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AN ALGEBRAIC CONSTRUCTION
OF THE GENERIC SINGULARITIES OF BOARDMAN-THOM

by K. R. MOUNT (1) and 0. E. VILLAMAYOR

Abstract. — In this paper we study some of the functorial properties of the infinite
jet space in order to give a coordinate free algebraic definition of the generic singularities
of Boardman-Thom. More precisely, suppose that A is a commutative ring with an
identity and suppose that A is a commutative ring with an identity which is a ^-algebra.
An A-A-Lie algebra L is a A-Lie algebra with a k-Lie algebra map 9 from L to the algebra
of ^-derivations of A to itself such that for rf, </'eL and a, <2'eA, then

[ad, a' d^a^Wjd'-a'^d^d+aa^d, <|.

There is a universal enveloping algebra for such Lie algebras which we denote by E(L).
Denote by L-alg the category of A-algebras B which have L and hence E(L) acting
as left operators such that for aeA, de'L, {da) ig = d{a. ig). If F is the forgetful functor
from L-alg to the category of A-algebras, we show that F has a left adjoint J(L, • ) which
is the natural algebraic translation of the infinite jet space.

In the third section of this paper we construct a theory of singularities for a derivation
from a ring to a module and then we apply this construction to J(L, G) where G is an
A-algebra. These singularities are subschemas with defining sheaf of ideals given by
Fitting invariants of appropriately chosen modules when A and B are polynomial rings
over a field k and G==A®^B; these are the generic singularities of Boardman-Thom.

Finally we show that, under some rather general conditions on the structure of G
as an A-algebra, the generic singularities are regular immersions in the sense ofBerthelot.

The usual construction of the infinite jet space used for the generic singularities
of Boardman-Thom (see [2]) uses coordinates in the domain and range of the functions
and then one appeals to a coordinate patching process to construct the required space.
Because the discussions of singularities between schemas is the natural analogous algebraic

(1) This work was supported in part by NSF Grant GP 28915. Also part of the work was carried out during
this author's visit to Buenos Aires under the auspices of the Organization of American States.
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206 K . R . M O U N T A N D O . E . V I L L A M A Y O R

subject of study it seems reasonable to seek a more functorial construction of the infinite
jet space in order to free the construction as much as possible from coordinates. In
this paper we carry out such a construction and in the course of the discussion it becomes
clear that at the same time it is possible to isolate the effect of the Lie algebra of deri-
vations of the domain variety.

More precisely, suppose that A is a commutative ring with an identity which is
also a A-algebra where A is a commutative ring with i. The collection of derivations
from A to itself which annihilate k form a A-Lie algebra which is also an A-module.
If d, d ' are two of these derivations, and if a, a'eA, then

[ad, a'd'^ad^d'—a'd'^d+aa^d, d'~\.

We begin this paper by studying A-Lie algebras L which are left A-modules and which
are such that there is an A-linear map 9 from L to the ^-derivations of A to itself such
that 9 is a A-Lie algebra map and such that

[ad, afdf]==a^{d)af)df—afW)a)d+aaf[d, d'}.

We call these A-A-Lie algebras. These Lie algebras have naturally associated to them
associative rings E(L) which are both left A-modules and universal enveloping algebras
for L. Further if B is an A-algebra with an A-A-Lie algebra acting as left operators
we have {da)i^==d{a. ijg). Each such B has the structure of a left E(L)-module in
a natural way. There is a functor F from L-alg to the category of A-algebras which
forgets the E(L) and L structure. The main construction of this paper is to show that
the functor F has a left adjoint which we denote by J(L, •) . If A and B are regular
rings which are algebras over field k of characteristic zero, suppose R==(A®^B)<n where
^P is a prime of A®^B. Assume p=^}nA and assume that R has maximal ideal
(A:i, .. ., A^,J^, .. .,j^J where ^ , . . . ,^ generate p.Ap and ^i,. . . ,J^ generate
C^P nB)B/^B\. If we assume L is the Lie algebra of ^-derivations from Ap to itself and
if this Lie algebra is a finitely generated Ap-module, then J(L, R) is a polynomial ring
over B on indeterminates -2'(a,j) where oc=(a(i), . . ., a(%)) is a sequence of nonnegative
integers and i^j^m. Furthermore the Lie algebra L acts on the ^(a,^*) by

â
(aj)=^((a(i), . . ., aQO+i, . . ., a(^))J).

Also J(L, B) is localizing in multiplicative sets in B. These remarks imply that
J(L, A®^B) satisfies the conditions required for the coordinate rings for the infinite
jets of maps from Spec^(A) to Spec^(B), if we assume that L is the module of^-derivations
from A to A, and if we suppose that L is a finitely generated A-module.

In the third section of this paper we have constructed a fairly simple theory of
iterated singularities for a derivation A from a A-algebra R to a finitely generated
R-module M. Given a sequence of integers ^(1)^:^(2)^.. ^i{r) we have defined a
subschema S(z(i), . . ., z(r)) cSpec(R) by forming Fitting invariants of the modules M,
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A CONSTRUCTION OF THE GENERIC SINGULARITIES OF BOARDMAN-THOM 207

A/f^_i(M)®RM/Af^_i(M), .. ., etc. In the case that R==J(L, B), there is a module
over R and a derivation from R to this module whose singularities are generic in the
sense of the Boardman-Thom singularities.

In the last section of this paper we show that under some rather general conditions
on the structure ofB as an A-algebra (conditions satisfied by A0^B) the generic singu-
larities are actually regular immersions in the sense of Berthelot [i] (see the discussion
following Theorem 4.3). We propose this as the algebraic analogue of the Boardman
theory.

As in [13] we shall say that a commutative ring with i is a scalar ring, and a
nonscalar ring is a ring not necessarily satisfying these conditions. Unless otherwise
specified in the discussion, when we say ring we shall mean a scalar ring.

We shall use the following notation. If A is a ring which is an algebra over a
ring A, we shall denote by D(A/A) the module of k differentials of A and by L(A/A) the
A-module Hom^(D(A/A), A) with Lie product [d^y d^]==d^.d^—d^.d^y where

^eHon^(D(A/A),A).

It will be convenient to denote the module Hom^(D(A/A), A) by D^A/A).

Lemma (2.1). — L(A/A) is a Lie algebra over k which is a left A-module. Further if
a, be A and d,, ̂ eL^A/A), then

[ad,, bd,]==ad,(b)d,-bd^{a)d,+ab[d^ d,].

Proof. — The first remark is very well known. As for the second, this is a straight-
forward computation.

Definition (2.2). — Suppose A and k are rings such that A is a A-algebra. A A-Lie
algebra L is said to be an A-k-Lie algebra if the following conditions are satisfied:

(i) L is a left A-module.
(ii) There exists a A-Lie algebra homomorphism <p : L->L(A/A) which is A-linear.

(We shall call 9 the A-structure map of L).
(iii) If a, be A and x,jye'L, then

[ax, by] = a{^x)b)y—b^{y)a)x + ab [x,y].

When there is no fear of confusion we shall denote q)(rf)<2 by da.

Definition (2.3). — Suppose A, B and k are rings, where B is an A-algebra and
A is a A-algebra. If L is an A-A-Lie algebra, then B is said to be an L-algebra if there
exists an A linear map 6 : L-»L(B/A) which is a A-Lie algebra map such that if
y : L-^L(A/A) is the A-structure map of L and if ae A, deL, then

(9(^).iB=6^)(a.iB).

The map 6 will be called the ^-structure map of B.
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208 K . R . M O U N T A N D O . E . V I L L A M A Y O R

Definition (2.4). — Suppose that A and B are ^-algebras, with B an A-algebra.
Suppose that L and L1 are respectively an A-A-Lie algebra and a B-yfe-Lie algebra with
structure maps 9 and 9'. Assume X : A->B is the A-algebra structure map for B.
A A-Lie algebra map 6 : L->L1 is said to be an A-k-map if for each xd and each
aeA, (^.{Q{x)))(\a)=H^{x)a). If B and B1 are L-algebras, a map a : B->B1 which
is an A-algebra map is said to be an T^-algebra map if for each beB, x<x.{b) == w.{xb) for
each xeii.

Lemma (2.5). — Suppose that k and A are rings and assume that A is a k-algebra. Assume
that M is an A-module and assume that there exists an A-linear map 6 : M->L(A/A) and a
k-bilinear product [, ] from M to M such that for some set of A-generators {wj, Q'eJ), of M
we have

(i) K. E^p ̂ ]]+[w,, K, ̂ ]]+K, [w,, ̂ .]]=o.
(ii) [m, ,m,]==o and \m,, m^ = — \m^, m,].

(iii) [>w,, bm^a{Q(m,){b))m^—b{Q(m^{a))m^ab\m^ wj.

(iv) 6K,^]=[e(^),6(^)].

TA^TZ M has the structure of an A-k-Lie algebra with bracket [ , ].
Proof. — We need first to show that M is a k-iiie algebra. Thus if S^m^, Sj .̂

and S^TT^; are elements of M, where x^y^ -^A, then

[S^m,, [S^.m., S;^mJ]= S \x,m^ [^.m., ̂ wj].
t j fc i,J',A;

In order to prove the Jacobi identity we need only show that

.s (Ew. Lw %w/c]]+[^m^ E^^^^JJ+E^^, E^^^^D-o,^j?^
and thus it will suffice to show that for each (', j and k

T,,fc=|>i"., [^.OT,,^OTj]+[^OT,, [A^,^OT.]]+l>jA, [^CT,,JI^??l,]]=0.

Set A;(=a, y.=a', z^=a", m^=m, m^m', m^=m". Then

[am, [a'm', a"m"]~}==a"{Q{m")a'){Q{m')a)m-a'a"{Q[m', m"]a)m
—a'{Q(m')a"){Q{m")a)m—a{Q{m){a"Q{m")a'))m'
+a{Q{m){a'Q{m')a"))m"+aa'{Q{m')a")[m,m"'\
—aa"{Q{m")a')[m, m']+a{Q{m)(a'a"))[m', m"]+aa'a"[m, \m', OT"]].

Similarly for [ a ' m ' , [a"m", am]] and \a"m", [am, a'm']]. Thus if we set Q{m){x)==m{x),
then the coefficient of m in T^ is

a"m"{a')m'{a)-a'a"{[m',m"]{a))-a'm'{a")m"{a)+a'm'{a")m"{a)
+a'a"m'{m"{a'))-a"m"{a')m'{a)-a"a'm"{m'{a))
=-a'a"[[m',m"](a))+a"a'(m'(m"{a))-m"{m'{a)))=o.

208



A CONSTRUCTION OF THE GENERIC SINGULARITIES OF BOARDMAN-THOM 209

The coefficient of [m, m'] in T,̂  is
—aa"m"{a')—a'a"m"{a)+a'a"m"{a)+a"am"{a')=o.

A simple symmetry argument shows that therefore
Tvk=Xi^^([m,, [>»,,<]] +[w,, [m^,m,'\]+[m^ [m., OT,]])==O.

To complete the proof that M is a k-T-iie algebra it will suffice to show that
0=[S^W2,, S^.OTj], But

[S.V.OT., 2^.]==2 [̂ OT;, A-,OT,]

= S (A;.(e(»!,).>C,.)OT,—— ,̂.(e(OT,.)A;,)OT( + X^m,, TO,])

= S (S (^(6(OT,)^) -^(9(m,.)^)))OTjt +^ (^^-^A;,) [TO., TO,] == 0.

Finally, we must show that M with the given bracket has the structure of an
A-A-algebra. Thus suppose m and m' are elements of M. Then ffi==Sff,OT, and
?ra'=Sa'OT, for some a,',ff,eA. Then

Q[m, w']=6[Sa,w,, SffjOT,]=e(S[a.OT,, a;w,])

= 6(Sa((e(OT.)a;)w,-a;(6(OT,)a,)OT. + a,<?; [m., ?»,.])

= S^(e(OT.)a;)8(CT,) -fl;(6(»,)fl,)9(OT.) + a.o; [6(OT.), 9(OT,)]
^> J

=S[a.e(m.), a;e(OT,)]=[S^e(OT.), S<?;6(OT,)]=[6(OT), e(w')].
Finally
[a»ra, ^w']=[Saa(OT,, S^'w,']=S[aa(OT,, &«,'OT,']

= S (aai6(OT,) (^;)OT;- '̂6(OT;) (flfl,)^ + a^flj K,»";])

= S (aa.6(8(»?,)a;)OT; + aa^ {Q{m,)b)m', -ba; a(6(m;)a.)OT.

— ba\ a^{m'j) a) OT( + aba, a,' [??t., TO,'] )

= aS;a.(e(OTj^)ffjOTj—ASff;(9(OT;)a)a(OTi + ab^a^ \m,, m;]
l'» J ^ J ^» •?

+Saa;Z»(6(OT,)a;)OT;—S^B;B(e(OT;)a,)OT.

==a(e(Sff,OT.)^)(Sfl;OT;)-^(e(Sa;OTj)a)(SBiOT,)
l J J l

+^(S(^(e(^)^)^-^(e(^)^)^+^K, w;]))
==a{Q{m)b)mf—b{Q{m')a)m+ab^[a^m^ fljwj]

^» j
=a{Q{m)b)mf-b{Q{mf)a)m+ab[m, m'].

This completes the proof.

209
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210 K. R. M O U N T A N D 0. E. V I L L A M A Y O R

Theorem (2.6). — Suppose that A, k and B are rings such that A is a k-algebra and such
that B is an K-algebra. Suppose that L is an A-k-Lie algebra and assume that 9 : L->L(A/A)
and ^ : L-^L(B/A) are an A-structure map for L and an ^-structure map for B. Then B®^L
has the structure of a S-k-Lie algebra such that

\b®d, b^d^b^Wb^d'-b'^d^b^^d+bb'®^ 0.

Further the (BOO^L) -structure map to L(B/^) is the map Y^I^B^A^-
Proof. — We shall first show that B®^L has the structure of a A-Lie algebra.
Suppose that bxdeKxL. We define [bxd, •]' : BxL -. B®^L by

[bxd, pxS]/=6(+WP)®,S-(B^(8)&)®^+i(B®,[^ 8].

It is easily seen that [bxd^ •]' is ^-bilinear, thus there exists a ^-linear map [bxd, •]"
from B0^L to B®^L such that [6xrf, (B®fc8]"=[6X6?, px8]'. Suppose

m=Sp^^eB®feL.

We can define a map [., m^ : BxL -> B®^L by [6xrf, m] f t=[&xrf, m]". For each
w, [•, m]^ is ^-bilinear. Thus if u, vek and rf, rf 'eL

[6x(^+^'),w]ft=[&x(^+^'),S^®8J//
i

=2:^x(a</+^'),p(XS.]'
»

=S(&^(^+^'))p,®,S,-^(S,)^®,(^+^')+^A[^+^',8.])

=S(^(^((/)p,)®,8,+^^(rf')p,)®,8,-M^(8.)^®^-^,(<F(8,)6)®^'

+^P<®,[rf,Si]+^P.®,[rf',8.])
=S(^(^(rf)p.)®,8(-Mp,(^(8.)^®^+^p.®,[o?,8,])

+S(^(^(rf')p.)®,8.-^.(+(8.)&)®^/+^p..®,[rf', 8,])
I

==u[bxd,m]^+v[bxd\ mf.

Similarly for the B variable. Thus for each m there exists a ^-linear map
[,w] : B®^L->B®fcL

such that [b^j,d, m]=[bxd, mf, and in particular \b®^d, ^®j,S]=[bxd, (3x8]'.
Now let Y^Idg®^ : B®^L->L(B/A). The map y' 1s clearly B-linear, and

B®^L is generated as a B-module by the elements i®^? where fi?eL.
If d, d ' , rf"eL, then

[i®d, [i®^', i^^'Jl+Ci®^ [i®^', I^^J+EI®^", [i®^, i®^]]
= i ® [̂  [rf', rf"]] +100 K, [rf", rf]] +1 ® [rf", K rf']] =o.

Clearly [i®^ i®rf]=o and [i®^ i®^]=-[i®rf', i®</]. If ^ ^'eB, then

[&®rf, &'®rf/]==&(^((/)6/)®^'-6'(^(rf')6)®^+^'®fc[^ 0
==6(^^)6')(I®^')-&/(+(rf/)&)(I®^)+^/®^[I®^ i®rf'].

,2^



A CONSTRUCTION OF THE GENERIC SINGULARITIES OF BOARDMAN-THOM 211

Thus Lemma (2.5) shows that BO^L has the structure of a B-A-Lie algebra.
To complete the proof, we shall show that if T] : B®^L -> B®^L is the quotient

map which carries b®^d to b®^d, then the kernel of T] is a A-Lie algebra ideal in
B®^L which is mapped to zero by y'.

Note first that ker(-y]) is generated as an A-submodule of B®^L by the elements
of the form ab®j,d—b®j,ad, where aeA, beB, deL. If (B®^SeB®^L, then

T)[P®^S, ab®^d—b0^ad]==^[^®^8, ^®&<]--[P®&8, b®^ad])
=73(p^(8)(^))®^-^(^WP)®,8+^p(8),[S,^
-^W)^ad
+bWad)^W-^b®,[8,ad])
==^(8)a)b0^d+W{8)b)0^d
-ab^{d)^)0^8+ab^®^ d]
-aWS)b)^d
+ba^{d)^)®^S—^b^{S)a)®^d—^ab®^[S,d]=o.

Note that y' clearly carries ab®^d—b®j^ad to zero in L(B/^). This completes
the proof.

Lemma (2.7). — Suppose that A and k are rings and suppose A is a k-algebra. Assume
that S is a multiplicatively closed set in A containing i. There is an A[S~l]-k-Lie algebra map
6 .•Ap""1]®^1^/^) -> L(A[S~1]/^). Further if A is noetherian and D^A/y^) is finitely generated
the map 6 is an isomorphism.

Proof. — Suppose </£L(A/A) and suppose 9 : A->A[S~1] is the canonical map.

We set e ' (rf)(9(^).9(J) '~ l)==—--9(^)9 (A)+—7^-9 W. One checks easily that 6'(rf) is9(J) 9^)
a A-derivation on A[S~1]. The map Q ' { d ) is clearly A-linear. Further, if aeA, then
6'(rf)(9(a))=9(^). It is easily seen that 6'[W, <l=[6'(rf), O'(rf')]. We can extend 6'
to an A^-^-module map from A [S-1]®^ HA/A) to HAp-1]/^) by setting

e^W-^A^-yM-'.e'W.
We wish first to show that A[S~1] is now an A [S""1]®^!, (A/A) -algebra with structure
map 6. Thus suppose a, a ' e A and j, j'eS. If d, rf'eL(A/A),,[̂ ,̂ .]

=«(^(e'(^)8^-^(»-^^)—^^^^•l)
-^(C•(^)6•W-^(6•(-)^9•OT+^^8•^•])
{^WW-^»A ̂ ^-

211



212 K. R. M O U N T A N D 0. E. V I L L A M A Y O R

where one derives the last equality by an application of the formula of Lemma (2.1).
This completes the proof of the first assertion.

To prove the second assertion we need only note that when D^A/A) is finitely
presented, then

Hom^s-^AES-^D^A/^, AES-^AES-^HOI^D^A/^), A)

where the isomorphism is given by 6. (See [9]).

We would also like to remark here that if L is an A-A-Lie algebra and if B and B'
are L-algebras, then B®^B' is a (B®^L)-algebra such that

(P®AS)(^®A^)=P8W0A^+P^®A8(6 /)•

Thus as in (iii) of Definition (2.2)

[P®^ P'®A^]^(g)A^')=(P8(P')(x)8'-P'S'(p)®8+pp'®[8,8'])(6®A&')
=p8(p/)8'(6)®^'+pS(p')^^8'(6')

-(B'8'((B)8(6)®A^-P /8 /(P)&®AS(^)
+(B(B'[8, 8/]&®^'+(B(B^®A[S, y]b'

=p8((B')(I®^8/)(&(x)^')-p'8'(p)(I®^8)(6®^/)
+(Bp'(i^[8,8'])(^').

If beB and (BO^B^A^ then

(P®^8)(^i)=p8(&)®^i=(p®^8(6))(i®Bi).

Definition (2.8). — Suppose A and k are rings and suppose that A is a ^-algebra.
Assume that L is an A-^-Lie algebra and suppose that B is a nonscalar A-algebra which
is a left A-module. We shall say that B is an Ark-enveloping algebra for L if:

1) If 9 is the A-A-structure map for L, then there exists an A-linear map pg : L->B
such that pg(rf)(^)= {(f>{d)a)x+a^^{d)x, aeA, xeB.

2) If d . d ' e L , then paK ^-PaWpBW-PBWpBW- We shall denote this
last bracket by [[,]].

Remark. — Suppose a, be A and d, d'E^L. Then

[[>PBW,W<)]] - <<PW)PBW + ̂ PBWPBW

-^(PB(^)^PBW-^PBWPBW=PB(K ^/]).

As usual one gives also the

Definition (2.9). — Suppose L is an A-A-Lie algebra. An enveloping algebra E
for L is said to be a universal enveloping algebra if given any enveloping algebra B
for L there exists a unique map ^ : E->B such that

(i) ^ is a A-algebra map;
(ii) 4* ls a ^ft A-module map;
(iii) +opg=pB.
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A CONSTRUCTION OF THE GENERIC SINGULARITIES OF BOARDMAN-THOM 213

We now wish to show that if L is an A-A-Lie algebra, then L has a universal
A-^-enveloping algebra. The proof is entirely routine.

Theorem (2.10). — Suppose that A and k are rings and that A is a k-algebra. If L is
an A-k-Lie algebra, then there exists a universal enveloping Ark-algebra E(L) for L. Further

00

E(L)^T/I where T is the tensor algebra S ®^L and I is the two sided ideal in T generated

by the elements d ^ d ' — d ' ^ d — ^ d , d ' ] for d, d ' e L and the elements d{aQ)—{^{d)a) Q—adQ
for 9eT.

Proof. — Suppose B is an A-A-enveloping algebra for L. Then pg : L—^B is
an A-linear map from L to B. This map is then necessarily ̂ -linear, and if d^ . .., d^eL,
then ^'(^x. . . xdy)==d^.. . a^eB is clearly r-multilinear over k. We can extend the

00

map PB : L—^B uniquely to a ^-module map ^ / / : S (S^L-^B such that
j==i

^"(^®...®rf,)=^...rf,.

Also ^'(^i®...®^)^^ ... ^)=^/'(^®...®rf,),

thus y is A-linear from T to B. The map 4'" is clearly a ^-algebra map. Since ^"
vanishes on the generators for I, this shows that there exists a unique extension of ij/'
to a ^-algebra map ^ : E(L)->B with the desired properties.

We shall denote E(L(A/A)) by E(A^).

Lemma (2.11). — Suppose k is a ring and assume that M is a k-module generated over k
by elements m^ ae9l. Assume that there exists a k-bilinear function 9 : MxM—»-M such
that <p(^a5 9(^3 9 ̂ ^"^(^^a? ^3)9 m•r))' Then M has the structure of a nonscalar k-algebra
with multiplication x.y==^{x,y).
Proof:

(S^O . (S^p. S^TT^) =S^^( S^^3^))
a p Y a p, Y

= s x^z^m^m^))
a» P,Y

=^^^J>'P^(Wa'"p)"Y

= S ̂ y( S x^m^m^)m^

=S^((S^OTj(Sj»pOTp))TO^
Y a p

=((S^wJ(S^mp))(S^^).

We shall find the following notation convenient in the remainder of this paper.
Suppose n and m are integers. We shall denote by F(^, m) the set of strictly increasing
functions from the set { i , .. ., n} to the set { i , .. ., w}. If aeF(^, m), then we shall
denote by cy. the function in F(w—n, m) which has as image in { i , . . . 3 m} the complement
of the range of a in { i 3 . . ., m}. If a is onto, then COL is defined to be the empty function.

212



214 K. R. M O U N T A N D 0. E. V I L L A M A Y O R

Lemma (2.12). — Suppose that A and k are rings such that A is a k-algebra. Assume
that L is an A-k-Lie algebra. If 'K is an enveloping algebra for L and d^ . . ., <^eL, then
for each .yeB and each aeA

PBW...PBWM=S( s ((ne^ ))a).(npB(^))^).
M==O a€=F(M,r) v=l ' ' w=l • '

u

In this expression II Q{d^) denotes the composition of the ^"endomorphisms of A
15 =1

given by the Q[d^)y where 6 is the A structure map of L, and the product is written
r

from right to left. That is, IT d^==dy. . . d^. Further we set II^empty^ identity.

Finally the same formula holds for <2; xeA and d^ . . ., ^eL(A/A).
Proof. — We shall prove the assertion by induction on r. For r == i

P^)(^)= s s ((n e(rf ))a)(npB(^)).^
M=O aEF(u,l) u=l ' w=l ' '

=a.pB(^^^+^^^((^ne(^)))a).(^pB(^)))^
=a.^Wx+{QWa).x.

Proceeding by induction

(pBW(pB^-i)...pBW))(^)=pBW(S s ((ne^))^^' n PB(^)))^)
u=0 aGF(M,r—l) i?=l • ' w=l v '

==s s .(9W(^6(^))a).(r n PB(^)))A;
M=O aeFCu,r—l) u==l l ' w=l '

+s s ((n9^ ))<,). ps(4)( n PB(^(»)))^
M==O aeF(M»»"—l) u=l w=l

= s s ( (n e(<4)))a). ( n PB(^(«,)))^
M==I a6F(M,r), a(M)=r i?=l • ' w=l

+s s ((n6(^)))a).(npB(^)))^
M=O a£F(M,r), a(u)+r u=l w=l v

= s ((n e(^,))a). (n pB(^a)j)^
a £ F(0, r), a(0) + r u = l ' ' w==l

+s s ,((ne(^)))a) .(npB(^)))^
M = 1 a G F(M, r) v = 1 w = 1

+ S S (^(^^.(Vp^^)))^
M=r aGF(r,r), a(r) == r v=l ' ' w=l '

= s s ( (n 9(^))fl). ( n PB^)))^.
M=O a£F(M,r) v=l w==l

This completes the proof.
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Theorem (2.13). — Suppose L is an A-k-Lie algebra and suppose that B is an ii-algebra
with structure map Q : L-^L(B/A). Then B®^E(L) has the structure of an enveloping algebra
for B®^L. Further B®^E(L)^E(B®AL).

00

Proof. — We consider the B-module B®^ S (X^L=B®AT(L). In order to put
j=i

a ^-algebra structure on B®^T(L) it will suffice to define a ^-bilinear map "." from
(B0^T)x(B®^T) to B®^T such that for A-generators of the form x==b®^...d^

j/==iB®^i • • • ^s ^d ^== ̂ A^I • • • 8< we have the relation x{yz)=-[xy}z.
r+s

We define a ^-bilinear map from (BO^I^B®^®81-) t° S B®^®^ by
setting

{b®^ ...d,). (|B®^,... S,)= S S 6( A e(rf ))p®^( n^)8,... Si.
j=0 aGF(j,r) v==l w=l

This product may be extended to a ^-bilinear map from (B®^T) x(B®^T) to B®^T.
We turn to the question of associativity. Thus suppose that 6®8g . . . 8^ and

^®6^ . . . 6^ are elements of BOO^T. Suppose d^ . . ., dyeL. Then

(i^i)((^A^...Si)(^Ae<...e,))

=(i®^)( i: s /(ne(8^))^(n 8^).6,...e,)
M = 0 a G F(w, s) v == 1 w = 1

==s s e(^)^(ne(^)))c)®A(n^))e,...e,
M == 0 a C F(w, s) v = 1 ' ' w == I

8 —U

?
"'ca(wL

+ s s &( n e(s^)).®A^( n 8^)e<... e,
u==l aeF(M,s) v=l w==l

= 2 s (Q(^)&) (n e(s^)).®A ( n s^^e,... e,
u == 0 a G F(M, s) u = 1 w = I

+ S S 6(6(^) A O(S^)).®A ( n 8^)6,... 6,M == o a e F(u, s) v = i u? == i

+i s ^ne(s^))^^(n^)9<...6,.
y = 0 a g F(u, s) » = 1 w = 1

On the other hand

((i®<4)(^8....8,))(.®9,...ei)

= (^6®A8.... 81 + b®d,S,... 8^) (^^6,... 61)

=(^®A. • .8i)(^®A9<.. •9i)+^®8,+r ..8i)W)<. • .61)
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where 83 ̂  ̂  = d^. Thus

((i®<4)(^8,.. .8i))(.®o,.. .6i)==;s s «A)( n e(s )),0^n8^)e,.. .e,
j==0 aeF(j,s) M==I ' • w==l • '

s+1 j s+l-j

+,saepss.^(»^6(8a(tt'))c0(^.8^9(•••el

^^o aei^6^^^"6^^)^^"!8-')6' • • • ̂

+.s ..,•-.? r, ,/(Wnm(.,)))<^A( n s^)e<...e,j = 0 a £ F(j, s +1), a(j) ==s+l w=l l / w=l

+^0 ,e ,̂, .^/(A^^'^0^^"8^6' • • ̂

=^ ̂ i.^^'^A^^^^C"^8^^6' • • •^
+ S S &(6(^) ft 6(8^))c®A ( n 8^)6,... 6,

j=l a£F(j,s) M=I ' ' w=l '

+ s s. ^( n e(s^)),®^,( n 8^,)e<... e,.
j = 0 a G F(j, s) u = 1 v ' w = 1 v •

More generally if + = 61 + • • • + 6^ ^d ? = Pi +. • • + Pv? with each 9^ and 6. of the
form (B®6i . . .6^

(i®^)(9.+)=(i®^)(S^e,)^> j
=(S(l®^)y,)6—((l®(4)y)4-.

*>j

Now if </,, ..., ^eL, then if one uses induction

(I®<. . . <)(^)=((l®^). . .(l®^))(4,y)

=((l®^)(l®<_i)...(l®<4))(4,y)

=(l®^)(((l®^_,)...(l®^))(+<p))

=(l®^)((((l®^_,)...(l®^))^)y)

==((i®^)(((i®^)...(i®<4))<j;))<p
=(((i®^)...(i®^))4,)<p.

Thus we have an associative A-algebra structure on B®^T(L). Note that we
have shown that (6®rf, . . . ^).(p®§i.. . S,)=S^'®6^... 8, where ^'eB and 6,eT(L).

Next suppose R=6®rf , . . .^ , S=p®8,...8i and assume d, d'eL. Then
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R(d.d'-d'.d-[d, d'])S={b®d,.. .d^).{dd'S-d'dS-[d, d']S)
=[b®d,.. .^i)(fly'((i®8,.. .8i)-^((3®8,.. .8i)-[</,<r]p®8,.. .8,}
={b®d, ...d,). (W)p®8,. .. Si+(3®<f8.... 81))

-rf'(6(</)(a®8,... 81 +(3®</8,... 8,)
-6(<W)p®8,... 8i+6(<f)6((/)(i®8,.. .81
-(3®[rf, <]8,... 8,)

=(^. . . </i) . (6(a?)e(^)p®8,... 8i+9(<f)P®</8,... 8,
+6(</)(3®(f8... .8i+!3®Af8.... 81
-e((r)9(^)(3®8,... 8i-6((/)(3®<f8.... §1
-6(0(3®^... 8i- .8®<f</8,... 81
-e(fi?)e(rf')p®8,... 8i+6(06(rf)(3®8,... §1
-13®[^,rf']8,...8i)

=(^®4 • • • d t ) . (^(dd'-d'd-[d, d'])S,... 81)
=S(B^®Aej^'-</'</-[</, rf'])8.... 81.

Further if ^eT(L) and aeA, then

p = R.(</(<4) - (y (</) a) 4, - a^) S
=R(<^)-(y(</)a)^-a^)([3®8,... 81)
==R(rf(^)((B®8,... Si)-((q)W^)(p®8,... 8i)-(^)(p®8,... 81)).

Suppose that <p = </,®^ ... ®^ ̂ . Thus

<4=a^®,^_i®...®<4 and d(a^)=d®ad,®.. ®d^.

Set ^=^_i®. . .®<4; thus

p=R((</®,0!:((3®^8,®,,... ®,8i)

-(y(</)a)(^S)(P®A8.®fe...®^8i))-arf®((/^)(p®^8,®...®^8i)).

The expressions ?:. (P®^^®^ ... ®,,8i) are linear combinations of expressions with the
same form as p® 8,... 81. Thus p is a linear combination of expressions of the form

p'=R((rf®,<)(^®^8,... 8i)-(y(</)a)^((B®8,... 8i)-(arf®^)(p®8,... 81))
= R(6(</)6«) (3®8,... 81 + 6«) (3®</8.... 81 + Q(d) p® (a</,)8,... 81 + (B®</«)8,... 81

-(<p(</)a)6(^)p®8.... 8i-(y(</)a)p®^8,... 8i
-6(ff(/)6(^)(3®8,... 8i-6(^)|3®(^)8.... 81
-6(^)(3®^8,... 8i-p®(arf)^8,... 8,)

=R(a6(rf)6(^)p®8,... 8i+(y(rf)a)6(^)(3®8,... 81
+a6(rf)|3®^8,... 8i+(3®<f(^)8,... 81
-(<p(rf)a)9(^)p®5,... 8i-(<p(rf)a)p®<8,... 81
-a(6(rf)6(^)j3)®8,... 8i-a9(</)p®^8,... 8i-ap®^8,... 81)

=R(P®rf(fl<)8.... 8i-(y(</)fl)p®^8,... 8i-a(3®^8,... 81)
==R((3®(^)8,... Si-(y(rf)a)<48,... S,-(ad)d^... 81)).
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Thus in each case an element of the form RyS is in B®3 if y^S, where 3 is the ideal
in T(L) generated by the relation d d ' — d ' d — ^ d ' } and rf(^p)—(<p(flf)^)p—^/p. It
follows therefore that BOO 3 is an ideal in BOO^T(L) with our multiplication. Hence
BOO^E(L) inherits the ^-algebra structure of B®^T(L).

To complete the theorem we must show that B®^E(L) is a universal enveloping
algebra of B®^L.

First B®^E(L) is an enveloping algebra for B®^L. The B-^-structure map for
B®^L is given by (p(^®^)((B)= 6(6(^0 (3). If p : B®T(L) -> B®^E(L)=E is the
quotient map, then for (B®8g . . . 8 i in B®^E(L), 6eB, and ^®rfeB®^L, it follows that

PB®,E(L)(^^(^P®^...8,)=,((6(rf)6)p®S,...8i+66(^)p®8,...8i+6p®^...^
=(9(^®rf)6)[B®8,...8,+^B®,E(L)(^^(P®83...8i).

Further
p[&®^6'®rf']=p(6(6(rf)6 /)®^-6'(e(rf /)^®rf+^'®[^rf /])

=p(&(e(J)6 /)®rf')-p(&'(6(^)&)®rf)+p(^'®[^rf /])
= p(6(e(rf)^) ®rf') -- p(6'(e(0&) ®rf) + p(^'® {dd'-d'd))

since dd'—d'd==\d^ d ' ] in E(L). However a simple computation shows this last
expression is p^®^)?^'®^)—?^'®^') p(6®rf) .

Finally, suppose that U is an enveloping algebra for B®^L. Then if we use
the map X : d}-> pu( i®af) , deL, U is an enveloping algebra for L. Thus there exists
a unique A-fe-algebra map h :E(L)—^U such that Aop^==py. We may extend h
uniquely to a B-module map h' from B®^E(L) to U by setting A'(6®^8)==&.A(8).
If fifeL and 6eB, then

A'(PB®,E(L^®A</)) =A'(^®A PEW) = bh{^{d)) = W<0 = Pu(^A^).

In order to complete the proof that B®^E(L) is the universal enveloping algebra for
B®^L, it will suffice to show that h' is a B-^-algebra map. For this we need only show
that h' is a ^-algebra map. Since h' is A-linear it will suffice to show that

h'{{b®d,... <4)((S®S,... §1)) =h'{b®d,... d^) .A'(P®S,... §1).
But
h'((b®p^)... PEW)(P®PE(^) . .. PE(SI)))

=h\ S b 2 ( n 6(^)))P®( n PE«a(»)))pE(S.) . . . PE(Sl))
u = 0 a £ F(w, r) u == 1 w == 1

= s ^ s (n e(^))) PA( n pE(4c(»)))pE(<y • • • pE(8i))
u=0 aGF(M,r) u == 1 • ' w==l '

= s & s (ne(^)))p.(npu(i®^)))pu(i®s,)...pu(i®8i)
M=O aGF(M,r) v=l w=l

=^(pu(i®^)... pu(i®^))(Ppp(i®S,)... pu(i®^))

by Lemma (2.12) . Thus h'{{b®d,.. .^)(p®8,... 8i))=A'(&®rf,.. .^)A'(p®8,.. .81).
This completes the proof.
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Corollary (a. 14). — If A is a k-algebra which is noetherian, if S is a multiplicative closed
set and if D^A/A) is finitely generated, then E^Ap-^/^^A^-^E^A^)).

Theorem (2.15). — Suppose that A and k are rings such that A is a k-algebra. Assume
that L is an A-k-Lie algebra. Assume that there exists a commutative k-Lie algebra C C L such
that C is a sub algebra o/"L, such that G is a finitely generated free k-module^ and such that L is
freely generated as an A-module by C. Then E(L/^) ̂ S^[L]4' where " + " denotes the augmen-
tation ideal of S^[L].

Proof. — Suppose that d^, ..., d^ is a ^-basis for G. Because GcL, and there
exists a Lie algebra map 6 : L -> L(A/^), there is also a A-Lie algebra map from C to
L(A/A). Thus A is a G-algebra, and hence AOO^G is an A-A-Lie algebra. The
map Y : a®j^c\->a.ce'L isanA-A-Lie algebra map which carries A®^G onto L. Because
A®^G and L are finitely generated free and of the same rank, A®^G==L. Thus
E(L)=E(A®^C)=A®fcE(C). However, E(G) is well known to be S^G]4- (see [n],
p. 163).

Corollary (2.15). — Suppose that A is a regular local ring with a maximal ideal 2R, and
suppose A contains a field k such that A/9JI is separable algebraic over A. Assume that D^A/A)
is finitely generated. If dim^ 9JI/9J12 = t, then E(L(A/A))==SA[Derl(A/A)]+ as A-modules,
where cc + 55 denotes the augmentation ideal ^S^[M].

Proof. — Our assumptions imply that D^A/A) is a free module over A with a basis
consisting of the elements dx^, . . ., dXg where the ^ are a minimal system of generators
for the maximal ideal SOT of A. Thus L(A/A) is a free module with basis ̂ /^, . . ., ^/^g
where B2/^ ̂ . = B2/^. Ox,.

Lemma (2.16). — Suppose that k and A are rings and suppose that B is an K-algebra.
Assume that F is a free A-module and that i : F->B is an A-linear map from F to B. Iffy,-, oce9I,
is a basis for F, and if ^eB, ae9I, is any collection of elements in B, then for a k-derivation
5 : A-^B there exists a unique k-derivation ^ : SA[F]->B such that <)(a)=^S{a) if aeA, and
W=b^ ae9I.

Proof. — There exists an exact sequence O^N^D^SJFJ/^-^D^SAITJ/A)-^
where N is generated by the image of Dl{A|k) in D^S^F]/^) as an S^[F]-module.
The SA[F]-module D^S^Fj/A) is freely generated by the elements df^, ae^. Further
we have the direct sum decomposition

D1(S^F]/A)-(S^[F]®^D1(A/A))®D1(SJF]/A)

Note that the A-linear map i : F-^B extends uniquely to an A-algebra map (which
we shall again denote by i) from S^[F] to B.

Denote by |B the A-derivation from S^EF] to B which carries/^ to b^ and denote
by 6 the derivation from SA.[F] to B which carries/^ to zero. The derivations (3 and 9
we may identify with the S^[F]-homomorphisms (B and 9 from D^S^F]^) to B, where
6 is zero on D^SA^/A) and p is zero on 5^17]®^^^). We set a=6®p and
a=w.
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Lemma (2.17). — Suppose that A and k are rings, suppose that A is a k-algebra and suppose
that B is an K-algebra. Assume that M is an A-module and that there exists a k-derivation d : A-^B,
an A-linear map i : M-^B and a k-linear map 8 : M->B such that for each m^M. and aeA,
S{am)==a^(m)J!-{da)i{m). There exists a unique k-derivation B : S^[M]-^B such that
(){m)=S(m) for meM. and such that c){a)==da if aeA.

Proof. — Assume that F is a free module over A, and assume that there exists an
exact sequence of A-modules o—^K->F->M->o. Then there exists an exact sequence

IT

O-^{K}-^SA[F]->S^[M]->O where H is an A-algebra map and H has as kernel the
ideal {K} in S^[F] generated by the elements ofK. The map ioh : F->B extends uni-
quely to an A-algebra map J^S^EFJ-^B. The previous lemma shows that there
exists a unique A-derivation A:SA[F]->B such that A{a)==da if aeA and such that

A(/)=z(H(/))

if /eF. To complete the proof we need only show that A vanishes on the kernel ofH.
But if keK and PeS^F], then

A(PA;)=j(P)A&+j(A)A(P)
=j(P)z(HW)=o

because j on F is ioh.

Suppose that L is an A-A-Lie algebra, and suppose that B is an L-algebra. Thus
9 : L—^L(B/A) is such that for aeA and deL, 9(^)(a. i^)=={da)i^. We then have a
map p^oO which carries L into E(B/A)==E(L(B/A)). Since 6 is A-linear and p^ is
B-linear, p^oQ is A-linear. Suppose that aeA and ;ceE(B/^). Then for afeL,

pE(6(rf))(^)==(6(rf)(^. i^))x+{a. iMQ{d))x={da. i^x+{a. i^^{Q{d))x.

Further if d, d'eL, then

(pEo^^^^p^OW.O^')]^?^^))?^^'))-?^^'))?^^)).

Therefore E(B/^) is an enveloping algebra for L. It follows that there is a uniquely
determined A-linear A-algebra map from E(L) to E(B/A) which makes B an E(L)-module.
We shall, in what follows, denote that map bys(6). In particular, then, if ^, .. ., <^eL,
and &eB

e(6)(p^) ... ̂ Wb)==QW ... QW{b).

We shall write QL.X for s(6)(a).A:, A^B, when there is no fear of confusion.

Theorem (2.18). — Suppose A, B and k are rings and assume A and B are k-algebras.
Suppose L is an A-k-Lie algebra and suppose J(L, A®^B)==SA® B[B®fcE(L)®feB]/3 where:

(i) B®^E(L)®^B has the (A® ̂ -structure determined by

(a®^). (6'0^W) == bb'^^af®^"
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(ii) 3 is the ideal in SA^B[B®&E(L)(^B] generated by the elements

a) i®e®i if ^eE(L).

b) ^psW...pEW®M
r - 1 3 r - j

-,?,, ̂  „ (I ̂  pE(<4)) ®k h) • (i <\n P^ )̂) ®, b,)
r r

-^®^p^4)®^-^®,npE^)®,^.
77^ (A® ̂ B) -algebra has the structure of an L-algebra by an A-linear map

Y : L->L(J(L,AOO,B)/A)

^^ is such that yWW ^ the image of i®d®b in J.
Finally, the [\®^K)-algebra J(L, A®^B) ^ determined uniquely (to within (A®^B)-

algebra isomorphism) by the following universal properties:

(i) J(L, A®^B) is an (A® ̂ S)-algebra, and there exists a map

Y : L->L(J(L,A®,B)/A)

wA^A w^j- E(J(L, A®^B)/A) a7z enveloping algebra for L ^ £(y).
(ii) IfT is any (A® ̂ S)-algebra which is an 'L-algebra by a structure map 6 : L->L(T/A),

and with (A® ̂ S)-algebra structure given by \ : A®^B->T, then there exists a unique (A®^B)-
algebra map j^ :J(L,A®^B)-^T such that for each aeE(L) and each aeA, beB,

Je,x((s(Y)(a))(^^))=(£(6)(a))X(a®^).

Proof.—Denote by 7) the quotient map from S^BE30^^)0^] toJ(L,A®^B).
Suppose deL. If ^eE(L) and aeA, then ^W{^)={da)x+a^{d)x, as we have
seen in Lemma (2.12). We can define a correspondence from B®^E(L)®^B to
J(L, A®^B) by setting

^(&'®^®^")=73((i®,pE(rf)®6')(i®^®6")+6'0,pE(^®^").

If &i and ^ are elements of B, then

rf*((^+^)0^®^/)=^((I^PEW®^l)(I®^®&'')+(I®PEW®&2)(I®^n

+^®fcPEW®^'/+62(x)fcPEW(x)^//)

=^(^®A:®&//)+^(^®A:®6").

Similarly, ^ is A-linear in E(L) and in the right B factor. Thus the correspondence
determines a A;-linear map from B®^E(L)®^B to J(L, A(^B) which we again denote
by d\

Next suppose aeA and &eB. Set 8(ax6)=fl?(fl)®^+7)(i®pE(^)®^). The
map 8 is ^-bilinear and therefore S extends to a ^-linear map from A®^B to J(L, A0^B).
Denote this extension again by 8.
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The map 8 is a ^-derivation from A®^B to J(L, A®^B). To see this, suppose
thata, fl'eA and 6, 6'eB. Then
S{{a®^b){af^bf))=S(aaf®J,bbf)=ada/®^bb'+a'da®^bbf+{aa/®^l)^{I®^

=(a®^b){daf®^b')+{a®kb)^{I^^afd)®bf)

+(a'®^')(^®^)+(a'®^').7](i®pE(^)®^)
=(fl®^)8(^'®^')+(fl'®^')8(a®^).

Next assume aeA, b, b^^ b^eB and ^eE(L). Then
d*{{a®^b) [b^x®b^)) == d\bb^^ax®^b^

==Y]((6l®pE(^)®&)(l®^®62))+7]((&®pE(flf)®6i)(l®^®^))

+7](^®((^+^pE(^)®A)

==7](l®pE(^)®^)7](^®A;®&2)+((fo®6)7](^®A:®&2)

+^0^)(7](I(x)PEW(g)^)•^(I0^(8)^)+^(^@PEW^0^))

=8(fl®^)(&l®^®62)+(a®fe6)(^ i lc(^®^®62)).

From this it follows easily that if oceA®^B and A:eB®^E(L)0^B, then
^(a;c)=(8oc)A;+a^).

We can now apply the result of Lemma (2.16) which shows that there exists a unique
^-derivation d ' : S^^[^®^{'L)®j,E] ->J(L, A®^B) which coincides with d* on
B0^E(L)®^B and which coincides with 8 on A®^B.

Next we claim that d' factors through J(L, A0^B). To show this, it will suffice for
us to show that d ' vanishes on each of the generators of 3. Since the assertion is obvious
for elements of type a), we suppose d^ . . ., fi^eL, and that b^ ^eB. Then

^'(i®pEW... PEW®W-< s (i® A pE(4(u))®w® n PE^))®^))
j == 0, a £ r ( j , r) u = 1 v = 1

=^i®^W^w...^W®b,b,))

- s s (i®p^(^ A pE«M)®^i)(i® nps(^)®^)
j = 0 a G F(j, r) u = 1 ' ' u == 1 v '

- s s (i® n PEW®W®PEW npE(^))®^).
j==0 aeF(j,r) u=l v == 1

Now denote d by ^.+1. Thus the above expression becomes

^(l^PE^r+^-.-PEW®6!^)
r+1 3 r+ l - j-^(S ^ s ( i®np^^)®^).( i® n PE(^))®^)
j == 1 a £ FQ, r +1), a(j) =r+l u==l • ' v=l

-1 S (i®^?^^))®^)^!®''4!!?^^)®^))
j=0 aeFO,r+l), a0)^r u-1 ' ' t>=l

=7)(l®pE«+i). . .pEW®^l^)

-^ S (I®]! PE^))®^)^!^^ PE(^))®^))
j = 0 a £ F(j, r+1) u=l v==l

==0.
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We have now shown that there exists a function

Y : d ^ d '

from L to L(J(L, A®^B)/^). The map y is A-linear. To see this, suppose aeA and
dei,. Then we must show that y(ad)=a-{(d), and to show this it will suffice to show
that f{ad){a'®b')^a^{d){a'®b') and that ^{ad)rt{b'®Q®b")=a^(d)ri{b'®Q®b"). But

f(ad){a'®b')=a{da')®b'+ri(i®p^a'ad)®b')
==(a®i)(da'®b'+^{i®pE{a'd)®b')).

Also
•^{ad)^(b'®Q®b")==^{i®p^ad)®b')(i®Q®b"))+^(b'®p^ad)Q®b")

={a®i)rj({i®pE{d)®b'){i®Q®b"))+^b'®ps{d)®b")).

Next we claim that y 1s a ^-Lie algebra map. Thus suppose that d, rf'eL and
suppose that aeA, ^eB. Then

[fW,^d')](a®,b)=f{dW){a®,b)—{{d')fW{a®,b)
=^{d){d'a®b+-q{i®apE{d')®b))— ̂ d')[da®b +•»)(! ®a(>s[d)®b))
=dd'a®b+-q{i®{d'a)^{d)®b)+7i{i®^{d){a^d'))®b)

—d'da®b-^i®{da)^(d')®b)-ri(i®^{d'){a^{d))®b)
=dd'a®b+-fi{i®{d'a)pE{d)®b)+fi(i®{da)^{d')®b)

+^{i®apE{d)pE{d')®b)—d'da®b—^{i®{da)pE{d')®b)
—rt{i®(d'a)^W®b)-^i®a^(d')^W®b)

=dd'a®b+r^(i®apEWpE{d')®b)
—d'da®b—f\{i®a^{d')^(d)®b')

==dd'a®b—d'da®b+f]{i®apE[d, d']®b)
=[</, d']a®b+rt{i®aps[d, d']®b)
={-r[d,d']){a®b).

Further, if b, b'eTi, and A-eE(L), then

[fW,T{d')W®x®b')={f{dW)-r{dW))^b®x®b')
=7)(l®pE(rf)pE(fl?')®^7)(l®A;®&')

+-ft{i®p^')®b)ri{i®ps(d)x®b')
+-ri(i®pEW®b)-q(i®pE{d')x®b')+^(b®pE{d)p^d')x®b')
-T)(I ®ps{d')pE{d) ®b)^{i ®x®b')
-7}{i®pE{d)®b)ri{i®p^d')x®b')
-ri{i®p^d')®bMi®p^d)x®b')—fj(b®p^d')^Wx®b')

=•»)(! ®ps[d, d']®b)^{i®x®b')+^b®p^[d, d']x®b')
^[d,d']{b®x®b').

Because ^{d)(a®i)=da®i, this completes the proof that J(L, A®^B) has the
structure of an L-algebra. J(L, A®^B) now inherits the structure of an E(L)-algebra
by s(y), where (e(Y)a)(A)=y](i®a®^), aeE(L) and ^eB.
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Now suppose that T is an (A ®^B)-algebra and suppose 6 : L->L(T/A) gives T
the structure of an L-algebra. Suppose that 9 is the A-A-structure for L and suppose
X : A^B-^T is the map giving T an (A ®^B)-structure. Suppose aeA and assume
xeE(Tlk). If deL, then Q{d){ax)=Q{d){\{a®i)x)={Q{d)\{a®i))x+\{a®i){Q{d)x).
We know that E(T/A) is an A-A-enveloping algebra for L; thus there exists a map
s(6) : E(L) ->E(T/A), such that s(e)opg=6 on L. If we are to have that

Jo,x((^Y)(a))(^^))=(s(e)(a))X(^^),

then for beB we must have JQ ^(i®a®^)=(£(6)(a))(i®^6). Thus we must have
Je,x7](&/0a06/ ')=x(I(x)6/)((£(e)a)6 ' /)• This uniquely determines an (A(^B)-linear map [L
from B®^E(L)®^B toTwhere (Ji(&®a®6')=X(i®i)((£(6)a)6'). There is then a unique
extension of [JL to an (A0^B)-algebra map from S^® BCB^EC1')®^] to T. Denote
this extension also by [L. Our construction of [L shows that if fifeL, then

^{da®b +1 ®ad®b) == \{da®b) + aQ{d)b

==Q{d)\{a®^b).

Assume that ^, . . . , f l ^eL and suppose that ^, ^eB. Lemma (2.12) shows
that in T

W.. .W^A)- s s (n e(^))^.(ne(^))^.
M=O aGF(M,r) u==l w=l

Clearly pi(i®^®i)=o. Thus [JL factors uniquely through J(L, A®^B). Denote this
map by j. If aeA, beB, and d y , . . . , d ^ e ' L , then

j((s(Y)pEW...pEW)(a®^))=^( s s ((n^)a)(i®np,(^)®&)))
M=O aGF(M,r) v=l w=l

=2: s ((n^)fl)(e(6)npE(^)))6
M=O aeF(w,r) v=l ' ' w=l

=6(^)... 6(^)X(a®^)=s(6)(p^)... PE(W(^).

Since both s(6) andj are A-linear, this shows that for each element oceE(L),

j((£(Y)a)^®^))=(£(6)a)X(a®^).

This completes the proof.

In what follows, if A, B, k, L and T are as in the above theorem, then we shall
call the map JQ ^ :J(L, A0^B) -^B the jet map of 6. In case L==L(A/^) we shall denote
J(L, A®^B) by J(A, B/^). In this case, if h : B-^A is a A-algebra map, then A has
the structure of an (A ®^B)-algebra by the map VL(a®^b)==ah{b). A is therefore an
L (A/A)-algebra which is also an (A®^B)-algebra. We shall denote J^H byj/e and we
shall call j\h the jet section map of A.
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Lemma (2.19). — Assume A and k are rings', and suppose that L and L' are A-k-Lie
algebras. Suppose that B is an A-algebra such that it is both an L- and an L''-algebra with structure
maps X and X' respectively. If 6 : L->L' is an A-k-Lie algebra map such that for each rfeL
one has \'{Q(d)) ==\{d), then the map Id®^6 : B®^L -> B^L' is a TS-k-map.

Proof. — The map Id®^6 is by definition B-linear, hence we need only show
that Id®^ ls a A-Lie algebra map such that for SeBOO^L and beB it follows that
{(Id^Q){S)){b)==Ub). If 8=S^®4 d,eL, then

((Id®^)(S^®<.))(6)=(S6^e(^))(&)» i

^^^(e^))^)^^^^)^)
=(SW)(&).

Now assume that b, 6'eB and that d, d'eL. Then

(Id^O)^®^^®^]^^®^^^^)^)®^-^^^)^®^^-^'®^^])
-^(x^^^e^-^^^^^e^+^'^Eew^e^)]
=&(x'(e(^))&')®e(rf')-6'(x'(e(^))6)®e(</)+^/®[e(^),e(rf/)]
=[&®e(^),6'®e(^')].

To prove the next assertion we shall find it convenient at this time to introduce
some notation. If n is a positive integer, then 2" will denote the collection of subsets
of the set { i , . . ., n}. If aea", then | a | will denote the cardinality of a, and if | a | ==j\
and if d^ .. .3 rf^eL (an A-A-Lie algebra) we shall denote by d^ the product in E(L),
^ ( j ) - - - ^ ( i ) 3 where i(i)<z(2)< . . .^i{j) ^d a :=(^( I)5 • • • ? ^(j))- ^ |a]=o, then set
fl^==i. We shall denote by G(j, n) the collection of subsets a ofj elements of 2"' such

j
that: (i) U a(^)={i, . . ., 72}, (ii) a(^) na(^) is empty if u^v and (iii) a(^) is non-
empty for each u\ that is a is a partition of { i , . . ., n} into j nonempty disjoint sets.

Lemma (2.20). — Assume L is an A-k-Lie algebra, and assume that B is an lu-algebra.
Suppose that dy, . . ., J^eL and that s is a unit in B. Then

(<...4)(,-')=^(-,)^^n^,,,).

Proof. — If tifeL and t is a unit in B, then fl^r^ —(i/^)A since o==^.r1).
Assume now that the formula is correct for r—i. That is

^.,...4(,-)=;S(-,)^^^_^n«,.,,).
m
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Thus
d,...d,{s-1)

-X^^^K^^A^^^^A^)))
=;S(-z)-0-+z)!^^)(^^_^n(^))

+S(-i)^S S n (^)(rfA(^) (where n^=i)
J == 1 j OC V = 1 M + V

-X^^'^^ea^-.A^^^^^+^o^^-.^^"/^

+(-I)rr!^^)^^^^^(^)

+(-I)^eo(s-.i(^/^^^

^^(-i^-^ s n(rfe,^)+s s n (^).F))
j -2 ' ' j-'4"1 3eGU.r). P(j)=ru=r I-t") • «=1 P6G(j,r), rS 3(v), I P(»)l >1 " =1 p '

+(-I)rr!^^^)-^.. .̂ )

=,s(-I^«e&.A^-)•

The object J(A, B/^) is the construction which we needed for the Boardman-Thom
theory. However, the object constructed in the next theorem is one which displays the
adjoint structure of the infinite jet space.

Theorem (a. 21). — Suppose A, B and k are rings and assume A is a k-algebra with B
an K-algebra by a map \ : A->B. Assume that L is an A-k-Lie algebra. There is one and
up to B-algebra isomorphisms, only one B-algebra (scalar) J(L, B) satisfying the following
conditions:

1) There exists an A-linear map y : L-^L(J(L, B)/A) which is the structure map for
E(J(L, B)/^) as an enveloping algebra for L.

2) If T is a ^-algebra by X : B->T such that T is an 1^-algebra by a structure map
6 : L->L(T/A), then there exists a unique ^-algebra map J'Q ^ :J(L, B)->T such that for each
^eE(L) and each 6eB, JQ^{{^)x)b)=^{Q)x){\b).

Proof. — There exists an exact sequence o—^K->A®^B->B->o where
a{a®^b)==\{a)b.
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We set J(L,B)==J(L,A(^B)/R where R is the J(L, A®^B)-ideal generated by the
elements ofK and the elements of the form {^)x){y), yeK. Denote by p the quotient
map from J(L, A0^B) to J(L, B). J(L, B) now has the structure of a B-algebra by
the map ^->p(i®^i).

Suppose xe'L and assume that j/eR. Then J /=S^Ka where r^eJ(L, A®^B),
and K^=={e{^)Q^)s^ where 6^eE(L) and ^K- Thus

YM {y) = S (yMrjK, + S r.yM ((c(Y)ej^)
a a

=S(yMrjK,+Sr,((s(Y)(^.ej)^).
a a

Because of this, R is closed under the action ofE(L). If KeK, then s(Y)KeR. Thus
y(^) extends uniquely to a derivation fromJ(L, B) toJ(L, B). We denote this extension
by yW- ^he map y is clearly A-linear and makes J(L, B) into an L-algebra. We
denote y by YB-

To complete the proof of the theorem, we need only show that J(L, B) (and yp)
satisfy the universal properties of the assertion. Thus suppose that 9 : B-^T gives T
the structure of a B-algebra, and suppose that 9 : L->L(T/A) gives T the structure of
an L-algebra. The B-algebra T also has the structure of an (A ®^B)-algebra by a map
v : a®^b}->^(\{a) .b). Theorem (2.20) shows that there exists a unique (A®^B)-algebra
map je,^J(L,A®,B)->T such that ^^((^Y)^^®^))-^^)^^^^). It J^eR,
then if we use the notation of the previous paragraph

Av(K+Sr,(s(Y)6J^-v(K)+S7o,v(^9,v((^Y)9a)^)

-^MW^W-0'a

Therefore JQ ^ factors uniquely through J(L, B). This completes the proof.

Corollary (2.22). — Suppose that L is an A-k-Lie algebra. Denote by L-Alg the category
with objects A-algebras which are ii-algebras, and morphisms which are E(L) -algebra maps. Let
F denote the forgetful functor to the category of A-algebras. Then J(L, •) is a left adjoint for F.

Proof. — We need only remark that we have shown that each object of the category
of A-algebras has an associated free object with respect to F. (See [5]).

Theorem (2.23). — Suppose A, B and k are rings and assume X : A->B gives B the
structure of an A-algebra. If L is an A-k-Lie algebra and if T is a multiplicatively closed set
which contains i in B, then B[T~"1] ̂ J^ B) ̂ J^BF1'"1])- Further if S is a multiplicatively
closed set in A, then ACS-1]®^!., B^^ACS-1]®^ A^-^^^B).

proof. — We shall first show that B[T-1] ®BJ(L, B) ̂ J(L, B[T-1]). Suppose that
6 : L->L(A/A) is the L-structure map forL as an A-^-Lie algebra. Suppose de'L. Then
Y(</)eL(J(L, B)/A). Assume that T : B->B[T~1] is the canonical map, and suppose that
T^-^B^BIT-1]®^^ B). We set

YW(TWT(^)-1®^)=^)-1®((YW^^+^YW^)-^0(^
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We claim that y(rf) defines a A-derivation on BIT-1]®^!., B). Note that the map

T(6)T(?)-1®B^^TWT(^-1®BY(^)^+^W -1®(YW^A;-TW®(YW?)^

is bilinear in B, thus y {d) does determine a map from B [T~1] ®gJ (B, L) to B [T~1] ®gJ (B, L).
Further
w^wr^x^tY^x'^^^wr^xx')

=-,(^®B(TW<)-'+^®B(YW.).-^-^(TW

=(^)^/)TW(^^)+(^@B')TW(^)0B4
Next Y is A-linear since

^ad) {——^BX\ =-——^ {^{d)t)x+ ——®^ad)x

=aW}[^\

Also if d, rf'eL, then

Y[flr,rf'](T(f)-l®B^)=-——®B(^'<-^^)^+——®B(YWYW^———®B(T(rf')YW^T^ T^; T^}

- ̂ î  {fWt2) W)t)x - ——^ W)t2) W)t}x

- ̂ 2®B W}t} Md)x) + ̂ ®B W)t) W)X-)

-^0B{•r{d)t){•r{d')x)+—®s{•fWt)W)x)

- ̂ 2® WW)t)x + ———®B WW)t)x

+ ̂ ®B (Y(^)Y(^)^) ———®B (YWY(^)

=Y(</) (- ——5®B (YW<)^ + ——®BY(<n^

-^^) (- ̂ )2®B W)t)x + ———Wd)x\

=^W,^d'}](^^X\.

The map Y thus gives BIT"1]® !̂., B) the structure of an L-algebra.
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To complete the proof of the isomorphism 'K[^~1]®BJ(L, B)£j(L, B[T~1]) we
need only demonstrate the universality of BIT-1]®^!., B). Thus suppose that A is
a B[T-^-algebra by a map X : B[T-1] ->A and suppose A is an L-algebra with structure
map cp : L-^L(A/A). A is also a B-algebra by the map (J,=XOT. Thus, there exists
a unique map j^ :J(L,B)-»A such that for aeE(L) and be'K

.^((e(T)^)=(s((p)oc)t^).

The map j^ extends uniquely to a map j : BIT-1]® !̂., B)->A if we demand that
y('T(<)-l)=^(r(f)-l). Suppose that deL, be^ and teT. Then

J(Y(rf) (T(^)T^)-1)) ==jl^d) (———^ b}}
\ V^) I I

=j(-^®W)t}b+——®^d)b\

=-x(^2)^H((YW<)^+^^k,,(YW^)

==-x(.^)2)(vW^))^^W+^—)yW^)
=y(</)(X(T(^)-1)).

Now suppose that ^, ..., a?,eL. Then

J((e(Y)<- • •^i)^)^)-1))^^) . . •YWMW)-1))

^(i ̂ i.^A^^)7^)^"^^)))^^1)
-i ̂ s./^A^^)^^^^"^^))^^1)-t.-r -'"'" ' "- '»- i '

j - •'

^Y(4(u)))T(&) = (r®id) (s(Y) (^^))^ henceBut (nY(4(u)))^)=(^®id)(s(Y)(n^,))^ hence

- i - •'j (^nYK(«,))T(6)) =j ((r®id) (e(Y) (n ̂ ))A)
• y _ _ ^ - - -I"/" ' " 1 V \ / I \ ) / \ , t \ V ) l l - l

=J^M^W)

=(e(v)(Jlj(^))))^).

Also

^(n^^))^^1)^^^-!)"^^^^^^^^^).^))

^p
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where d^==d^. Thus
r - J r - j , _ w

J((n,y^,,)).(r-)=.a/-.)-^^,^^_^-(n^7w,),(,)))
_'?, .,. ""
-^^-•'̂ -M,)).̂ .̂,2,-,,.""'̂ ^"'1''"

r-j

(n
t ?==i

=(s(9)(nv«^)))(^))-1.
Thus

^(^(Y)^...^))^)^)-1))^^^^^^^)^^^^

= (^(y)(YW • • . YW))^)^)-1).
Now assume that S is a multiplicatively closed set in A. Assume that cr: A->A[S~1]

is the canonical map. Lemma (2.7) shows that there exists an Ap'^-^-map

9 : AES-^LCKL, B/^)) ̂  L(A[S-1]®^J(L, B)/^).

Note that

AES-^®^^ B)^B[X(S)-1]®BJ(L, B)
^J(L,B[X(S)-1])
^J(L,A[S-1]®^).

The map y ^ L->L(J(L, B)/A) gives J(L, B) the structure of an L-algebra. We can
extend y to a map y : A^-1]®^ -> A[S-1]®AL(J(L, B ) / k ) by setting

r?-l^d)=^s)-l®^W.

Lemma (2.18) shows that this is an A[S~l]-k-m3Lp. The composition <poY==Y* gives
A[S~1]0AJ(L.:B) the structure of an (A [S-1]®^) -algebra.

We can now complete the proof of the theorem if we show that AI^S'^O^J^L, B)
together with the map y* satisfies the universal conditions for JKApil"1]®^, A^"1]®^).
Suppose that A is an (A [S"1]®^) -algebra which is an (A [S"1]®^) -algebra. Assume
X : Ap'^^^B-^A and suppose p : A^"1]®^ -> L(A/A). The map p ' : < / H - p ( i ® r f )
gives A the structure of an L-algebra. Thus there exists a uniquely determined map
J=^'^ ^(L^ACS-1]®^)-^ such that for seS, 6eB, oceE(L)

Jp',x((^Y)^)(TM-l®^))-(s(p)a)X(TM-l®^),

where y' : L -> L(J(L, A[S-1]®^B)/^) is constructed from y by the procedures of the
first half of this theorem. Thus one sees easily that y' and y* coincide (under the
isomorphism Ap-1]®^^, B)^J(L, Ap-1]®^)). We must show that if

^E(A[S-1]®^) then J((£(Yt)^(TM-l®^))=(s(p)^)X(TM-l®^).
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Since E(A[S-1]®AL)^A[S-1]0AE(L) we m^ suppose that x^^s')-1®^. . . d^
where ^eL. Thus

7((^)(^')-1®^...^))(TM-1®^))=X(T(.')-1®^)J((S^

-X(T(.')-1®^ I)(s(p')(^ . . . ̂ ))X(TM-10^)

= (s(p)(T(.r1®^... w^r1^).
The result which follows connects theJ(L, B) to the Thom-Boardman spaces of [2].

Theorem (2.24). — Assume that A, B and k are rings such that A is a k-algebra and such
that B is an A.-algebra. Assume that C is a finitely generated k-Lie algebra such that A and B
are C-algebras and such that L(A/A) is generated as an ^-module by the sub-k-Lie algebra C.
Further suppose that D(B/A) is a free 'B-module with a basis dh^ .. ., dby and with dual basis
§1, ..., 8, (eHoniB(D(B/A), B)). Assume that L(B/A)^B.L(A/A)®L(B/A) where the sum
is an A-k-Lie algebra direct sum. Assume that C(^)==o. Suppose that D is a k-Lie algebra
and suppose that A is a D-algebra with a structure map 6 : D->G. Then

J(A®,D,B)^SB[E(B®,D)®BD(B/A)].

Further^ the map y : A®&D -> L(J(A®^D, B)) carries ceD to the derivation which

sends beB to Q{c)b +SS^)(^W^). Further yM carries 6?®<peE(D)®D(B/A) to c.e®^.

Proof. — We shall first construct the map

Y : A®,D -> L(SB[E(B®,D)®BD(B/A)]/^).

Set <ft.==6.. Thus if 8eA0^D then 8==S^. where ^.eD. If 6eB, then we set

Y(8)(&)==Sa,e(^)6+S^S,(6)(^®B^)- ^ ^^'eB, then

y(8)(^')-^,e(^(^)+S^8<(^')(^^

^s^o^^+s^^e^)^)
J J

+T,a,b'W^®^)

+T.a,bW{c^)

=W{b')+b'-r{S)b.

Thus Y carries A®,,D mto HomB(D(B/^), SB[E(B®ftD)®BD(B/A)]). Further if
8eA®^D, then we may define y(8) : E(B®^D)®BD(B/A) ̂  SB[E(B®AD)®BD(B/A)]
by setting Y(^)(y®8,)=8cp®6, and then extend by B-linearity. Thus if AeB and
<p®6,eE(B®feD)®BD(B/A), we have

Y(S)(A.<p®ei)=8(^))®ei=e(8)(6)v®e,+6.8<p®6(.
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Lemma (2.16) shows that there exists a derivation from SB[E(B®^D)®BD(B/A)] to
itself determined by Y(S). We shall also denote this derivation by Y(S). The map
Y :A®,tD^L(SB[E(B®^D)®BD(B/A)]/A) is clearly A-linear. If d, d'eD, then

f[d, d']{b)=Q[d, d']b+I,W[d, (f]®6(

= [6((/), Q{d')]b + S8,(6) {dd'-d'd) ®6,.<\ / \ — — — U ' j W V f f

On the other hand

[YW, '{{d')m=TW-r{d')b—f{dW)b

=YW(W6+:S8,(^'®e,)-Y(^)(e(^+:Ss,(^®6()
=e(ar)6(rf')&+S8((6(^)^^®e(+Se(</)s,^)rf'®e(+S8((^)</</'®9,
-e^e^^-Ss^ew^rf^Oi-Se^^s,^))^®^-!:^^)^®^
=[6^), 6(rf')]6+5:8<(A)[rf, rf']®6<+

T,(St{Q^d')b)d+Q{d)Hb)d'-Wd)b)d'-Q{d'){St{b))d)®Qt.

But 6(</') eC, and by assumption 8, commutes with C. Thus the last sum vanishes,
and f[d,d']b=[^d),-^{d')]b. If a, a'eA, then

f[ad, a'd']=f{a{da')d'—a'{d'a)d+aa'[d, d'])
- a{da'W) - a'{d'aW) + aa' [y(rf), ̂ d')]
=Mad),^a'd')]

on elements of B. If aeE(B®^D)®BD(B/A) and oc=p®8, then for d and d ' in D
it follows that yK <l(P®8)=^'i3®8-af'</(B®S=[Y(rf), Y(^')]P®8. Because of this
one can easily see that y is an A-linear ^-Lie algebra map.

Suppose now that T is a B-algebra by X : B->T and suppose y : A®^D -> L(T/^)
gives T the structure of an (A®,; D)-algebra. If deD and 6(rf)eC, then

YW(&,)=S,(A,)(</®^,).

Therefore, the jet section condition (see Theorem (2.21)) shows that ifj is a jet section
from SB[E(B(^D)®BD(B/A)] we must have

j(4(i) • • . d^db,) =j\d^.. . <4_i)(T«(.)) W))
=(£(6)(^...^_,)))(6(^)(X6,)).

Thus the map from E(D)00^<fl%i, . . . , r f ^ > is uniquely determined. There is then
a unique extension to a B-linear map from B®^E(D)®gD(B/A) to T. This extends
uniquely to a B-algebra map from SB[E(B®^D)®BD(B/A)] to T.

This completes the proof.
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§ 3. ITERATED SINGULARITIES

Suppose that M is a finitely generated module over a ring A. We shall denote
by f,(M) the j^ Fitting invariant of M (see [8] or [12]). If o->K->F->M->o is
an exact sequence ofR-modules where F is free with a basis f^y .. ., f^ and if K. is generated
by the elements S^.j^, then the r-th Fitting invariant of M is the ideal in R generated

by the (n — r) X (n — r) subdeterminants of the matrix (^).

Definition (3.1). — Assume that A and k are scalar rings and suppose A : A-^M
is a A-derivation from A to a finitely generated A-module M. Suppose that j is a non-
negative integer. Then we set

(i) 3,(M)=f,_,(M)

(ii) "'^^^(A^D)
If ;'(i), ..., i{r) is a sequence of integers, then we define a sequence of modules

and ideals as follows:
(iii) 3{i(i))==3iw(M)

(iv) ̂ ^^^(A^
(v) if M(!'(i), ..., t'(r-i)) and 3(;(i), ..., ? ( r—i ) ) have been denned, then

3(^(i), ...,i(r))=(3(t(i). ...,^-i)),3.(,W(i), ...,,(r-i)))

and

^•••••'^M^^S:::'^
We now follow the Boardman-Thom construction and give the following definition

(see [2]).

Definition (3.2). — If A, k, M and A are as in definition (3.1) and i f z ( i ) , . . ., i{r)
is a finite sequence of non-negative integers, then we define a subschema of Spec (A)
which we shall denote by S(A; z ( i ) , . . ., i{r)) as follows:

(i) the support of 2(A; i(i), . . ., i(r)), that is the underlying topological space,
consists of all peSpec(A) such that p 33(^(1) •> • • - ? ^W) ^d such that

p^3(^(i), ...,i(j-i),i(j)+i) for i<_j<r.

(ii) The structure sheaf of S(A; z ( i ) , . . ., i(r)) is the sheaf of rings induced on
S(A; z( i ) , . . . , i(r)) by the ring (i.e. A-algebra) A/3(z(i), . . . , i(r)).

Lemma (3.3). — Suppose M is a finitely generated A-module and assume A : A—-M
is a k-derivation from A to M. The set S(z(i), . . ., z(r)) is empty unless ^(1)^(2)^ . . .^_i(r).
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Proof. — First assume that i andj are two non-negative integers. We shall show
that S(z',^) is empty unless i^j\ Thus assume that z<j. If pD3(^,/)? then

^-•^•"^-•(^dy-
Suppose that o—»-K->F->M-^o is an exact sequence of A-modules where F is free
with a base ̂ 5 . . .,j^. Then there is an exact sequence of A-modules

(E) o (̂K-,f,.,(M).F^E^^po

where K* contains K and a set of elements in F which map to generators of (A3(^))«

It is then clear that f^ , (^—®^--_-—) contains 3(j)==3,(M).
\-o \.1) l^-o^Jy/

Therefore if p is a prime which contains S(z,j), then p also contains 3(j)«
However, if j>i, then 3(j)=f^(M):3f,(M)=3(^+i). Thus p^S(zJ). If in a
sequence ?'(i), ..., z(r) there is aj such that i(j) <i(j +1), then we can apply the previous
argument to M(z(i), . . ., i[j—i)).

Lemma (3.4). — Assume that A ^ a local ring (not necessarily noetherian) and suppose
that M is a finitely generated ^.-module such that f^^.i(M) =(i). Then there is an exact sequence
o-^K->F->M->o where F is a free module of rank r+i.

M
Proof. — Suppose that F is a free module with rank F == dim —— = t. where m

mM
is the maximal ideal of A. We can then construct an exact sequence o->K->F—^M—^o
where a basis for F maps to a minimal system of generators for M. Thus

^-A l̂̂ om m mM

A /A \ /A \
is exact. Because —®^f . (M)=f . (—®^M, we know that f r+ i —^M =(i) ;

m \m j \tn ]
M

therefore t == dim —— < r +1.
mM"

Theorem (3.5). — Assume A is a noetherian catenary local ring which is a k-algebra
for some ring k. Suppose that M is a finitely presented ^.-module given by an exact sequence

F^F^M—^o where Vs and Fr are respectively free modules of ranks s and r. Suppose
A : A->M is a k-derivation. If i<j are two non-negative integers^ the closure in Spec (A)
of the locally closed set ^ { i y j ) has rank ^rank f^_^(M)+j(^—^J^-

Proof. — The definition of S(z,j) shows that the closure of 2(i,j) is the closed

set of the ideal 3(xJ)=f^(,—nv^^AT.r—i^m)- Tt follows from the fact that the
\fi_i(M) (A^_i(M))y
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sequence (E) of Lemma (3.3) is exact that 3 (^^) contains a power of the ideal f^_^(M).

Therefore the rank of3(zj) is the rank off,_i(M) plus the rank of J ^ '
Tz—lA—J

Now suppose peS(z,j). Then p^f^(M), and it will suffice to compute the
rank of

A,.3(^-)=f,_J(A,/(A,.f._,(M)))®A^^V

It is well known that A has an extension to a derivation from Ap to Ap®^M
(see [14]). We shall denote this extension also by A. Then ^{as~l)==s~l^a—s~2a^s.
We claim that

Ap^^M(A,®^M)/(f,_,(M)M,Af,_,(M))=(A^_,(A,®^M))®^̂ ^(A^M))

To demonstrate this we need only show that the submodules (f^_^(M).M, Af,_i(M))
and (Ay.f,_i(M)).M,Af,_i(Ap®^(M)) of A^M are equal. Note that

f.-i(Ap®AM)=A,.f,_,(M),

thus if j^ef^_i(Ap®^M) we may write Jy==:s~lx where xe^_^M.) and J^p. Thus
AJ==j>~ lA^—J - 2^A^e(Apf^_l(M)M,Ap.Af^_l(M)). We have shown, therefore, that
(f,_i(M).M,Af,_i(M))D(Apf,_i(M).M,Af,_i(Ap®^M)). The opposite inequality is
obvious. The isomorphism shows that we may suppose that f^(M)==(i) .

If f^(M)==(i) , then lemma (3.4) shows that there exists an exact sequence
o—^K->F->M->o where rankF==z. Further p : F^'-^M is surjective, thus there
exists a map cr : F^F such that so 07= p. If ̂ 5 . . .,fy is a basis for F7', then the p(^)
generate M and we may choose a minimal system of generators for M from among
the p(^). This minimal system of generators for M consists of a sequence of elements
which are the images under s of a basis for F. Thus we may suppose a is surjective.
From this it follows that K is generated by s elements. Suppose that ^, . . ., ^ is a

i

basis for F and suppose that K is generated by k^== S a{ut)e^ The ideal f^_^(M)

is then generated by the elements a(uv), with ^^u^s and i^^^- The remarks of the
first paragraph of this proof show that we may assume that f^_i(M)==(o), thus that M
is free of rank==i .(see [12]) and that Af^_^(M) is a submodule generated by at most

s. i elements. Thus ————————— is an ideal generated by the i —j +1 by i —j +1
M— i l - — )

subdeterminants of an ixsi matrix of elements of A. It follows (see [3] or [7]) that

the rank of 3Mi__ltM) is ^•-(,-y+i)+i) .(si-{i-j+i)+i)=j{si-i+j).
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§ 4. GENERIC SINGULARITIES

Suppose now that A, k are rings with A a A-algebra and suppose L is an A-A-Lie
algebra. Assume that B is an A-algebra and that T is a B-algebra which is also an
L-algebra by a map 6 : L-^L(T^). We shall suppose that K is a B-submodule of
D(B/A). The map 6 induces a T-homomorphism

9 : HoniT(L(T/A), T) -> Hom^T^L, T).

Further since L(T/A)==HomT(D(T/A), T), there exists a map 6"' induced by 6 from
D(T^) to Hom^T®^, T). Because T is a B-algebra there is a map

h : D(B/^)->D(T/yfe).

The map 6- h carries D(B/A;) to Hom^T®^, T). We set

D(T®AL/K)=HomT(T®^L,T)/(6-A(K)).

Denote by prp the quotient map from Hom^T®^, T) to D(T®^L/K) and suppose
that dry : T -> D(T/A) is the canonical derivation of T. The map

pTo6-o^ : T->D(T®^L/K)

is a ^-derivation from T to D(T®^L/K) which we shall denote by AJT/K).

Definition (4.1). — 2(T, L/K; z ( i ) , . . ., z(r))=2(z(i) , .. ., z(r)) of the defi-
nition (3.2) with M and A the module D(T®^L/K) and the derivation AJT/K)
respectively.

Suppose that A and B are regular local rings which contain a characteristic zero
field k and which have maximal ideals generated by systems of parameters (^5 . . ., x^)
and (j^, . . .,j^J respectively. If ^=A/(^, . . ., ^)==B/(j^ . . .,j/J and if D^A/^)
and D^B/^) are finitely generated, then the Lie algebra of A is generated by the
commuting partial derivatives ^/^ and Theorem (2.24) shows that the jet space using
the Lie algebra of A is the schema of a polynomial ring in elements z ' y where i ̂ j ^ w
and cr is a sequence of nonnegative integers ((r(i), . . .5 <?(y)). Furthermore

(a/^,,=^
where <7'=(o-(i) , . . . , (j{t)+i, a{t+i), . . . , c{v)). In this case a catalogue of the
Boardman-Thom singularities and the singularities defined above is given in [2] on
page 32.

Lemma (4.2). — Suppose that S, T, A, B and k are rings so that B is an A-algebra, such
that S and T are ^-algebras and such that A is a k-algebra. Assume that L is an A-k-Lie algebra
which is a finitely generated projective A-module. IfS and T are 'L-algebras and ifK is a 'B-sub-
module ofD(Klk), then/or an 'L-algebra map (p : T—^S which is also a ^-algebra map there
exists an isomorphism 9 : S®rrD(T®^L/K) -> D(S®^L/K).
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Proof. — We shall consider first the case in which L is a free A-module. Suppose
that X : B-^T and (A : B-^S are the B-algebra structure maps for T and S, and assume
6 : L-^L(T/^) and v : L^L(S/A!) are the L-structure maps for S and T respectively.
Because y is an L-algebra map we have that for teT and feL, y(6(/))(^)=v(/)(<p(()).
Suppose Ax : D(B/A!) -> D(X/A!) for X=S,T. Then

S®TD(T®A L/K) = S®T (Homi(T®^L, T))/(^6-(K)).

Denote by or the natural S map from S®THom,r(T®AL, T) to Homg(S®AL, S).
This map is an isomorphism since L is finitely generated and free. Therefore

S®TD(T®AL/K)£Homs(S®A:L,S)/(<T(S®TAi,6-(K))).

If beB, then for feL and i®^feS®^L

0(I®T6-^BW)(I®A/)=(9-VT(^))(/)

=(9(/))(^)=v(./W)
=(v-Vs((^))(i®s./).

It follows that for each element ^6D(B/A), <r(i®T6-Ar(_y))=v-As(j»'), and therefore
(?(S®T6-Ari,(K))=v-Ag(K). Note that we have also shown that

I®AL(T/K)=A^(S/K).

We turn now to the case in which L is finitely generated and projective. Suppose
p is a prime in the ring A, suppose T-^S is an A-algebra map and assume that M is
an A-module. Then

A,®^(S®TM)£ (Ap®^S)®^^(Ap®AM).

To see this note first that Ap®A:M.^Ap®^T®,i,M. We now consider the change of
rings given by the A-map T-^Ap®^. Then \®^S is both a T-and an Ap®^T-
module. Thus (see [4], p. 116) (Ap®^ S) ®^ g,̂  (Ap®A M) = (Ap®^ S) ®y M. Therefore
Ap®A(S®TD(T®^L/K))^ (Ap®AS)®^^.(Ap®AD(T®^L/K)). If

Ap®^D(T®AL/K) ̂  D(Ap®^T®^ (Ap®^L)/K),

then Ap®^L is free and we would have that

(Ap®AS)®,D(T®^L/K)=(Ap®^S)®^^D,((A,®^T)®^(Ap®^L)/K)
^D((Ap®AS)®^(Ap®^L)/K)sD(Ap®AS®AL/K).

Further, if Ay®^D{S®^LIK)^'D{Ay®^S®^LIK), then the proof of the assertion would
follow. Thus we need only show that for a projective Lie algebra L,

A^D(T®AL/K)^D(Ap®AT®^L/K).
However

Ap®AD(T®AL/K)sA^((HomT(T®AL,T))/(Ar6-(K)))
S (Ap®AHoniT(T®AL, T))/(Ap®^6-(K)).
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But HonLr(T®^L, T) ̂  Hom^(L, T). Thus

A^HonLr(T®^L, T) ̂  A^Hom^L, T) ̂  Hom^(A^L, A^®/T)

because L is finitely generated projective (and hence finitely related) and A is A-flat
(see [9]). Thus A^®^HomT(T®^L,T)^Hom^^T(Ap®AT®AL.A^®^T). We shall
denote this map from Ap®^HomT(T®^L, T) to Hom^ ^(A^T®^, Ay®^T)
by ^. We give Ap®^T the structure of an (Ay ®^L)-algebra by the map i®^6 and
we can give Ap®^T a B-algebra structure by the map i®^- I11 order to complete
the proof of the lemma it will suffice to show that the image by ^ of Ay®^"^^) is
the image of (i^A^)^1^^1!')- Thus suppose &eB, assume VeL and suppose s denotes
i®^i in Ap®^T. Then

S(I®Ae-VBW)(^A/)==I®A(9-^^W)(/)=I®Ae-^(^)(/)

=i®Ae(/)(x6)==(i®^6(/))((i®^T)W).
This completes the proof.

The following is a more convenient restatement of the above using the universality
ofJ(L,B).

Theorem (4.3). — Suppose A, B and k are scalar rings such that A is a k-algebra and
such that B is an A-algebra. Suppose that L is a finitely generated projective A-k-Lie algebra.
Assume that J==J(L, B) is the jet space ofK, and suppose that K is a B-submodule o/D(B/^).
If z(i)^ .. . '̂(r) is any sequence of non-negative integers, then the 2(J, L/K; i{i), . . ., i(r))
are subschemas o/Spec(J). Further ifT is a ̂ -algebra which is also an "L-algebra by structure
maps 6 : L->L(T/A) and \ : B^T, then the jet section JQ ^ :J(L, B)—^T induces a mor-
phism J(6, X) : Spec(T) -> Spec(J) such that

S(J, L/K; z(i), .. ., z(r))x^B)T=S(T, L/K; z(i), . .., z(r)).

(Because of this the subschemas S(J, L/K; z ( i ) , . . . , z ( r ) ) will be called the generic
singularities of type z ( i ) , .. ., i(r) for L/K on B).

We shall continue by computing the codimension of the S(J, L/K; z ( i ) , . . ., z(r)) .
We shall use the concept of codimension introduced by Berthelot in [i]. Thus if
i : Y->X is an immersion of a schema Y defined in an open set U of X by an Ideal /
of ^x? Aen the immersion is said to be regular if for each xei(Y) there exists an exact

u
sequence E-^^'.^a;-^0 where E is a free finitely generated (9^ ^-module such that
the Koszul complex of E is acyclic. Then, if i is a regular immersion, the ^-Module / \ / ^
is locally free of finite type. The rank of / \ / ^ is called the codimension of Y in X.
The Module ̂ //2 will be denoted by ^x/y.

Definition (4.4). — Assume A and B are A-algebras, suppose L is an A-A-Lie
algebra and assume B is an A-algebra. If K is a B-submodule of D(B/^), we shall
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denote by S(J(L, B)/K; z( i ) , . . ., i{s)) the subschema S(J(L, B), L/K; i{i), . . ., i{s)) of
Spec(J(B,B)).

Theorem (4.5). — Assume that A andB are k-algebras such that \ : A->B is a k-algebra
map. Assume that k is afield. Suppose that D(B/A) is a finitely generated projective 'K-module.
Suppose that/or each prime p in Spec(B) the following conditions are satisfied:

(i) There is a finitely generated k-algebra C(p) such that L(A/A) is generated by the
sub algebra G(p).

(ii) D(Bp/A) is a free By-module with a basis ^i(p), ...,^(p) with dual basis
8,(p)eHom^(D(B,/A),B,).

(iii) L(B,/^B,L(A/A)®L(B,/A).
(iv) G(p).i,=o.

Suppose that L is an A-k-Lie algebra such that Ap^®^L==Ap^®^D(p), where D(p)
is a free k-Lie algebra with a map 6 : D(p) ->C(p). Suppose that K is a B-submodule ofD(Blk)
such that for each peSpec(B/A), Bp®gK is freely generated by db^p), ...^^(p), t<r.
Then the map i : S(J(L, B)/K; i{i), . . ., i{s)) -^ Spec(J(L, B)) is a regular immersion.
Further, ifB is an integral domain, then the S(J(L, B)/K; z(i), . . ., i{s)) are irreducible reduced
subschemas of Spec(J(L, B)).

Proof. — Suppose that ^3 is a prime of Spec(J(L, B)) which is in

S(J (L ,B) /K;z( i ) , . . . , z ( . ) ) .

Set p==^pnB. Then if we set S=B~p we have that

B,®^J(L,B)=J(L,B)sCj(L,B)<p.

Further J(L, B)<p==(Bp®Bj(L, B))rr for a multiplicatively closed set T in B^JfL, B).
Thus we may suppose that B is a local ring. Set p '=Anp. Then

J(L, B)==J(L, B)^_p, =Ap,®^J(L, B)=J(A,,®^L, B).

Thus we may suppose that both A and B are local such that the map X : A—^B is a
local map (for this terminology see [9]). It follows from the hypotheses that

J(L,B)^SB[E(L)®BD(B/A)],

and that the symmetric algebra is a polynomial ring over B which has as independent
generators a A-basis for E(D(p))®^F, where F denotes the A-submodule of D(Bp/A)
generated by the elements ^(p). Thus we may suppose that ^ is a prime dominating
the maximal ideal of B in the polynomial ring SB[E(L)®jgD(B/A)].

The Poincar^-Birkhoff-Witt theorem (see [n]) shows that we may choose as a
A-basis for E(D(p)) the monomials ^a( l )... d^ where d^ ...,^ is a basis for D(p).
We shall say that the monomial ^a(l). . . d^ has filtration degree a(i)+ • . • +a(^).
The algebra J(L, B) is therefore a polynomial ring in indeterminates Z(a, t) where
a===(a( i ) , . . .3 a(z/)) is a sequence of non-negative integers and i^^- Further
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^a(l).. . d^^d^ . . . ̂ a (^ )+ l . .. d^+Q, where 6 is a linear combination of mon-
omials of degree at most [ a | = a(i) + . . . + a(z/). Thus we have that

^Z(oc, y)=Z(a(i) , . . ., a(z)+i, a(z+i), . . ., a(^), v)+@

where © is a linear combination of Z(|B, ^) such that S (3(j)^Sa(j). Now suppose P'
J 3

is a polynomial in B[Z(oc,j)] such that Z((B, ^) does not occur in P' and such that [ (3 |
is the highest filtration degree which occurs in P. If ^(1). .. d^ is a standard mon-
omial of E(D/p), and if y(0 = a(i) + (B(z), then Z(y, ^) does not occur in ^a(l) . .. d^ P'.
To see this, note first that [ y | is the highest filtration degree which can occur in
^a( l )... d^ P'. If Z((p,z/) occurs in P, then ^a(l). . . ̂ Z^, y)=Z(a+y, y)+6
where (a4-(p)(^)==a(z)+(p(?) and © is a polynomial ofB[Z(y,j)] in which the largest
filtration degree occurring is | a + 9 [ — i •

In what follows, we shall say that a collection of elements ^(j)eJ(L,BL are
admissible of type s if they satisfy the following conditions:

P'
(1) W)=~^ where P', QeB[Z(a, v)] and the highest filtration degree occurring

in either P' or Q^is s,
(ii) ^(j)==SA(j, w)Z(a(w), v(^))+©(j) where |a(w)|==j1 , i^j, w^ (some

integer).
(iii) det(A(j, w)) is a unit in J(L, B)^p.

(iv) A(^, ̂ ==^^, 0(J)===t^ where vuy w^ v^9 ̂ 9 R^ and s^') are

polynomials in J(L, B), and there is no occurrence of Z(oc(w), v(w)) in V{j\ z), V(j, ^),
R(j) or S(j) for all w, j and 2'.

Set S^ (j) = Kronecker delta. If ^(j), i<j<^ are admissible of type j, then the
elements d^{j)=^{j) are admissible of type s+i. Thus

^(j)=SAO,^)(Z(a(^)+8.,v(^))+0(^))+S^AO>)+^
w w

=SA(j, w)Z(a(w)+8<,v(w))+©'(j).
W

Further there is no occurrence of Z(a(w)+o^, v(w)) in A(j, w) or ©'(j), because there
is no occurrence ofZ(a(w), v(w)) in UO', 2'), V(j, 2:), RO') or S(j).

We shall prove the assertion by using an induction on the integer s of
S(J(L, B)/K; z( i ) , .. ., z(^)). We claim that for each ^o, there exists a ring B(^), an
ideal S^) and a collection of elements ^(j), i^J^^M, which are admissible of type s+1
such that:

(i) BMcJ(L,B)<p and ^(j)eJ(L, B).p.
(ii) B(j)[^(j), Z(a,v) : a(i)+...+a(^)>j+i]=J, is a polynomial ring in the

independent indeterminates ^(j), Z(a,v).

^
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(iii) J(L, B)(p is a localization ofjg.
(iv) There exists a module M(^) over Jg and an exact sequence

o-^R(j)->J,®jHomj(J®ALJ)^M(J)-^o

where R(^) is given by a matrix ^(^) satisfying the following conditions:

a) N (J") has T rows with entries which are either o, i or one of the S(j).
b) There are i{s-\-i) columns of N{s) which consist of entries which are distinct

WYS-c ) The remaining u — i{s +1) columns consist ofo' s and i / s with only one non-zero
entry in each column, and such that the columns are linearly independent.

(v) J(L,B)^®^——.(x)^MM=D(J^L/K)(t( i ) , . . . ,zM) and

(3(z(i), ..., ̂ -i), W .))J(L, B)^3(^), ..., ̂ +i)).

Furthermore, the ideal Q{s) is generated by algebraically independent indeterminates
ofjg. Finally if ^(j)eS(^) and ^(j) has type <_s—i, then d^{j)eQ{s) for each j.

Suppose h : D(B/^)—>-D(J/^) is the map induced by the B-algebra structure on J.
Because the Lie algebra L has an A-basis which consists of the elements d^ . .., d^y
the J-module Homrr(J®^L,J) has a basis consisting of the elements d^, .. ., d^ dual
to the d,. The submodule K of D(B/A) is generated by ^i(p), ...,^(p). Further

e-A(^^p))w=ew^(p)+p.(p)(l^z(8,,^
=Z(S,j)+6(^,(p).

Therefore D(J®^L/K) has the form Homj(J®^L,J)/R where R is spanned by the

elements S (Z(8^)+6(^p))C i ̂ ^^. Set ^J)=Z(8,,j)+6W6,(p). The
V == 1

^(y,j) are admissible indeterminates of type i. Because ^eS(J(L, B)/K; i(i), . .., ^(j')),
f^(D(J®^L/K))cj:^p, thus one of the {u—i{i))x{u—i{i)) subdeterminants of the
matrix of ^{v,j) (the presentation of R) is a unit in J(L, B)(p. We may without loss
of generality assume that ^ =det(^(y,^*)) is a unit for ^-^Vyj^u—i[i). Denote by
X(a(o), . . ., a (z /—i( i ) ) ) the determinant of the oc(o) to oc (^—z( i ) ) columns of the
{u—i{i))xu matrix with y-th row vectors (^{y, i), . .., ̂ {y, u)). Set G==Homj(J®^L,J).

u

The submodule of JK'^^jG generated by the elements K(^*)= S ̂ {v,j)d^ is the
v=l

same as the submodule generated by the elements

K'U)= S (X(i .. . 0-~i) .(j+i). .. {t-i{iWl^d: i^^-i(i)
v=l

(see [10] for example). Set u'==u—i{i). Then

X(i ... 0--i),(j+i) ... ̂ )=±det(?:(z, 0)

^42
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where i^Ku' and le{i, .. ., (j '—i), v, (j+i), . .., u'}, thus
M'

(*) X(I...(J-I)<;+I)...M')=± S A(wJ)!:(w,»)
W == 1

where A(^j) is the cofactor of ^(w,j) in ^. Because Us a unit in J(L, B)<p, the matrix
formed of the A(w,j) also has a determinant which is a unit in J(L, B)^. Set

z { j , v )=X { i . . . (j-i),(j+i)... u')!^
where s-^-i^v^u. The elements z[j\ v) are rational functions with denominator ^ and
numerator of the form (*). Thus z{j, z/)==SA(j, v; [L, w)(Z(S^, ^)+6(4)&w(P))? and

w

A(j, y; (Ji, w) and S are polynomials in which Z(S^, w) does not occur when u'<_^<u and
l<_j<t. Furthermore, because for a fixed v the matrix of the A(^,j) has a determinant
which is a unit in J(L, B) ̂ , it follows that the z{j, v) are admissible of type i. The module
D(J®^L/K) [S-1] overJ(L, B) R-1] has the form F/T where F is free on a basis d[, . . ., ̂
and T is spanned by the elements K'(^'), 1^7^^', and the elements ic(j), ^'+i:<j^
(or the images of these elements in JK'^jHom^J^L.J)). Note that

K'(J)=^+ S Aj\v}d:.
v —u' +1

Thus D^AL/K^-^F'/T where F' is free on <*+i, ...,^* and T' is generated
U

by the elements S ^(j, y)^, ^<J<u', and the elements
v =u' +1-

2; (^,j)-S ^,j)^,^))</; for u'<j<t.
v==u +1 w=l — —

Set ^{jv)==^(v,j)— S ^(w,j)^(^y). It is clear that the full collection of ^(j^), i<J<^
w == 1

^+i ̂ v^u is an admissible collection of elements of type i. We let B(i) ' denote the
sub-B-module ofJ(L,B) generated by the Z(8^ w) which occur in the polynomial ^.
Set B(i)=B(i)'[r1] and set

J,=B(i)[Z(a,v) : (a,v)+(8^^),i^^']
=B(i)[^v),Z(a,v) : | a [ ̂ 2].

Set M(o)=D(J®^L/K)[^~1]. Thus we have an exact sequence

o->R(o)->F'->M(o)->o

where R(o) ==T, and thus T' is presented by a t X i{ i) matrix with entries z{jv). Finally
®(o)=f.(i)-i(M(o))=Wv)).

We now suppose that we have constructed M{s), B(^), Q(s) and thus Jg. By
assumption

3(i^\B)^.)) ®JJM(') = "(J®^1-^) (^( I)' • • •' ̂ ))^
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Further

3(z(i). ..., ̂ +i))- (3(i(i),.. >, ̂ )), f^-i. L.̂  B^ ®^M(.))V
\ \v) ̂  \1 y ? • • • 5 H0; y / /

We may suppose without loss of generality that the matrix which represents the kernel
il X\

of the map from Jg®jHom(J(x)^L,J) to M(j-) is of the form j j where I is an

( X\
(u — i {s +1)) X (u — i {s +1)) identity matrix and the matrix ) is a T X i {s +1) matrix

consisting of independent admissible elements of type s +1. Denote the algebraically
independent entries of N{s) (i.e. the entries in X and Y) by z(yw)

i ̂ V^T, u — i{s +1) +1 ̂ w^u.

Set u' ==u—i[s-}-i), The entries z(yw) are admissible of type s-{-i and thus the d^z{yw)
are admissible of type s-{-2.

IX\
Because the matrix j ) is rXz'^+i)? it follows that 3(^( I)5 • • • 5 ^ ( • $ > + I ) ) 1s

generated by 3(^( I)3 • • "> ^M) and ihe elements z(vw).
The module D*=D(J®^L/K)(i(i), .. ., z ( j -+ i ) )<p is then determined by an

exact sequence

o^R.^^^^^^'^^^Hom.U^L.J)^-^

where R'(j+i) is presented (as an J(L, B)(p/3(^'(i), . . . , z(J+i))-module) by the

matrix of R(J) and the image in l ? .^——-®jHomj(J®^L,J) of the
M • O ^ l 1 ) ? ' - ' ? 2 ^ " ) " 1 ) }

elements S d^z{jw}d^ for allj and w, and the images of the elements A-2; for z running
v==l

over a set of generators for 3( ^( I)5 • • - 5 ^+1))- However, if a 2 ' o f3 ( ^ ( I ) ^ • • - 3 ^'M)
is written in the form S^.(^)^*, then we know that d^ze^^i^i), . . ., z(^+i)) . Thus

a presentation for R'^+i) is given by the matrix of R(J) to which we adjoin the
rows {d-^z(jw), . . ., d^z{jw)). Furthermore, the construction of

Jp.SM-3^1), ...,^+i))
shows that the elements z{jw) are in the ideal J(pS(^). Therefore

^_ J(L,B).p ^ M(.)
3(?(i), ...,^+i)) J\^d,z{jw)d;)'

V

Because ^eS(z(i), . . . , ^+2)), it follows that ^^^(D*) 4=^. However

3(^(i),...,^+i))c^
243
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thus the matrix with rows {d^z{jw) ... d^z{jw)) must contain a (u—i[s-\-2)) X {u—i{s-{-2})
subdeterminant which is a unit inJ(B, L)<p. We may now proceed precisely as we did
in the case s=o, to construct the B^+i), M(^+i)» Js+i5 S(^+1)- I11 particular
B(^ +1) will have the form B(J) [^'(w)] [ '̂-1] for some admissible elements z ' in J(JL, B)<p.
The ideal (5(j+i) will be generated by admissible elements in B(.y+i)[Z(p,7*), ^(y)L
where the ^(y) are admissible elements chosen in the constructions of the rings Jy,,
w^s. Each of the ideals (3(v) has an acyclic Koszul complex over J ^ . Therefore,
Jv+i(®v) ^as an a-cyclic Koszul complex. Furthermore, the ideal S^+i ls generated by
admissible elements which have type v+2, andJ^i((5J is generated by elements of
type at most v+ i - I11 particular Jv+i/Jv+^Sy) is a polynomial ring in a set of inde-
terminates among which the generators for (Jv+i(SJ, ©v+iVJv+i^v) occur. Thus the
Koszul complex of CL+i(©v), ®v+i)/J^+i(®v) is acyclic. However, the property of being
a regular immersion is transitive (see [i]) thus the Koszul complex of (Jv+iCSJ? ®v+i)
is acyclic, and hence the Koszul complex of (Jv+i(Si), .. ̂ Jv+i^)? ©v+i) ls acyclic.
Since J(L, B)<p is a localization ofj^i, we can conclude that 3(^( I)5 - • • ? ^M) has an
acyclic Koszul complex. This completes the proof.
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