@article{PMIHES_1978__48__5_0, author = {Camacho, Cesar and Kuiper, Nicolaas H. and Palis, Jacob}, title = {The topology of holomorphic flows with singularity}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {5--38}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {48}, year = {1978}, mrnumber = {80j:58045}, zbl = {0411.58018}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1978__48__5_0/} }
TY - JOUR AU - Camacho, Cesar AU - Kuiper, Nicolaas H. AU - Palis, Jacob TI - The topology of holomorphic flows with singularity JO - Publications Mathématiques de l'IHÉS PY - 1978 SP - 5 EP - 38 VL - 48 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1978__48__5_0/ LA - en ID - PMIHES_1978__48__5_0 ER -
%0 Journal Article %A Camacho, Cesar %A Kuiper, Nicolaas H. %A Palis, Jacob %T The topology of holomorphic flows with singularity %J Publications Mathématiques de l'IHÉS %D 1978 %P 5-38 %V 48 %I Institut des Hautes Études Scientifiques %U http://archive.numdam.org/item/PMIHES_1978__48__5_0/ %G en %F PMIHES_1978__48__5_0
Camacho, Cesar; Kuiper, Nicolaas H.; Palis, Jacob. The topology of holomorphic flows with singularity. Publications Mathématiques de l'IHÉS, Tome 48 (1978), pp. 5-38. http://archive.numdam.org/item/PMIHES_1978__48__5_0/
[1] Analytical form of differential equations, Trudy Moscow Math. Obšč (Trans. Moscow Math. Soc.), vol. 25 (1971), p. 131-288. | MR | Zbl
,[2] La topologie du feuilletage d'un champ de vecteurs holomorphe près d'une singularité, C.R. Acad. Sc. Paris, t. 282 A, p. 959-961. | MR | Zbl
, , ,[3] Topological properties of R2-actions are studied in : On Rk x Zl-actions, Proceed. Symp. on Dynamical Systems, Salvador 1971, Ed. Peixoto, p. 23-70. , Linearly induced vector fields and R2-actions on spheres, to appear in J. Diff. Geom. , Structural stability theorems for integrable differential forms on 3-manifolds, to appear in Topology.
,[4] Solutions d'un système d'équations différentielles dans le voisinage des valeurs singulières, Bull. Soc. Math. France, 40 (1912), 324-383. | JFM | Numdam
,[5] Hartman's theorem for complex flows in the Poincaré domain, Composito Math., 24 (1972), p. 75-82. | Numdam | MR | Zbl
,[6] A real analogue of theorem III is the classical Grobman-Hartman theorem : MR
, Proc. AMS, 11 (1960), p. 610-620. |[7] Topological properties of real linear flows on Rn are studied in : Manifolds Tokyo, Proceedings Int. Conference, Math. Soc. Japan (1973), p. 195-204, and : , Differentialnye Uraunenya Volg. (1973), p. 1222-1235.
,[8] Holomorphic vector fields on projective varieties, Proc. Symp. Pure Math., XXX (1976), 273-276. | MR | Zbl
,[9] The invariant of chapter I goes back to an invariant in the study of stability in one parameter families of diffeomorphisms : A differentiable invariant of topological conjugacies and moduli of stability, preprint IMPA.
, , , to appear. See also : ,[10] Structural stability theorems, Global Analysis, Symp. Pure Math., AMS, vol. XIV (1970), p. 223-231. | MR | Zbl
, ,[11] Sur les propriétés des fonctions définies par les équations aux différences partielles, thèse, Paris, 1879 = Œuvres complètes, I, p. XCIX-CV.
,[12] On the convergence of power series transformations of analytic mappings near a fized point into a normal form, Bures-sur-Yvette, preprint I.H.E.S.
,[13] Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Göttingen, Nachr. Akad. Wiss., Math. Phys. Kl. (1952), p. 21-30. | MR | Zbl
,[14] Celestial mechanics (1971) (English edition of : C. L. SIEGEL, Vorlesungen über Himmelsmechanik, 1954, Springer Verlag).
, ,[15] ӠАМЕЧАНИЯ О ТОПОЛОГИИ ОСОБЬIX ТОЧЕК АНАЛИТИЧЕСКИX ДИФФЕРЕ-НЦИАЛЬНЬIX уРАВНЕНИЙ В КОМПЛЕКСНОЙ ОБЛАСТИ И ТЕОРЕМА ЛАДИСА, Функuuональныŭ аналuƏ u еゞо nрuломенuя T. II, ВЬIН 2, 1977, 28-38.
,[16] On holomorphic vector fields on CP(2), An. Acad. Brasil. Cienc., 42 (1970), p. 415-420. | MR | Zbl
,[17] Smooth linearization of germs of R2-actions and holomorphic vector fields, to appear. | Numdam | Zbl
, ,