
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S.

PHILLIP A. GRIFFITHS
Periods of integrals on algebraic manifolds, III (Some global
differential-geometric properties of the period mapping)

Publications mathématiques de l’I.H.É.S., tome 38 (1970), p. 125-180
<http://www.numdam.org/item?id=PMIHES_1970__38__125_0>

© Publications mathématiques de l’I.H.É.S., 1970, tous droits réservés.

L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou im-
pression systématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PMIHES_1970__38__125_0
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.ihes.fr/IHES/Publications/Publications.html
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


PERIODS OF INTEGRALS ON ALGEBRAIC MANIFOLDS, III
(SOME GLOBAL DIFFERENTIAL-GEOMETRIC PROPERTIES

OF THE PERIOD MAPPING)

by PHILLIP A. GRIFFITHS (1)

TABLE OF CONTENTS
PAGES

o. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Part I. — Differential-Geometric Properties of Variation of Hodge Structure. . . . . . . . . . . . . . 130

1. Algebraic families of algebraic varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2. Variation of Hodge structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3. Remarks on the homology of algebraic fibre spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4. Remarks on Hermitian differential geomet ry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5. Statement of main differential-geometric properties of Hodge bundles . . . . . . . . . . . . . 139
6. Structure equations for variation of Hodge structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

a) Invariant cycle and rigidity theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
b) Negative bundles and variation of Hodge structure . . . . . . . . . . . . . . . . . . . . . . . . . . 146
c) A Mordell-Weil theorem for families of intermediate Jacobians . . . . . . . . . . . . . . . . 147

Part II. — Differential-Geometric Properties of the Period Mapping . . . . . . . . . . . . . . . . . . . . . . . 150

8. Classifying spaces for Hodge structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
9. Statement of results on variation of Hodge structure and period mappings . . . . . . . . 155

10. The generalized Schwarz lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
11. Proof of Propositions (9.10) and ( 9 . 1 1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Appendix A. — A result on algebraic cycles and intermediate Jacobians . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix B. — Two examples:

a) A family of curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
b) Lefschetz pencils of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Appendix C. — Discussion of some open questions:

a) Statement of conjectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i74
b) Proof of the invariant cycle theorem (7. i) for n== i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
c) Proof of the usual Mordell-Weil over function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Appendix D. — A result on the monodromy of K3 surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

(1) Supported in part by National Science Foundation grant GP7952Xi.

125



126 P H I L L I P A. G R I F F I T H S

o. Introduction.

a) In this paper we shall study some global properties of the periods of integrals
in an algebraic family of algebraic varieties. Although our results are mostly in (alge-
braic) geometry, the proofs are purely transcendental. In fact, we may roughly describe
our methods as giving various applications of the maximum principle to problems in
algebraic geometry. For the most part these methods have only succeeded in treating
the situation when the parameter space for the non-singular varieties is complete. While
the results should be true in general, it appears that new methods will be required to
handle the situation when singular varieties are permitted in our family. These questions
are discussed from time to time as they occur in the text below.

The paper divides naturally into two parts. The first treats linear problems and
is a study of the differential-geometric properties of the Hodge bundles as defined in § 2.
The use of the maximum principle here is similar to the classical Bochner method [3],
and is based on the rather remarkable structure equations and curvature properties of the
Hodge bundles. The second part deals with global properties of the period mapping [i i],
and the methods are those of hyperbolic complex analysis which, to paraphrase Ghern [7],
is the philosophy that suitable curvature conditions on complex manifolds impose strong
restrictions on holomorphic mappings between these manifolds.

A more detailed introduction to the two parts of the paper will now be given.

b) We consider an algebraic family of algebraic varieties {Vg}ggg as defined in § i.
For the time being we may think of the parameter space S as being a (generally non-
compact) algebraic curve. The algebraic varieties Vg corresponding to the points J
at infinity in S may be thought of as the specializations of a generic Vg having acquired
singularities.

If we replace Vg by the cohomology groups IP(Vg, C) and the various subspaces
H^VJcH^V,, C) [p-\-q=n), then we find that the algebraic family {Vj^g gives
rise to a whole collection of holomorphic vector bundles over S. We can abstract the
data of theses bundles and arrive at what we call a variation of Hodge structure (§ 2).

Now the bundles which turn up in a variation of Hodge structure have intrinsic
Hermitian differential geometries (§ 4), and we use more or less standard methods in
differential geometry to deduce results about the variation of Hodge structure which,
in case this variation of Hodge structure arises from a family of algebraic varieties, have
interpretations as theorems on invariant cycles and on holomorphic cross-sections of
families of intermediate Jacobians.

The only real twist is that the Hermitian vector bundles which appear generally
have indefinite Hermitian metrics. In such a situation, the maximum principle does not
usually apply. We are only able to push things through by using the so-called infini-
tesimal period relation [n] satisfied by periods of integrals and which is incorporated into
the definition of variation of Hodge structure. It is perhaps worth pointing out that
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PERIODS OF INTEGRALS ON ALGEBRAIC MANIFOLDS, III 127

the maximum principle is used to show that certain differential equations are satisfied,
rather than to show that a <c harmonic tensor " is zero as was the classical case [3].

In § 4 we give a review of Hermitian differential geometry and, in particular,
discuss the second fundamental form of a holomorphic vector bundle embedded in an
Hermitian vector bundle. The main differential geometric results on variation of Hodge
structure (Theorems (5.2) and (5.9)) are stated and discussed in § 5. The proofs of
these theorems are given in § 6 where we derive the structure equations for a variation
of Hodge structure. This section is the heart of Part I of the paper, and we have used
the Gartan method of moving frames ([6], [8]) to expose the structure equations (6.4)-(6.8),
(6.12), and (6.18) of a variation of Hodge structure. These equations are to me quite
remarkable and are much richer than one might have thought from just the classical
case when the Vg are curves. For example, if {Vg}ggg forms an algebraic family of
algebraic surfaces with complete parameter space S and if Ys^H^V^, Z) is an invariant
2-cycle, then there is a non-negative function ^(^) whose vanishing at seS is necessary
and sufficient that Ys be the homology class of an algebraic curve on Vg. It was a
pleasant surprise to me that ^ turns out to be pluri-subharmonic on S. Even in case S
is not complete, ^ should be bounded, but this depends on the local invariant cycle
conjecture (3.3).

In § 7 we give three applications of the results in section 5. The first of these
are some rigidity properties of variation of Hodge structures with complete base space
(Corollary (7.3) and (7.4)). These particular results were motivated by a question
of Grothendieck [17] and have appeared previously in the preprint [12] with the same
proof as given here. In this paper the rigidity theorems are given as consequences
of Theorem (7.1)3 which was also in § 8 of [12] but was poorly stated there. The
much better formulation given below is due to Deligne, whose paper [9] has several
points of contact with this one, which are discussed in § 3 below. The second
application is the positivity of certain bundles arising from a variation of Hodge structure
(Propositions (7.7) and (7.15)). The third application is a Mordell-Weil type of
theorem for cross-sections of families of intermediate Jacobians (Theorem (7.19)).
Again this is a result purely about variation of Hodge structure but which is suggested
by algebraic geometry. In this case the motivation comes from the study of intermediate
cycles on algebraic varieties and the connection with Theorem (7.19) is explained in
Appendix A.

c ) Associated to any variation of Hodge structure, with parameter space S, there
is a period matrix domain D [n], which is a homogeneous complex manifold D==G/H of a
non-compact simple Lie group G divided by a compact subgroup H, together with a
denumerable subgroup F of G and a holomorphic period mapping [n]:
(0.1) $:s->r\D.
In fact, the giving of a variation of Hodge structure over S is equivalent to giving a
period mapping (0.1) satisfying an infinitesimal period relation which can be stated
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purely in terms of D. These period matrix domains are discussed in § 8, and the
correspondence between variations of Hodge structure and period mappings is given
by Proposition (9.3). In many interesting cases, such as when the variation of Hodge
structure arises from an algebraic family of algebraic varieties, the monodromy group F
is a discrete subgroup of G and consequently F\D is a complex analytic variety. The
point of view we have taken in Part II is to apply hyperbolic complex analysis to study
the period mapping (0.1).

We are especially interested in the asymptotic behavior of the period mapping 0
as we go to infinity in S. In case dinicS==i, a neighborhood of S at infinity is a
punctured disc A*, and the period mapping (0.1) may be localised at infinity and lifted
to the universal covering of A* to yield a holomorphic mapping:

0 : H^D

from the upper half-plane H=={^==x+y^ :j^>o} to the period matrix domain D, and
which satisfies the equivariance condition:

(D^+i)=T.(l)(^)

where TeF is the Picard-Lefschet^ transformation associated to the local monodromy
around the origin in the punctured disc A*. Incase dim^S^, we can use Hironaka's
resolution of singularities to have a similar localization at infinity given by a holomorphic
mapping:

(0.2) < D : H x . . . x H ^ D
d

which satisfies:
î, ...,^+i, ...,^)=T^.O(^, ...,^)

where the T^.eG are commuting automorphisms of D.
To use metric methods for the study of the mapping (0.2), we introduce the

standard Poincare metric ds^on H x . . . X H and the G-invariant metric ds^ on D deduced
from the Gartan-Killing form on the Lie algebra of G. Now the metric ds^ does not
have the (negative) curvature properties necessary to make hyperbolic complex analysis
work on an arbitrary holomorphic mapping (0.2). However, if we use the infinitesimal
period relation, then the necessary curvature conditions will be satisfied relative to the
mapping 0. Using this together with a formula of Chern [7], in § 10 we prove a
generalized Schwar^ lemma (Theorem (10.1)) which says that the period mapping $
is both distance and volume decreasing with respect to ds^ and ds^y cf. [16].

The main geometric applications of the Schwarz lemma are Theorems (9.5)
and (9.6), both of whose proofs are given in § n. The first of these is a sort of Riemann
extension theorem^ and says that a period mapping 0 : A*-^D from the punctured disc
to a period matrix domain D extends holomorphically across the origin. Our proof
makes essential use of an ingenious argument from [25] (Proposition (11.1)). The
second result is that the period mapping (0.2) is (essentially) a proper mapping, and
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consequently the closure of the image of 0 is an analytic set containing 0(S) as the
complement of an analytic subvariety.

A third geometric theorem is Theorem (9.7), which says that the image 0(S)
is canonically a projective algebraic variety in case S is complete. Our final result
(Theorem (9.8)) in this section is a theorem about the global monodromy group F
of a variation of Hodge structure with complete parameter space. The statements
that r is completely reducible, and that F is finite if it is solvable, are simply adaptations
of similar results of Deligne [9] in the geometric case, which are discussed in § 3
below. The characterization of the case when F is a finite group was given in [12].

d) As mentioned above, Appendix A contains a result about algebraic cycles
and intermediate Jacobians varying in an algebraic family of algebraic varieties. In
Appendix B we give some examples. In Appendix G we discuss some conjectures
which should be true but which we are unable to prove. Finally, in Appendix D we
give an application of the results in § 9 to the global monodromy group of certain
(algebraic) K.3 surfaces.

e ) This paper is a successor to [n]. However, our point of view has evolved
somewhat and perhaps a more appropriate general reference is the survey article [13],
which in particular discusses most of the results in this paper and takes up many related
problems and conjectures. Finally, this paper is essentially self-contained, except for § 10
where we use a formula from [7] and a result from [16] about the curvature of the metric
ds^ discussed above.

It is my pleasure to thank the referee for many helpful suggestions and comments.
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PART I

DIFFERENTIAL-GEOMETRIC PROPERTIES
OF VARIATION OF HODGE STRUCTURE

i. Algebraic families of algebraic varieties.

By an algebraic family of algebraic varieties we shall mean that we are given connected
and smooth algebraic varieties X, S and a morphism /: X—S such that

(i) / is smooth, proper, and connected, and
(ii) There is a distinguished projective embedding XcP^.

Setting V^/-1^) (jeS) we may think of /: X^S as the algebraic family
{Vjsgg of smooth, complete, connected, and projective algebraic manifolds parametrized
by S.

The parameter space S is generally not complete, and we shall want to consider
smooth compactifications of the situation /:X->S. Such a smooth compactification is
given by a diagram:

X c X
(1 .1) 4 V

S c S

where X, S are smooth, complete, and projective algebraic varieties which contain X, S
respectively as Zariski open sets, and where X—X and S—S are each divisors with
normal crossings. Thus, for example, S—S is locally given by:
(1.2) Ji. . .^=o

where s^ . . ., ̂  are part of a local holomorphic coordinate system on S. The divisors D
given locally by ^.==0 in (i .2) will be called the irreducible branches of S—S. We then
have S=S—D where D=Di+. . .+D^ is the divisor with normal crossings. As
another example, if dimS==i and if S—S is locally given by s===o, then /: X->S
will be given locally by:

(1.3) x^...x^=s

where x^, ..., ̂  is part of a local holomorphic coordinate system on X.
Such smooth compactifications exist by the fundamental work of Hironaka [20].
We want now to say what it means to localise the situation (1.1) at infinity. Let
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S—S be given locally by (1.2) where ^, . . . ,^ is a holomorphic coordinate system
on S. Denote by P the open polycylinder given by o^|^.[<£ (j=i, ..., d) and let
P*=PnS. Thus letting A be a disc in C and A* the corresponding punctured disc,
we have P^A^ and P^fA^^A)^. Set Y^-^P) and Y=YnX. Then the
localization of (1.1) at infinity is given by:

Y c Y
(1.4) i i

P* c P

We will generally refer to P* as a punctured polycylinder.

2. Variation of Hodge structure.

We shall linearize the situation (i . i). For this we now consider X, S as complex
manifolds and f \ X-^-S as an analytic fibre space and topological fibre bundle. Fix
a base point J()GS and consider the action of the fundamental group TT^(S) of S based
at SQ on the cohomology H^V^, C). If LeH^V^, %) is the cohomology class of the
hyperplane section relative to the given projective embedding XcP^? then L is invariant
under T^(S). Thus for n^m==dimc^V we may define the primitive cohomology P^Vg 3 C)
to be the kernel of:

I/+1: H^C^, C) -^H^-^V^ C) (n=m-r).

Because of the Lefschek decomposition [22]:
[n/2]

(2.1) H ,̂ C)= © W-^V^ C),
k — 0

which is a 7^(8) -invariant direct sum (over QJ decomposition of H^Vg , C), it will
suffice to consider the primitive cohomology.

Let E=Pn(Vg , C) and denote by E-^S the complex vector bundle, with constant
transition functions, associated to the action of T^(S) on E. There is the usual flat,
holomorphic connection:

D : ̂ g(E) -> W)

which one has on any such vector bundle associated to a representation of the fundamental
group. In fact we have a short exact sheaf sequence:

(2.2) o -^ <^(E) -> W) ̂  Qi(E)

where the sheaf ^(E) of locally constant sections of E has the following interpretation:
Let R^(C) be the usual Leray cohomology sheaf of f: X->S, which we recall is the

sheaf arising from the presheaf:

u^irv^u^c)
131
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where U runs through the family of all open sets in S, and define the Leray primitive
cohomology sheaf P^(C) to be the kernel of:

L^I^-^q^R^^C!) {n==m-r).

Then ^(E) is just P^(C).
Now the fibre E^ is the vector space P^V,, C) and as such has the structure of

the primitive cohomology vector space of a Kahler manifold [30]. Translating this
structure into data on the flat bundle E->S, what we find is the following [13]:

I) A flat conjugation e^e {ee'E).

II) A flat, non-degenerate bilinear form

(2.3) Q: E®E^C, Q ,̂ ,')=(-i)-Q^ ,)

called the Hodge bilinear form; and

III) A filtration of E by holomorphic sub-bundles

(2.4) F^F^... cTn~lc'Fn=E

called the Hodge filtration.

Remarks. — (i) The conjugation on E is induced from the usual conjugation on
H^V,, (^H^V,, R)®C.

(ii) The bilinear form (2.3) is given by:

(2.3)' Q(^ ^zLj^L—W (77z=dimcVJ

where e, ^'eP^V,, C) cH^V,, C).
(iii) Letting P^TO-IP-^TO nP^V,, C), we have for the fibre Fj that:

(2.4 y F^ = p^ °(v,) +... + y- ̂  ̂ (vj.
We will denote the data of a flat bundle E with I)-III) above by <?== (E, D, Q, { F3}),

and as conditions on this data we have:

IV) The Hodge filtration (2.4) is isotropic, which means that:

(2.5) (P)1^^-1

where (F9)1 ={^eE : Q^?, F^) = o}.

V) The bilinear form (2.3) is real (i.e. Q^==QJ and, if we let

F^^^F^nI^-^F^n (F7-1)1,

then we have the Hodge decomposition, which is a C°° direct sum decomposition:
n

(2.6) E^OF^-^ (J^-^^F^^).
g=0
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VI) The Riemann-Hodge bilinear relations

Q^-^F^^O (y+r)

133

(2.7) (—^(-i^Q^-^, F^^o
are valid; and

VII) The infinitesimal period relation [n]
(2.8) D:^)-^1^1)

holds.

Definition. — We will call the data <?==(E, D, Q, {F3}) given by I)-III) and
satisfying the conditions IV)-VII) a variation of Hodge structure.

It is of course not necessary that a variation of Hodge structure come from an
algebraic family of algebraic varieties /:X->S. Incase <^=(E, D, Q, {F3}) does
arise from y: X—-S, we will say that the variation of Hodge structure arises from a geometric
situation.

Remarks (2.9). — (i) Let <?==(E, D, Q^, {F^}) be a variation of Hodge structure.
Referring to (2.5), we have natural isomorphisms:
(2.10) (F^-V^F^/F^3-1,

which are isomorphisms of holomorphic vector bundles.
(ii) We may symbolically rewrite (2.8) as

(2.11) Q^D.F^F^-^o.

(iii) Referring again to the infinitesimal period relation (2.8), we see that the
connection D induces a linear bundle mapping of holomorphic bundles

(2.12) ^:E< ^-^E< ^+1®T

where E^F^/F'7"1. The vector bundles W will be called the Hodge bundles, a terminology
which we shall now try to justify. In case the variation of Hodge structure S arises
from a geometric situation /': X—^S, the fibre Ej is given by:

(2.13) Ej=H^(V,, ̂ )o (.eS; <7=o, i, . . ., n),

where H^Vg, ^"^o is the kernel of the cup product:
I/+1 : H^V,, ̂ r+q) ̂ H^+^V,, Q^1-^) [n^m-r)

when we consider L as a class in H^Vg, Q^). In other words, in the geometric situation
the fibre Ej is just the primitive part of the Hodge cohomology space H^^Vg).

(iv) Referring to remark (iii) just above, we shall give a homological interpretation
of the maps (2.12) in case S arises from a geometric situation /:X->S. To do this
we recall the Kodaira-Spencer infinitesimal deformation class [24]

p^H1^,®^®^ (.€S).
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The pairing Ov,®^"3 -> O.^^1 gives:

(2.14) H^V,, ©^)®IP(V,, Q^) -> H^^V,, Q^-1).

Comparing (2.14) and (2.13) we see that cup product with the Kodaira-Spencer class
gives:

(2.15) p, ̂ -^E^4-1®!1,.

From [n] it follows that pg in (2.15) is the same as ^ in (2.12). Summarizing :
Proposition (2.16). — In case S arises from a geometric situation, the linear mapping a

in (2 .12) is the cup product with the Kodaira-Spencer class.

3. Remarks on the homology of algebraic fibre spaces.

a) Consider the situation ( 1 . 1 ) and let:

Y c Y
4 [f
P* c P

be a localization at infinity as discussed just preceding (1.4). Since P*=(A*)A;x(A)d-fc

where A is a disc and A* is a punctured disc, the fundamental group TT^P*) is free abelian
and has as generators the paths around the deleted point in each of the factors A*. The
corresponding automorphisms of the cohomology H^V^, C) are called Picard-Lefschet^
(P.-L.) transformations. In case A;==i we shall denote the P.-L. transformation on the
primitive cohomology by TeAu^P^V^ , C)).

b) Let /: X—S be an algebraic family of algebraic varieties as defined in § i.
We consider the Leray cohomology sheaves R^(C), and we recall the Leray spectral
sequence {E,̂ } which abuts to H^X, C) and with E^=HP(S, R^(C)). We will prove
the following result of Blanchard and Deligne (cf. [2] and Deligne's paper in Publ.
I.H.E.S., vol. 35, pp. 107-126):

Proposition (3.1). — The above spectral sequence degenerates at the E^-term. In particular
the restriction mapping

(3.2) H-CX, C) -̂  H°(S, R^(C)) -^ o

is surjective.
Proof. — The cohomology class L of the hyperplane section operates by cup

product on the terms E^ (r^2) of the spectral sequence and it commutes with the
differentials dy : E^ -> E^^. Using this let us show that <4=o, the argument for the
other ^(r^3) being similar. Because of the Lefschetz decomposition (2.1), which
in the present situation reads as:

^Cq^p^qeLP^-^qeL2?^-4^)®...,
134



PERIODS OF INTEGRALS ON ALGEBRAIC MANIFOLDS, III 135

it will suffice to show that

4 : ?(8, P^(C)) -^ IP+^S, R^C))

is zero for q<^m== dimpV,. Writing ^ == rn—t and using that
L<+I;R^-<-I(Q) -.R^<+i(C)

is an isomorphism [30], we find a commutative diagram

IP(S, P^C)) ^> H^S.R^-^C))

^ I I
H^S.R^-^C!)) -^ HP-^R^+^C!))

Since the dotted vertical arrow is zero by the definition of the primitive cohomology
sheaf, we see that our desired <4 1s zero.

Remark. — Proposition (3.1) says that there is no transgression in the cohomology
of algebraic fibre spaces. The result (3.2) was known classically in the following dual
formulation [26]:

Let YeH^(V^, C) be a homology class on V^ invariant under the action of the
fundamental group T^(S) on the homology of the fibres. (We will speak of y as an
invariant cycle.) Then there exists a cycle JSf(y)eH^(X, C) such that:

^(Y)-V^=Y.

The cycle ^(y) is called the locus o/y, and it is thought of intuitively as the locus of the
cycle Y^nC^ c) as s varies over S. Lefschetz's proof that JSf(y) exists is really a
homological version of the proof of (3.1) given above.

We shall refer to (3.1) as the locus of an invariant cycle theorem.

c) There are two variants of the locus of an invariant cycle theorem (3.2). The
first^is a somewhat interesting conjectural local result around an irreducible branch
of S—S (cf. §§8, 15 in [13] for further discussion).

Conjecture (3.3) (local invariant cycle problem). — Let:

Y c Y
4 i7
P* c P

be a localization of ( i . i) around infinity as discussed in a) above, and let y^H^Vg , QJ
be a cohomology class invariant under ^(P*, ^). Then there exists FGH^Y, QJ
with r|V^=y

Remarks. — It is trivial that there exists FeH^Y, QJ with r|V, ==Y? so fhe
conjecture has to do with the singular fibres of Y lying over P—P*. Thus far (3.3)
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has proved surprisingly difficult to handle and, in particular, it does not seem to be a
topological result but will most likely require some sort of Hodge theory (§ 15 in [13]) (1).

The second variant is the following striking result of Deligne [9]:
Theorem (3.4) (Deligne). — Referring to ( 1 . 1 ) , we have a commutative diagram
(3.5)

IP(X)

"KTO
v /r

H^X)

where the arrows are all restriction mappings of cohomology, and the image of r is equal to the image
rfr in (3.5).

Remark. — This result is a global version of (3.3).

d) Let /: X—S be an algebraic family of algebraic varieties and <?=(E, D, Q, {F^})
the resulting variation of Hodge structure (§ 2). We shall use (3.2) and (3.5) to deduce
results about €, which will then later in § 7 be proved to hold for an arbitrary variation
of Hodge structure which has a complete base space. It should be possible to prove
the results of § 7 with no such assumptions, and this matter is taken up in Appendix G.

The following are given in [9] by Deligne as consequences of (3.5):
(3.6) Let (peH°(S, R^(C)) be an invariant, locally constant cohomology class. Then

the same is true of the Hodge [p, q) components of cp {p -}-q ==n).
Proof. — This is clear since we have:

H^X, C) -> H°(S, R^(C)) -> o

and X is a Kahler manifold.
(3.7) Let I^P^V^, Q^^) be the invariant part of the primitive cohomology

P^Vg^, Q,) under the monodromy group F. Then there is an orthogonal direct sum decomposition

(3.8) P^V^^ISCEQ.

Proof. — This follows from (3.6) and the properties of the Hodge inner product.
From (3.7), Deligne has deduced:
(3.9) The action of the monodromy group Y on P^V^, Q^) is completely reducible.

Furthermore, if F is solvable, then it is a finite group.

4. Remarks on Hermitian differential geometry.

a) Connections in Hermitian vector bundles. — Let H-^-S be a holomorphic vector

bundkand D. : A«(H) ̂  A-(H)

(1) Added in proof. — This conjecture has now been proved for n = 2 by Katz, and then in the general
case by Deligne, using his theory of mixed Hodge structure [9].
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a G00 connection. Then there is a decomposition
DH=DH+DH

ofDg into types (i, o) and (o, i), and D^ is said to be compatible with the complex structure
if ^==(9. Suppose that H has an Hermitian metric

( , ) : H®H^C, (^')=(^).

We do not require that ( , ) be positive definite, but it should of course be non-singular.
Lemma (4.1). — There is a unique connection Dg such that
(i) the Hermitian metric ( , ) is flat, and
(ii) Dg is compatible with the complex structure.

Proof. — Let e^ .. ., <?,. be a local holomorphic frame for H and let h^=={e^ e^)
r

denote the Hermitian metric. Then the required connection Dg^ )= S 6°^ is given
0 == 1

by Q==h~ 8h where 6 ==(6^), A==(ApJ are the connection and metric matrices
respectively.

Now we consider a holomorphic vector bundle H->S having a connection Dg
which is compatible with the complex structure. Let KcH be a holomorphic sub-
bundle with quotient bundle L, so that we have an exact sequence
(4.2) o->K-^H->L-^o.

The connection Dg induces, in the obvious way, a mapping

(4.3) ^A^K^A^L)

which is linear over the G00 functions and is called the second fundamental form </K in H.
Lemma (4.3). — The second fundamental form of K in H is of type (i, o), so that

6eA l to(Hom(K,L)).
Proof. — Given eeK^, choose a G00 section/ of K with f{so)==e. Then by

definition b{e) is the projection on L of (DH/)(^). Since we may choose/to be holo-
morphic and since Dg =B, we have DH/=O so that b(e) is of type (i, o) as desired.

Suppose now that H->S is a holomorphic Hermitian vector bundle with
holomorphic sub-bundle K as in (4.2). Assume that the Hermitian metric ( , ) is
non-singular when restricted to K. Then there is induced a G°° splitting of (4.2)
by considering L as being -j^eH : (^, K)=o}, and so:

(4.4) DK=DH-^
induces a connection in H.

Lemma (4.5). — D^==Dg—b in (4.4) is the metric connection in K.
Proof. — By lemma (4.3), Dg=a. For e, ^eA°(K):

d{e, e')=(D^ <)+(,, D^)=={D^ e^+^e, D^')

since L==(K)1 as a G°° sub-bundle of H. d.E.D.
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Similarly the connection D^, the holomorphic projection H -"> L -> o, and the G00

injection o -> L -^ H induce a connection D^ in L by

(4.6) DJ/)=7roDHozV).

Lemma (4.7). — 77^ connection D^ ^ (4.6) zj ̂  metric connection in L.
The proof is analogous to the proof of (4.5).

b) Curvature in Hermitian vector bundles. — Given a connection Dg : A°(H) ->• A^H),
the curvature ©g is defined by

(4-8) @^e=(D^^e (^A°(H)).

In case DH is the metric connection for an Hermitian metric, ©g is of type (i, i) and
satisfies the symmetry

(©H^, €')+{€, ©H^)=O {e, e'eH).

For us, the main use of the curvature is as it appears in the following:
Lemma (4.9). — Let 9 and 9' be two local holomorphic sections of H->S and ^ == (9, q/)

^ inner product. Then

(4.10) ^-(DH^D^')-^®^^').

Proof. — a^==-aa(9, 9 /)=-a(DH9,9') (by Lemma (4.1) and since 9'
is holomorphic) =-(DHDH 9, <P')+(DH^ D^cp') (by Lemma (4.1) again). Now
DHDH<P==(DHDH+DHDH)(P (since 9 is holomorphic) = ©g • 9 (by (4.8)). Q.E.D.

If 9 is a holomorphic section of H->S, then we may write locally:

(DH^DH^S^AW^
(4 .11 ) i j '

-(©Hy,?)-^,^^'
^ J

where ^ = (^ j) and A = (^ j) are Hermitian matrices and s\ . . ., ̂  are local holomor-
phic coordinates on S. From (4.10) and the maximum principle for plurisubharmonic functions
[19], we have

Lemma (4.12). — Let ^ be a holomorphic section of H—^S such that

(i) the length ^ == (9, 9) z^ bounded on S, ^rf
(n) the Hermitian matrices g and h in ( 4 . 1 1 ) are everywhere positive semi-definite.
Then ^ is constant and we have (Dg9, D^^o^Q^, 9).

Now let H-»S be a holomorphic vector bundle with an Hermitian metric and
metric connection D^. Suppose that KcH is a holomorphic sub-bundle such that the
restriction of the metric on H to K is non-singular. Then we are in the situation of
Lemmas (4.5) and (4.7).

Lemma (4.13). — The curvature of the metric connection in K is given by
(©K^ O=(©H^ <Q-(^ '̂) ̂  ,'eKJ.
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Proof. — Choose holomorphic sections f, f of K such that f{s^=e, f'{so)=e'.
Then by (4.10) applied to H we have:

(©H/,/')=(DH/, DH/')-^ (/,/')
-((DK+^V, (^+b)f')-88{f,f)
-(DK/, W)+W, bf')-88(f,f)

==(©K/,/')+(y,r),
where we have used Lemma (4.5) in the second step, the equation:

(DK/,y')=o=(y,Dg/)

in the third step, and (4.10) applied to the bundle K in the last step. Q^.E.D.
To give the curvature in L, we use the conjugate linear isomorphisms:

KSK
\y

L^L

induced by the Hermitian metrics to define

^eA^Hom^K))

as the image of the second fundamental form b under the isomorphism
A^K^L^A^K^L).

Lemma (4.14). — The metric curvature in L is given by:

(©L/,/')==(©H/,//)+(^ cf9} (/^eL^K)1).

5. Statement of main differential-geometric properties of the Hodge bundles*

The results stated in this section will be proved in § 6 below.
Let <^=(E, D, Q^, {F^}) be a variation of Hodge structure as defined in § 2.

Using the Hodge bilinear form Q, we have an Hermitian metric ( , ) in E given by

(5.1) (^')^(_,)nQ^) (,,,'eE).

This Hermitian metric induces non-singular Hermitian metrics in the holomorphic
sub-bundles F^ ofE, and (—i)^"^ 5 ) subsequently induces a positive-definite Hermitian
metric in the Hodge bundle E^F^--1.

Referring to (2.12), we have linear bundle maps a :Eq—^Eq+l®T and•̂
^g.i : E?->E?~1®T induced by the flat holomorphic connection D.

Theorem (5.2) (Curvature of Hodge bundles). — The curvature of the metric connection D^q
is given by :

(QE^, ̂ ')-(v, V')-(^-i^ ̂ -i^') (^ ^E^)

where we agree that (T_^==O==O^.
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Remark. — If we choose local frames for all of the Hodge bundles E3, then
Theorem (5.2) gives for the curvature matrix that

(5.3) ©E^A^-B^B,,

where A^, B^ are matrices of (i, o) forms with BQ=O, \==o.
Remark. — From (2.10) we have isomorphisms

(5.4) E^E^.

From (5.1) it follows that the isomorphisms in (5.4) are all isometrics. Using the
isomorphism ^ s. ^

E<^®E(^+l®T^En-<^~l®E<^e)T,

we see that a^ corresponds to (^_g_i, and so

©E^^. ^)—(^g-l. ̂ -l)--^-^

which is the correct relation between the curvature of an Hermitian vector bundle and
the curvature of its dual.

Our second main application of the structure equations of variation of Hodge
structure is

Proposition (5.5). — Let 0 be a holomorphic section of fq over an open set UcS and_ _ ^^
assume that the projection ofD<S> in E/F3^ ^ero. Then 0 induces a section y of E/F3"'1^?^^1,
and the differential forms

(-i^-^D^i^D^Kp)
V5> ' (-ir-^e.n-^y)

are positive, in the sense that the Hermitian matrices defined as in ( 4 . 1 1 ) are positive (semi-
definite) .

Corollary (5.7). — Let $ and 9 be as in Proposition (5.5) above and assume that
(i) U is all of S, and
(ii) the length of the section <p of 'Eqc'E|'Fq~l is bounded.
Then DE/F'?-I<P = o == D^cp.

This Proposition and Corollary will be proved together in § 6 below.
Proposition (5.8). — Let 9 be a holomorphic section of 'Eqc'E|fq~l over an open set UcS,

and assume that D^q-i^=o. Then there exists a unique section Y of F3 satisfying
(i) DY=o;
(ii) Y projects onto 9; and
(iii) the inner product (Y, F^-^o.

Combining (5.7) and (5.8) we find:
Theorem (5.9) (Theorem on global sections of Hodge bundles). — Let 0 be a holomorphic

section of F^-^S such that
a) the projection of DO in E/F3 is j^ero, and
b) the length of the induced section 9 of E^F^/F3"1 is bounded.

140



PERIODS OF INTEGRALS ON ALGEBRAIC MANIFOLDS, III 141

Then there exists a section Y of F^ satisfying

(i) DT=o;
(ii) Y—O is a section o/'F3-1; and
(m) the inner product (T, F^-^o.

6. Structure equations for variation of Hodge structure.

We want to prove (5.2) and (5.5)-(5.8). Our method of proof is to use the
calculus of frames [6], [8], where by definition a frame is a C°° basis, over an open set,
of the vector bundle in question.

Given a variation of Hodge structure <?==(E, D, Q, {F3}), we shall consider
unitary frames adapted to the Hodge filtration (2.4). By definition this is a frame

(°*1) ^13 • • • 5 ^5 \+l9 • • - 3 ̂  5 • • • 5 ^_i+l3 • • - 5 \

where h^ = dim Fj and where the following conditions are satisfied:
(i) referring to the Hermitian inner product (5.1) we have

(6-2) (^.)=(-i)^8j (A,_^j^)

and all other inner products are zero;
(ii) the vectors

e!) • • - 5 ^q

give a basis for Fj for all points seS where the frame is defined; and
(iii) under the conjugate linear isomorphism

E^E""3

given by (5.4) and the metric (5.1), we have

C6^) Vl-U^n-,-1^ (^S^-^-l)-

Remarks. — We first observe that (6.2) and (6.3) are compatible:

(-i)'-1^^., v^)=(-TO(v,+., v .̂)
=(_i)»(_,yQ(^_^^,^_^^,)=(_i)"(_i)"-,-i^.

Secondly, I should like to comment that the alternation of signs in (6.2) is of extreme
importance — it is this plus the infinitesimal bilinear relation (2.8) which makes everything
go through.

The flat holomorphic connection D, which by Lemma (4. i) is the metric connection
for the metric (5. i) in E, is given by

(6.4) D.—^Se^,,
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where the differential i "forms 6̂ ' satisfy the integrability condition
hn

(fi-5) dQj+ 2 (6^6?) =0.
•/ ^=1 ' K 3 /

From (6.2) and the flatness of the metric we find

C6-6) et-.l:;+(-I)p+^:^=o {^i^-h^;^j^-h^).

From (6.3) we have

^•7) -̂(-rfc:::;.
As remarked below (6.3), it is unfortunately the case that the signs are quite

important and so must be kept track of carefully.
The infinitesimal period relation (2.8) gives

(6.8) efc^-o for^+i, i^'^-^^o.

At this point we have used all of the information in I)-VII) of § 2.
From Lemmas (4.3) and (4.5) we have
Lemma (6.9). — The second fundamental form of^ in E is given by

C6-10) ^== S 6^®^ 6f=o;1^1^
hq+l^J^hn

and the metric connection in F9' is given by

hq

( 6 - 1 1 ) D^= S Q}e,, i<i<h,.
j=l J — — i

Using the Carton structure equation [6], the curvature of the metric connection in F3

is given by

(©^=^+^(6^6f) (i^,^).

From (6.5) and (6.8) we obtain

(6.12) (©^^-^(e^.Ae^^) (î ,̂ ).

We shall now prove Proposition (5.5) by proving the following three lemmas.
Lemma (6.13). — Let 9 be a vector in F^ such that 9 projects to ^ero in F^F7"'1-^.

Then the differential form
(-1)^-9,9)

is positive in the sense of Proposition (5.5).
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^-v-i

Proof. — Writing 9= ^S <p^_^, we have from (6.12) that

(©^9, ̂ ^.S^e^^e:^ v,.̂
=(-i)^6:^,Ae:^

=(-I)?(S((Se:^^^)A(2:e:^ (by (6.6))
^(-i)^^)

where ^—SO^^1 is of type (i, o) (by (6.10)). This proves the Lemma.

Lemma (6.14). — Let 9 be as in Lemma (6.13) and assume that D^cp projects to ^ero
in F7-^?-1-^. Then the differential form

(-i^-^D^D^)
is positive. . ,

" ^-^-1

Proof. — By assumption D^q? = S ^vl+^ _ +, where ̂ vl+l is of type (i, o).
Then (-ir^D^D^^s^-1^^^)
as required.

Lemma (6.15). — Let Y be a holomorphic section off13 such that DY projects to ^ero
in E/F^. Denote by ^ the section o/E/F^"1 induced by Y, and let $ he the holomorphic section

o/F72"^1 which corresponds to ^ under the isomorphism 'E|TP~l^:Fn~p+l. Then Dp^+î
projects to ^ero in rn-P+l-.rn-P-^o.

Proof. — What we must prove is that D^-i^ projects to zero in E/F^^-^E/F^-^o.
hp

Now Y=== S ̂ e^ and by assumption we have

(6.16) S^e^^o (i^h^-h,).
3 — i

^p~~^p-l
The section ^ ofE/F7'"1 is S ^-1+J^ .̂ and the Lemma follows from (6.8), (4.7)
and (6.16). j= l p ' 1

It is clear that Proposition (5.5) follows from Lemmas (6.13)3 (6.14) and (6.15).
We now prove Corollary (5.7).

We use the notation of Proposition (5.5) and Corollary (5.7). From Lemma (4.12)
it follows that the length (9,9) of 9 is constant and (D^-19, D^q-i^)== o. By
Lemma (6.15) we have that the projection of ^^-19 on E/F3 is zero, from which it
follows that DE/F?-^ ==o. It now follows from the exact sequence:

o-.E^E/F^-.E/F^o

and Lemma (4.5) that D^9=o. This proves the Corollary.
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We now prove Proposition (5.8). We may assume that cp is a unit vector, i.e. that
the length (<p, cp)==(—i)s-\ and may then take:

^Vi+i
hn

in our frames (6.1). From (6.4) and Lemma (4.7), we have S 6^ _ +^.==o
which gives: ^Vi+1 q'1

C6-1?) ^.^1=° for^_i+i.

Differentiating (6.17) and using (6.5) gives:

o—^^l^-^Aet^)

=^_^S~1+1AQL^ ^ (6• I7))

=VXV2(et-^jlA8fc^Jl) (by ^-^ and (6•6))•
Since (V^+j is of type (i, o), we must have:

S"^—!"^"^ Q^o-2'^"^ -P • y »
V2+^==o=6^+l for J=I? • • • .^-1-^-2-

This gives D^ _ 4.1=0, from which Proposition (5.8) follows.
We now prove Theorem (5.2). Taking the frame:

\-i+r • • - 5 \

in E3, we see from Lemmas (4.5) and (4.7) that:

D ,̂,̂ !;'̂ :;....
From the Cartan structure equation:

(Gt A-i4^ ,/Ar-i+1 i y /A-i+1 A-i+ ̂
((M)E^\_l+, = ̂ Vi+j + ̂  (Vl+fcA6Vl-^^

and from (6.5), (6.6), (6.8) it follows that:

(6.18) (©E^t-^^^-^e:^:^^^^^^

Now Theorem (5.2) follows from (6.18) and the equation
hq+l~hq

r \ V ^hg+m^\.^j)= ^ v^V^m=l Q-1

which says that <^ given by (2.12) is just the second fundamental form ofE3 in E/F^"1.
Finally, we shall prove a Lemma for use in the proof of Theorem (7.19) below.
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Lemma (6.19). — Assume that S is complete and let 9 be a global holomorphic section
^/E/F3-1 such that

(i) 9 projects to ^ero in E/F^-1-^ E/F3, and
(ii) the projection ofD^ to E/F3 is ^ero (this makes sense since D-fi^F3"1) c^F9)).

TA^ ^r^ exists a constant section <I> of E JZ^A ^z^
a) 0 projects to 9 m E-^E/F^"1 a^
b) the inner product (0, F<^-l)==o.

Proo/. — Referring to Theorem (5.2), we have:

(6.20) (©E^ 9)=—(^-i-9. ̂ -r?)
when we consider 9 as a holomorphic section ofE^ (by (i)) and when we use 0 - 9 = 0
(by (ii)). From (6.20) and Lemma (4.12) we have Djgg-9^0. It follows that
DE/F<^-19==0 s^d then our result follows from Proposition (5.8).

7. Applications.

a) Invariant cycle and rigidity theorems.
Theorem (7.1) (Invariant cycle theorem). — Let <?=(E,D, Q^ {F3}) be a variation

of Hodge structure and assume that
(i) S is complete, or
(ii) the Picard-Lefschet^, transformations around the irreducible branches of S—S are

trivial.

Let 0 be aflat section of E-^-S. Then the Hodge {p, q) components of <5> are flat sections
off..

Proof. — We shall prove in § n below that, with the assumption (ii) above, the
variation of Hodge structure S and section 0 of E both extend to S. Thus we may
assume that S is complete.

Referring to the theorem (5.9) on global sections of Hodge bundles, we may
find a section ̂  of E satisfying DY^=o, the projection of O—^ in E/F""1 is zero,
and the inner product (Y^, Fn-l)=o. Writing <D=<I^_i+Y^, we may apply the
same reasoning to find a flat section ^V^-i °^ fn~l such that (XF^_^,'Fn~2)==o and
0 = 0^_2 +Yn_i +T^ where ^>n-2 is a ̂  section of F^2. Continuing in this way we
find our theorem.

Remarks. — (i) In [12] we gave the above proof of Theorem (7.1) but formulated
the result in a clumsy way. The above formulation was given by Deligne [9], who,
as remarked in § 3, has proved

Theorem (7.2) (Deligne). — With no assumptions on S but with the assumption that §
arises from a geometric situation., the same conclusion as in Theorem (7 .1) is valid.

In fact Theorem (7.2) follows immediately from Deligne's result (3.5).
(ii) Of course, we would conjecture that (7.1) is true with no assumptions on S.
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Corollary (7.3). — With the notations and assumptions of Theorem (7 .1) , we suppose
further that n==2m is even and that 0 is aflat section of E->S which is of type (m, m) at one
point (i.e. the Hodge components O^^o for {p, q)^(m,m}). Then 0 is everywhere of
type (m, m).

Remark. — In [18] Grothendieck, as a (non-trivial) consequence of the Tate
conjectures, was led to suggest that, if /:X->S is an algebraic family of algebraic
varieties and O a section in H°(S, R^QJ which is an algebraic cycle at one point ^eS,
then O^eHP^V,, QJ is everywhere an algebraic cycle. It was this problem which
initially started me looking into sections of Hodge bundles.

Corollary (7.4). — Let S and €' he two variations of Hodge structure which satisfy the
assumptions of Theorem (7.1) . Suppose there is a linear isomorphism a : E, -> E^ ^eS)
which is equivariant with respect to the action of 7^(8) on E^ and E^, and which commutes with
the Hodge decompositions of E^ and E^. Then there is a global isomorphism €^S' of the
variations of Hodge structure which induces a at ^eS.

Proof. — Because of 7i:i(S)-equivariance, we may consider a as a global flat section
of EOOE'. Also CT is of type (n, n) at SQ since it commutes with Hodge decompositions.
The result now follows from (7.3).

Remark. — This corollary, which should be thought of as a rigidity theorem, was
proved for n==i by Grothendieck [17] in the geometric case and by Borel-
R. Narasimhan [5] in the general case. Because ofDeligne's theorem (7.2), the corollary
is true in general when § and S ' both arise from geometric situations.

We can formulate an analogous result about homomorphisms (and not just
isomorphisms) between variations of Hodge structure. As we see no applications for
such, we shall not discuss the matter further.

b) Negative bundles and variation of Hodge structure. — Let H—^S be a holomorphic
vector bundle. We say that H is negative (semi-definite) if there exists a (positive-definite)
Hermitian metric ( , ) in H whose metric curvature ©^ (cf. Lemma (4.1)) has the
property that the differential forms:

(7.5) (©H^ e)^h^ds^ds^ (^=/^)

are negative in the sense that the Hermitian matrix (^ j) is negative. Observe that H
is negative if the matrix of the metric curvature has a local expression:

(7-6) ©H^-AA^A

where A is a matrix of (i, o) forms. From theorem (5.2) we have
Proposition (7.7). — Let ^=(E, D, Q ,̂ {F^}) be a variation of Hodge structure. Then

the Hodge bundle En is negative.
We say that a locally free coherent analytic sheaf is negative if this is true of the

corresponding holomorphic vector bundle.
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Corollary (7.8). — Let f:'K->S be an algebraic family of algebraic varieties. Then
the direct image sheaf R^(^x) ts ^g^tive. More generally, if q is the least integer with
IP-̂ V,, i^)=t=o, then the direct image sheaf R^^Q^g) is negative.

Recall that a cohomology class (oeH^X, R) is negative if we have

(7-9) J^o

for all compact ^-dimensional algebraic subvarieties Z of S.
Corollary (7.10). — The Ghern monomials c^==c^.. .^ of the Hodge bundle En->S

are negative. In particular the 1st Chern class ^i(R^(^x)) ls ^g^ive (semi-definite), and we
furthermore have

(7.ii) J^i(IWx))<o

in case S is a complete curve, n = i or 2, and § is not trivial.
Proof. — It is well known that the Ghern classes of a holomorphic vector bundle

H—»-S can be computed from the curvature ©g of a metric connexion. In particular,
if (7.6) holds, then it follows that locally

(7.") ^(^(S^AVJ)

where |I| ==?i+. . . +^ is the degree of c^ and T^ are ( | I [ ,o) forms. The first two
statements of (7.10) follow from (7.12), and (7.11) follows the fact (cf. Theorem (5.2))
that, for n==i or 2:

^l(R^x))=0^ <T,-i-0.

To give our final application of Theorem (5.2), we define the canonical bundle K(<^)
of the variation of Hodge structure <^==(E, D, Q^{F3}) by:

(7.13) K((?) =(det E0^® (det E1^-1®... ® (det E^).

The first Chern class of the line bundle K(<?) is given by the differential form —{^{^))
, 27Twhere

(7.14) o)(<?)==%(Trace @^)+{n—i) (Trace ©gi)+•••+Trace 0En-i.

Proposition (7.15). — For a tangent vector T) to S, we have < co, 'y)A^>^o with equality if,
and only if; c^(7])==o for q--=o, ..., n—i.

Proof. — This follows by direct computation from the formula
n-i

<0), 7]A7]>== S | ̂ (7)) ]2

q=0

which results from (7.14) and Theorem (5.2).

c) A Mordell-Weil theorem for intermediate Jacobians. — Let <^=(E, D, Q, {F^})' be
a variation of Hodge structure where we assume that n = 2m +1 is odd. Then
(7.16) E==Fm©FW, F^nP^o.
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We let ER=={^£E : e==^} be the set of real points in E and assume given a flat lattice
AcE^. Equivalently, we are given a 7^(8)-in variant lattice Ag in (E^ . Letting
E+=E/FW and J=E_(_/A, we obtain an analytic fibre space TT : J—^S, Tr'^.^^^
of complex tori Jg^F^VE^/Ag which we shall call the family of intermediate Jacobians
associated to S and A. We note that the tori Jg are abelian varieties if m = o, but not
(in general) otherwise.

Let J-^S be a family of intermediate Jacobians as above and / the sheaf of
holomorphic sections of this fibre space of complex tori. There is an obvious exact
sequence

(7.'7) o->-<?(A)^(E+)-^^o

where ^(A) is the (locally-constant) sheaf of sections of the lattice A over S. From (7.17)
and the relations

D^(A)=o
D.^F^c^P^1),

we obtain a sheaf mapping

(7.18) D^^KE/F^).

The algebro-geometric significance of (7.18) will be discussed in Appendix A below
(cf. Theorem (A. 8)). We denote by ^wz(S, J) the sub-sheaf of sections ve^ which
satisfy DjV==o, and shall refer to sections in jfow(S, J) as being integrable. In the
abelian variety case (^==0), all holomorphic sections are integrable.

Suppose now that S is complete. Referring to Theorem (7.1) we see that:

H°(S, ^{E))=B°{S, ̂ (P^eH^S, ^(F^)

and it follows that:

H°(S, ^(F^M^S, ^(E))/H°(S, ^A))=J{^)

is a complex torus which we call the trace or fixed part of J-^S (cf. Proposition (A. 7)
and the succeeding remark for an algebro-geometric interpretation of this fixed part).

Theorem (7.19) (Mordell-Weil for families of intermediate Jacobians). — Let J->S
he a family of intermediate Jacobians associated to a variation of Hodge structure S and lattice A
over a complete base space S. Then the group Hom(S, J)==H°(S, Jfow(S, J)) of global,
integrable cross-sections of J->S is an extension of the fixed part J(<?) by a finitely generated
abelian group.

Remark. — The integrability condition DjV=o will be satisfied for any cross-
section v of J->S " which arises from algebraic cycles in case J->S comes from a
geometric situation " where we refer to Appendix A for an explanation of the phrase
in quotation marks (cf. Theorem (A. 8)).

Proof. — From the exact cohomology sequence of (7.17) we have:

o ->JT -> Hom(S, J) -> H^S, ^(A))
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where Jf* is the vector space of holomorphic sections 9 ofE^. which satisfy DcpetiJ^F714'1).
Since H^S, ^(A)) is finitely generated, our theorem follows from Lemma (6.19) in the
same way that Theorem (7.1) followed from (5.9).

Remark, — The extension of this theorem to arbitrary base S is discussed in
Appendix G (cf. (G.3)). In particular Theorem (C. 12) in this appendix gives such an
extension to arbitrary base in case n==i, which is just the usual Mordell-Weil theorem
(over function fields).
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PART II

DIFFERENTIAL-GEOMETRIC PROPERTIES
OF THE PERIOD MAPPING

8. Classifying spaces for Hodge structures.

Let E be a complex vector space and

o<h^h^.. .^_i<^=dim E

an increasing sequence of integers which is self-dual in the sense that
^_g_i==^—^ for o^q^n.

We also assume given a non-singular bilinear form
Q: E®E -^ G, Q ,̂ ,')=(-i)-Q^ ,),

and consider the set D of all filtrations

FocFlc...cVn~lcFn==E, dimF^^

which satisfy the first Riemann bilinear relation
'"V

(F^^F^-S or equivalently
1 8 ' ' Wq,'Fn-q-l)=o.

We will say that such filtrations are isotropic or self-dual.
Proposition (8.2). — D is, in a natural way, a protective and smooth complete algebraic

variety which is a homogeneous space
D=G/B

of a complex simple Lie group G divided by a parabolic subgroup B.
Proof. — Let G{h, E) be the Grassman variety of A-planes through the origin in E.

Observe that the filtration:

F^.-.CF- ^=r îii
determines F°C. . . cF" by using the first bilinear relation (8.1). From this we have
an obvious projective embedding:

(8.3) D-^G(^E)x. . .xG(^,E)

which exhibits D as a complete and projective algebraic variety.
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We shall prove that D is smooth by exhibiting the tangent space TF(D) to D at
a given point F==(F°, . . . , F"). First we recall the natural identification

Tg(G(A, E))^Hom(S, E/S) (SeG(A, E)).

The tangent space to FeG(Ao, E)x . . . xG(/^, E) is
m

(8.4) OHon^E/F^), m== \n^-s- ,
q=Q |_ 2 J

m

from which we see that Tp(D) is given by all f= (B fq (/^eHon^, E/F3)) in (8.4)
which satisfy the conditions that the diagrams q~

^ —^ E/F^

(8.5)

F^i ̂  E/P^ (^=o, i , . . . , ^ - i )
/?+!

are commutative, and that we have

(8.6) WmW^e^+^Ue^^o for ^'eF-

Now let GcGL(E) be the complex orthogonal group of the bilinear form Q^;
thus G is the complex simple Lie group of all linear transformations T : E->E which
satisfy:

Q(T^T<)=Q^<) (,,,'eE).

Each TeG induces an automorphism T:D->D by

T. (F°c... cF^^TF0) c.. . c (TF^.

This action of G on D is transitive and the isotropy group B of a given point F^eD is
a parabolic subgroup of G. This gives the desired representation D == G/B.

Remark (8.7). — We define an important holomorphic sub-bundle Ip(D) of the
^ ^ m

complex tangent bundle I(D) as follows : Ip(D) consists of all /== (Q fq in (8.4) which
satisfy the infinitesimal bilinear relation (cf. ( 2 . 1 1 ) ) q-

(8.8) Q ,̂, ,')=o {ee¥\ .'eF^-2),.

We now assume given a conjugation e t-> ~e of E such that

Q.( '̂)=Q^7).
In other words we are given that E==ER®C where Qis real on the real subspace Eg
of vectors eeE which satisfy e=e. Define the Hermitian inner product ( , ) in E by

(8.9) (^ O-^rQX^') (^ e^E).
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We define the period matrix domain D C D to consist of all isotropic filtrations F° C . . . c F"
which satisfy the second Riemann bilinear relation:

( , ) : F^F^C is non-singular and
(8.10) ( — i ) ^ , ) ^(^E^C is positive definite

where E^^eF^ : (<?, Fq-l)=o}.

We may combine (8.1) and (8.10) by saying that D is the set of filtrations F°c . . . cF",
with dimF^^/L, which satisfy:

Q/FSF^-^O
(8.11) (—^yCKFSF3) is non-singular

(-i)^(-TO(E^)>o.

Proposition (8.12). — D is an open complex submanifold ofT) which is a homogeneous
complex manifold _ /-, rrr

D == <jr/ll

of a realy simple, non-compact Lie group G divided by a compact subgroup H.
Proof. — Let GcG be the real form of all real linear transformations T : E->E

which preserve Q^. Then, under the natural action of G on D, G leaves invariant, and
acts transitively on, D. It is clear that the isotropy group H = GnB of a point F^eD
is a compact subgroup of G.

Definition. — As mentioned D is called a period matrix domain and D will be
termed the compact dual of D.

It is clear that D parametrizes the universal family of Hodge structures determined
by E, Q ,̂ the conjugation ^h->7, and the numbers hq. However, this universal family of
Hodge structures over D is generally not a variation of Hodge structure in the sense of§2
because of the infinitesimal bilinear relation (2.8).

We refer to [16] for a discussion of the group-theoretic properties of D and D,
especially as regards the equivariant embedding:

G/H —> G/B

In the following examples we let G and H be as above, K will denote the maximal
compact subgroup of G and R = G/K the corresponding Riemannian symmetric space, and
hq===hq—/L_i the Hodge numbers.

Example (8.13)^. — When n==2m is even,

G=SO(^;R) {a==ho+h2+...+h2m,b=hl+h3+...+h2m-l)
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a b

is the orthogonal group of the quadratic form S (^)2— S (j^-)2, the compact isotropy
group is

H=U(AO)x. . .xU(AW- l)xSO(AW ^) ,

and the maximal compact subgroup of G is

K=SO(a;R)xSO(&;R).

We may identify the Riemannian symmetric space R== G/K with the set of real a-planes
ScEfi such that Q/S, S)>o. The equivariant fibering

S) :D —> R

G/H —> G/K
is given by

(8.14), co(F°c ... cF2m)=EO@E2@ ... ©E^

Example. — When n==2m-{-i is odd,

G=Sp(2a; R) {a==h°+. . . +r)

a

is the group leaving the skew-form S (^.A^.^) invariant, the compact isotropy group is

H^U^X.- .xUOT,

and the maximal compact subgroup of G is

K==U(a).

We may identify R with the set of complex ^-planes S C E which satisfy

(Q/S,S)=o
^(S,S)>o,

and the equivariant fibering % : D->R is given by

(8.14), co(F°c ... cF^+^E^E^ . . . ©E2^

Now according to (8.4), (8.5)3 (8.6), we may identify the tangent bundle to D as

(8.15) Tp(D)==© ©Hom^E^) (FeD, m=[^^1).
f f = 0 p = l " \ |_ 2 J /

The identification (8.15) is G-invariant, and the positive definite metrics ( — i ) ^ , )
on E^ induce a G-invariant Hermitian metric ds^ on D. Group theoretically, ds2^ is
the metric induced by the Carton-Killing form on the Lie algebra of G [16].
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Proposition (8.16). — In the equivariant fibering

% :D —> R

G/H —> G/K

of the period matrix domain D over the Riemannian symmetric space R, the fibre Zp through each
point F^eD is a compact complex submanifold^ and we have

(8^7) Ip/D)c(T^(ZJ)1

where IF/D)CT^(D) is given by (8.8).
Proof. — We treat first the case when n == 2m is even. The point cS(Fo) is the same

as giving an orthogonal direct sum decomposition

ER=s^esi
if ER such that Q is positive on Sp and negative on S^. We shall discuss the case when
m=2l is even — the other case is similar. The fibre ^"^(^(Fo)) is the homogeneous
space

Z =1 SO(^R) \ / SO(6;R) \
Fo \U(A°)x.. . xU^-^xSO^); [v^x... xU(^-1);

and has the following geometric description:
Zp consists of all pairs of nitrations

(T^T^ ... CT^CS, dim^T2^ =A°+... +h2p

j^cT^ ... cT^cS^ dimcT2p+l=Al+... +A2P+1

which satisfy (^{^2l-2,^2l-2)=o or (^(T^-S T^-^o as the case may be. These
nitrations define a point F^.-.cF^ in ^-^(Fo^cD by letting F°=T0, F^^+T1,
F^T^T3, . . . , on up through F^-^T^+T^-1. Then we let FW=(FW-1)1,
F»n+i^^pw-2^l^ ^^^ ^ ^ clear that Zp^ is a compact, complex analytic submanifold
passing through Fo and that

m-i
(8.18), Tp (Zp)= © Hom(E^ E^2)

0 0 g=0

under the identification (8.15). From this, Proposition (8.16) and (8.17) are clear.
In case n==2m+i is odd, the point %(FJ is given by a subspace ScE,

dim^ S = a = - dim^ E, which satisfies

( Q(s,s)-o
^•Q(S,S)>o.
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The fibre ^^(^(Fo)) is the homogeneous space

z u(a)
Fo U^x.-.xlW

and may be described as all filtrations:

TocT2c...cT2OTcS, with dimcT2q=ho+...+h\

These filtrations^define a point F°c... cF2^1 in Z^cD by letting F°=T°,
F^y+Cr^-'-nS, etc., on up to F". Then F^^F'")1, .. ., F^^F0)1. Clearly

m

(8.18), Tp/Z^)= © Hom(ES E»+2),
3=0

and Propositions (8.16) and (8.17) follow.
Remark. — It may be noted that, except for the cases n==i or n==2 and h°==i,

the fibres of o are non-trivial, so that D is not a bounded domain in C^ Also, except
for the case 7?=2, the inclusion (8.17) is strict, so that there are additional conditions
on a variation of Hodge structure other than transversality to the fibres of co.

9. Statement of results on variation of Hodge structure and period mappings.

a) Let <?=(E, D, Q^{F9}) be a variation of Hodge structure, with base space S,
as defined in § 2. Letting E be the complex vector space E^ and taking the conjugation,
bilinear form, and Hodge numbers /^dim^F^/F^"1 induced on E by S, we may
define a period matrix domain D as in § 8.

We now recall that the holonomy group of the flat connection D induces, by parallel
displacement of a flat frame, the monodromy representation

p: 7c,(S)->G

of the fundamental group ofS (based at ^) in the automorphism group GofDas defined
in § 8. The image F of 7^(8) in G will be called the monodromy group of S.

A continuous mapping 0 : S->F\D will be said to be locally liftahle if, given seS,
there exists a neighborhood U of s and a continuous mapping 0 : U->D such that
the diagram

is commutative. A locally liftable mapping O is holomorphic if the local liftings 0
are holomorphic, and a locally liftable holomorphic mapping 0 is said to satisfy the
infinitesimal period relation if the local liftings 0 satisfy

(9.i) W^w (^U.TCTJU)),
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where $, is the differential of 0 and IcT(D) is defined by (8.8). We may symbolically
rewrite (9.1) as:

(9.2) 0,: T(S)->I(D).

Proposition (9.3). — The giving of a variation of Hodge structure § with monodromy
group r is equivalent to giving a locally liftable holomorphic mapping

(9-4) ^E) : s->r\D
which satisfies the infinitesimal period relation (9.2).

Definition. — We call 0 in (9.4) the period mapping associated to €. This terminology
is explained in [n].

b) Our first result on variation of Hodge structure as interpreted by the period
mapping is

Theorem (9.5) (Extension of period mapping around branches of finite order). — Let €
he a variation of Hodge structure over S and let D he an irreducible branch of S—S such that
the associated Picard-Lefschek transformation T is of finite order (cf. § 3). Localise the period
mapping (9.4) around a simple point J eD to obtain 0 : P'lt->^\D (cf. § i). Then

P^A^xA^-1

is the product of a punctured disc with a polycylinder, and there exists a finite covering

P*->P' (P^A^xA^-1)

and a lifting 0 : P*—^D of the period mapping $ such that 0 extends holomorphically to the closed
polycylinder P^AxA^-1.

To state our second main result, we assume that the monodromy group F is a
discrete subgroup of G. This is the case if § arises from a geometric situation /: X-^S.
With this assumption, the quotient space F\D is a complex space or analytic space in the
sense of [19]. In fact, the projection r\G-^r\G/H is a proper mapping and so F
acts properly discontinuously on D. Thus F\D is a separated topological space which
is locally the quotient of a polycylinder by a finite group.

Let <I>:S->r\D be the period mapping (9.4). By Theorem (9.5) we may
extend this period mapping to a holomorphic mapping $ : S'->r\D, where S' is the
union of S with those points at infinity around which the Picard-Lefschetz transformations
are of finite order.

Theorem (9.6) (Analyticity of the image of the period mapping). — The image O(S')
is a closed analytic subvariety ofr\T) which contains 0(S) as the complement of an analytic subvariety.
Furthermore, the volume ^^(^(S')) o/0(S'), computed with respect to the invariant metric on D,
is finite.
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Our third result is
Theorem (9.7). — Let S be a variation of Hodge structure whose monodromy group T

is discrete and whose base S is complete. Then the image <D(S) cF\D is a complete projective
algebraic variety. In fact the canonical bundle K(^) (cf. (7.13)) of S is ample over 0(S}.

Remark. — Using Theorem (9.6), we see that (9.7) remains true if we only assume
that all the P.-L. transformations around the branches ofS at infinity are of finite order.

This theorem follows from (7.15) and the results of Grauert [10]. We refer also
to E^L § Io for a discussion of this theorem together with some related open questions.

As our final result we give a theorem about the monodromy group F of a variation
of Hodge structure <^==(E, D, d, {F3}).

Theorem (9.8) (theorem about the monodromy group of a variation of Hodge structure). —
Assume that either the Picard-Lefschetz transformations are all of finite order or that S arises from
a geometric situation. Then

(i) the global monodromy group F is completely reducible;
(ii) r is finite if, and only if, the variation of Hodge structure is trivial; and
(iii) if r is solvable, then it is finite.

Proof. — The first statement follows from Theorem (7.1) in the same way as (3.7)
followed from (3.6). The third statement follows from the first by Grothendieck's
argument given in Deligne [9]. Finally, the second statement follows from (9.5) and
the fact that a horizontal, holomorphic mapping O : Z->D from a compact, complex
manifold Z to a period matrix domain D is constant [n].

c ) We will give some local statements which will imply (9.5) and (9.6). For
the first we let

H(D)cT(D)

be the horizontal sub-bundle defined by

(9-8) H^(D)=(T^(Zpj)1 (cf. (8.18)).

The word (( horizontal 5? follows from the fact that H(D) is the complement to the bundle
along the fibres in o : D->R. A locally liftable holomorphic mapping 0 : S->F\D
is horizontal if we have

(9-9) <D.: T(S)-^H(D)

in the same sense as (9.2).
Theorem (9.5) follows from Proposition (9.3) and
Proposition (9.10). — Let P^A'xA^-1 be the product of a punctured disc with a

poly cylinder, and let O : P*->D be a horizontal, holomorphic mapping. Then $ extends to a
holomorphic mapping 0 : A^-^D.

We now claim that Theorem (9.6) follows from the proper mapping theorem [19]
together with the following
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Proposition (9.11). — Let A(p) be the disc o^[^|<p, A^p) ^ corresponding punctured
disc, and P(A:, Z; p)=(A l l t(p))7 cx(A(p)) ^ ^ product. We shall refer to P{k, 1; p) ^j a
punctured polycylinder. Let 0 : P(A:, /; p) ->• F\D &(? a locally liftable holomorphic mapping.

(i) Let Yi, . . ., YA; ^ ̂  canonical generators of n^{'P{k, I ; p)) ^rf Tj=<S>^)er the
corresponding Picard-Lefschet^ transformations. Assume that T^, . . ., T are of infinite order
and Tj+i, .. ., T^ ̂  of finite order. Let {^J=={(^, . . ., ^+^)}eP(A:, ^; p) ^ a sequence
of points with inf .[^|->o as n-^co. Then the sequence {<I>(^J}er\D does not converge.

(ii) The volume ^^(^(P^,/; p/2))) is finite.
Proof of (9.6) /TWTZ (9. n). — We claim that 0 : S'—^r\D is a proper mapping.

If not, there is a divergent sequence {^}eS' such that 0(^J converges in F\D. We
may assume that {j^J converges to some point JeS—S'. By localizing around J and
using (i) in Proposition (9.11), we arrive at a contradiction.

The proof that the volume ^rvD^^')) ls fmite follows from (ii) in (9.11) by
localizing around S—S' and an obvious compactness argument.

10. The generalized Schwarz lemma.

Let PcC^ be the polycylinder {(^, ...,^) ^^l^l^1} of unit radius, and
denote by ds^ the standard Poincare metric given by:

, o 4- ^^i^-s.^w
Denote by cop the associated 2-form ———( S——L——^ so that ((Op)^ is the non-
Euclidean volume of P. 2 [i==l^~~\^\^ )

Let D be a period matrix domain with (suitably normalized) invariant metric ds^
and associated 2-form cop. We want to prove

Theorem (10 .1 ) (generalised Schwar^ lemma). — Let $ : P->D be a horizontal,
holomorphic mapping. Then we have
, . Wds^^dsl
VIO•2/ (O*^)^^.

Proof. — We first show
Lemma (10.3). — If the volume estimate <I)*((OD)(^<^(<Op)d holds for rf=i, then we

have the distance estimate 0*(^)^Ap.
Proof. — Let ^ : A->P be the embedding of the unit ^-disc into P given by

d

+(^)==(a^ . . ., a^), with ^JaJ^i.

( d I I2 \
Then y{ds^)= S -————T~i2^1^^ so ^^ at ̂  ^S11^ -S=o we findi = i ^ l j o c ^ l |-^| ) j

(10.4) ^(&2p)o=rf^^=(&l)o.
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If T is a tangent vector to P at (o, . . ., o), then we can find ^ as above such that

I T | |p by the isometry^^YX-^-^T for a suitable X=f=o. Then the length

property (10.4). Using the volume decreasing assumption applied to the holomorphic
r\ r\

curve $o^:A-^D, we have |[$,T||D== ^^^ S x^ M|p, or ||OA^||T||p
"- || ^llD""!! ^ I IA

which is what we want to prove.
We will base our proof of the volume estimate on a formula of Ghern [7]. To

explain his formula we let M and N be rf-dimensional complex Hermitian manifolds
and /: M->N a holomorphic mapping. Using unitary frames as in [7], we write

/ d

(10.5)
^4==.^ °w

^
i==l

d

= 2 : 1
J-l

.TJ-

Then /*(6,)=== S a]^ and we have

(10.6) l-l rw=\^W^Y
where (OM and QN are the respective 2-forms associated to the metrics (10.5). The
non-negative function zz- |det(a})|2 is the ratio of the volume elements, and we are
looking for a formula for the Laplacian A log u near a point moeM where u(mo)>o.
(Recall that the Laplacian A/of a function/is defined by ^B/=(A/) .o^.)

The desired formula involves the Ricciform Ric^ ofN and j^r curvature R^ of M.
To explain these terms, we recall that the metrics (10.5) induce intrinsic Hermitian
geometries (cf. Lemma (4.1)) on N and M and we let

(10.7)
^ = ̂  s; R^ ̂  A ̂  (Rl^ = R^

A A', I

0.=1Z;S^^A^ (S^-S^)
2M

be the curvature forms of the metrics in M and N respectively (cf. (4.8) and [7]). The
Ricci form is defined by:

d , \

(10.8) RicN-^^==^^^R^^A^J,

and the scalar curvature is given by:

(10.9) RM=^(S^)=Trace(RicJ

Theorem (10.10) (Chern [7];. — In a neighborhood ofa point m^M where u{mo)>o,
we have

-^A log ̂ R^-TraceCTRicN).
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Return now to our period mapping O : P->D. Given ^eP^ either O^COD^ (^o) = o
and (10.2) is trivially true, or else <S>*{u^)^o)^o in which case the differential 0,
of 0 is injective at ^ and the image W==<&(U) of a small neighborhood U of-^o is a
rf-dimensional complex manifold with Hermitian metric ds^ induced from ds^. Denote
by (o^ ^e associated 2-form.

Lemma (10.11). — Let Ricg and o^ be the restrictions of the Ricci form RIG]) and
2-form OD to the horizontal sub-bundle H(D)cT(D). Suppose that we have

R!CH<—c{uo) (^>o).

Then, keeping the situation and notation from just above this lemma, we have the estimate:

Ric^y <^— c{(^w) •

Proof. — By the definition (10.8)5 RicD== Trace (Q^)) where ©^ is the metric
connexion of the given Hermitian metric in the tangent bundle of D. We have then
an inclusion of bundles:

T(W)cH(D)cT(D) (over W),

and we need to compare Trace(©i)) and Trace(©^). The comparison of the curva-
tures @^, ©H, ©D is given by Lemma (4.13), from which it follows that:

Trace(©w)STrace(0H)^Trace(©D) (in T(W)).

Since G)^==(OJ) restricted to T(W), our lemma is proved.
We now use the computation given in [i6], § 7 to prove:
Lemma (10.12). — In the notation of Lemma (10.11), we have Ricg^—coH. This

gives that'.
RiC^y^——O^y

for the image manifold W=0(U) as described just above Lemma (10.11).
We are now ready to prove the generalized Schwarz lemma (10.1). Let P(p)

be the polycylinder of radius p given as usual by {^==(^1, • • • ? ^ ) ^^l^il^p} an(!

^(p)=4( S ———.—I fhe Poincar^ metric on P(p). We have made a slight change
^=i (p —|^| ) ]

of scale from our original definition. With this change of scale, the scalar curvature Rp
of the metric fi?4(p) ls ̂  constant —d. When p ==i we write ds^ for ds^{i) and let (Op
be the associated 2-form.

Define the non-negative function u{^) on P by O^o^)^^- (cop)^ We want to
show that u^i. The idea, which is originally due to Ahlfors, is to use the maximum
principle.

We first show that it suffices to consider the case when u attains its maximum at
some point in the interior of P. Let ^eP. Then ^^(p) ^OY some P^1 ^d we

may define u^) in P(p) by (S)*{^Y==u^ (^(p))^ Then lim Mp(^o)==^o) because
of lim ds^^){^o)==ds^o). Thus it suffices to prove that ^p(^o)^1 f011 P<i. Now,p-^i
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for p<i, 0*(&^) is bounded on the closed polycylinder P(p), while clearly ((OpCp))^
goes to infinity at the boundary P—P. Thus ^p(^). goes to zero as ^ goes to the boundary,
and so u^ has its maximum at an interior point.

We now assume that u has a maximum at ^eP. Then by Ghern's formula (10.10)

(10.13) °^:~^ ̂ °§ ^==—^—Trace (/*Ric^).

Now using orthonormal co-frames (10.5) in the situation when M=P and N=W=0(U)
with U a neighborhood of^o in P, we have from Lemma (10.12) that

-Ricw=~(SS^e,Ae,)^S6,A6,
i» j i

and so
(10.14) -/*(Ricw)>.S ^(O.A(^.

—», j, fc

Letting A be the matrix (ff]), from (10.14) we find that
(10.15) —Trace(/<lRicw)^Trace(A.<A).

Now use the Hadamard inequality Trace(A.<A)^^|det A|2/d=^l/d together with
(10.15) and (10.13) to find i^^, which is what we wanted to prove.

Remark (10.16). — As in Proposition (9.11) we let P(A:,/; p) be the product
(Ay X (Ap)1 where Ap is the punctured disc o< | ^ | < p and Ap is the usual disc o^| ̂  \ < p.
We set y==P(k, /; i) and P=P(A;+/, o; i). Then P->P* is, in the usual way, the
universal covering and so the Poincar^ metric ds^ induces a metric ds^ on P*. Letting
^=^exp6^ be polar coordinates, we have explicitly that

( ^ ^ 1^^+rM ( w d^, \(10.17) dsy== 2J-3-——.i- + 2J 7——\—12^2 hv^^10^)/ \^k+l(.I-\^\2^
and for the volume element

fc dr,dQ, _ dr.dQ,
(Io-18) (^r^n-TT—^-n J J

'^==l^(logr,)2^^l(I-7f)2•

From (10.18) we have
Lemma (10.19). — For p<i, the volume (Jip*(P(A:, /; p))< oo of the sub-polycylinder

P{k,l^)cy is finite.
The use of the following lemma was first demonstrated by Mrs. Kwack [25]:
Lemma (10.20). — For o<p<i, let Op be the circle |^|==p in the punctured disc A*

given by o<|^|<i. Then the length ^(^p) °f °p9 computed using the Poincarf metric ds^
27T

on A*, is given by l^{o^)==———. In particular^ /(op)-^o as p->o.

log(1)
v p / rfr2+r2rf62

Proof. — This follows immediately from (10.17), which gives that ds^==—^-——-^
in the situation at hand.
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As a Corollary of Theorem (10.1) and Lemmas (10.19) and (10.20)5 we have:
Corollary (10.21). — Let <D : P*—F\D be a horizontal, holomorphic mapping. Then

the volume ^r\j)(^{'P{k, ̂  ?))) °f^le image of the concentric punctured polycylinder P{k, /; p) cP*
is finite. In particular, (ii) of Proposition ( 9 . 1 1 ) is valid.

Corollary (10.22).—Let P* == A* x A^ ~1 and let 0 : P*—D be a horizontal holomorphic
mapping. Suppose that Yp is a curve in P* given parametrically by eh->(p^6, ^g^6)? • • • ? %(^6))
z^r^ the Zj{e^} ̂  smooth curves in the unit disc o^|^|<i. Then the length ^(^(y )) ^
the image curve tends to zero as p->o.

ii. Proof of Propositions (9.10) and (9.11.)

a) We first prove (i) in Proposition (9.11). For simplicity we will consider the
case k=i, l==o. The general situation will be done by the exact same argument.

Thus we have a locally liftable, horizontal, holomorphic mapping 0 : A^-^FVD
such that the Picard-Lefschetz transformation TeF is of infinite order. We assume
given a sequence {^JeA* with |^J->o and such that {O^J} converges in r\D. We
want to show that this leads to a contradiction.

Let ^ be the circle [ z \ == [ ̂  [ and set w^ == 0(^J e r\D. We may assume that w^
tends to a point Z£;eF\D.

Choose a point weD lying over w in the projection TT : D^F\D. The stabilizer
F^=[ger : g'w==w} o f w i s a finite group, and we may choose neighborhoods U of w
in r\D and U ofw in D such that r--U =U and Tc^fU) is the disioint union U ^•U.

— — — ser/r^6

We may assume also that the distance d^(V, ̂ U)>s from U to its translates is bounded
below for geF—T^. Finally, since TeF is of infinite order, we may assume that the
intersection TUnU is empty.

Choose n so large that the non-Euclidean length ^(^n) ls ^ess lhan s. This is
possible by Lemma (10.20). By Corollary (10.22) the length ^(^(^J) °^ tne image
curve may also be assumed to be less than e. Finally we may assume that the image w^
of Zn under 0 lies in U.

Choose w^eV which projects onto w^. Now take a local lifting 0 of 0
in a neighborhood of ^ such that <D(^J==^. Analytic continuation of $ around
the circle o^ passing thru ^ leads to the new local lifting T-0 around ^. This is
a contradiction since the length of the image curve O^J is less than s, which implies
that d^^,T^{^))<^ while we have d^{V, T.U)>£.

Because of this contradiction we have proved (i) in Proposition (9.11), and the
other part of this proposition has been given in Corollary (10.21).

b) We want to prove Proposition (9.10). For simplicity we assume that d==r,
the general case is done by essentially the same argument.

Thus we assume given a horizontal, holomorphic mapping 0 : A^D. We want
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to show that 0 extends to a continuous mapping of A into D. Our proof is based on
the following result of Mrs. Kwack [25]:

Proposition ( 1 1 . 1 ) (Mrs. Kwack). — Let M be a compact complex manifold with
Hermitian metric ds^. Let f : A* ->• M be a holomorphic mapping with the property that if { cr^} c A*
is any sequence of circles \^\ == p^ whose radii ?„ tend to j^ero, then the lengths ^(^(^n)) °f ̂
image circles tend to ^ero. Then/extends to a continuous mapping f: A->M.

Remark. — The interesting thing about this result is that it is not at all a topological
statement. The fact that M is a complex manifold seems to be quite essential. For
completeness we shall give a proof of (n . i) below.

We now use (11.1) to prove our extension theorem for 0 : A*->D. Recalling
that D=G/H is a homogeneous complex manifold of a real simple Lie group G by a
compact subgroup H, we select a discrete subgroup A of G such that the quotient A\G
is compact and such that A acts without fixed points on G/H. The existence of such
a uniform subgroup A follows from a general result of Borel and Harish-Chandra [4].
Or in our case we could use the theorem in [28] to write down such a A.

The quotient M==A\D is now a compact, complex manifold M with an Hermitian
metric ds^ induced from the G-invariant ds^ on D. From Corollary (10.22) it follows
that the conditions of (11.1) are satisfied by the mapping f'. A*->A\D obtained by
composing 0 with the projection D->A\D. Thus f extends to give a continuous
mapping f'. A->-A\D From this it follows that 0 extends to give our desired continuous
mapping 0 : A—^D.

Remark. — The use of the uniform subgroup A in the above proof is not as absurd
as it might at first appear. To explain what I mean, we recall the embedding DcD
of D as an open domain in its compact dual. It is not too hard to show that our
mapping <D : A*->D extends to a continuous mapping $ : A->D. The trouble is
that the image 0(o) of the origin might lie in the boundary ^D=D—D of D in D.
So our extension theorem is really a question of the pseudo-convexity of D. Now for a
bounded domain B in C ,̂ it is a theorem of Siegel [29] that the existence of a properly
discontinuous group T* of automorphisms of B such that T\B is compact already implies
that B is a domain of holomorphy. Thus, if BcCT is a bounded domain such that
we have a holomorphic mapping 0 : A*-^B, and if there exists a uniform subgroup
YcAu^B), then 0 extends to 0 : A->B because of the usual Riemann extension
theorem plus Siegel's theorem. Our proof of Proposition (9.10) is essentially a similar
argument.

c ) We now give a proof, which is essentially that of [25], of Proposition (11.1).
We use the notation o'(^o) ^ov tlle circle |^| ==|^ol passing thru ^eA*.

Let {^}cA'11 be a sequence of points with j^J-^o. If we set z^=/(^), then
by the compactness of M we may assume that w^->we'M.. Let x^ ...,^ be local
holomorphic coordinates centered at weM and denote by U(p) the polycylinder |^[<p
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around w. We have to show that, given s>o, there exists 8 such that fU)eU(e)
if o<|^|<5.

Let s>o be given. Since the lengths ̂ (/(<^))) of the images of the circles <r(^)
tend to zero, and since ^e/(o-J tends to w, we may assume that /((r(^))cU(e/2)
for all n.

If we cannot find the required 8, then, by renumbering if necessary, we may find
a sequence {j/JeA* with |^+i]<bJ<[^| such that/(j/J does not lie in U(s). Let \
be a maximal annulus o^<|^|<^ around <r(^) such that /(AJcU(s/2). Then the \
are all disjoint, and we may choose ^ecr(aj and ^ecr((BJ with /(^) and/(6J lying
in the boundary aU(e/2) of the polycylinder U(e/2). Passing to subsequences, we
may assume that /(^) -^ ^eaU(s/2) and /(6J -> &eaU(e/2). Then /(a(^)) -> ^ and
/(°'(^n)) -^ ^ by the argument using lengths of circles.

Write /(^)=te), ...,^(^)) and let oc=^), P=^(6). We may assume
that a=)=o, P=)=o. Using the ^-coordinates, we have a picture

^)

For % sufficiently large, we find from the argument principle that:

f xl{^ _ o _ f x^^
Jl^leoM^i^)—^^) J|^|eo(6n)A:l(^)—^l(^n)'

This is a contradiction, since the difference of these two integrals is the integral:

f îW .J. +0.
^l[^)—^n)

2(54



APPENDIX A

A result on algebraic cycles and intermediate Jacobians

a) Let V be a smooth, complete, and projective algebraic variety, and consider
the odd degree cohomology

H^+^V.C).

For simplicity we will discuss the case when H^^V, C) is all primitive — the general
situation is essentially a < c direct sum " of such cases. We set

H^CV', C)==H2m+lfo('V)+^ . +Hm+l-m(y)

and define the (m^) intermediate Jacobian J(V) by

(A.I) JC^H^-^V, qw^cv', CO/H^^V.Z).
As references on the theory of intermediate Jacobians we mention [14], [27] and [23].

Denote by ©(V) the group of algebraic cycles (modulo rational equivalence) on V
which are of pure codimension m +1 and which are homologous to zero. We will
define an Abel-Jacobi homomorphism

(A.2) ^: ©(V)-^J(V),

which generalizes the usual mapping for divisors on curves (m==o and dimcV=i).
Before defining ^ we need a result of Dolbeault about Hodge nitrations (cf. the appendix
to [14] and the references given there). Let A"'3 be the C°° forms of type
(%, o)+. . . +{n—q, q) on V and Z^ the ^-closed forms in A^. Observe that
^(A^ p) c A"1 +1'p +1 and set

(A. 3) F^^Z^/rfA71-1'3-1.

Proposition (^4.4). — The natural mapping

F^-^H^V.C!)

is infective with image IP* °(V) +.. . + H^ qf ̂ V).

Suppose now that dim(;V==rf (then m^——j and let co^, ..., G)^ be a basis for

( A -\ Y2d—2m—l,d—m^tJd,d—2m—lf\T\f i TLTd—m, d—m—l(^T\

Observe that F^-^-M-w 13 the dual space to the tangent space

H»n,»n+l(V)+. . .^-H^^+^V)
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^JKVh ^d so we may think of^-^-^d-m ̂  ̂  ̂ ^ of holomorphic differentials
onJ(V). Letting Ze©(V), we define the Abel-Jacobi map (A. 2) by

(^. 6) ^ (Z) = j J (Oa I (modulo periods)

where C is a chain on V with BC = Z.
We recall from [14], [27], [23] that ^ is holomorphic (in a suitable sense), and ^

has nice functorial properties. In particular, suppose that X is a smooth, complete
and projective algebraic variety which contains V as a smoothly embedded subvariety.
The restriction map H^-^X, C) -> H^-^V, C) of cohomology induces a homo-
morphism of intermediate Jacobians

r :J (X)->J(V)
with the following interpretation:

Proposition (A. 7). — Intersecting cycles on X with V induces a homomorphism
L : ©(X)-^Q(V) such that the diagram:

©(X) -^ J(X)

i r

©(V) -̂ > J(V)
XJ commutative.

Remark. — Let y: X-^-S be an algebraic family of algebraic varieties and
assume that S is complete. Suppose that V is a fixed fibre of /:X->S, and let
<^=(E, D, Q^, {F^}) be the variation of Hodge structure whose fibre corresponding to V
is H^^V, C). Then the image in the mapping

J(X)^J(V)

is precisely the fixed part J(<?) as defined in § 7, c ) . Proposition (A. 7) gives an algebro-
geometric interpretation of this fixed part.

b) Let /:X-^S be an algebraic family of algebraic varieties with fibres
V^/"1^) (jeS). We shall think ofV, as just discussed in a) above, as being a typical
fibre. For simplicity we shall continue to assume that all of H^^V, C) is primitive.

Let <?==(E, D, Q,, {F9}) be the variation of Hodge structure associated to
/: X->S and H^^V, C), and let AcE^ be the flat lattice given by the images of

H2m+i(v^Z) -^H^^V,, R).

Referring to § 7, c ) , the corresponding family of intermediate Jacobians

^ J->S, I=J(V,)

will be said to arise from a geometric situation.
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Let now ©(X/S) be the sheaf which associates to each open set UcS the group
of analytic cycles Z (modulo rational equivalence) of codimension m+i in /^(U)
such that the cohomology class ofZ is zero in H2m+l{f~l(V), Z) (cf. [23]).

Theorem (A.S) (Integrability theorem for Abel-Jacobi maps). — The Abel-Jacobi
maps (A. 6) induce a sheaf mapping

Y: ©(X/S)->^

which satisfies the integf'ability condition DjY==o.
Proof. — Our proof of the existence ofY is based on [23]. We may assume that

dim^S ===i and we let /: Y->A be the situation /: X->S localized over a small disc A
on S which has holomorphic coordinate s. We let ZcY be an algebraic cycle of
codimension w+i and in general position with respect to the fibres V^. Then the
intersections Z^ = Z • Vg are algebraic cycles of codimension m +1 on V, which are
homologous to zero there. In fact, we have:

Z==9G (modulo BY)

for a suitable chain C on Y, and we may put things in general position so that
Z,==aC, where C,=G.V, (^eA);

(cf. [23] for a complete discussion of the foundational points involved here).
Let ip(Zg) eJ(VJ be the point defined by the Abel-Jacobi map (A. 2). We want to

prove that +(ZJ depends holomorphically on s. For this we choose G°° differential forms
(QI, . . ., cdj on Y such that

(i) each co^ is of type (a?, d—2m—i)+ ... +{d—m, d—m—i) ;
(ii) du^ds==o; and
(iii) the restrictions G)JV,==G)^) give a basis of F^-^-1^-^-1^) (cf. Propo-

sition (A. 4)).

The existence of such forms is proved in [23], where it is also proved that the
integrals f co^) may be assumed to depend continuously on s.J GS

Let <*) be any linear combination of co^, . . . , (0( . We want to show that the
integral f Q) depends holomorphically on j. Let y be a simple, positively oriented,

JCs

closed curve in the disc A. It will suffice to show that

f ( f ^\ds=o.Jf\JCs !

Let C^==Cnf~1^) and Z^ be the intersection of Z with the part of Y lying over the
region inside y- Then by Stokes5 theorem:

f ( f (O^A==f 0)AA==—f COAA
J-y\JCs / JCy JZy

since AOAA==O. But f COA&=O since ^/\ds is of typeJ ZY
(rf+i, fi?—2m—i)+- • .+(^—^+i? d—m—i)
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whereas Z^ is an analytic set of complex dimension d—m. This proves the existence
of the sheaf homomorphism Y : ©(X/S)-^^ obtained by fitting together the Abel-
Jacobi maps along the fibres of f: X->S.

We want now to prove the integrability condition Dj^P^o. For this we first
localize to have f: Y->A as before, and then choose C°° differential forms co^, . . ., co^
on Y such that

(i) du^ds==o (j==i, ..., 2/);
(ii) the restrictions co^V^ give a basis of H^"2"1"1^, C);
(iii) ci^, ..., GO; are of type (rf, r f — 2 m — i ) + . . . +{d—m, d—m—i) and restrict

to a basis of F^-^-^-^-^V,); and
(iv) coi, ..., ̂  are of type (rf, r f — 2 ^ — i ) + - • .+(^—^+13 d—m—2) and give

a basis ofF^-^-1^-"1-2^).

We may think of co^, . . .3 (02; as a holomorphic frame for the flat bundle E with
fibres E^ == H^'^'^V, C) and which is adapted to the filtration

•pd-m-2^'pd-m-l^^

We let
21

(A. 9) D(O,= Se^V »7/ J ^^^ J

be the connection in E. Then Q]==a]{s)ds where the functions crj(^) on A have the
following interpretation: Write

d^==f]i/\ds

where the Y], are G°° forms on Y. This is possible by the first property of the (x^s.
Then d^/\ds==o so that T],| V^ is closed and gives a cohomology class in H2^"2"1"1 ,̂ C),
and we have

O4.io) ^-.S^^ in H2^2—1^ C).

We can even assume that

(A. n) ^==SG|(O, in F^-^-^-^TO (i^z^A).

Z<?77imfl (^4.ia). — Let r\eI-L^^_i(V,,, Z) ^ a y^fe yar^m^ smoothly with ^eA.
TA^

rff f o),)==S(f ^)6L\Jr, J/ t==i\Jr, t/ J

Proof. — We have:

—( c^l^lim1! (o,— (o,)
^\Jr, 7 ^^Ur,,, J Jr, 7
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where we may restrict t to be real and positive. Let F(s, s-\-t) be the union of the
cycles I\ for s^^^s-^-t. By Stokes' theorem,

^(f ^=liml(f d.\
Mjr, J/ '-^Ur^+o '/

==lim-( "^A^I
'-^vJrt^+o ' /

<"
^(J^.)<^) (by (A. 10)).

This completes the proof of Lemma (A. 12).
Lemma (^4.13). — Using the notation established above, we have

^-M/^ f--^J^.

Proof. — As in the proof of Lemma (A. 12) we let C(J, s-}-t) the union of the €4
for s<^<s-{-t. Then

c)C{s,s+t)^C^,-C,-Z(s,s+t)

where Z(j , j+^) is union of the cycles Z^ for s^^s-^-t. Now ^j'^0 since co
*/ ^(s» s "r t)

is of type (d, d—2m—1)+. • •+(^—^+ 1 ? ^—^—2). Using Stokes5 theorem we then
have

— ( o) )==l im-( r^./\ds}
^\Jcs J/ <->0 ^\Jc(...4-0 3 /

"L^
-AfL^)^ ( b y ( A . n ) ) .

This completes the proof of Lemma (A. 13).
We now choose a frame ^, . . ., e^ for the dual bundle E such that

^^-^-S; (i^ij^l).
Observe that the fibre

E^H^^CV^C)
and that we have

^((Ol, . . ., (x^)1 =(^, . . ., ^)

?(<0l, ..., (x^)1^!, . . . ,^-fe)

so that ^, . . ., ^ is a basis for F^^V,) and ^, . . ., ^_, is a basis for F^4-1^4-1^,).
Writing

2?

D^= S^ .̂,

1(55
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we have the relation

(̂ l) ^—pitiij.
We may now prove that DjY=o. The vector

i

"^(Jc,^)^^-.

is a section ofE which projects onto Y in the mapping E->J. We want to compute DjQ
and then show that

(-4.15) DQ==o modulo ̂ , . . . , ^-/c-

Using the notation (< = 9? for <( congruent modulo ^, . . ., ^_^ ", we have

DQ=s/(Jc,^)^——+A(J'c,^)D^——

".S.Sdc^^^-.+^.StJ^^^l^+i-. (by Lemma (A. 13))

=o (by (A. 14)).

This completes our proof.
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APPENDIX B

Two Examples

a) A family of curves. — We shall construct and then discuss an example due to
Atiyah [i] of an algebraic family of curves /: X->-S where the parameter space S is
itself a complete curve.

To construct the example, we take a smooth, complete curve G having a fixed-
point-free involution j : G->G. Such curves exist whenever the genus ^(C)^3. Now
we take S to be the finite unramified abelian covering of G given by the composite
homomorphism TT^G) -^ Hi(G, Z) ->- H^(G, Zg). Let n : S-^G be the covering map,
Y=SxG the product variety, and D=r^+r^ the (non-singular), curve on Y which
is the sum of the graph of n and the graph of JOT:. Atiyah shows that there is a
non-singular algebraic surface X which is a 2-sheeted covering ofY with branch curve D.
The projection /: X->S then gives X as an algebraic family of algebraic curves {Vj^g
where Vg is a 2-sheeted covering of G with branch points at n{s) and J'OTT^).

Now for us the main important thing is the existence of a non-trivial family of
non-singular curves with a complete parameter space. Let y:X—-S be one such
family where the corresponding variation of Hodge structure is non-trivial (i.e., the
fibres V, are not all birationally equivalent). The sheaf R^(^x) is the sheaf ^(Eo)
and from (7.11) we have

[ B . I ) ^(E°)[S]>o.

We want to compute the signature sign(X), and to do this we use the Hirzebruch
index formula for X and the Grothendieck-Riemann-Roch formula for /: X-^S and fi^x
as in Atiyah [i] to obtain

(5.2)
sign(X)=^[X]

ch(i-R^^))=/.(i+rf+-^),

where rfeH^X, Z) is the first Chern class of the tangent bundle along the fibres of
/:X->S. From (B.i) and (B.s) we have

(5.3) sign(X)^(E°)[S]>o,

so that the signature is not multiplicative in the fibration /: X->S.
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The exact same proof will give the
General principle (-8.4). — Let /: X.—S be an algebraic family of algebraic varieties

with complete parameter space S. Then the Hirzebruch /^genus [21] is generally
not multiplicative for the fibration f: X-^S.

Another point we are trying to illustrate is that there are interesting examples
of algebraic families of algebraic varieties with a complete parameter space, although
the most interesting case is certainly when the fibres are allowed to have arbitrary
singularities.

b) Lefschek pencils of algebraic surfaces. — In order to illustrate the existence of
algebraic families of algebraic varieties /: X->S whose parameter space need not be
complete but where the Picard-Lefschetz transformations are of finite order, we consider
a smooth, complete, and projective threefold WcP^. A generic pencil |PN-iW|xep,
of linear hyperplanes in P^ traces out on W a pencil |V\|^p^ of surfaces with critical
points X I , . . . , X N . Letting S = P I — { X I , . . . , X N } , the V^ (XeS) are non-singular
surfaces while the V^ are surfaces having one isolated ordinary double point. In the
obvious way we may construct an algebraic family of algebraic varieties / :X—^S
with f~l(\)=V^ for XeS. This family has the property that there is a smooth
compactification

X c X
/4 ^7
S c S

such thaty has one of the local forms

j [x-^, x^, x^) •= x^

f{x^ x^ ^)==(^)2+(^)2+(^)2

where x^ x^ x^ are suitably chosen local holomorphic coordinates on X.
We want to use the theorems in Lefschetz [26] to amplify two of our results above.

Before doing this, we fix a base point Xo^S and paths ^ from X^ to each critical
point X^ (a = i , . . . ,N) . We let Ya67^) be the closed curve obtained by going
out ^, turning around X^, and then returning to \Q along ̂ . Associated to each path ^,
there is a vanishing cycle S^eH^V^ , Z) such that

(^5) T,y=(p±(8,,<p)S,

where T^ is the automorphism ofHP(V^,Z) corresponding to Ya^iW ([26], p. 93).
We have, furthermore, that (loc. cit.y p. 93):

(^•6) (8,,8J=-2,

so that (TJ2 = I and the Picard-Lefschetz transformations in our family of surfaces
/: X—^S are all of finite order.
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Proposition (-6.7). — There is a 7^(S) -invariant orthogonal direct sum decomposition

(5.8) H^V^^lOE

where I^H^V^, Q^^8) are the invariant cycles and where ^(S) acts irreducibly on E==(I)1.
Proof. — Let E'cE be a non-trivial 7Ti(S)-invariant subspace and 9+0 a vector

in E'. From (B.5) we have that

(8,,y).S,eE' ( a = i , . . . , N )

while some (8^3 <p)=|=o since <p is orthogonal to the invariant cycles. Thus S^eE'
and it follows that all Sa6^' since 7^(8) acts transitively on the set {S^, . . . ,8^} of
vanishing cycles (loc. cit.y p. 107). Thus E=E' since E is the span of S^, . . . ,8^
{loc. cit., p. 93).

Our second observation is
Proposition (.8.9). — Let f\ X->S be the family of surfaces constructed above and let

FcAu^H^Vg , C)) he the monodromy group. Then F is a finite group if, and only if, the
subspace BP'^V^) (^H^V^, C) is elementwise invariant.

Proof. — If H2'0^^) is elementwise invariant, then we have EcH^V^o
in (B.8). Since the intersection form is negative definite on E, we see that F is a finite
group. Conversely, if F is a finite group, then the subspace H2'0^^) of H^V^, C)
is locally constant. In particular H^^V^) is a T^(S) -invariant subspace ofH^V^, C).
Let (peH^VJ. Then from (B. 5) we have that (<p, SJ^eH^VJ for a==i , ..°.,N.
If some (9,8J+o, then ^eH^VJ which is impossible by (B.6). Thus all
(<p^ 8J = o and so <p is an invariant cycle.
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APPENDIX C

Discussion of some open questions

a) Statement of conjectures. — Many of our results about a variation of Hodge structure
had restrictions imposed concerning the Picard-Lefschetz transformations around the
branches of S—S. We should like to suggest that these theorems should be valid under much
more general circumstances.

To state things precisely, we first need a few comments about the monodromy
group r of the variation of Hodge structure <?, especially with regard to the Picard-
Lefschetz transformations (§ 3) of F. Recall the monodromy theorem (cf. § 3 in [13] for
discussion and references), which says that in case S arises from a geometric situation
/: X-^S, the Picard-Lefschetz transformations T are essentially unipotent of index n (same n
as in § 2), which means that viewed as automorphisms T : E->E they satisfy the
equation

(C.I) ^-1)^=0 for some N>o.

We also recall that in the geometric case the monodromy group is a discrete subgroup
of the automorphism group G of the variation of Hodge structure. Finally we recall
the theorem ofBorel (§ 3 in [13]) which says that in case F is an arithmetic subgroup ofG,
then the monodromy theorem holds, but without the estimate on the index ofunipotency
being established as yet.

Our precise conjectures are (cf. the remark added in proof at the end of
Appendix G):

(C.2) The invariant cycle theorem (7.1) is true if we assume only that the mono-
dromy theorem (C.i) is valid.

Remark. — We shall prove this conjecture for n==i in a little while. If this
conjecture is true, then the theorem (9.8) about the monodromy group would also hold.

(C.3) The Mordell-Weil type theorem (7.19) is true if we only assume the
monodromy theorem (G. i), but where we need to say what it means for a holomorphic
section of J-^S to remain holomorphic at infinity.

Remark. — We shall also prove this conjecture for n==i below.

(C.4) Theorem (9.7), which says that the image 0(S)cF\D under the period
mapping is canonically a projective algebraic variety in case S is complete, is true if
we only assume that F is a discrete subgroup of G.
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Remark. — This conjecture is discussed in §§ 10, 11 of [3]. We also refer to § 6
of [13] where it is pointed out that this conjecture (€.4) is valid in case D is a bounded,
symmetric domain and F is an arithmetic subgroup of G (Borel).

Now how is one supposed to prove the above conjectures? My own (obvious)
feeling is that it should be possible to prove (C.2) and (C.3) by sufficiently ingenious
use of hyperbolic complex analysis so as to be able to give a good asymptotic form of the
period mapping as we go to infinity. We shall give an illustration of this below. To
prove (C.4), one will need the estimates from hyperbolic complex analysis as well as
a reduction theory for discrete subgroups of G. It also seems to me that " sufficiently
ingenious use of hyperbolic complex analysis " will involve a detailed study of the
geodesies of the metric ds^ on the period matrix domain D as well as a more refined
Schwarz lemma (10.1) which will give suitable estimates both ways in (10.2).

b) Proof of the invariant cycle theorem (7. i) for n==i. — Thus let § be a variation of
Hodge structure, with base space S, and let <D be a flat section of E->S. The Hodge
filtration in this case is F^cF^=E^, and we let 9 be the projection of $ in E/F°=E1.
Using theorem (5.9), we want to prove that the length | <p |2 of <p is uniformly bounded
on S.

We may assume that dim^S^i. We then localize over a punctured disc A* at
infinity given by /^=={s : o<|j|<i}. Choose a base point s^e^ and let co^, . . ., c^
be a flat frame for E in a neighborhood of SQ. Parallel displacement of this frame around
the origin induces an automorphism

2m

<o, -> S T}^
3 k==l 3 k

where T = (T^) is the Picard-Lefschetz transformation around s == o. The monodromy
theorem (C.i) is (TN—I)2==o, and by replacing s with ^N, we may as well assume
that (T-^^o.

Now we may choose over A* a holomorphic frame 91(^)5 . . ., 9^(J) for the sub-
bundle F°cE. Then we define the period matrix ^{s)={n^{s)) by

2m

PaM-.^TTajM^ (a=I, . . ., m).

The bilinear relations (2.7) now become the usual Riemann relations

(C.5)
( aC^2=o
(^C^=J>o

where ^-^(Q^O)^ c^.)). The matrix £l(s) is a multi-valued holomorphic matrix
on A* such that analytic continuation around ,y==o changes 0. into ^2T.

Let Y be the flat section of the dual bundle E* defined by

<r^>=W,e) (^E).
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Let ^ be the column vector given by

^=(^1, . . ., SJ where Sa^T. 9aM>.

Then, if we set H=J-1 in (€.5), ^H^ is a well-defined function on A* and gives the
length [ 912 of the projection 9 of 0 onto E/F°. Thus we want to show that

(C.6) ^H^ is bounded as j—^o.

We will now use the results of [13], § 13 to put Q in canonical form. Accordingly
we can choose the frames co^, ..., co^ and <pi, . .., <p^ such that the matrices Q, T,
and 0. are given by

^•7) Q,=l ° ICT);\-L o/

(C.8) T=

1\ o o
0 L-& 0

° \

A
A=(A,A>o•

(C-9)

where Z == ^Z has the form

(C.io)

o L-J
^=(L,Z)

where the submatrices Z^p are holomorphic in the whole disc H<i. Write
Z^p = X^p + z'Y^p. Then

log[ j [ /o o\J=^^=(Y11 Y12(C.ii)
VY.12 Ygg/ STC \o A/

where the Y^ are continuous and Y^>o throughout the disc A given by H<i.
From (G. 9) and (G. i o) it follows that the vector $ is continuous on A. Using (C. 6)

we will be done if we prove that J~1 is continuous on A. Now

T-i rJ-1- (detj)

where J* is the usual matrix of minors ofj. From (C. 11) we see that each entry in J*
has the form , , i ^ m - i . / . ^ . / , ^(—logl^ l )^ '•(continuous function of s),

while from (C.8) and (C.i i) we have

detj=|
-log \s\ , m+k

(det YH • det A) 4- (lower order terms).
27T

Since detY^-det A>o throughout A, we are done.
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c) Proof of the usual Mordell-Weil over function fields. — We will give a transcendental
proof of the usual Mordell-Weil theorem for abelian varieties defined over function
fields (char. o of course).

Theorem (C.ia). — Let <?, A, and J-^S be as in the statement of theorem (7.19)
with n==i. Then there exists an extension of J—-S to an analytic fibre space J->S of abelian
complex Lie groups such that the group Hom(S, J) of holomorphic cross-sections of J->S is
an extension of the fixed part J(<?) by a finitely generated abelian group.

Remark. — The integrability condition Djv == o is vacuous in this case since n == i.
Proof. — Let E^-^S be the holomorphic vector bundle over S whose fibre at

each point jeS is the complex Lie algebra of Jg. Then E_^. ] S is what was denoted
by E^. in the proof of theorem (7.19), and just as was the case in that proof, we want
to show that any holomorphic section of E_^. ->S comes from a constant section of E->S.

Of course this presumes that we have already defined J-^S, which we now shall do.
Let ^(A) be the sheaf over S of sections of the lattice AcE. We extend ^(A) to a
sheaf over S by saying that the sections of ^(A) over an open set U C S are just the

usual sections of ^(A) over UnS. To define E+, we will say what the sheaf ^g(E^)

of holomorphic sections of the dual bundle is. Thus a section offi^E^.) over an open

set U c S is given by a holomorphic section <p of E .̂ over UnS such that, for any
section y °f ^(^ over U, the contraction < 9(^)5 y) ls a holomorphic function on all
of U. There is an obvious injection ^(A)-^^. and J is defined to be the
quotient E^^A).

We must prove that ^g(E^), as defined just above, is a locally free sheaf on all
of S, that the image ^(A)-^^ is discrete, and finally that the holomorphic sections
of E^.->S come from constant sections of E-^S. This is all done using the
formulae (G.7)-(G.n) above together with the observations that

(i) the flat frame co^, . . ., cog^ of E—^A* may be chosen to be commensurable with
the lattice A, and

(ii) the holomorphic sections of E_^ ->A are just the linear combinations of
9i5 • • - 5 9w with coefficients which are analytic functions in the whole disc A.

Remark added in proof. — Recent results of W. Schmid seem to show that the mono-
dromy theorem (G.i) is true for an arbitrary variation of Hodge structure. It may
be hoped that his methods will also have a bearing on (G.2) and (G.3).
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APPENDIX D

A result on the monodromy of K3 surfaces

In ?3 with homogeneous coordinates S==Ro? Si, ^25 ^3]? we consider quartic
surfaces defined by an equation

^^w.W^.=^

The set of all such surfaces is parametrized by points s== [..., ̂ ^, ...] in a big P^.
We denote by S' the Zariski open set in P^ of points such that the corresponding surface V,
is non-singular. Such surfaces Vg are among the K3 surfaces; i.e. they are simply-
connected algebraic surfaces with trivial canonical bundle. We let ^S' be a fixed
point and V==V^ the corresponding K3 surface. Denote by E=P2(V,Q^) the
primitive part of the 2nd cohomology ofV, and let F^cAut(E) be the arithmetic group
induced from the automorphisms of H^V, Z) which preserve the bilinear cup-product
form and polarizing cohomology class. We denote by FcF^ the global monodromy
group; i.e. the image of 7^(8', So) acting on E.

Theorem (-D.i). — F is of finite index in 1^.
Proof. — The period matrix domain D is, in this case, a bounded domain in C19

and, by the local Torelli theorem [n], the period mapping

9: S'^D/F
contains an open set in its image.

We now choose a ig-dimensional smooth algebraic subvariety ScS' such that
the restricted period mapping

9: S-^D/F

contains also an open set in its image. By Theorem (9.6) above, (p(S) is the complement
of an analytic subvariety in D/F. Furthermore, because of the finite volume statement,
it follows that D/F has finite volume with respect to the canonical invariant measure
on D. Now it follows that the index of F in F^ is given by

|X(D/F) ^
[^9^J=.(D/^J<00•

Remarks. — From Theorem (9.8) it follows that F is irreducible. Observe that
from (B.5) we may deduce that F is generated by elements of order 2.
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In general, for an algebraic family of algebraic varieties as in § i, the position
of the monodromy group F in the arithmetic group 1̂  is extremely interesting. I know
of no example where T is not of finite index in its ^ariski closure. In relation to this, we close
by observing that the proof of Theorem (D.i) in general gives the following:

Theorem (2). 2). — Let f: X->S be an algebraic family of algebraic varieties^ and

designate by Y the global monodromy group. Denote by S the universal covering of S and let

§

CD

-^ D
"i(s> [ | r

v y

s —> D/r
<P

be the period mapping. Let T' be any discrete subgroup of G=Aut(D) such that Fc F' and

such that r' leaves the closure of^{S) invariant. Then F is of finite index in V.

REFERENCES

[i] M. F. ATIYAH, The signature of fibre-bundles, Global Analysis (papers in honor of K. Kodaira), Princeton
Univ. Press (1969), 73-89.

[a] A. BLANGHARD, Sur les varietes analytiques complexes, Ann. Sci. J^cole Norm. Sup., 73 (1956), 157-202.
[3] S. BOCHNER and K. YANO, Curvature and Betti Numbers, Princeton Univ. Press, 1953.
[4] A. BOREL and HARISH-CHANDRA, Arithmetic subgroups of algebraic groups, Ann. of Math., 75 (1962), 485-535.
[5] A. BOREL and R. NARASIMHAN, Uniqueness conditions for certain holomorphic mappings, Invent. Math., 2

(1966), 247-255.
[6] E. GARTAN, Lecons sur la geometric des espaces de Riemann, Paris, Gauthier-Villars, 1951.
[7] S. S. CHERN, On holomorphic mappings of Hermitian manifolds of the same dimension, Proc. Symp. in Pure

Math., 11, American Mathematical Society, 1968.
[8] S. S. CHERN, Characteristic classes of Hermitian manifolds, Ann. of Math., 47 (1946), 85-121.
[9] P. DELIGNE, Theorie de Hodge, to appear in Publ. I.H.E.S.

[10] H. GRAUERT, tJber Modifikationen und exzeptionelle analydsche Mengen, Math. Annalen, 146 (1962), 331-368.
[n] P. A. GRIFFITHS, Periods of integrals on algebraic manifolds, I and II, Amer. Jour. Math., 90 (1968), 568-626

and 805-865.
[12] P. A. GRIFFITHS, Monodromy of homology and periods of integrals on algebraic manifolds, lecture notes available

from Princeton University, 1968.
[13] P. A. GRIFFITHS, Periods of integrals on algebraic manifolds. Bull. Amer. Math. Soc., 75 (1970), 228-296.
[14] P. A. GRIFFITHS, Some results on algebraic cycles on algebraic manifolds, Algebraic Geometry (papers presented

at Bombay Colloquium), Oxford University Press, 1969, 93-191.
[15] P. A. GRIFFITHS, Periods of certain rational integrals, Ann. of Math., 90 (1969), 460-541.
[16] P. A. GRIFFITHS and W. SGHMID, Locally homogeneous complex manifolds, Acta Math., 123 (1970), 253-302.
[17] A. GROTHENDIEGK, Un theoreme sur les homomorphismes de schemas abeliens, Invent. Math., 2 (1966), 59-78.
[18] A. GROTHENDIECK, On the de Rham cohomology of algebraic varieties, Publ. Math. I.H.E.S., 29 (1966),

95-103-
[19] R. GUNNING and H. Rossi, Analytic Functions of Several Variables, Prentice-Hall, 1965.
[20] H. HIRONAKA, Resolution of singularities of an algebraic variety over a field of characteristic zero, I and 11,

Ann. of Math., 79 (1964), 109-326.
[21] F. HIRZEBRUGH, Neue Topologische Methoden in der Algebraischen Geometric, Springer-Verlag, 1956.
[22] W. V. D. HODGE, The Theory and Applications of Harmonic Integrals, Cambridge University Press, 1959.
[23] J. KING, Families of intermediate Jacobians, thesis at University of California, Berkeley, 1969.

179



180 P H I L L I P A. G R I F F I T H S

[24] K. KODAIRA and D. C. SPENCER, On deformations of complex analytic structures, I and II, Ann. of Math.,
67 (1958), 328-466.

[25] M. H. KWACK, Generalization of the big Picard theorem, Ann. of Math., 90 (1969), 13-22.
[26] S. LEFSCHETZ, VAnalysis Situs et la Geometric Algebrique, Paris, Gauthier-Villars, 1924.
[27] D. LIEBERMAN, Higher Picard varieties, Amer. Jour. Math., 90 (1968), 1165-1199.
[28] G. MOSTOW and T. TAMAGAWA, On the compactness of arithmetically defined homogeneous spaces, Ann.

of Math., 76 (1962), 446-463.
[29] C. L. SIEGEL, Analytic functions of several complex variables, lecture notes from Institute for Advanced Study,

Princeton, 1962.
[30] A. WEIL, Varietes Kahleriennes, Paris, Hermann, 1958.

Mannscrit recu Ie 12 novembre 1969,

Revise Ie 6 juillet 1970.

1970. — Imprimerie des Presses Universitaires de France. — Vendome (France)
EDIT. N° 31 283 IMPRIME EN FRANCE IMP. N° 22 222


