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MANIFOLDS WHICH ADMIT R" ACTIONS
by G. GHATELET and H. ROSENBERG

INTRODUCTION

The purpose of this paper is to determine which TZ-manifolds admit smooth locally
free actions of R""1. We shall restrict ourselves to compact connected orientable
manifolds V" and locally free actions 9 ofR71"1 on V71 which are of class G2 and tangent
to ^V", i.e. the components of W71 are orbits of 9. For n === 3, we know that V3 admits
such an R2 action if and only if V^T^I or V3 is a bundle over S1 with fibre T2 [7].
Moreover, the topological type of such R2 actions has been completely determined [8].
We recall that the rank of V" is the largest integer k such that V71 admits a smooth
locally free action of R^.

Now suppose that 9 is a locally free action ofR71"1 on V71. We shall prove:

Theorem 1. — If 8V is not empty, then V is homeomorphic to T71"1 X I (here T denotes
the torus of dimension z).

Theorem 2. — If W71 is empty and 9 has at least one compact orbit, then V71 is a bundle
over S1 with fibre T71-1.

Theorem 3. — IfSV"' is empty and 9 has no compact orbits then V" is a bundle over a torus T^
with fibre a torus Tp-^.

Theorem 2 follows directly from Theorem i by cutting V71 along a compact orbit.
Theorem 3 depends upon an observation of Novikov [4], and independently Joubert:
suppose 9 acts on \rn with no compact orbits. By Sacksteder [9], all the orbits of 9 are
•pn-fc^^fc-i ^ gome k. Choose linearly independent vector fields X^, . . . ,X^_ i
tangent to the orbits of 9 such that all the integral curves ofX^, . . ., X^_^ are periodic,
of period one. Then X^, . . ., X^_^ define a locally free action of ITn~k on V71 and the
orbit space M is a smooth manifold of dimension k. Also M admits an action ofR^"1

with all the orbits R^"1. It follows that M is homeomorphic to T ,̂ which proves
Theorem 3 ([5] and [3]). Consequently, our main result is Theorem i. Here is how
we proceed to prove Theorem i: by inductive arguments similar to those used in [7],
we restrict ourselves to actions 9 with no compact orbits in the interior of V". We then
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246 G . C H A T E L E T A N D H . R O S E N B E R G

remark that the foliation defined by the orbits of 9 is almost without holonomy, i.e. the
noncompact leaves have no holonomy. With this, we construct collar neighborhoods U,
of each component T, of^V, such that aU^T.uT^ with T,' transverse to the foliation.
We construct U, so that some linear field Y (tangent to the orbits of <p) is transverse
to each T,'. We then prove the integral curves of Y go from T^ to T. hence define a
homeomorphism of V71 to ^n~lxI.

i. Some Preliminaries.

( 1 . 1 ) Let yhe the filiation ofV defined by the orbits of 9. Then each noncompact leaf
of y has zero holonomy.

Proof. — If T is a compact leaf of ^r, then the germ of ^ in a neighborhood of T
is without holonomy outside ofT, provided T is an isolated compact leaf (page 13 of [8]).
This is ako true if T is an isolated compact leaf on one side in V and one considers the
germ of ^ on this side. Now if 9 has no compact orbits then ^ is without holonomy
and we are done [9]. So suppose F is a noncompact leaf of y and y has compact
leaves. Since ^ has no exceptional minimal sets [9], there is a compact leaf T of ^
such that T is in the closure of F. Let A: be a point of F and cx.{x) a non zero element
of 7Ti(F, x). Let X be a vector field on V such that the integral curve of X through x
is closed and homotopic to a(A:), and all the integral curves o f X o n F are closed. X is
easily constructed using the action 9 (cf. [6]). Since T is in the closure ofF, we know
the integral curves of X on T are also closed. Now T is an isolated compact leaf at
least on one side in V, the side where F intersects a transverse arc infinitely often. Let U
be a neighborhood of T, on this side, such that all the leaves of ^ in U, except T, have
zero holonomy. Then U contains closed integral curves of X which are on F, so such
an integral curve G has zero holonomy. Since G is conjugate to a(;v), it follows that
QL{x) has zero holonomy $ thus F as well.

(1 .2 ) Suppose (N is not empty and 9 has no compact orbits in the interior of V. Let T
be a compact orbit of 9; T c ̂ V. The leaves which contain T in their closure are homeomorphic
to ^k^'s^n-k-l where k==the rank of the kernel of the holonomy map on T.

Proof. — Let F be an open leaf whose closure contains T; F^'P'xR^"1. Suppose
7} is the kernel of the holonomy homomorphism on T. Let T^ be a A-torus embedded
in T which lifts onto nearby leaves by the holonomy. Since FDT, we can lift T^ to
a A-torus T^ in F. Also ^ : TT^T) -> ̂ (V) is injective, where i : T<-^V (cf. [4]),
hence ^i(T^) embeds in ^(F) and k<_j.

Next we show j<_k. Let xeV and ae^(F, x), a+o. Let X be a vector field
tangent to the orbits of 9, such that the integral curves of X on F are closed and the
integral curve ofX through x is homotopic to a. Since FDT, all the integral curves

246



MANIFOLDS WHICH ADMIT R" ACTIONS 247

of X on T are closed. Let C be an integral curve of X on T. We know that G lifts
to a closed curve on F, so by (i. i), the holonomy of G is trivial; i.e. G is in the kernel
of the holonomy homomorphism. Hence j^k.

2. The transverse torus and vector field.

Throughout this section, we suppose <p acts on V so that there are no compact
orbits in the interior of V and T is a compact orbit in 8V. Let k denote the rank of
the kernel of the holonomy map associated to T; k varies between o and n—2. Let
YI, . . ., y^-i ^e linearly independent commuting vector fields on V satisfying:

(i) they are tangent to the cp-orbits;
(ii) their integral curves are closed and of period one on T; and
(iii) the integral curves ofY^, .. ., Y^ represent the kernel of the holonomy map

on T.

We shall construct an {n—i)-torus T'clntV such that TuT' bound a trivial
cobordism in V, and Y^-i ls transverse to T' at each point.

By ( i . i), we know the orbits of Y^+i, .. ., V^-i on T mduce germs in Diffc^R4')
which are contractions or expansions, via the holonomy. Here Diffo(R4') is the set of
G^germs of diffeomorphisms of 'R.+ to itself, which leave o fixed. After reversing the
sign ofY, if necessary, we shall assume the germs are all contractions, for k-}-i<_j<_n—-1.

Choose a metric on V and let Ug be a geodesic collar neighborhood of T isometric
to Tn~lx[p, s], with the obvious product metric. Clearly, if e is small enough, the
geodesies normal to T in Ug will be transverse to the orbits of 9. Let^/p1 be the holonomy
diffeomorphism associated to the Y^ orbit through x; f^ is the identity for i^i^k and
a contraction for k<i<n.

Proposition (2.1). — There is an [n—i)-torus T' contained in Ug such that V^-i u

transverse to T' and TuT' bound a trivial cobordism.
In an earlier version of this paper we gave a proof of (2.1) which used calculus.

Charles Pugh pointed out to us how one can use a theorem of W. Wilson on the existence
of Liapounov functions for uniform stable attractors of vector fields [13]. We present
this proof here and in an appendix we give our original proof.

We need some definitions before stating Wilson's theorem. Let X be a vector
field on V and let A be a closed invariant subset of V (here V is a compact manifold).
A is called a uniform stable attractor of X if the following conditions are satisfied:

a) there exists an increasing function 8 sending R4' into itself such that

rf(X(A ^), A)<s

whenever ^,A)<8(£) and ^>o ;
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b) there exists a neighborhood U o f A such that co(^)cA whenever peU (o)Q&)
is the co-limit set of^)$

^ let D(A) be the set ofp such that <o(^)cA; D(A) is an open set, called the
basin of attraction of A.

Wilson has proved [13] that if A is a uniform stable attractor for X then there
exists a G°° Liapounov function, i.e.

a) there is a C00 function /:D(A)->R+ with /-l(o)=A; and
b) X(/)(^)<o whenever /(^)=t=o.

Hence / has no singularities outside A and all the level surfaces of/ are diffeo-
morphic. Before proving (2.1) we need three lemmas.

Lemma (2.2). (Action box lemma.)

There exists a unique mapping

FrJ^xlo.^U.cV

(where J==[—i, 2]) satisfying the following conditions:

a) F is a ff-immersion^
b) F sends the horizontal plaques Jn~lx{z} into the leaves ofy\
c) F sends vertical arcs {A}x[o, e] onto the geodesic arcs normal to T;
d) F', when restricted to .P^X^}, is the restriction of the natural covering map: R""1-^

induced by 9, which sends the i-direction line onto the Y, circular orbit \
e) let XQ^T; then F sends {o}x [o, s] isometrically onto the geodesic arcs issued from Xo,

normal to T and pointing inside T.

Proof. — Define first F via e) and d). F obviously extends to Jn~lX [o, s] using b)
and c).

a) is clear, for geodesic arcs are normal to y in Ug. Note that each Y^ orbit on T
is covered three times by F.

Lemma (2.3). (Commuting contraction lemma.)

Iff^ andf^ are commuting embeddings [o, s]->[o, oo[ andf^ is a contraction towards o,
then there exists a K so large that f^f^ is a contraction to o.

Proof. —j^ commuting with/j^, f^f^ is an embedding without fixed point or
is the identity (N. KoppePs Thesis). For sufficiently large A, f^f^ is not the identity.
Hence f^f^ is a contraction or an expansion. For fif^[o, e] ==f^fi[p, s], and K may be

chosen so large that J^/iE0) s] C o, £- . f^ is therefore a contraction.
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MANIFOLDS WHICH ADMIT W1 ACTIONS 249

3, Attraction Lemma.

There exists s and S>o such that whenever X is a G1 vector field on R"""1 and |X|co<8,

( ^ \
then Y==<D» ———+X) generates a flow having T as a uniform and stable attractor^ Ug being

^n-l /

in the basin of attraction of T.
— Look at the application F of Lemma (2.2) (action box lemma). If

Y==<lJ—-+x),
V^n-l /

F*Y is a G1 vector field defined on Jn~lx[p, s] (F is a G^immersion); F*Y has no
a

vertical component and may be chosen arbitrarily close to ——— for a suitable choice of S.
^n-l

Let I==[o, i], AQ==ln~2x{o}x[o, s], Al==In~2x{I}x[o, s] and xe\. I being
interior to J, choose 8 such that the positive orbit of F*Y through x crosses A^ before
reaching the boundary of ^"^[o, e]. Let x be the point of intersection of \ with
the orbit. Via F, x is identified with a point X^AQ and hence may be written in the
form (Xi, . . ., X^_i , o, ^) where

^=/KK^+^•••o/KK^+/o•••o/n-l^) ^ ^=(X,,...,X,_^0^).

Recall that for I^J^^—K+I, /g+j are t^ contracting holonomy diffeomorphisms
associated to the circular Y^+j orbits.

Using the contraction commuting lemma, we choose N such that

./K+l° • • • °fn-2°fn-l

is a contraction. For s and 8 small, we may build a sequence (^, x, ̂ , . . ., ̂ -i? ^N-I? ^N)
where the F*Y orbit through x^ crosses A^ at ^ and ^ being identified via F with x^^
in AQ. So if x=={\, . . ., X^_i, o, 2'), then x^==(\[\ .. ., X^_i, o, h{z)) where

A^^n/^o/^,^).
Thus we have shown that the vertical coordinate of any Y-orbit tends to o in a manner
dominated by a fixed contraction f^~^o.. .0/^1) as we proceed along the orbit in forward
times, i.e. T is a uniformly stable attractor.

Let us prove now Proposition (2.1).

— The choice of the YJs on T allow us to write T as a trivial fibration SxS^
where S is a manifold diffeomorphic to T^'^nd transversal to the circular orbits ofY^_^
which are the fibers of that fibration. Over these circles, consider the normal geodesic
fibers ofUg. This gives a two dimensional foliation of Ug by cylinders. Gall it ^$
^ is clearly transversal to e .̂
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Let Y^_i==X+Y where Y is tangent to e^n^ and orthogonal to X; clearly
Y'n-iW—YM ==X(^) tends to o when 6f(^, T) tends to o. Due to the attraction lemma,
Y admits T as a uniform stable attractor. Let V^ = Ug, V^== V^ and let (3 be a bump

3 3"
function such that (B==i on V^ and (B=o outside Vg. Let Z==(BY+(i—(B)Y^_i.
It is easy to check that Z admits T as a uniform stable attractor and hence there exists a

2s
Liapounovfonction/forZ. For £>£o>—, Z=Y^_^ and/"^So) is transversal to Y^_i.

£

For ->£i>o, /^(si) is transverse to Y;/"1^) is diffeomorphic to/"1^). It remains
o

to prove/"^i) is a (%—i)-dimensional torus for/"1^) will be then a torus satisfying
conditions of (2.1).

Y being transverse to/"1^),/"1^) is transverse to ^. Let ̂  be the leaf of ^
through x; j^n/'"1^) is a compact one-dimensional manifold and hence diffeomorphic
to a circle. Writing T=2xSi and x={\,s) here Xe2 and seS^y one produces a
family of embeddings of S^, (^)^gs such that ^(S^^n/-1^). We define now
an application TT : SxS^ -^/-l(£l) by 7c(X, ^)=7r^(J) which is clearly an embedding.
Proposition (2.1) is thereby proved for S is diffeomorphic to T71"2.

Proof of Theorem 1. — We now assume 8V is not empty and 9 has no compact
orbits in the interior ofV. Let T, T', and Yi, . . ., Y^ be as in section 2; so that Y^_^ is
transverse to T' and pointing into V along T', i.e. Y^-i points out of the tubular neigh-
borhood of T. Let F be an orbit of 9 which intersects T' and let L be a connected
component of FnT'.

Lemma (3.1).- ^Y,_^,L)=F.

Proof. — We know F is diffeomorphic to T^xR"'"^""1 (in the leaf topology) and
we have a covering map n : R"""1-^ induced by 9. Since Y^, . .., V^-i define the

a
action 9, we can take ^(Y^i) = - — — where (^, . . ., ^_i) denote the usual coordinates

^n-l

in R""1. Let X denote ,——, and let W be a connected component of TT'^L). It
^n-l

suffices to prove that each orbit of X starting at a point of the hyperplane x^_^==o,
intersects W, since this implies UX(^, W)==Rn~ l.

Now W is a closed submanifold ofR^^ of codimension one, and X is transverse
to W, and makes an angle with W that is strictly bounded away from zero, since Y^-i
is transverse to T'. Clearly, the set of points of the hyperplane ^_i = o, whose X orbits
intersect W, is an open non empty set 0.. It suffices to show Q is closed. Let zeO.,
and ^e0, satisfying: lim ^==2' and for each n, there exists ^eR, such that X(^,^)eW.

If some subsequence of (Q converges to a number t then we have X(^, -2:)eW; hence
we can suppose no subsequence converges. Let (^) be a subsequence of (Q such
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MANIFOLDS WHICH ADMIT R^ ACTIONS 251

that |^—^+i|^i and | ^ n — ^ n + i l ^ - • Let E(%) denote the line segment joining ^
72

to ^i and consider (E(^)xR) nW. This is a curve in W with endpoints X(S^, z^)
and X(S^i, ^n+i)- There exists a point U^ on this curve where the tangent to the
curve is parallel to the cord joining the endpoints. The angle this cord makes with X
tends to zero as n->co, which contradicts the fact that the angle between X and W is
strictly positive.

Lemma (3.2). — Let F, W, L, T and T' be as in (3.1). Then there exists a compact
orbit TI 0/9 such that FDT^ and T^+T.

Proof. — Let WQ==W and W^=-=X(^,Wo) for each positive integer n. By an
argument analogous to that of (3.1), one sees that the distances ^(W^.W^J tend to
infinity as s—>co. Let L()==L and L =Y ^(%, L()), so that lim ^(L/,, L , , , )=oo ,

S —> 00

where the metric is that induced by n. We define Q = D E^, where E^ is the connected
n

component of F—Ly^ towards which Y^_i points on Ly^. Q. is an intersection of a nested
family of compact sets, hence £1 is not empty and compact. We claim 0. is invariant
under the 9 action: clearly n=={j^eV[ there exists x^eE^ and x^->y}. Let F(j^) be the
orbit of 9 by y^Q and let _/eF(^). Let [jsj'] denote a path in F(j^) joining^ to y
and let [^, x^] be the holonomy lifting of this path to the leaf of x^. By construction
we have d{x^y x^) bounded above by some number /', independent of n. Since

^(Ln,L^)-^00

as s->co, we can choose a subsequence of %), call it (j^J, such that j^eE^. Thus
y^O and ^ is invariant. Thus Q contains a 9-minimal set, which must be a compact
orbit by Sacksteder's theorem. Since V^-i pomts away from T, this compact leaf
T^cfi, is different from T.

(3.3) Let Vn be of rank n—i and let 9 be an action qfK1"1 on V such that the only
compact orbits of 9 are in 8V and 8V is not empty. Then V is homeomorphic to ^"^xL

Proof. — We use the notation of (3.1) and (3.2). From these lemmas, it
follows that the open leaves having T int heir closure are homeomorphic to the open leaves
having T^ in their closure, i.e. to ^kx1Sn~k~l, where k is the rank of the kernel of the
holonomy map of T. Now since all the integral curves of Y^, . . ., Y ;̂ are closed in F,
and FDT^, we know they are also closed in T^; hence the A-tori in T^ spanned by
the orbits of Y^, . . ., Y ;̂ represents the kernel of the holonomy map of T^. Now the
orbits ofY^+i, . . ., Y^_i are not necessarily closed but we can choose vector fields (from
lines through the origin in R^1) Vjc+D ' ' • ? ^n-i? ̂ ^ lhat Y^, . . ., Y^;, Y^i, . . ., V^-i
are linearly independent, commute, are tangent to the 9 orbits, and all the integral
curves of Y^i, . . .3 V^-i m ̂ i are closed. Clearly this can be done so that Y^-i ls
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252 G . C H A T E L E T A N D H . R O S E N B E R G

G°-close to Y^_i. We choose V^-i so ̂ ^ Aat V^-i ls a^so transverse to T'. Now
we go through the construction of a torus T[, bounding a collar neighborhood with T^,
such that y^-ils transverse to T[; this is (2. i). Letting Y denote Y^_^, we now have
a linear vector field Y transverse to both tori T' and T[. We know the set of points A
in T' whose Y-integral curve intersects T[ is an open non empty set. By the same
reasoning, the complement of A in T' is open; hence A==T'. Now using the integral
curves ofY, it is easy to construct a homeomorphism between V and ^n~lxI.

Proof of Theorem 1. — The proof follows from (3.3)3 and a reasoning identical to
that on page 462 of [7].

Remarks 1. — A basic question remains unanswered: suppose <p is a locally free
action of R"""1 on a closed manifold V", with no compact orbits. Then we know V^ fibres
over a torus with fibre a torus, hence V^ fibres over S1 with fibre F (this also follows
from [10]). Is F homeomorphic to Tp"1?

2. Suppose V^ is a closed, orientable, bundle over S1 with fibre M. Then there
exists a diffeomorphism f : M—^M such that V is obtained from MX I by identifying
points (/M, i) with {x, o) for xeM. We claim that if /* : H^M, R) -> H^M, R)
does not have one as an eigenvalue, then every locally free action ofR^"1 on V has a
compact orbit. To see this, first observe that f* does not have i as an eigenvalue if
and only if rank H^V, R) == i [i i]. Now suppose SF is any foliation ofV of codimension
one, class G2 and with no compact leaves. By [12], we can suppose L is a covering
space of M for L a leaf of <^. We have an exact sequence of free abelian groups:

0 -^(F) /7T,(L) ->^(V) /7T,(L) ->^ ->0.

Since H^V.R^R, the last two groups are of rank one. Hence n^(L)=n^'F)
and L must be compact.

APPENDIX

Proof of (2.1)

Notation. — If X is a vector field on V, t\->'X.{t, x) will denote the integral curve
of X passing through x at t==o. For AcV, X(^, A)=={X(^, x) \xeA}, and

X(^&],A)=^X^A).

If A:eT, we define a^)=Y,([o, i], x) for z=i , . . . , ^ — i , and T^x) is the
z-torus in T which is the orbit through x of the Reaction determined by Y^, . . . , Y^.
If x is on the normal arc through xeT and if the holonomy germs are defined on x,
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MANIFOLDS WHICH ADMIT R" ACTIONS 253

then we denote by T^(^) the lifting of Tjc{x) into the leaf of ~x^ given by the holonomy.
Let N be a unit vector field on V, normal to the orbits of <p and pointing into V

along T (with respect to some metric on V). Let U==N(I, T) where I=[o, i]. We
may suppose U is a tubular neighborhood of T in which the holonomy liftings of
a^A:), ..., v-n-iW are defined, for xeT. Let f^ be the holonomy diffeomorphism of
^iM; i<z<_n—k—i.

Let TT : U->T be the projection along N orbits. If xeT and xen'1^), let
a^(^) denote the holonomy lifting ofa^) starting at x; for i^i^k, ^{x) is an embedded
circle, and for i>k, oi^x) is diffeomorphic to I. For xeT and for all xen'1^), the
a^(^) form a one dimensional foliation of U. Let G( be a vector field in U, tangent to
this foliation, and coinciding with Y( on T.

We fix a base point A^eT and we let 0^=0^0), T^=T^), etc., and define
A,=N(I,TJ.

Let E^(A.) be the vector bundle of exterior products of order t of vectors tangent

to A.. We identify E^(A-) with A^xAR-^; so sections of E^(Aj) are functions from A .̂
t

to AR9. We give these sections the canonical norm.
Let / be a function defined in a neighborhood of o such that lim/(A:) = o. We

write f==^{x) if
a;->0"

f{x)==ax+x^(x),

with ^4=0 and S[x)->o when x->o. Finally, we let (B^==Y^A . . . AY^_i.

Proposition (2 .1) . — For each j , i^J^^—k—i, there is a family of tori G(A+j),
satisfying:

c^) there is a neighborhood Uj of Tj^^j and the G{k+jYs are a foliation of Uy by tori
of dimension k +j;

c^) there is a section g^^^ of E .̂(A )̂ such that gjc+j{x) represents the tangent space
at x to G{k+j){x) and

(&+,AP^,)^+0

for all peV^T^
c^) on T, G^,(A;)==T^,.

Remark. — In particular c^) implies

gn-l^n-l^0 m U^-T.

Hence there exist {n—i)-tori, transverse to Y^_^, as close to T as we wish.

Proof of (2.1). — We proceed by induction onj; firstc c cylinders '9 are constructed
in Txl, k-\-i<_j<^n—2, and then these cylinders are closed, to give tori, by
the map F. defined by the holonomy of a,.

We start by constructing the foliation G(k+i). Let Ui^Tc^T^i), and
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let (6, z, X) be coordinates for T^xIxJ where 6 ==(6^ . . . , Qj,)eT\ and I=J=[o, i].
Let Pi iT^xIxJ-^Ui be defined by:

Fi(o,o,o)=^o
Fi(o, ^ o)=N(^o)

Fi(6, 2', X) is the endpoint of the holonomy lifting of the arc in T given by:

^,Y(X^F,(e,o,o)),

o<_t<_i, starting at F^(6, z, o)==N(^, Fi(6, 0,0)).
Here we have identified ^JC==J^k|Zk with T^ by the linear diffeomorphism

(o,. . . ,6, , . . . ,o)h>Y,(8,)(^).
By definition of F^ we have:

( ^ \
— DFi —) is colinear with G. for I^J^A,ao,/
— F^ sends the tori TA;x{2'}x{x} to the holonomy liftings of the tori T^(Fi(o, o, X))

to the point F^o, z, X),

==ck+l==yk+l on T?

— F^ send the segments {6}xlx{x} to the orbits of N starting at Fi(6, o, X),
— the segments {9}x{^}xJ are sent to oc^i(Fi(6, z, o)),
— FI is a local diffeomorphism to U^.

From these remarks, it is easy to see that the map 2'i-^F^(6, z, X) (respectively
Xh->F^(6, ^, X)) is a reparimetrization of the N-orbits (orbits of C^i). Hence there
exist functions (p^ and ^, invertible in z and X such that

/ a \ a<pi
D^(-}=-tlN

^z] 8z

w l ^ } ^cDFl[^]='^ck+l

(both 9^ and ^ have strictly positive derivatives on T^xIxJ).
Now we construct a family of curves, y^S? ;2')? m T^xIxJ

Yi(6,^) : X^(Zi(6,Z,X),X)

satisfying conditions A) and J?J:

A) For fixed 6, z, Fi(yi(6, 2:)) is a closed curve in U^, of class G1. For 6 and z
in a neighborhood of T^x^}, the F^(Yi(6, Z)) form a one dimensional foliation of a
neighborhood of T^^^ in A^i,

^4
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B) Let A^e.O^-/^), where ^=Fi(6,o,o), and let A^)==Ai(o, ^). Then
we require that: t-,(.,)
(here A^ is the function ^t-^A^)). The condition B) is not necessary to construct
G(^+i); however, it is necessary to insure the transversality relation c^) when we
construct G{k-{-j), J>i.

Lemma (2.2). — There exists in T^xIxJ, a family of curves Yi(6, ;?), satisfying
conditions A) and B).

Proof of (2.2). — Let y' be the tangent vector field to the y^ curves, with the
X-parametrization. Then condition A) can be written:

W (DF^A(DF,)^=O

where b==(Q,f^(z), i), A:=Fi(e, o, o), and a=(6,^o) (cf. figure i).

Fi(d)

7t(a) X(b)
FIG.

An easy calculation shows that (i) can be written:
az.'1 x^ ^az!- =K(6,.)-^ax

where K is a strictly positive function. Therefore, we can rewrite A) and B) as:
az,
"ax =K

az,
1^

f=^,).
A tedious, but simple calculation, shows that the cubics (see fig. i):

^ 1i+KojX^,Z,==A,(e,.) ^-al^+ls-
\ LV'+^O / \ K-o+1•+3-^^-^ W
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