1(f)

(cf. Definition (1.g8)). This is independent of the choice of representative f, since weSt?*!
implies f is stable, which implies

mz0(f) € (m,)8(f)+tf(B).

Let W denote the set of weStPT*nA?*'z such that =(w)=1(z).

Lemma (5.11). — Suppose p>dim t(z)>o0. For any w,, w,e W, there exists a number
o(w,, w,) (which is +1) such that the following holds. If K'e€L is such that Th (=(2))=1(2)
and the automorphism of TP, |v(z) which k' induces is orientation preserving (in the case
o(w,, w,)= 1) or orientation reversing (in the case o(w,, w,)=—1) then there exists heR
such that (h, ' YP+Vw, is in the same arcwise connected component of W as w,.

Proof. — Let #* denote the subgroup of £ consisting of those A for which
TH (v(z)) €7(z). Let #£* denote the image of #* under the projection £ —>%*
Let o/™=%*x %" From (4.1), it follows that WC/P*1z which is easily seen to
imply W=uw/*"*1z Hence, there exists hye #* and hyeZ such that {h,, kP Vw,=w,.
We set o(w;, w,)= 41 if the automorphism of TP, /r(z) which k, induces is orientation
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preserving and we set o(w;, w,)=—1 otherwise. Now let #' be as in the lemma.
Choose heZ so that hhy! is orientation preserving or reversing according to whether

T(k k™Y |7(2) : 7(2) > 7(2)

is orientation preserving or reversing.

To show that (&, &' YP* Yy, is in the same connected component of W as w, it is
enough to show that there is {4y, b >+ Ve o/#P+1) which is in the same connected compo-
nent of o/#P+1) a5 (hRTY, K hy~'), and which satisfies {4, A )P Yw,=w,, since

Chy B YPH Ve = Chhy, B By~ 1P,

In the case T(h'h~')|7(z) is orientation preserving, we may take /,=1identity,
hy=identity. To see that {hhy*, k' hy~*) is in the same component of &Z¥P*V as (A, A},
it is enough to observe that the automorphisms of ©(z) and TP, /t(z) induced by A'/h;~*
are orientation preserving and that Ak ' is orientation preserving.

In the case T(h hy~')|7(z) is orientation reversing, we choose a representative
f:(N,x) —=> (P,») of w, and local coordinates such that f has the form (5.8) (which
we may do by Theorem (5.10) and the remark following it). It is easily seen that
t(f)=r(z) is the subset of TP, defined by dyy=...=dy,=dy, ,=...=dy,—=o0. The
hypothesis that dim ©(z)>o0 implies that ¢<r. If we define %, and A; by

%0 by =x;, 1<i<m ifc+1

=—X;, i=6‘+1
Joki=p,  1<i<p, i+ctr
=—y;, 1=c+1

then it follows from the fact that f has the form (5.8) that hjofok; '=f, and therefore
that (A, £ >P+HYw,—w,. To see that (hhy*, A’ by~ ) is in the same component of o7#7+1)
as {hy, hy), it is enough to observe that the automorphisms of 7(z) that A and A k="
induce are both orientation reversing, that the automorphisms of TP, /t(z) that A and
k' hy~* induce are both orientation preserving, and that the automorphisms of TN, that /,
and Ay ! induce are both orientation reversing.

6. Proof of theorem A in general.

In this section, we return to the general setting where S is an arbitrary finite
set of points of N, say {x;, ..., %,}. We recall that J*=]J{x...xJ* where Ji denotes
the set of k-jets of C® map-germs (N, x;) -+ (P,»). Similarly #%F=s%x...xA",
o= offx...x /" and the actions of these groups on J* are compatible with the product
decompositions.

For any zeJ¥, we write 2=<z;, ...,%,», where z€Ji. We let (z)CTP, be
defined as in the previous section. By (1.6), if zeJ?*' then zeSt?™! if and only if
each zeSt!*! and +(z,), ..., 7(z,) have regular intersection in TP,.

By the remarks in § 4, it is enough to show (4.1) in order to prove Theorem A.
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To this end, we consider w, zeSt?** and suppose w and z are in the same orbit of 2 *1,
For 1<i<s, we let W, denote the set of all @'eStPt n APt 1z such that t(w')=1(z).

Lemma (6.x). — There exists {h, k' yesl, such that, for 1<i<s, <{h, k' YP+tYw, is
in the arcwise connected component of W, which contains z;.

Proof. — Let F be the dual of TP, (considered as an R-vector space); let E,CF
denote the annihilator of ©(z;), and let E;CF denote the annihilator of <(w;). Since
7(%4), ..., 7(2,) have regular intersection (by (1.6)) the sum E,4...4 E, is a direct sum.
Similarly the sum E{+...+E, is a direct sum. Furthermore, since z; and w; are in
the same orbit of &?** (by Theorem A in the case S is a point), it follows that E, and E;
have the same dimension. Hence there exists an automorphism L :F—F such that
L(E,)=E], 1<i<s. Let & :(P,») -> (P,») besuch that Thk{: TP, - TP, is the dual
of L, and let w' =A"*Yw. From L(E)=E; it follows that t(w))=Thi(t(w,))="1(z,)-

Note that we may assume that for each 1, 1<:<s, p>dim 1(z)>0. In the case
dim t(z,)=p, we have that z; is the jet of a submersion, so it suffices to prove the lemma
for S;={x;, ..., %, ...,%} in place of S. Then we may assume that p><(z) for
all 7. Using this assumption we see that if dim t(z)=o0 for some ¢, the hypothesis
that t(z), ..., 7(2,) have regular intersection implies that x; is the only point in S;
thus, we see that the problem reduces to the case when S is a point.

Now we assume p>dim t(z)>o0. Clearly w;eW,. Therefore the number o(w;, 2,)
of Lemma (5.11) is defined; we may choose an automorphism L, of F such that
Ly(E)=E; and L,|E;: E,—~E; is orientation preserving or reversing according to
whether o(w}, z) is +1 or —1.

Let k: (P,y) —> (P,») be such that T#ky: TP, — TP, is the dual of L,. Then
Thy(v(z;))=7(z;) and the automorphism of TP, /r(z;) which A; induces is orientation
preserving or orientation reversing according to whether o(w}, z)=+1 or —I.

Hence, by Lemma (5.11), we may choose #,e%; such that (A, k>’ 1w, is in the
same connected component of W; as z;. Let A=<k, ..., h,)eZ, and let k' =hohcZ.
Then <A, k' Yesl, and

Chyy B >(p+ l)wi:<}l“ h(;)(”’*' Dyt

(2

is in the same connected component of W; as z;, which proves the lemma.

Now we may complete the proof of Theorem A, or rather of (4.1), which as we
have seen, implies Theorem A. By Lemma (6.1), we may suppose that for each ¢,
w; is in the arcwise connected component of W; which contains z;. Let v;:[o, 1] > W,
be a continuous mapping such that y,(0)=w; and v;(1)=g2;, for 1<:¢<s. Let
v:[0, 1] =J?** be defined by v(f),=v,({)eJ’t'. By Lemma (4.2) it is sufficient to
show that y(f)e#? 'znStP™! for all tefo, 1], in order to show that w=+vy(0) and
z=x(1) are in the same orbit of &7**. But it follows from the definition of W; that
v(£),€e#P*1z; hence vy(t)eAPt'z. Also by the definition of W;, ~(¢),eSt’*' and
©(y(t),), - - ., T(y(f),) have regular intersection in TP, (since (y();)=7(z;)); hence by
Proposition (1.6), y(¢)eStP*1,
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This shows that w and z are in the same orbit of &/§** and therefore (by (4.1))
completes the proof of Theorem A.

7. Proof of theorem B.

We begin defining the number p,(A), whose existence was asserted in the intro-
duction. Let A denote the quotient of a formal power series ring over R:

(71) AZR[[xl’ ""xa]]/(f;: °'°:.fb)'

Let ¢<i(A), where t(A) is the number defined in the introduction. We may suppose
that the representation (7.1) of A as the quotient of a formal power-series ring is chosen
so that ¢=a—b. Let ¥ denote the A-submodule of A’ generated by the canonical
image of

s < oh 0 > / in A®

8 axt, ..-,5;1;

‘i=1,....a

We set
% (A)=dimz A®/¥.

Theorem (77.2). — The number p.,(A) depends only on ¢ and A, not on the particular choice
of presentation (77.1). Furthermore if f: (N, x) —> (P,») is a C® map-germ, then

w Q) =d(f, ).

Proof. — The latter sentence is obvious from the definitions and Nakayama’s lemma.
To prove the first sentence, we consider a second presentation of A:

(7.x) A=R[[x;, ..., ] /(A> -5 S0

where we assume that a'—b'=¢. We carry out the proof in two steps: first, we suppose
a=a and b=105"; then we give the proof in general. Let ¥ be the A-submodule of A’
defined in the same way as ¥ except with f;" in place of f; and #; in place of ;. From the
assumption that a=a’ and (7.1) and (7.1)’ it follows that there exists an isomorphism

¢ R[[x, .. x]] > R[[x, ..., %]]

mapping the ideal generated by f/, ..., f, onto the ideal generated by f;, ..., f,. Such
an isomorphism is necessarily given by a  substitution ” x;=x(x;, ..., %,); thus,

setting gi=o¢(f;), we have g(x,, ..., x,)=f(x{, ..., x.); by the ¢ chain rule ”
. Zaf,; ox;

ox;  Jox ox;
thus ¥ is the submodule of A’ generated by the canonical image of

0g1 98\ | N
<sz,...,a—x?:>/ in A®

\,i=1,...,a
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From the fact that f,...,f, and g, ..., g generate the same ideal in
R([x,, ..., x,]] it follows that there exists an invertible matrix (u;) with entries in

R[[x,, ..., %,]] such that fi=2Xy,g. Hence letting ¢ :A’>A’ be the A-module
automorphism given by '

o(g)= ? Wi €

(where ¢=<o0,...,0,1,0,...,0> with the 1 appearing in the i¢-th place), we see
o(V)="1,

which completes the proof in case a=a’, b="5".

For the proof in general, we may suppose a<a’'. By what we have just shown,
it is enough to show that for a given presentation of the form (7.1) there is one presen-
tation of the form (7.1)" which gives the same value of p,(A). Let the presentation
of the form (7.1)" be given by xj=x;, 1<i<a, f/=f, 1<i<b, f/=%_,,q 610
Then it is trivial to verify that these two presentations give the same value of wu,(A).

Proof of Theorem B. — ¢ Only if ” is clear. We show “ if . Let m denote the
maximal ideal of A, and let a=dimg(m/m?). Our first step is to show a<n. There
is a representation of A in the form (7.1); since a=dimg(m/m?), we necessarily have
fi> - > Srem’. The hypothesis that (A)>n—p implies that we can choose b so that
a—b=n—p. Clearly dimg(mA’/m?A’)=ab; on the other hand, it follows from the
definition of ¥ that dimg((¥'+m*A")/m?A%)<b. It follows that

(a#I)TSna—b(A):p‘n—p(A)Sp'
Now suppose a<n is not satisfied. Then a>n-+41, 6>p+1, so we have
n(p+1)<(a—1)b<p,

which is evidently impossible. Hence a<n.
Now we set a=n—r, where r>0. Then b=p-—r. We write the presenta-
tion (7.1) of A in the form

(7-3) ARR[[% 5 - 51905 -5 Gp—i)-

It follows from (III, (3.5)) (applied in the case & =.") that we can take ¢;, ..., ¢,_,
to be polynomials. It is then easily seen that ¢={g¢,, ..., g,_,> satisfies the hypotheses
we imposed on ¢ in order to obtain the canonical form (5.8); moreover:

o(q) = ttn—p(A)—(p—1),

so the hypothesis that u, ,(A)<p implies that ¢(¢)<r. Hence we can find 2, ..., 7,
as required to obtain a stable fin the form (5.8) (cf. Lemma (5.9)). For fin this form,

we clearly have Q (g) A, which completes the proof of Theorem B.
It is clear that if f: (N, x) —> (P, ») is stable, then

(*) d(f, #') = dimg(TP, [v(f)).
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With this remark, Theorem B, and Proposition (1.6), it is easy to show the addendum.
“ Only if ” is immediate. To show * if ” we observe first that we can choose stable
fi: (N, x) —> (P,») such that A;~Q(f) by Theorem B. By the second inequality
that we assumed in the proposition and (%), we can choose the f; so that ©(f)), ..., ©(f,)
have regular intersection in TP,. By Proposition (1.6) this implies that f: (N, S) -~ (P, y)
(defined by f|(N, x)=f;) is stable.
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