@article{PMIHES_1981__53__79_0, author = {Akbulut, Selman and King, Henry C.}, title = {Real algebraic structures on topological spaces}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {79--162}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {53}, year = {1981}, mrnumber = {83h:58009}, zbl = {0531.57019}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1981__53__79_0/} }
TY - JOUR AU - Akbulut, Selman AU - King, Henry C. TI - Real algebraic structures on topological spaces JO - Publications Mathématiques de l'IHÉS PY - 1981 SP - 79 EP - 162 VL - 53 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1981__53__79_0/ LA - en ID - PMIHES_1981__53__79_0 ER -
%0 Journal Article %A Akbulut, Selman %A King, Henry C. %T Real algebraic structures on topological spaces %J Publications Mathématiques de l'IHÉS %D 1981 %P 79-162 %V 53 %I Institut des Hautes Études Scientifiques %U http://archive.numdam.org/item/PMIHES_1981__53__79_0/ %G en %F PMIHES_1981__53__79_0
Akbulut, Selman; King, Henry C. Real algebraic structures on topological spaces. Publications Mathématiques de l'IHÉS, Tome 53 (1981), pp. 79-162. http://archive.numdam.org/item/PMIHES_1981__53__79_0/
[1] The topology of real algebraic sets with isolated singularities, to appear in Annals of Math. | Zbl
and ,[2] A topological characterization of two dimensional real algebraic sets, to appear. | Zbl
and ,[3] A topological resolution theorem, Publ. Math. I.H.E.S., 53 (1981), 163-196. | EuDML | Numdam | MR | Zbl
and ,[4] Differentiable Periodic Maps, Ergebnisse der Mathematik, vol. 33, Springer, Berlin (1964). | MR | Zbl
and ,[5] Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), 109-326. | MR | Zbl
,[6] Algebraic topology, McGraw-Hill, 1966. | MR | Zbl
,[7] Combinatorial Invariants of Analytic Spaces, Proceedings of Liverpool Singularities Symposium 1, Lecture notes in Mathematics, Vol. 192, Springer (1971), 165-168. | MR | Zbl
,[8] A relative Nash Theorem, to appear in Trans. Amer. Math. Soc. | Zbl
and ,