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GROUPS OF POLYNOMIAL GROWTH
AND EXPANDING MAPS

by MIKHAEL GROMOV

Introduction

Consider a group F generated by YI? • • • ^ Y A ^ F - Each element ^eF can be
represented by a word Yi^Y^2 • • • T^ ^d tne number \p^\ + [j^l + • • • + \Pt\ ls called
the length of the word. The norm 1 1 y [ | (relative to y^ 3 ..., y^) is defined as the minimal
length of the words representing y. Notice, that one can have several shortest words
representing the same yeF.

Examples. — Let F be the free Abelian group of rank 2 generated by YD ya* Each
yeF can be represented as Y?Yi? p,qeZ., and [ |y | [ = |j&| +1?|- (For the identity
element ^eF we set | |^ | |==o.)

Let r be the free (non-Abelian) group of rank 2 generated by yi? y^. Each y+^
can be uniquely written as y^Y^Yf3 * • • Yî S or as Y^Y^Y^3 • • • Yi^? where ij==i-> 2

&
and p^ ' ' . y p j c are non-zero integers. The norm of such a y is equal to S |̂ |.

Let r be the free cyclic group generated by yo by let us use the generators y^==y^,
V2 == y^ and Ys == y^. Relative to these Yi, Ya, Ys we obviously have [ [ yo [ | == 2, | [ y^ | [ = i,
| |Y^| |=2 (because Y^vl-YlYs). 1 |YS O O I I = 25 and so on.

Elementary properties of the norm. — For any group one obviously has

l lYll-llY-1!!,

llYT'll^lMI+IHI.

Let Yi, .. .9 Yfe an(^ ^15 • • - 5 ^ ^e two systems of generators in F. The corres-
ponding norms [| \\0^ and || \\^ are not necessarily equal but there obviously exists
a positive constant C such that for each ^eT one has

ciiYir^iHr^c-^iYr.
For a group F with fixed generators we denote by B(r) C F, r^o, ^ 6a^ of radius r

centered at the identity element e. In other words, B(r) consists of all ^eF with
[ |Y| [<r . We denote by ff B(r) the number of elements in B(r).
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54 M I K H A E L G R O M O V

For a free Abelian group of rank two generated by y^, yg one has

ffB^^N^N+i for re[N,N+i).

For the free (non-Abelian) group with two generators one has

f^r)==2.^-i for re[N,N+i).

Growth of a group. — One says that a group F with generators y^, . . ., y^ has
polynomial growth if there are two positive numbers d and C such that for all balls B(r),
r^>i, one has

ffB^G^.

One can easily see that this definition does not depend on the particular choice of the
generators and so this notion is correctly defined for the finitely generated groups.

Examples. — The finitely generated Abelian groups are easily seen to be of poly-
nomial growth. Also the finitely generated nilpotent groups are of polynomial growth
(see [14] and the appendix).

If r is a finite extension of a group of polynomial growth, then F itself has poly-
nomial growth. So we conclude:

If a finitely generated group Y has a nilpotent subgroup of finite index then T has polynomial
growth.

The free groups with k^2 generators do not have polynomial growth. They
even have exponential growth, i.e.

ffBM^Cy, r^i

for some real constant Oi. One can immediately see that this property does not
depend on the choice of the generators.

The following theorem settles the growth problem for the solvable groups:

(Milnor-Wolf [8] [14].) — A finitely generated solvable group F has exponential growth unless
r contains a nilpotent subgroup of finite index.

This result together with a theorem of Tits (see [13] and § 4) implies:

(Tits.) — A finitely generated subgroup T of a connected Lie group has exponential growth unless
r contains a nilpotent subgroup of finite index.

In this paper we prove the following.

Main theorem. — If a finitely generated group T has polynomial growth then F contains a
nilpotent subgroup of finite index.

The proof if given in § 8.
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GROUPS OF POLYNOMIAL GROWTH AND EXPANDING MAPS 55

One can combine this theorem with Shub's criterion (see § i) and obtains the

Geometric corollary. — An expanding self-map of an arbitrary compact manifold is tope-
logically conjugate to an infra-nil-endomorphism.

The proof and the definitions are given in § i.

i. Expanding maps

A map / from a metric space X to a metric space Y is called globally expanding
if for any two points ^i, ^eX, x^x^, one has

dist(/(^),/(^))>dist(A;i, x^).

We call/expanding if each point xeX has a neighbourhood UC X such that the restric-
tion of / to U is globally expanding.

Suppose that X and Y are connected Riemannian manifolds of the same dimen-
sion. If X is a complete manifold without boundary, then each expanding map is
a covering. In particular, when Y is simply connected such a map is a globally
expanding homeomorphism.

Let X be a compact connected Riemannian manifold and let f: X->X be an
expanding map. One can see that X has no boundary, and hence, the map /: Y->Y
induced on the universal covering Y->X is a globally expanding homeomorphism.
The inverse map f~1: Y-^Y is contracting. Moreover, for each S>o there is a
positive c such that for any two points y^.y^^f with dist(j^,j^)^8 one has

dW^J-^^-e) dist(j^).

This is obvious. (Notice, that we use in Y the Riemannian metric induced from X

by the covering map Y—^X.) It follows that/"1 has a unique fixed point and that Y
is homeomorphic to the Euclidean space R", 7z==dim X. Now, it is clear that /: X->X
also has a fixed point.

All these facts were established by M. Shub (see [n]). (Notice that the definitions
used in [n] are slightly different from ours.)

Examples. — Consider the torus T^R^Z^ Each linear map R^R" which
sends the lattice Z^R" into itself induces a map ^-^P. This map is expanding
if and only if all eigenvalues of the covering linear map Rn->Rn have absolute values
greater than one.

Flat manifolds. — Let F be a discrete fixed point free group of motions of Rn with
compact quotient X=Rn/^. A linear map R^R^^ which respects F induces a
map X->X and this map is expanding if and only if the covering linear map R^R"
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56 M I K H A E L G R O M O V

has only eigenvalues of absolute value greater than one. It is known (see [4]) that
any flat manifold X has an expanding map of the type we have just described.

Nil-manifolds. — Let L be a simply connected nilpotent Lie group with a left
invariant Riemannian metric and let F C L be a discrete subgroup with compact
quotient X==L/r. (Such an X is called a nil-manifold.) An automorphism A: L—>-L
which sends F into itself induces a map X—^X and this map is expanding if and only
if the linear map a: i->t induced by A in the Lie algebra t of L has all its eigenvalues
greater than one in absolute value. Observe, that not all nilpotent Lie groups admit
an expanding automorphism.

Infra-nil-manifolds. — Let L be as above and denote by Aff(L) the group of trans-
formations of L generated by the left translations and by all automorphisms L->L.
Let r C Aff(L) be a group which acts freely and discretely on L. When the quo-
tient X == L/r is compact it is called an infra-nil-manifold. Each expanding automor-
phism L—^L which respects F induces an expanding map X-^X. Such maps are
called expanding infra-nil-endomorphisms.

Topological conjugacy. — Two maps /: X->X and g : Y-^Y are called topolo-
gically conjugate if there exists a homeomorphism h: X->Y such that hof==goh^
i.e. the following diagram commutes

X ~^> X

-I [hv y

Y —> Y.
g

M. Shub discovered the following remarkable fact (see [n]):

An expanding self-map of a compact manifold X is uniquely determined, up to topological
conjugacy, by its action on the fundamental group 7^ (X).

The following two results of Shub and Franks (see [n]) are especially important
for our paper.

ShuVs criterion. — An expanding self-map of a compact manifold X is topologically conju-
gate to an expanding infra-nil-endomorphism if and only if the fundamental group 7Ti(X) contains
a nilpotent subgroup of finite index.

The polynomial growth property (Franks). — If a compact manifold X admits an expanding
self-map then the fundamental group ^(X) has polynomial growth.

We prove this in the next section.
These two facts explain why the geometric corollary is a consequence of the main

theorem.
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GROUPS OF POLYNOMIAL GROWTH AND EXPANDING MAPS 57

Some partial results on the classification of the expanding maps were obtained
earlier by Shub [n] and Hirsch [6]. An idea of Hirsch's paper plays an important
role in our approach (see § 5).

2. Geometric growth

Consider a Riemannian manifold Y and denote by Voly(r), j^eY, the volume
of the ball of radius r around y. The growth of Y is defined as the asymptotic behavior
of VoL(r) as r—^oo.

This concept is due to Efremovic (see [3]) who pointed out that the growth of
a manifold Y, which covers a compact manifold X, depends only on the fundamental
groups 7ri(X), 7ii(Y) and the inclusion TCi(Y) CTT^X).

The corresponding algebraic notion of the growth was introduced by Svarc and
by Milnor who, in particular, proved the following theorem.

(§varc, Milnor). — Let Y—>-X be the universal covering and let us fix a set of generators
in the fundamental group r=7Ti(X). Then there is a constant Oo such that for each jyeY
and all r^>_i one has

Vol,(Gr+G)^ ffBM^Vol^G-^),

where B(r) denotes the ball in T (see the introduction).

Proof. — Let us identify F with the orbit of jyeY under the action of F, so that
y corresponds to the identity. Denote by By(r) the intersection of F with the Riemannian
ball of radius r in Y centered atj^. It is not hard to show (see [8], [12]) that

G.Vol.M^ffB.M^C^Vol^r), r^i

and ffB^G^ffBM^ffB^C^r), r>o.

This implies the theorem.

Corollary. — The fundamental group of a compact manifold X has polynomial growth if
and only if the universal covering Y of X has polynomial growth, i.e. if for some C and d one has

Vo^(r)<(y, re[i, oo).

Observe that most (complete, non-compact) manifolds have exponential growth,
i.e. Vol^r^Cy—i, Oi, re[i, oo), but there are some interesting instances of
polynomial growth.

Examples of manifolds of polynomial growth'.

(a) Complete manifolds of non-negative Ricci curvature;
(b) Real algebraic submanifolds in R7;
(c) Nilpotent Lie groups with left invariant metrics;
(d) Leaves of Anosov foliations.
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58 M I K H A E L G R O M O V

Remarks. — Polynomial growth for a manifold of non-negative Ricci curvature
follows from Rauch's comparison theorem (see [2]); (b) and (c) are easy exercises;
(d) has the same nature as the polynomial growth in the presence of an expanding map:
a slight modification (required by a minor discrepancy between the notion of expansion)
of the following simple lemma yields both facts.

Let f: Y-^Y be a totally expanding smooth map. Suppose that the Jacobian of this map
is bounded by a constant C and that f is uniformly expanding, i.e. for any two points x,ye\ with
dist{x,y)>_\ one has

dist{f[x)J[y))>_{i+i)dist^y), s>o.

Then Y has polynomial growth.

Proof. — Each ball B of radius r^ i is sent by / onto a set containing a ball of
radius {i+e)r and whose volume is at most GVol(B). It follows that

Vol,((i+c)r)^CVol,(r), r^i,

where y is the fixed point of/. This inequality implies polynomial growth.

3. Elementary properties of the growth

Let r be a group with a fixed finite system of generators. The norm || || (see
the introduction) provides F with a left invariant metric

dis^^^Ha-1?!!.

Consider a subgroup F' and the left action of F' on F. Denote by X the corres-
ponding factor space F/F' and by /: F->X the natural projection. Define dist{x,jy),
x,jeX as ^nfdist(a,p), ae/-1^), (ie/-1^). Since the action of f on F is isometric,
the function dist(x,y) is a metric in X.

Connectivity. — The space X=r/F' has the following two equivalent properties:

(a) for any two points x.yeX with dist{x,y)==p, where p is an integer, there exist
points X==XQ, x^, ..., Xy==jy, such that dist(^, ^,_i)==i, z = = i , . . . , j & ;

(b) take a ball B C X of radius p, where p is an integer, and take its e-neighbourhood
Ug(B) C X where e is also a non-negative integer. Then Ug(B) is exactly the ball
of radius p-^-e concentric to B.

Both properties (as well as their equivalence) are obvious for F itself and they are
preserved when we pass to X.

As an immediate application we have;

IfX is infinite then each ball in X of radius r==o, i, .... contains at least r+i elements.
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GROUPS OF POLYNOMIAL GROWTH AND EXPANDING MAPS 59

This simple fact provides a useful relation between the growth of a group and
its subgroups.

We define growth (r) as the lower bound of the numbers d>^o, such that
#B(r)< const. r^ r^i.

Splitting lemma. — If F'C F is a finitely generated subgroup of infinite index, then

growth(r') ̂  (growth (r))—i

Proof. — The connectivity propeities of X=r/r' imply that each ball B(r),
r==o, i, .. ., in F contains at least r+i elements o^, ..., a^eF such that /(a,)4=/(a.)
for i^ej (recall that/: r->X is the factor-map). Consider the intersection B'==B(r)nr"
and its translates B'a^^o, ...,r. These sets are disjoint and they are contained
in the ball B(2r). It follows that ff B(2r)^(r+i) (#B'). This yields the lemma.

Regular growth. — All balls in F of a given radius r have the same number of
elements. We denote this number by &(r)= ff B(r). For a group of growth rf<oo
we call a number r i-regular z= i , 2, ..., if it satisfies the following two conditions:

(a) log(6(2-Jr))^log(&(r))-J^+I)log 2, j=i, 2, . . . , z,
(b) log{b{2jr))<log{b{r))+^, j=i,2,...,z, where ^=i6^\d+i).

Regularity lemma. — There is a sequence (r,) tending to oo such that each r, is i-regular.

Proof. — Start with the sequence r^=2k. Since growth {F)==d we have

^S{bW)<.C+kdlog2.

This inequality implies that there is an infinite subsequence r^ = 2^ which satisfies (a), i.e.

log(&(2fe^))^log(A(2fcO)-J(rf+I)log2, J=I . . . , Z .

Let us show that this sequence must also satisfy (b) $ in other words (a) implies (b) for
large r.

We first prove the following general inequality which is valid for all finitely
generated groups î̂ , -„,,.... (.,

Proof. — Consider a maximal system of points Yi, YZ) • • • ̂ {y) ^Gh Aat the
distance between any two of them is at least 2r+i. It is clear that the balls of radius r
centered at Yi, Y2? • • • ? do not intersect and the concentric balls of radius 2r cover
B(3r). Using the connectivity property of F we conclude that the concentric balls of
radius y cover B(5r). This proves (*), because the original balls of radius r were
contained in B(4r) and the total number of their points could not exceed 6(47").
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60 M I K H A E L G R O M O V

We simplify the notations by setting ^(r)=log(&(r)). Then the inequality (*)
becomes

w<^w-w.
When r is divisible by 4 this implies

W<f(y+^<_2f{y)-l{r}^
\ 4/

and so
W^4W-3W.

In the same way we get

W ̂ q6. 6r) ̂  16^(4r) -1 ^{r).
V 4/

It means that for an r divisible by 16 we have

^2r}<_i6l[r}-i^['\.
\4/

Applying this inequality j times we get

^r)^i6^(r)-^^+^^^
\ \4// W

In our case f(r)—f[-\<2{d-\-\)\og 2 and so
W

^2Jr)<I6^1(rf+I)+^^I6J+l(</+I)+^(r),
W

q.e.d.

4. Linear representations

A group r is called, for brevity, almost nilpotent (almost solvable) if it contains a
nilpotent (solvable) subgroup of finite index.

This section is devoted to the proof of the following.

Algebraic lemma. — Let F be a finitely generated group of polynomial growth and let L be a
Lie group with finitely many connected components. Suppose that for each finitely generated infinite
subgroup r'CT there is a subgroup ACT' of finite index in F' with the following property:

for every P==i, 2, ..., there is a homomorphism A->L such that its image contains at least
p elements. Then F is almost nilpotent.

Our proof is based on the following fundamental facts.
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GROUPS OF POLYNOMIAL GROWTH AND EXPANDING MAPS 61

(Jordan). —For each Lie group L with finitely many components there is a number q such that every
finite subgroup in L contains an Abelian subgroup of index at most q. (See [10].)

(Tits). — Let L be as above and let G C L be an arbitrary finitely generated subgroup. Then
there are only two possibilities:

(a) G contains a free group of rank 2. In this case G has exponential growth.
(b) G is almost solvable. In this case G has exponential growth unless it is almost nilpotent.

(See [13].)

We first prove two simple lemmas.

(a) Let L be as above and let G be an arbitrary finitely generated group. Suppose that for every
number p ==i, 2, . . ., there is a homomorphism G-^L such that its image is finite and has
at least p elements. Then G contains a subgroup G' C G of finite index such that the commu-
tator group [G', G'] C G' has infinite index and, consequently, G' admits a non-trivial homo-
morphism in Z.

Proof. — Let q be as in Jordan's theorem. Take for G' C G the intersection of
all subgroups in G of index at most q. It is clear that G' satisfies all the requirements.

(b) Let r be a finitely generated group of polynomial growth. Then the commutator subgroup [F, F]
is also finitely generated.

Proof. — It is sufficient to show that the kernel AC F of any surjective homo-
morphism g : r—^Z is finitely generated.

Take a system of generators YO? YD • • • ^ Y ^ r wltn tne following properties:
g(^o)==ZQeZ., where ZQ denotes the generator in Z,

Y,eA, i==i, ...,k.

Denote by A^CA the subgroup generated by

{Y^YzYo^L ^i, . . . ,^; J==—m, .. ., o, i, . . ., w.

One obviously has
00

UA,=A.m
0

If for some number m one has A^ = A^ ̂  then A^ == A and the proof is finished.
Otherwise, there is a sequence oc^eA, m==o, i, . . ., such that each a^ is of the

form a^^y^YlYo^ or ^^^o^YzY^ f01' some i==i, ...,k and a^ is not contained
in the group generated by oco, a^ .. .3 a^i.

Consider all the products p=p(sQ, ..., £j=a^a^ ... a^ where 2^==o, i. It
is clear that the equality p(so, ..., sJ=P(eo, ..., sj implies (^^ £i=£i, ...,
^"^m- So we have 2m+l different ^s.
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^ M I K H A E L G R O M O V

On the other hand | |P||<||ao||+||oci||+...+||a,||^(^+i)(2m+i) and for
the ball B((w+i) ( 2 W + i ) ) C r we have

«K{(m+I){2m+l))>,2m+l, ^==1,2, . . .

This contradicts the polynomial growth, q.e.d.

Proof of the algebraic lemma. — According to the splitting lemma (see § 3) we can
use induction and assume that all finitely generated subgroups in F of infinite index
are almost nilpotent. Let A C F be a subgroup of finite index which has the required
homomorphisms into L. If all these homomorphisms have finite images we use
lemma (a) and get a subgroup A ' C A of finite index such that the commutator
subgroup [A', A'] C A' has infinite index.

If there is a homomorphism A-^L with infinite image, we apply Tits5 theorem
to this image and again obtain A' C A with the same property.

According to lemma (b) the commutator subgroup [A', A'] is finitely generated
and by the induction hypothesis it is almost nilpotent. It follows that F is almost
solvable and, by the theorem of Milnor-Wolf, F is almost nilpotent, q.e.d.

Corollary. — Let F and F' be as in the algebraic lemma. If each F' has a subgroup A
of finite index such that either A satisfies the condition of the lemma or A is Abelian, then F is
almost nilpotent.

This is a trivial consequence of the lemma.

5. Topological transformation groups

The following deep theorem plays a crucial role in our proof.

(Montgomery-Zippin). — Let Y be a finite dimensional, locally compact, connected and locally
connected metric space. If the group L of the isometrics ofY is transitive (on \) then L is a Lie
group with finitely many connected components.

The proof immediately follows from the first corollary in § 6.3 of the book [9].

We shall also need an obvious corollary of this theorem.

Localization lemma. — Let Y be as above, let UCY be a non-empty open set and let
j&==i , 2, ... There exists a positive s with the following property:

If t : Y->Y is a non-trivial (i.e. i is not the identity) isometry such that dist{u, f(u))<z,
ueU, then t generates in L a subgroup of order at least p.

The idea of applying the theory of Montgomery-Zippin to the classification of
expanding maps is due to Hirsch (see [6]). He proceeds as follows.
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GROUPS OF POLYNOMIAL GROWTH AND EXPANDING MAPS 63

An expanding map X->X lifts to a globally expanding homeomorphism f: Y-^Y
of the universal covering Y->X andy respects the action of r=7Ti(X) on Y. Hirsch
views r as a subgroup of the group of all homeomorphisms of Y and he constructs
subgroups r= r^ C I\ C ... C r, C ... by setting F, =/-1 Ff\

The closure of the union U 1̂  is a topological group acting on Y, and Hirsch
i

shows that, in some cases, this group satisfies the requirements of the theory of Montgo-
mery-Zippin (the same corollary in § 6.3 of their book) and thus, he realizes F as a
subgroup of a Lie group.

In our approach we do not use the universal covering but construct Y as a limit
of discrete spaces.

6. Limits of metric spaces

Consider a space Z with a metric 8 and take two sets X, Y C Z. The Hausdorff
distance H^X, Y) is defined as the lower bound of the numbers e>o such that the
s-neighbourhood of X contains Y and the s-neighbourhood of Y contains X. The
Hausdorff distance can be infinite but it has all properties of a metric.

Consider now two arbitrary metric spaces X and Y and denote by Z their disjoint
union. A metric 8 on Z is called admissible if its restrictions to X and Y are equal to
the original metrics in X and Y respectively.

We define the Hausdorff distance H(X, Y) as the lower bound infH^X, Y) where
8

8 runs over all admissible metrics on Z=XuY.
When X and Y are compact spaces the Hausdorff distance enjoys all the properties

of a metric. In particular, one has:
H(X, Y) == o if and only if X and Y are isometric.

When the spaces are not compact, it is convenient to have reference points in
them and to use the following " modified Hausdorff distance " (1). For two metric
spaces X, Y with distinguished points ;ceX and ^eY, we define H((X, x), (Y,j)) as
the infimum of all s>o with the following property: there exists an admissible metric 8
on the disjoint union XuY such that 8(^,^)<e, that the ball B^(i/e) of radius i/e
centered at x in X is contained in the s-neighborhood of Y (with respect to 8) and,
similarly, that By(i/s) in Y is contained in the e-neighborhood ofX. For three spaces
with distinguished points, the function fi satisfies the triangular inequality provided

that at least two of the three " distances " involved are small enough (say, <- l .

Proper spaces. — A metric space X is called proper if for each point ^eX, the
distance function .y—^dist^o, x) is a proper map X—^R, i.e. if each closed ball (of

(l) The definition of the modified distance H is due to 0. Gabber who kindly pointed out that another
function H introduced in an earlier version of this paper was inadequate.
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64 M I K H A E L G R O M O V

finite radius) in X is compact. Observe that a Riemannian manifold is proper if
and only if it is complete. This is the theorem of Hopf-Rinow (see [2]).

Convergence. — We say that a sequence of spaces X .̂ with distinguished points x.eX.-
converges to (Y,^), and we write (X^., .̂) -^ (Y,jQ if limH((X^ ^.), (Y,^))==o. If
the spaces X .̂ are compact with uniformly bounded diameter, this implies that H(X., Y) ->o.
It is not difficult to see that if the spaces Xj are proper and if there exist arbitrarily large
real numbers r such that the sequence (B^..(r)) of balls of radius r in the X. converges
for the Hausdorff distance H, then a subsequence of (X,, Xy) converges (in the above
sense) to a proper space with distinguished point.

Uniform compactness. — A family {X^.}, jej, of compact metric spaces is called
uniformly compact if their diameters are uniformly bounded and one of the following two
equivalent conditions is satisfied:

(a) for each s>o there is a number N==N(s) such that each space X ,^'eJ, can be
covered by N balls of radius s;

(b) for each s>o there is a number M=M(s;) such that in each space X.^'eJ, one
can find at most M disjoint balls of radius s.

Compactness criterion. — Let (X^ Xj)^^ 3 be a sequence of proper metric spaces with
distinguished points. If for each r>_o the corresponding family of balls {B.(r)}.^ 3 , is
uniformly compact, then there is a subsequence (X . ,A : , ) f c= i2 . with lim^=oo, which

•" " » » • • • J^ _^. QO

converges to a proper metric space (Y,j?).

Proof. — To prove the criterion it is sufficient to find a convergent subsequence
of (B^.(r)) for an arbitrary but fixed number r and thus we can assume without loss of
generality that all X^ are compact and that the family {X.},^ 3 is uniformly
compact.

Take the sequence ^==2 - l and let N, be natural numbers such that each X.
can be covered by N, balls of radius s,. Denote by A, the set of all finite sequences of
the form (^, n^ • • • ? ^)? l<.nl<^l^ l<n2<]^2) • • • ? l<.ni<1^i^ ^d denote by
p^:A^\->Ai the natural projection.

For each space X^,j==i, ..., there are maps IJ:A,-^X. with the following
properties:

(a) the image of IJ forms an s^-net in X^., i.e. the ^.-balls centered at the points of this
image cover X .̂;

(b) for each aeA^i, i==i, 2, ;. .5 the point T^^a) is contained in the 2^-ball centered
at^AW).

These maps are constructed as follows. Fust we cover X .̂ by N1 balls of radius q
and we take any bijective map from A^ onto the set of centers of these balls. This is
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our map Ij. After that we cover each s^-ball by N3 balls of radius £3 and map Ag on
the set of centers of these s^-balls so that (%i, n^ goes to the center of a ball which we
used to cover the Si-ball centered at I^((ni)). This is our I^2. Then we cover each
Sg-ball by N3 balls of radius £3 and map A3 onto the set of centers of these ^-balls, so
that (^i, TZg, n^feA^ goes to the center of a ball which was used in covering the Sg-ball
centered at IJ((^i, ^2))? ^d so on.

00

Denote by A the union U \ and by I : A->X, the map corresponding to
»=i

all I], i==i, ... Denote by F' the space of all bounded functions f: A-^-R with the
norm ||y]|=sup |/(^)|. Denote by FCF' the set which consists of all functions satis-

aeA

tying the following inequalities:

if a e A] C A, then o<^f{a)<^ ̂ P Diam X •,

if aeA^i>i, then |/(^)-/(A-i^))1^2£,_i.

The set F is compact.
Let us define a map Aj : X^->F' as follows

{h^x))(a)==dist{x,Ua)), xeX^, aeA,

and " dist " is taken relative to the metric in X-.
The property (a) of IJ implies that the map h. is isometric and the property (b)

shows that the image of ^ is contained in F. So we have proved:
If the family {X^.} is uniformly compact then there is a compact metric space F such that

each X, can be isometricallv embedded info F.

To complete the proof of the compactness criterion we invoke the following well-
known fact.

Let F be a compact metric space with metric 8. Then the space of all compact subsets of F
is a compact space relative to the Hausdorjf distance H8.

We now identify each X .̂ with its image ^.(X^.) C F and take a subsequence X^,
which converges to a compact set YCF, i.e. lim H8(X,,Y)==o, where 8 is the

fc->00 JK

metric associated to the norm in F'DF. It is clear that the distance H(X, ,Y) also,
converges to zero as k->oo, q.e.d.

Example. — Let (X^) be a system of complete ^-dimensional Riemannian mani-
folds with Ricci curvature bounded from below by a negative constant. Then the
sequence (X^., x^) has a subsequence which converges to a metric space (Y^), but this
space is not, in general, a manifold. (See [5] for additional examples.)

Definite convergence. — Let (Xp Xy) be a sequence of spaces which converges to (Y,j^).
By definition, there exists a system of metrics 8j in the disjoint unions X.uY such that,
for any given r^o and s>o, the following properties hold for almost allj: one has

65
9



66 M I K H A E L G R O M O V

^•(.^sjQ^s, the ball B^r) in X^ is contained in the s-neighborhood of Y (with respect
to Sj) and the ball By(r) in Y is contained in the s-neighborhood of X^.. When such
metrics S- are chosen and fixed, we say that there is definite convergence and we write

^•'̂ o^-

Now it makes sense to speak about convergence of a sequence ^X^ to a
point y<=Y: this just means that lim 8^J,y) =o. In particular, the reference
points Xj converge to j/eY.

Convergence of maps. — Consider a sequence (Xy, .̂) => (Y?^) ^d a system of
maps f.: X.->X.. We say that the maps fj converge to a map f: Y—^Y if for each
r^o and each positive s there is a number pi==(Ji(r, s;)>o and an integer N==N(r, s)
such that, for all j^N, one has:

If the points x ' e B^. (r) C X, and y e B^(r) C Y satisfy .̂ (^, y) < [L then
8,(^M,/(y))^e.

Isometry Lemma. — Let (X-, x.) => (Y?^) ^^ ^^ Y ̂  a proper space. Let f.: X.->X,
- - j -> oo

be isometrics such that aist.{x., f.{x.)) <_C (where C is a constant which does not depend on j
and dist. denotes the metric in X^. Then there is a subsequence (X .̂ , ̂  ) such that the maps f^
converge to an isometry Y->Y.

Proof. — Take a sequence (c,), with lim s,==o and £,^1/4, and a sequence (r^)
such that r^i^+C+i. Upon passing to a subsequence, we may—and shall—assume
that, for all j, 8(x-,jQ^£:,, that the ball B^(r-) is contained in the ^-neighborhood

of X, and that the ball B,.fr,+C+-1-) is contained in the s,-neighborhood of Y.
J -7\ J 2/

For all i, choose a finite s^-net in By(r,). Now, construct a system of maps ^ : E,-^E,^.i

as follows. For <?<=E,, choose a point A:eX^. such that Sj(e,x)^Zj. Thus, ^eBa;.(^+-)

( i\hence ̂ (^)eB^. r,+C+-j. Now choose A;'eY such that S^x^x)^^. Then, A:'eBy(r^i).

Finally, take for g^e) any point ^' of E^i such that dist(A:', ̂ Si+r
There exists a sequence j\, . . .,j^, .. ., such that for each i==i, 2, . . ., the

map ^. does not depend on k for A^', i.e. for any two sufficiently large k and i we
have ^ ==^ . It is clear that the corresponding sequence f^ converges to an iso-
metry g : Y->Y.

Corollary. — If each space X .̂ is homogeneous (i.e. the group of all isometrics of X .̂ is
transitive) then Y is also homogeneous.

Proof. — Let us construct an isometry Y->Y which sends y to j^'eY. Take an
arbitrary sequence (x') with x'eX. which converges toy and take a system ofisome-
tries f.:Xj->X^ such that fj{^)==Xj. According to the lemma we can assume
that (f-) converges to an isometry g : Y-^Y, and g{y)=y'

66



GROUPS OF POLYNOMIAL GROWTH AND EXPANDING MAPS 67

7. Limits of discrete groups

We start with a general construction. Let X be a metric space with metric
<c dist5?. We denote by XX, X>o, the same X but with a new metric

(dist^-^dist).

Examples. — When X^I^ then all spaces XX, Xe(o, oo), are isometric.
When X is a manifold of constant curvature K then XX has curvature X"2!^.
When X is compact and has diameter D then XX has diameter XD.
Let X be an Tz-dimensional manifold of dimension n and let A:eX. If lim X.== oo

then the sequence (X,, ^), X,=X,X, x^=x, converges to K1. ^°°
When X is a metric space such that each s-ball, o<^s<i centered at A:EX can

be covered by p balls of radius c/2, where p is an arbitrary but fixed number, then there
is a sequence X,->co such that (X,X, x) converges to a proper space (Y,j^) which can
be regarded as a tangent cone of X at x. (The proof follows from the compactness
criterion of § 6.)

We are now concerned with the limits ofX,X when X,->o. The following examples
serve only as illustrations and the proofs (quite simple) are left to the reader.

When X is compact and \->o, then the sequence X^X converges to the one-point
space.

When X is a complete manifold of non-negative Ricci curvature then for some
sequence \->o there is a limit (Y,j/) of (X,X, x), but Y is not always a manifold.

Let X be the free Abelian group of rank two with two fixed generators. If we
use in X the metric associated to the norm as in § 3 then the sequence (X,X, x), \—o,
converges to the plane R2 with the following Minkowski metric

dist((a,6), {af,bt))=\a-a'\^-\b—b'\.

Take a non-Abelian nilpotent simply connected Lie group X of dimension 3
(notice, that there is only one such group) with a left invariant Riemannian metric.
When X,->o, then the sequence (X,X, x) converges to a space (Y,j/) which is homeo-
morphic to X, but the limit metric in Y is not Riemannian. This metric can be
described as follows. When we divide the Lie group by its center (which is isomorphic
to R) we get a Riemannian submersion X->R2 with one dimensional fibers. Take
two points ^,^eX and consider all smooth curves which are normal to the fibers
and which join x^ with ^3. Define dist(^i, x^) as the lower bound of the lengths of these
curves. This is exactly the limit metric in Y (which is homeomorphic to X). Notice
that for each X>o the space XY is isometric to Y. Notice also that the Hausdorff
dimension of Y is 4 rather than 3. (The definition of the Hausdorff dimension can be
found in Gh. VII of [7].)

Let us return to our major topic.
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Main construction. — Let F be a group of polynomial growth with a fixed system
of generators and with the corresponding metric dist. Let {r,}, z==i , 2, ... be a
sequence of i-regular numbers such that lim r,= oo (see the regularity lemma of § 3).
We denote by eeF the identity element and we consider the sequence (1^, ^),
r^r^r, e^=e. It follows from the definition of the regularity (see inequalities {a)
and (6)) that the family of r-balls in (F^^g is uniformly compact (each F, is,
obviously, a proper space) and, by the compactness criterion (see § 6), there is a conver-
gent subsequence. To avoid double indices we assume that the sequence (I\., ^) itself
converges to a space (Y,jy).

Properties of the limit space Y

(1) Y is a locally compact space, because it is proper.

(2) Y is connected and locally connected. Moreover each ball in Y is connected and
even path-connected.

Proof. — The connectivity property of F (see § 3) implies that for any two
points a, jBeI\ there is a point yel^ such that

dist,(a, Y) ̂ dist,(a, (B) + ̂ S

dist,(Y,(B)<^dist,(a,p)+rr1.

It follows that for any two points J^J^Y there is an xe\ such that

dist(ji, x) == dist(A:,j^) ̂ dist^i,^)

("dist^99 denotes the metric in F, and "dist95 is the limit metric in Y). This
property not only implies the required connectivity of Y, but also shows that any two
points J^Ja6^ can be joined by a curve with the length equal to dist(j^,j2).

(3) The group L of all isometrics of Y is transitive on Y.

This follows from the corollary to the isometry lemma (§ 6).

(4) Y is finite dimensional.

Proof. — The regularity condition (see inequality {a) in § 3) implies that for j<_i

each ball in 1̂  of radius - can be covered by Nj balls of radius 2~j+l where N^s^4"^

and d denotes the growth of F. It follows that for each j=i, 2, .. ., one can cover

every —ball in Y by N .̂ balls of radius 2~j+l. This shows that the Hausdorff dimension

ofY is at most rf+i and hence (see chapter VII in [7]) Y is finite dimensional.
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Main conclusion. — The group L of all isometries of \ is a Lie group with finitely many
components.

Proof. — Use the theorem of Montgomery-Zippin (see § 5).

8. Proof of the main theorem

Take an arbitrary group F with a fixed finite system of generators and the asso-
ciated metric. Define

D(Y,r)-supdist(yP, (3)
P

where y^, re[o, oo) and (3 runs over the r-ball in F centered at the identity.
Take now a subgroup F'C T generated by yi, ..., Yfc ancl ^t (with an abuse of

notations)
D(r',r)= sup D(^,r).

l<_j^_k

If the function D(r", r), re[o, oo), is bounded, then F' contains an Abelian subgroup
of finite index.

Proof. — If D(y, r) is bounded when r-^oo, then the conjugacy class {(B^yjB},
peF, ofy is finite and the centralizer of y has finite index in F, q.e.d.

Suppose that D(r", r) is unbounded but for a divergent sequence r^ the
ratio ^"'^(r',^) converges to zero.

Displacement lemma. — For each s>o there is a sequence a,, z = = i , 2, ..., such that
li^r^a^r'a^)^,

where D(a~l^"a, r)== sup D(a~ lY•a, r).
i^j^fe

Proof. — The connectivity property of F (see § 3) implies that for an arbitrary
integer m one has

D(r ' , r+m)^D(r,r)+2m.

On the other hand it is clear that for any aeF and r^o

D(a- l^'a,r):<D(^' ,r+| |a |) .

So we have

D(a- l^'a,r)<D(^',r)+2| |a| | . (*)

Since D(F', r) is unbounded as a function of r, the function D(a~l^"a, r) is unbounded
as a function of aeF, when r is kept fixed.
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When r, is sufficiently large our assumption ^^(F', r j—o implies that
D(F',r,)<^.

On the other hand for some pier we have

DOi-^r^sr,.

Using (*) and the connectivity again we conclude that there is an a,.eF such that

^(a^r'a^-srj^,
q.e.d.

Let F, be as in the main construction (see § 7). The group F acts isometrically
on each F, and if y,eF satisfy r^1 | |yj|<C< oo, 2 = 1 , 2 , . . . . then the corresponding
isometrics 7i: ̂ -^ satisfy the condition of the isometry lemma (see § 6) and we
can assume (using a subsequence when it is necessary) that these isometries converge
to an isometry f : Y—^Y.

Let F 'CF be an arbitrary subgroup and yeF'. By taking Yi^T we g^ an

isometry ^==^: Y->Y and so we get a map F'-^L, where L is the isometry group
of Y. (Because F' is countable we can assume that the convergence takes place for
all Y^^"-) This map is, obviously, a homomorphism. (To be precise we must fix a
definite convergence F,=>Y as in § 6 and only then our consideration becomes
meaningful.)

The kernel of this homomorphism y—^ consists of all y in F' such that
Innr^^Y,^)-^.
t-> 00

This limit exists because we have the convergence of the isometries Y,==y : I^-^I^ to t.
We are ready to prove the main theorem. Take a subgroup F' C F generated

by Yi, . . ., vj? • • - 3 Tfc- According to the algebraic lemma (§ 4) and the main conclusion
of § 7 we must only find a subgroup A C F' of finite index in F' such that either A is
commutative or A has as many homomorphisms into L as is required by the algebraic
lemma. (See the corollary to the algebraic lemma.) If the homomorphism y->f
we constructed above has infinite image, the conditions of the algebraic lemma are
satisfied and the proof is finished.

Suppose that the kernel F" C F' of the homomorphism y-^y has fini^ index
in I". For the group F" we have

Im^^Y.r^o, yeF",

and we can shorten the notations by assuming F'^F".
If the function D(F', r), re[o, oo), is bounded we have an Abelian AC F' and

the proof is finished. Now we come to the last case.
The function D(F', r) is unbounded but

umrr^r'.^o.
l—>- oo
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Fix an s>o and construct a,=a,(s)Er as in the displacement lemma. We
obtain a new isometric action of F' on F, as follows. First we send y to Y^a^ya,
and then we act by ^ on 1̂  as usual by the left translation. For each gene-
rator Yi, . . ., yj, . . ., Y^er' the translations Y^^a,-1^^ : F,->r, satisfy

l^^pdist^^,^,),^)^^

where dist, denotes the distance in F,, ^eF, denotes the reference point in F, corres-
ponding to ecF and j'==i, . . ., k.

The isometry lemma (§ 6) allows us to assume that for each j the sequence y-o
z-^oo, converges to an isometry ^ : Y-^Y and so we obtained a homomorphism
A=A(s) : r '—L.

Let us show that when s>o is small then the image of A(£) is large. The
properties of a,==a,(s) guarantee (see the displacement lemma) that for some y', say
for Y^, one has

Inn^^a^a^)^.

But
^^(^Yi^ r)=s\ip dist,(Y^r), x),

x

where ^ runs over the unit ball B^.(i) CF,. So for the limit ^=A(yO we also have
supdist(^(y),y)=c,

y'

where y ' runs over the ball By( i )CY.
We apply now the localization lemma (§ 5) and finish the proof of the main

theorem.

Final remarks. — Let F be a finitely generated almost nilpotent group without
torsion. By a result of Auslander-Schenkman (see [i]) one can easily show that T
contains a nilpotent subgroup A C F of index q with loglogq<2d, where d== growth (F).

This allows us to apply the main theorem to infinitely generated groups.

// F has no torsion and each finitely generated subgroup F' C F has growth at most d, then F
contains a nilpotent subgroup of finite index.

Let us now give a more effective version of the Main Theorem.

For any positive integers d and k there exist positive integers R, N and q with the following
properties. If a group F with a fixed system of generators satisfies the inequality # B^)^^ for
r=i, 2, . . ., R, then F contains a nilpotent subgroup F' of index at most q and whose degree
of nilpotency is at most N.

Proof. — We start with a definition. Let A and F', z = i , 2, . . ., be a system
of groups endowed with a fixed system of k generators. We say that the sequence (P)
converges to A if there is a sequence of balls B,==B(^-)CA with r,->oo for i->oo,
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and a sequence of bijective maps/of each ball B, onto the r,-ball in P centered at the
identity such that /(SiS^1)^^) {fW)~~1 for any two elements S^, 83 in A satisfying
IIM+1|82||^.

An arbitrary sequence of groups (P), each with k given generators, always has a
convergent subsequence. If the limit group A has a nilpotent subgroup of index <R
and of degree of nilpotency <N, then such subgroups exist in the groups P for all
sufficiently large fs.

Now, if we suppose that our theorem is false, we get a sequence of groups P,
7== i, . . . , such that the balls in each group P satisfy the inequality B^)^^ for
r=i, . . .,j, but none of the groups P has a nilpotent subgroup of index <_j and
of degree of nilpotency <_j. Taking a convergent subsequence and passing to the
limit we get a group A such that all balls in A satisfy B(r);<^, r==i , 2, .. ., and
such that A contains no nilpotent subgroup of finite index. This contradicts the Main
Theorem.

Question. — What is the dependence of the numbers R, N and q on d and k ? In
particular, does there exist an effective estimate of these numbers in terms of d and k?

A geometric application. — Let V^V be a complete Riemannian manifold such
that the values of the Ricci tensor on all unit tangent vectors of V are bounded from below
by — ( % — i ) K , K^o. Let F be the group generated by some isometrics y^, . . ., y&
of V. Suppose that for a point veV we have the following inequalities :

dist(y, y(y)).>£>o, for all yeF^;
dist(y, -fi{v))<_Cz, for G>_i and i = = i , . . . , k .

In this case, the geometric growth theorem of Milnor (see [8]) reduces to the inequality

#B(r)^4nCnrnexp(277Gr£VK), r = = i , 2 , . . . ,

where B(r) denotes the r-ball in F relative to the word metric associated to {yj. This
gives the following

Geometric theorem. — If s is sufflciertly small compared to n, G and K, that is
£<pi=(Ji(^, G, K)>o, then the group F is almost nilpotent.

Acknowledgements. — I want to thank H. Bass and J. Tits for their interest in this
paper and their many helpful comments and suggestions. I am particularly thankful
to J. Tits who kindly agreed to present his short proof of the theorem of Milnor-Wolf
in an appendix.
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APPENDIX
by JACQUES TITS

This appendix to M. Gromov's paper "• Groups of polynomial growth and expan-
ding maps "—hereafter referred to as [G]—arose from an attempt to understand
J. Wolf's article [10] (1). Our main purpose is to provide a short and self-contained
account of the results on nilpotent and solvable groups which are needed for the proof
ofGromov's main theorem and its converse. In Ai we show—in a slightly more general
context—that a finitely generated nilpotent group has polynomial growth, and, as a
by-product of the proof, we obtain a formula of H. Bass [Proc. Lond. Math. Soc. (3)3
25 (W2)? 603-614] giving the degree of that growth (proposition 2). In As, we observe
that one can, at little cost, make Gromov's proof of his main theorem independent of
the special case of that theorem for solvable groups, thus providing a new proof for that
special case as well (the statement, part of the result of Milnor-Wolf, that the growth
of a finitely generated solvable group is either polynomial or exponential, is not included).
The present text is made up of excerpts of a conference at the Seminaire Bourbaki
(February 1981, expose n° 572), slightly expanded and adapted.

A i. Growth of filtered groups

Let r be a nilpotent group and let (F,),^ be a system of subgroups such that
r== I\, [1 ,̂ iy| C r,_^. and I^ =={ i} for almost all i. By an j^generating set of F (relative
to the filtration (F,)), we mean a subset E of F such that E,==Enr, generates F, for
all i. Set E,'==E—E^i. We define thef-length of a word in the elements of EuE~1

as the increasing sequence (^i, ^ , . . . ) , where ^ is the length (in the usual
sense) of the contribution of E.'uE,'"1 to the word. An element of F is said to be
of f-length ̂ {r^,r^, . . . ) , with r,eR^, if it can be expressed as a word of f-length
(^,723, . . .), with n^r,. Assuming E finite, we denote by ^(r^, r^, . . .) the number
of such elements. If f' is the function defined in the same way as ^ but starting from
another finite f-generating set, there exist nonvanishing constants a, beVL, such that

f{ar^ar^ . . .)^'(ri, r^, . . .)^(6^, br^ . . .)

( i) Numbers between brackets refer to the bibliography of [G].
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for all sequences (r,). This legitimates the following definition: we say that the group F
has polynomial f-growth of degree ̂ d if there is a constant ceR^, such that, for all reR^.,
one has

f[r,r\r\ ...)^+i.

Proposition i. — If d, denotes the rank of the abelian group Fjr^i, then the group F
has polynomial f-growth of degree ^id^.

We proceed by double induction: a descending induction on a==sup{i r=I^}
and (given a) an ordinary induction on the minimum m of the cardinalities of all gene-
rating sets of r^/r^^. We choose the f-generating set E so that Card E^ =771, that
[Eu E~~1, EuE~1] C E, and that, if an element ofE^ has a nontrivial power inside F^_] ,
then its power with the smallest strictly positive exponent having that property also
belongs to E. Eet us choose j^eE^ and denote by F' the subgroup of F generated by
E^—{y}. We first prove the following assertion, by induction on q:

(*) if w is a word of f-length (^, n^ . . . ) in the elements of EuE~ 1 and if
(^i,j^2, . . . , Jp) is the contribution of {y^y~1} to w (thus, y^y or y~~1 for
all i, and j&^TzJ, then, for o^q^p, there is a word w^ representing the same
element of F as w, with the same contribution of {y->y~~1}^ starting by

J^i-^2 • • • V^ ^'n(^ whose f-length {n[,n^ . . .) satisfies the relations
(q\

^^^+^i-a+\^jni-2a+'"

The assertion is obvious for q=o. The induction hypothesis provides a word w^_^
starting with y^ .. . j^_^ and of f-length (^', n^, . . .) satisfying

( Q _ _ _ J \

<^^+(?-I)^-a+ ^ P , -2o+- - -

Now move y^ to the left by successive commutation. Its jumping over an element
of E^ introduces a new element belonging to E^_^ (possibly the identity). Therefore,
we eventually get a word Wq starting with j^ ... y^ and of f-length {n[, n^ . . . ) such
that <^<+<+a. hence (*).

Assuming n^r^ (for some reR^.), making ^^j&^r0, majorizing ( .( by q3 (^r^)

and denoting by e the smallest value of i such that r^=={i} , we deduce from (*) that

(**) every element ^eF of f-length^ (r, r2, . . . ) can be written as g = y s g / y
where [ j- < r^^ and g ' is an element of F' of f-length ̂  [er — \ s \ , er2 — \ s \, . . .).

If r/r' is infinite, the induction hypothesis (on (a, m)) applied to F' implies the existence
of a constant c'eR^ such that the number of possible choices for g ' is majorized by

^W-^+i.
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Since there are less than ar^t-i admissible values for s, the proposition ensues. If
r/r' has order t< oo, we can rewrite g asy1^, where o^s^<t, g[eF and the f-length
of g[ is ^{er, er2, . ..). This time, the induction hypothesis enables us to majorize the
number of possible elements g ' by c'r^+i (for a suitable c ' ) and the proposition
again follows, since ^ takes only finitely many values.

Lemma i. — Let F be a finitely generated nilpotent group of class e. Denote by Z the last
nontrivial term of its descending central series, by E a finite generating subset of F and by z an
element of Z. Then, there exists a constant ceR^ such that, for all neN, zn can he expressed
as a word of length c^/n in the elements of EuE~1.

The proof will be by induction on e. It is clearly sufficient to consider the case
where z is the commutator [x,y\ of an element A: of E and an element^ of the penulti-
mate nontrivial term of the descending central series. Let neN, let ̂  be the smallest
integer which is strictly larger than ^/n and let a^, a^ be the integers defined by

n==a^n[~l+a^, a^<n^, a^n[~1.

The induction hypothesis applied to F/Z and y mod Z implies the existence of a
constant c'eR^. (independent of n) and of two elements y^ and j^g of length ^c'n^
respectively congruent to y^1 and y^ mod Z. Now, the assertion follows from the
fact that the length of

^ = C^yi'1]. [^y.] ̂  ̂ y^. [^j

is < 2^1+4^1+2.

Proposition 2 (Bass-Wolf). — Let F be a finitely generated nilpotent group and let d, be
the rank of the i-th quotient FJF^^ of its descending central series (F,). Set d=^id,. Choose
arbitrarily a finite generating set E ofF and, for reR_^, let c(r) represent the number of elements
of r which can be expressed as a word of length ^r in the elements of EuE"1. Then, there
exist constants q, ̂ eR^. such that

c^r^c^c^+i

for all r , in particular, F has polynomial growth of degree d.

The existence of c^ is an immediate consequence of proposition i applied to the
descending central series. We prove the existence of q by induction on the class e of F.
Set d'==d—ed^ The induction hypothesis implies the existence of a constant ^'eR^
such that, for reR^., there exists a subset of F of cardinality ^c^' consisting of

w

elements of length ?$-, pairwise non congruent mod Fg. On the other hand, by

lemma i, there exists c^eR^ such that r\ has more than c^r6^ distinct elements of

length ^-. Hence the claim.
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(N.B. — The above proof of the existence of q, including lemma i, essentially
follows the line of the proof given by J. Wolf [10], who also obtains an upper bound
for c(r), sufficient to establish the polynomial growth but coarser than the upper bound
of proposition 2, which is due to H. Bass \loc. cit.]. Our proof of the existence of c^
obtained without prior knowledge of Bass9 result, is different from his, at least formally:
the introduction of the f-growth makes it less computational and, as it seems, somewhat
shorter.)

A 2. A special case of the theorem of Milnor-WoIf

In Gromov's proof of his main theorem, the only reference to the theorem of
Milnor-Wolf (stated in the introduction of [G]) is at the end of [G], § 4 (proof of the
" algebraic lemma 5?), and the reader will easily convince himself that only the following
very special case of the theorem is needed there (take for L the group A' of [G]):

Lemma 2. — Let L be a group. Suppose that there exists a homomorphism ^ o/'L onto Z
whose kernel is finitely generated and almost nilpotent. Then L itself is almost nilpotent or its
growth is exponential.

The following argument is extracted from [10] (where it is however somewhat
hidden). We first prove:

Lemma 3. — Let A be a free abelian group and let a : A->A be an automorphism.

(i) If a (extended to A®C) is semi-simple and if all its eigenvalues have absolute value one,
then a has finite order.
(ii) If a has an eigenvalue of absolute value ^2, there exists XeA such that the elements

£o^-^£la(^)"^-£2a2(^)+• • • ^t^""0 or I? an(^ ==0 f^ almost all i)

are pairwise distinct.

(i) It suffices to observe that the orbits of {oL2\2eZ} in A®C have compact closures,
from which follows that the orbits of that same group in A are finite.
(ii) If (3 : A->C is a linear form such that ? o a = p(B, with [ p | ̂  2, then the assertion
is true for every XeA such that (B(X)=)=o; indeed, one has

(3(i;.,a^(X))=(Ss,p^).PM
i=0 i. == 0

oo

and, in view of the inequality satisfied by p, the numbers S £»p1 are pairwise distinct.
i==0

Proof of lemma 2. — Let z be an element ofL such that ^{z)==i, and let L^ be the
greatest nilpotent normal subgroup of L^; upon substituting L^ for L^ and the group
generated by L^ and z for L, we may—and shall—assume that L^ is nilpotent. Let
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(L,)i^^g be a central series of L^ normalized by z, and let a, denote the automorphism
of LJL^i induced by int 2'. We suppose the series (L,) chosen in such a way that,
whenever LJL^^ is infinite, it is a free abelian group of which a^ is a semi-simple
automorphism : any central series normalized by z clearly has a refinement satisfying
that condition. If all oc^ have finite order, there exists an integer s ̂  i such that z8

centralizes each quotient LJL^^', then, the group generated by L^ and z8 has finite
index in L and is nilpotent, and the lemma is proved. Let us therefore assume that,
for somej, o .̂ has infinite order. By lemma 3 (i), there exists an integer t such that o^
has an eigenvalue of absolute value ^2 and, by lemma 3 (ii), there exists .xeL such
that the elements

x^.^xz'^.^xz'21)^. . . . (^=o or i and =o for almost all i)

are pairwise distinct. This implies that L has exponential growth, and the proof is
complete.

(Note the similarity of the last argument with the proof of lemma (b) of [G], § 4.)
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