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THE INDEX OF SIGNATURE OPERATORS
ON LIPSCHITZ MANIFOLDS

NICOLAE TELEMAN

Introduction

Before discussing the results of this paper we shall say a few words about its genesis.
In 1970, I. M. Singer [9] presents a comprehensive program aimed at extending

the theory of elliptic operators and their index to more general situations: to " non-
smooth manifolds, non-manifolds of special type and to a context where it is natural
that integer (index) be replaced by real number ".

The author focused on the following problems from Singer's program: producing
a Hodge theory and signature operators on circuits (pseudo-manifolds) [n] and on
PL manifolds [12] looking for a possible analytic proof of Novikov's theorem about the
topological invariance of the rational Pontryagin classes. A couple of years later, the
author produced a Hodge theory and signature operators on PL manifolds, in [13]
and [14].

In 1977, D. Sullivan [10] formulated the problem of constructing an index
theory—which would lead to a new analytic proof of Novikov's theory about Pontryagin
classes—on Lipschitz manifolds; the same problem was proposed to the author by
D. Sullivan in a letter (1979).

The interest in studying Lipschitz manifolds derives from the following two
desirable, but conflicting features (1) of the Lipschitz homeomorphisms in R", see [10]:
they preserve a rich analytic structure, whereas, from the topological point of view,
they are very manageable. H. Whitney's [15] results show that any Lipschitz manifold
has a complex of "flat forms" which satisfies some basic properties; the theory of
Hausdorf measure and dimension on lower dimensional subsets—with important geo-
metric consequences—is available.

The topological property we referred to, implies the following fundamental result
due to D. Sullivan [10]: any topological manifold of dimension =t= 4 admits a Lipschitz
structure which is unique, up to a Lipschitz homeomorphism close to the identity.

Partially supported by the NSF Grant # MCS 8102758.
(1) Unlike other known categories of manifolds.
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40 N I C O L A E T E L E M A N

The main result of this paper is the Theorem 13.1: for any closed Lipschitz
Riemannian manifold M and for any Lipschitz complex vector bundle ^ over M, there
exists a natural signature operator D^" : W^(M, i;) ->Wo"(M, ^), where W^(M, S) are
Hilbert spaces of La-forms on M with values in ^; this operator is a Fredholm operator,
and its index is a Lipschitz invariant of the pair (M, ^). (When M is a smooth
Riemannian manifold, this operator is precisely the signature operator of M. F. Atiyah-
I. M. Singer [3] defined on the Sobolev space of order i.)

Although all techniques and results of the paper are necessary for the proof of
this theorem, many of them are interesting by themselves. They include: Lipschitz
Hodge theory (Theorem 4.1), a Rellich-type lemma (Theorem 7.1) and an excision
property of the index of signature operators (Theorem 12.1).

The Lipschitz Hodge theory we present here is a slight modification of our combi-
natorial Hodge theory [14]. D. Sullivan [10] had pointed out that on any Lipschitz
manifold L^-forms, exterior derivatives and currents may be defined; all these objects
are basic for the Hodge theory. In this construction, results due to H. Whitney [15]
are involved.

The Hodge theory suffices for the computation of Index D^" when S is a trivial
bundle. The computation of this number when ^ is an arbitrary vector bundle requires
substantially more analysis. In the second case the compactness of the inclusion
W^(M, ^) ̂  W^(M, E;) must be invoked. The proof of this result requires new ideas,
see §§ 7, 8.

Another serious difficulty arises in proving that Index D^ does not depend on
the Riemannian metric on the base manifold. The starting difficulty consists of (he
fact that a change of the Riemannian metric produces a drastic change of the Sobolev
space of order i, W^(M, ^). The desired result will be derived from the Excision
Theorem 12.1.

The author thanks I. M. Singer and D. Sullivan for the problematic they created,
and which has led to this paper, and for useful conversations.

The author thanks D. Sullivan and P. Trauber for their criticism on an earlier
version of this paper.

The content of this paper was produced at the California Institute of Technology
Pasadena, California, and while the author visited Scuola Normale Superiore di Pisa,
Italy. Partial financial support was provided by the Rome University, Italy.
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LIPSGHITZ HODGE THEORY

All manifolds considered throughout this paper are compact, oriented topological
manifolds without boundary, with Lipschitz structure.

A Lipschitz structure on a topological manifold M of dimension n is a maximal
atlas U =={Ua,Oa}aeA? where 0^:Ua ->Va ^ R" is a homeomorphism from an
open set U^ C M onto an open subset V^ ofR", and the changes of coordinates Og o O^"1

are Lipschitz functions, i.e.
|0p o O^M - Op 0 ̂ (jO | ̂  K,p |^ -^|

for any x,jy e<&^(Ua n Up), with K^p a constant.
It is known, see D. Sullivan [10] that on any Lipschitz manifold, La-forms, exterior

derivatives and currents can be defined. These objects are basic for this paper, so we
shall define them from the beginning.

i« Differential forms

Let M be Lipschitz manifold as above.
An 'L^-form o> of degree r on M is, by definition, a system

^ ^^oJaeA?

where each co^ ls a complex La-differential form of degree r on the open subset
V^ = Oa(Ua) of R71, and they are required to satisfy the compatibility conditions:
(I.I) (000<&^1)*(00=^

(the pull-back (Op oO^'1)* is defined component-wise).
This definition makes sense in view of the following result (see e.g. H. Whitney [15],

p. 272):

Theorem 1.1 (Rademacher). — Let f: U ->R be a Lipschitz function defined on an
open subset U of R". Then:
(i) the partial derivatives 8/19^ exist almost everywhere on U, i <_ i < n,
(ii) SflSk* are measurable and bounded.

The space of all La-forms of degree r on M will be denoted by H(M).
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If a is any L^-form on an open subset U of R71, then cr is said (classically) to have
distributional exterior derivative da in La if there exists an La-form denoted da in IL^^1^)
such that for any G^-form 9 with compact support in U:

(i.a) J ( y A r f ( p = (- ^^J^rAy

deg a + deg <p + i = n.

If co =={<*>a}aeA ^HCM), and if rfco^ eH"1"^^) for any a eA, then we say
that (o has distributional exterior derivative rfco ={^a}aeA m L^^M). Of course,
in order to check that this definition is correct, it remains to verify that the forms rfco^
satisfy the compatibility conditions:
(1.3) (OpoO;-1)^^^.

The relation (1.3) follows from the following:

Proposition i.a. — For any Lipschitz mapping f: Q^ —^Qg? where 0^ and Og are
relatively compact open sets in R", and for any form (A e L^Qa)? the form f*<^ belongs to L^(Qi), ayirf

(1.4) ^(o)=/We^+l(^).

Proo/. — (i) It was proven by H. Whitney [15], Theorem gC, p. 305, that (1.4)
holds for Lipschitz mappings/and//^ forms co (a form (o is flat ifco and Ao have bounded
measurable components).

(ii) A fortiori, (1.4) holds for Lipschitz mappings and smooth forms.
(iii) To prove (1.4) for an arbitrary Lg-form <o, we approximate co by smooth

forms, and we apply (ii). For a complete account of this last step, see the Appendix 14.0.

a. L^ De-Rham Complex

We introduce the spaces
(a.i) Q;(M) ^(olcoeI^M^eH+^M)}. -

The exterior derivative d satisfies
(a.a) ^==0 ;

therefore
(a.3) ^(M) EE { ... o -> Q^(M) -^ Q^(M) 4.

^(M)^^)->...}
is a cohomology complex.

Let L''(M) denote the vector space of complex flat forms of degree r on M. The
wedge product of any two flat forms is still a flat form, and hence © L''(M) is a graded

differential algebra. It follows from this that the wedge product induces a structure
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44 N I C O L A E T E L E M A N

of complex algebra on the homology of ©L^M). On the other hand, L*(M), the
complex of flat forms on M, is a subcomplex of the complex t^(M).

Theorem 2.1. — (i) If i denotes the inclusion
(2.4) i: L-(M)^^(M),

then the induced homomorphism in homology:
(2.5) i.: H,(V(M))->H,(QS(M))

is an isomorphism.
(ii) H,(L'(M)) and H,(Q^(M)) are canonically isomorphic to H^M, C).
(iii) If co and a are arbitrary cocycles of complementary degrees (say, r and dim M — r )

in ti;(M), then
(2.6) ((0, or) h^ CO A (7

induces a non-degenerate pairing'.

(2.7) H,(QS(M)) x H^_^(M)) ̂ C
CLyPoincare duality).

Proof. — (i) and (ii) Notice that I/(M), Hi(M) are modules over the algebra of
Upschitz functions on M, and hence the associated differential sheaves of germs L*(M),
Q^(M) are fine. These sheaves are resolutions of the constant sheaf C (Poincar^ lemma).
The proof of the Poincar^ lemma for the sheaf I/(M) can be performed as in the smooth
case; for the case of the sheaf Q^(M), see e.g. [14]. The generalized de Rham theorem
applied to these sheaves and morphisms proves (i) and (ii).

(iii) If co is a coboundary and or is a cocycle in the complex Q^(M), then Lemma 4. i
below gives:
(2.8) J ^ C O A C T = = O ;

this shows that the pairing (2.7) is well defined.
We know from (i) that any cohomology class in H»(Q^(M)) may be represented

by a flat cocycle. On the other hand, (2.6) defines also (for co and a flat forms) a pairing
(2.9) H,(V(M)) x H^M-r(L-(M)) ̂  C.

It is well known that the pairing (2.9) is non-degenerate, and hence the pairing (2.7)
is non-degenerate. For the reader's benefit, we recall here, briefly, why (2.9) is
non-degenerate. H. Whitney's theory [15] implies that, by means of the correspondence

{flat form ̂  flat cochain, | ^± evaluation on [M],
wedge product ^± cup product)

the pairing (2.9) becomes the topological Poincare5 pairing, which is known to be
non-degenerate.
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3. Riemannian metrics

A Riemannian metric on M is a collection F = {I\}aeA? where I\ is a Riemannian
metric on V^ = ^a(Ua) c ^9 ^h measurable components, which satisfy the compa-
tibility conditions
(3.1) (^oo^rr^r,.

In addition, the Riemannian metrics I\ are required to define La-norms on V^
which are equivalent to the standard La-norm, i.e. there should exist two positive
constants ^5 K.̂  such that, for any smooth form <x) with compact support in V^
(3.2) MHI<IHla:<KJH|;
here || || and || ||a denote the usual La-norms:

(3.3)
IMI2^
IMÎ J

(^ A *CO

where * and *„ are ̂ e Hodge star operators of the Euclidean metric and of the metric I\,
respectively.

Any such Riemannian metric F will be called a Lipschitz Riemannian metric on M.
This norm derives from the scalar product

(3.3') (^CT) = = j 9 A * f f , <p,(yeU(M).

We show now that any compact Lipschitz manifold M has Lipschitz Riemannian
metrics. For, we choose a finite Lipschitz subatlas {U,,OJi^,^N on M such that
all U^ have boundaries of measure zero. We partition M by the sets:

Ti=U,

T—U^U^, 2 < z < N ,

and we transfer on each T^ the standard Euclidean metric of R" via the coordinate
map 0,.

For any Lipschitz Riemannian metric
r ={I\}aeA. and for ^y (0 ̂ ^aeA e H(M),

the form *pC>> defined by
(3.4) *r(0 ={*a^a}aeA

is an La-form of complementary degree on M; we define by means of it the La-norm of <o:

(3-5) IMI^J^A*!^;

if there is no danger of confusion, the subscript F might be omitted in the sequel.
This is a norm on H(M) which makes L^(M) a Hilbert space. Two different

Lipschitz Riemannian metrics on M define equivalent norms on L^(M).
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46 N I C O L A E T E L E M A N

4. Hodge Theory on Lipschitz Manifolds

Let r be a Lipschitz Riemannian metric on the manifold M"* of dimension m^
and let * be the operator (3.4). This operator is an isometry:

^: L^M^LTW
and
(4.0) *,̂  == (- i)^-).

The operator 8y acting on forms of degree r is introduced formally as in the
smooth case:

(4.1) Sr==(~ l)^-^4-1*^.

Its domain of definition is the space
(4.2) ^(M) === ^-'(M) CH(M).

The following spaces W^(M) are the Lipschitz analogues of the Sobolev spaces
of forms of degree r and order one:
(4-3) WS;(M) == ^(M) n QS(M) = {(o | (o e H(M), with Ao, rf*<o e WM)}.

Remark, as a new feature, that the spaces W^ depend (1), by means of the
•-operator, on the Riemannian metric; this dependency is effective, as shown by
Proposition 2.4 (ii), in [14].

It is easy to check that W^(M) is a Hilbert space under the diagonal norm [[ ||i:
(4.3') ll^l'i-ll^ir+ll^ll'+ll^ll2.

We define now the spaces of harmonic forms'.
(4-4) jy"(M) == {co | co e W^(M), Ao == o, 8(o == o}.

Any harmonic form is a cocycle in the complex t^(M); the homomorphism:
^\ ^r(M)->Hr(M,C)

(4-5) <oh>H

will be called Hodge homomorphism.

Theorem 4.1 (Hodge Theory).

For any closed^ oriented^ Lipschitz Riemannian manifold M™, and for any degree r:
(i) the Hodge homomorphism

x^. Hr{M)->'Hr{M,C)

(1) In contrast with the smooth case.
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is an isomorphism:

(ii) *: ^(M^^-^M)

is an isomorphism'^

(iii) there is a strong Hodge decomposition

(4.6) U = JT(M) C d^-\M) © SQ^M),

wA^A ^ a direct, orthogonal decomposition by closed sub spaces in L^(M).

Proof. — The proof is based on the following Lemmas 4.1-4.4.

Lemma 4.1. — Suppose <o eU(M). Then o eQ^(M) ^ arorf only if there exists
Ao eH-^M) ^A ^,/or fl^ 9 eQ^-^^M),

(4.7) J^(OArf<p= (-ly-^J^coAcp.

Proof. — By a partition of unity argument via Lipschitz functions, checking (4.7)
can be reduced to an analogue problem where o is supported in an open set in R*".
There the result is well known and can be proved by a little convolution argument.

Lemma 4.2. — Ker^T is closed in L^(M).

Proof. — Let co, e £1^(M), i e N, dvf = o, lim co1 = <o. Let <p be any element
in ^"''"^(M); we have, using (4.7)3

f o A r f ® = lim fco.AJo = (— i)*'4'1 lim f ^Ao
f. Q\ J i->COj ' ' v ' »-^00 J
l4-0} , ^ , . ,. r== (—- l Y ' 1 lim o A 9 = o;

i—>- oo J

from Lemma 4. i we deduce that rfo == o.

Lemma 4.3. — Im^"1 is closed in L^(M).

Proof. — Suppose that o, = dQ^ and lim (*>, = o). Then co, are cocycles, and
i -> oo

from Lemma 4.2, we deduce that co is a cocycle. For any cocycle ^ we have, again
using (4.7),

(4.o) fco A ^ = lim f c o , A S = = lim fdO.A S = ± lim f6 ,ArfS == lim o == o,%- *" j i->ao j ' i->aoj ' i-^aoj i->ao

which implies, in view of Theorem 2. i (iii) that the cohomology class of co is zero, or
that <o is a coboundary.

Lemma 4.4. — h e H^M) o {h e Ker d\ h l Im flT-1}.

Proof. — A l Im rf*'"1 00= (^9, A) = Jd<p A *A for any <p e Q^"" '"^M), which,
by Lemma 4.1, is equivalent to rf(*A) = o.
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48 N I C O L A E T E L E M A N

The Lemmas 4.2-4.4 imply the statement (i) of Theorem 4.1. The statement (ii)
is an immediate consequence of the definitions, and of (4.0).

For which regards the proof of (iii), we already know that ^Q^'^M) is closed
(Lemma 4.3). Similarly, by (4.0),

SQ^M) == ̂ (^-^(M)) = ̂ ^-^(M)),

which is closed because * is an isometry and ^Q^^^M) is a closed subspace, as seen
before. Finally, 7:T(M) is closed in H(M) because it is finite dimensional (Hodge
isomorphism).

The fact that the three subspaces ^T(M), ^-^M), ^-^(M) are mutually
orthogonal is a consequence of Lemma (4.1) along with (4.0). Any element in L^(M)
which is orthogonal to ^O^^M) © SQ^^M) is, for the same reason, a harmonic
form. The proof of Theorem 4.1 is completed.

For a proof of the combinatorial analogue of Theorem 4.1, the reader can refer
to N. Teleman [14]. For a different approach and construction of Hodge theory on
(c admissible " pseudo-manifolds which are smoothly triangulated, see J. Gheeger [4].
See also J. Dodziuk [5] for Hodge theory on non-compact smooth manifolds.

Earlier abstract treatments for Hodge theory are due to G. Fichera [6] and
M. Gaffney [7].

5. Signature Operators

In this section we present a first application of the Lipschitz Hodge theory.
For the sake of uniformity of notation we agree to denote H(M) by W^(M).

We introduce also, for j == i or o,
dimM

(5.1) W;(M) == ©^ WJ(M),

and
dimM

(5.1') ^T(M) = © IT(M).
r=0

The operator

D=d+S
(5.2)

D: (WI(M),|| HO-(W;(M),1| ||)

is clearly a continuous operator.

Proposition 5.1. — The operator D is a Fredholm operator.

Proof. — It is easy to check that
(5.3) KerD==^(M).
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Indeed, if u eKerD, then the strong Hodge decomposition (4.6) gives:

o = {{d + 8)u, {d + 8)u) = {du, du) + {Su, 8^),

which shows that

du ==o, 8u == o,

that is, u is harmonic. The reverse inclusion is obvious.
We are going to determine the range of D. We shall check that

(5.4) Im D = ̂ (M) C 8Q^(M),

where Q;(M) == © Q;(M),

and

(5.5) ^(M)=©^(M).

Once (5.4) is established, the strong Hodge decomposition (4.6) will supply
that D has closed range, and

(5.6) GokerD=^(M).

It is clear, from the very definition of D, that

(5.7) Im D <= d^{M) ® 8^(M);

conversely, let a be any element in Q^(M); then (4.6) tells that a may be decomposed:

(5.8) f l =A+Ac+8(3 ,

where h e ̂ (M), a e 0;(M), and (3 e ̂ (M).

As <z. A, dc(. belong to Q^(M), it follows that 8(3 belongs to the same space. In addition,
8(BeQ;(M), because 82 == o, and hence 8[3eW^(M); then, from (5.8), we get

(5.9) rffl = ̂ 8(3 = D(8(B)

which shows

(5.10) dQ^(M) <= ImD.

We can prove similarly that

(5.11) 8Q*8(M) <= ImD.

From (5.10) and (5.11) we get
(5.12) d^(M) © 8Q*s(M) c Im D,

which together with (5.7) implies (5.4).

261
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50 N I C O L A E T E L E M A N

Proposition 5.2. — The space W^(M) is an infinite dimensional separable Hilbert space.

Proof. — W^(M) is separable and infinite dimensional. The Proposition 5.1
along with the open map theorem completes the argument.

From now on we suppose that dim M = 4(1.
The operator D splits out [3] in a direct sum of two operators:

(5.13) D==D-®D4-

by means of the involution
(5.14) T : W;(M) ^W^-*", T = i^-1^ *, i = v^rr;

T keeps the subspace W[(M) of W^(M) fixed and
(5.15) TD==-DT.

Let W^(M), resp. W^(M), denote the eigenspaces in W[(M), resp. WS(M),
corresponding to the eigenvalues ± i for the involution T in W^M), resp. W^(M). One
defines D'̂  to be the restriction ofD to W^(M), and these operators act as in the smooth
case [3]:

D^ W^M^Wo^M),
(5•I5) D=D-<W.

Theorem 5.3 (Signature Theorem). — For any closed oriented Lipschitz manifold M
of dimension 4^3 with Lipschitz Riemannian metric^ D± are Fredholm operators and

(5.16) Index D4- ==. dim Ker D4' — dim Goker D4' = Sig M.

Proof. — D is a Fredholm operator by Proposition 5.1, and from (5.15) we get
that its sumands D~, T)+ should be Fredholm operators also.

The computation of Index D4" follows from Hodge theory, see Atiyah-Singer [3].

The operator D4' is called signature operator.
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GENERALIZED SIGNATURE OPERATORS
AND RELLICH-TYPE LEMMA

6. Signature operators with values in vector bundles

We keep all notations from the previous sections.
Let ^ -> M be a Lipschitz complex vector bundle of finite rank over the closed,

oriented Lipschitz Riemannian manifold M.
We introduce the following spaces:

Z(M) == algebra of complex valued Lipschitz functions on M.
Z(S) = Z(M)-module of Lipschitz sections in !;•

(6.1) WJ(M, SQ == W;(M) ®^) L^), j = o or i, o < r < dim M,

W;(M,iO =©W;(M,iO,

W^(M, S) == ^(M) ®^Z(E;), j = o or i.

T^ == T® i^ is an involution in W^(M, ^).
We intend to define signature operators with values in S? see M. F. Atiyah, R. Bott,

V. K. Patodi [i] and M. F. Atiyah, I. M. Singer [3]. To this aim, we take a vector
bundle embedding V : ̂  -> N, where N -> M is the product bundle of rank N on M.
Considering N endowed with the trivial Hermitian structure, ^ itself will become a
Hermitian bundle by restriction, and we will refer to V as a linear connection in ^.

Let ^1 denote the orthogonal complement to E; in N.
We have for j == o, or i:

N

©W;(M) =W;(M,N) =W;(M,S) ©W;(M,^-),
(6.2) ^

© W^M) = Wj^M, N) == Wj^M, S) © W^M, ̂ ).

The relations (6.2), entitle us to introduce a Hilbert space structure on W,*(M, ^)
and W,̂  (M, ^) given that they are closed subspaces of the direct sum of N copies of
the HUbert spaces: W;(M), W^M).

Let p^, ^, p^± and i^± denote the obvious projections and inclusions:

(6.3) W;(M,S) t^ W;(M,N) ̂  WJ(M,^).
^ ts-L
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The operator

(6.4) D -̂ == ̂  o (D^^ejD) o ̂  W?-(M, S) -> Wo-(M, S)
N

will be referred to as signature operator with values in ^.
The basic problem of this paper consists in showing that the operator D^" is a

Fredholm operator and that its index depends only on the Lipschitz structure of the
bundle ^ and its base manifold M. In the remainder of this paper we will provide
all the necessary analysis for the proof of that statement.

Notice that the operator D^ depends on two arbitrary structures, in addition to
the Lipschitz structure on M: i) a Riemannian metric on M, and 2) a connection V in ^.

7. The inclusion W^(M, ?) ̂  W^(M, §) is compact

In the forthcoming sections § 7-8 we shall prove the following Rellich-type result:

Theorem 7.1. — For any Lipschitz vector bundle S over the oriented closed Lipschitz
Riemannian manifold M^ of any dimension m, the inclusion:

(7.1) (WI(M,S),|1 ||i)->(W;(M,S),|| ||)

is compact.

Corollary 7.1. — The signature operator D "̂ is a Fredholm operator, and its index

Ind D^ == dim Ker D -̂ — dim Coker D -̂

does not depend on the connection V.

Proof. — It is easy to check that

D -̂ © D ĵ. == D^ + A, where D^ == D4- © . . . © D+ (N times),

and A is a bundle homomorphism having, locally, bounded measurable coefficients; hence
||A(o||o^< Const. 11 (o ||i for any co eW^(M, S). From the Proposition 7.3 below along
with the Theorem 7. i we deduce that the operator A is compact. By Theorem 5.3,
D"1', and therefore also D^, are Fredholm operators. Therefore D^~ © D^j. is a compact
perturbation of a Fredholm operator, so it is a Fredholm operator itself, and so is D^".

If V, V are two connections in ^, and D^", D^4' are the corresponding signature
operators, for the same Lipschitz structure and Lipschitz Riemannian metric, then

D^ = D^ + A,

where A is an operator of the same type as before, and so it is compact. Hence the
index is unchanged.
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Proof of Theorem 7. i

By means of a Lipschitz partition of the unity on M, we may reduce the problem
to a local one in R™; for the same reason we may suppose that the bundle ^ is trivial.

Let U denote a relatively compact open set in R71 with boundary of measure
zero. We shall use on U two Lipschitz Riemannian metrics: the standard Euclidean
metric F, which in some instances will be thought of as defined on all of R^ and an
arbitrary Lipschitz Riemannian metric F.

The metric F defines a star opertor *, a scalar product (3.3') and norm (3.3).
The coresponding objects deriving from F will be indicated by adding ^.

Set U(U) C L^R") for the subspace of forms of degree r with support in U.
Both norms || ||, |[ ||~ lead to the same spaces of La-forms on U, with equivalent norms.

For any r we introduce:

(7.2) WI(U) == {a | a e L;(U), such that da e U-^U) and d * a e L^-^^U)},

d being the distributional exterior derivative, and we define on \V^(U) the diagonal norm:

(7.3) ll^i-IHI'+ll^+ll^ll2

which is equivalent to the || H^-norm.
We shall chedc that {W^(U), || \\^} is a Hilbert space. Notice then, that the

obvious inclusion W^(U) C U(U) is continuous.
For, let {a^C^N[(\J) be a Gauchy sequence in the diagonal norm. Then

{^n}n3 {^nL? {d * ^nL are Cauchy sequences in L2(U) and so they converge here; say
lim a^ = a.
n-*.oo nn-»-oo

For any smooth form b with support in U,

( a ^ d b === lim f a„ A db == (— i)^1 lim f da^ A b
JB"* n -^ooJR^" ' * v / n-^oojB'" n

-^l^lL^da^
and ^^db^}im^a^db={^ir-^^^^^^

which show that a e^V[(U), and

da = lim da^ d * a = lim d i a.,.
n->oo " n->ao n

In the sequel F: L^R™) <=> will denote the Fourier transform, componentwise
defined by

(7.4) {Fa){x) = O^)-^ e-^aW.

The proof of Theorem 7. i is based on the following two propositions.
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Proposition 7.2 (Basic Estimate). — For any relatively compact open set UCR™ with
boundary of measure zero, and any Lipschitz Riemannian metric F on U, there exists a positive
constant K such that

(7.5) II^I^Kd^^l'+l^^^j2}

for any a e W^(U), o <_ r <^ m, where r : JV -> [o, oo) is the Euclidean distance to the
origin (rV. ...,^) ==S^).

The constant K may be taken in accordance with (8.4).
IfF is the Euclidean metric, then the inequality in (7.5) becomes equality with K == i.

The proof of Proposition 7.2 will be deferred to Section 8.

Proposition 7.3. — Let S and T be two continuous linear operators from the separable Hilbert
space X into the Hilbert spaces Y^, Yg:

Suppose (i) T is compact^ and (ii) there exists a positive constant K such that, for any x e X,
\\Sx\\ ̂  K \\Tx\\. Then S is compact.

Proof of Proposition 7.3. — Take any bounded sequence {^}^gzCX; we shall
prove that there exists a subsequence of{SA*yJ^z which converges in Yr

The operator T being compact, there exists a subsequence of{T^}^gz (which
we suppose to be the sequence itself) converging in Y^; this sequence is, a fortiori, a
Gauchy sequence. The hypothesis (ii) implies that {SA^gz is a Gauchy sequence
in YI, and therefore it converges in Y^. This proof is due to A. Schep.

Now, we can pass to the proof of Theorem 7.1. For, let us consider the following
operators:

S and T : W^U) -> L^R^ © L^R"*),
(7.6) S : f lK(^ f l ) ,

T: a^t^Fda^Fd^a}.
\r r )

We will check that S and T verify the hypotheses of Proposition 7.3. We discuss
first the case m ̂  3.

The operator S is, clearly, continuous^
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In order to verify that T is continuous and compact, it is enough to show that
the operator

Q: LCT^I^R"), o ^ r ^ m ,

Q : a ^ ^ F a

is defined, continuous and compact because T can be factorized:

W^(U) W U-^U) ©Lr^TO (Q1^ L^R-) ©L^R-),

and the first operator is continuous.
In order to study Q, we decompose it in two operators Q^= Qo + Q,oo- These

operators are
Qo == FQ, and ^ == (i - F)Q,

where F rR™-^^ , i] is a G^-bell function, with compact support, identically i on
a neighborhood ofo. We show that Q^o and Q^ are defined, continuous and compact.

The operator Q^Q is:

(Q^)W = (^-^J^.—^.a^)^.

The La-norm of its kernel on the compact set U X Supp F is:

(^)— f F^ e-^ 2 d^dx < (STT)— f -^ . f .̂
v / JUxSuppF )̂ •" JsuppF^W JU

r </.vIf m >, 3, -a7-. < oo, and therefore Qo is a Hilbert-Schmidt operator.
JSuppF r W

In consequence, it is compact.
Concerning Q^, notice that F^Q^ ls a pseudo-differential operator of order — i,

and therefore it is compact. Hence Q^ and T are compact.
It remains to check (ii) from Proposition 7.3. We have:

||Sa|p=2|M|2

U i I I 2 I I i ~ II2
||T.||2= ̂ | +|^rf.a||.

The basic estimate (7.5) supplies the fulfillment of condition (ii) of Proposition 7.3.
Therefore, Proposition 7.3 says that the operator S from (7.6) is compact; a fortiori,
the inclusion ofW^(U) in U(U) is compact, and Theorem 7.1 is proved for m>. 3,
once Proposition 7.2 will be established.

Before discussing the proof of Proposition 7.2, we intend to show that Theorem 7. i
proved only for m ̂  3 implies that same Theorem in any dimension.
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For, let M be a Lipschitz Riemannian manifold of any dimension, and let T3

denote Ac 3-dmiensional torus endowed with the standard Riemannian metric. The
space W,(M , ^), j = i, o, may be thought of as a subspace of WtM" x T3 E x T3}
through the isometric embedding

(7-7) O)I-»<O®IT., o>eW;(M,S).

Now, dim M x T3^ 3 and so the inclusion:

W:[(M X TU x T3) 4. w;(M x T3, ^ x T3)

is compact; therefore, the restriction of the inclusion i to the subspace W:(M S) will
be still compact, which completes the discussion.

8. Proof of Proposition 7.2. (Basic Estimate)

Lemma 8.1. — IfH is any Hilbert space, then:

(8.1) ||a+A|12^ |M|2 -ilW, foranya.beH.

Lemma 8. a. — Let P^, P^ be two complementary, orthogonal projectors in the Hilbert
space H, i.e.

(8.2) P?=P., i=i,2, P,+P,=i^

(Pi.ff, Pa )̂ = o for any a, b e H.

Z<< A be any bounded, strictly positive operator in H. Then there exists a positive constant K
such that

(8.3) IMl^KdIP^Iia+IIP^Ip'}, anyaeH.

One can take

(8.4) K=(G2+3||A||2+2)/C2,

where C defines the positivify of A:

(Aa,a)^G||a||2, o<C<i .

Proof. — As P.H, i = i, 2, are complementary, orthogonal closed subspaces
m H, any element a e H can be uniquely decomposed as a = a^ + a^ a-e P.H
and ||fl||2 = ||^||2 + [j^j|2. For ^ny real constant k, we have, using (8. i), * '
(8.5) k ||P^||2 + ||p,Aa||2 = k ||aJ|2 + ||p^^ + p^,||2

^||PA||2+^||p^||2-j||p^||2

^(A-jllA112)•ll^ll i !+^|jP2Aa,|^

,86<



THE INDEX OF SIGNATURE OPERATORS ON LIPSCHITZ MANIFOLDS 57

This inequality proves the lemma for a^ = o. So, "we may suppose flg 4= o.
As a^ e PgH, Parseval's equality, along with the positivity of A, give

(8.6) 1|P,A^1|^ |(A^,^)|Sc2||^.

Now, (8.5) becomes

(8.7) k\\P^+\\f,Aa\\^(k-^A\\^.\W+^C^\a^.

If we take k == J- C2 + 3 ||A||2 + i in (8.7), we get

A(||Pia||2 + ||P^||2) ̂  k \\P,a^ + HP^I^

^^C2(11^112+| |^112)=^^| |<^|p,

which completes the proof.

Lemma 8.3. — Suppose a eL^R") is compactly supported and has da eL^^R"1).
Then:
(8.8) Fda = irdr A Fa, i == /\/~=l.

Proof. — By a convolution argument you can show that there exists a
sequence {^n}nez °^ smooth forms with compact support in R"1, such that

lim a == a, lim da^ = da, in L^R"^.
n -> oo n -> oo

Therefore, as F is continuous on La,
m

(8.q) Fda == F lim da^ = lim Fda^ = i lim S ^d^ ^Fa^ == i lim rdr ^Fa^^v ; y 7 ^ ^ - > o o n n->ao " n-».oofc==i " n-^oo

the third equality being easy to check. But, {Fa^ is a sequence in L^R™) whose
limit is -Rz. In consequence, (8.9) shows that

Fda == i lim rdr A Fa^ = m/r A Fa.
n->ao

which proves the assertion.

Lemma 8.4. — Let J denote the Euclidean interior product. Then:

(i) the operators P^, Pg : L^R") -^ L^R")
P^z == rfr J (rfrAa),

(8.10)
Pgfl = rfrA (rfr J fl),

ar^ well-defined and continuous,

(ii) Pi, Pg ar^ projectors,
(iii) Pi + Pg = i,
(iv) (P ,̂ P î) = o, for any a, b eL^R").
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Proof. — The Euclidean metric induces a scalar product <, \ in A^T^R^), the
exterior algebra over the cotangent space T .̂ Notice also that ^r is a G^-field of
vectors of length i on ^—{o}.

We wiU say that a differential form b is " point-wise orthogonal to dr" if
<&W, dr{x) AA^R^ == o for any x eR^ -{o}.

Any differential form a on R*^ may be uniquely decomposed:
(8.11) a=drf>.b+c,

where & and c are pointwise orthogonal to dr. The operators P^ and P^ are differential
operators of order zero, and they act on a form (8.11) in this way:
(8.12) PIO==^ ^a=dr^b.

Notice that dr A & and <: are point by point orthogonal.
We need some more elementary local considerations.
Any form which is pointwise orthogonal to dr, can be expressed, locally, as an

exterior polynomial in m - i forms of order i, which are pointwise orthogonal to dr,
say v^ ..., v^_^ we may also suppose that these forms are orthonormal point by point
and that

A - A ^ A . . . A^_i==^A ... Afi^.

We define a natural star operator (*) on the algebra of forms which are pointwise
orthogonal to dr:

(8.13) (*) ̂  A ... A ̂  = e^ A ... A \ A ... A ̂  A ... A Z^_i

where s is the sign of the permutation o f w — i indices (?i, ..., 4, i, . . . ,? , . . . F
m— i). Obviously,® does not depend on the particular orthonormal base ̂ , ..\,^_^

The operators * and ® are related by the formula:
(8- ̂  * {dr A b + c) == (*)& ± dr A (*>:,

where b and <? are pointwise orthogonal to dr.

Lemma 8.5. — For any a eL^R^, we have

(8. i5) P2*^ = d= ^r A ®Pifl,

(8.16) | |Pi^||==||^Aa||,

(8.17) 11®P^||==||P^1|.

Proo/. — (8.15) is an immediate consequence of (8.12) and (8.14). For which
concerns (8.16) and (8.17), notice that for any form a el^R"),

\W=^W^{x)\dxl...d^
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and that the equalities:

< Pifl, Pifl\ = <rfr A a, dr A fl>^

< ®PA ®P^ \ == < PA PI^ \

hold point by point in R™ —{o}. The lemma is proved.
We are now in a position to prove the basic estimate.
Let A : L^R") -> L^R") be the operator

(8.18) A(a) = (~ î -^FSF-^.

The operator A is continuous because F, *, * are continuous.
We show that A is a strictly positive operator:

(Fa, A(Ffl)) = (- lY^^^Fa, *F*fl)

=(—i)^-»-)f F<zA**F»a= f FflAFSfl,
JB^ JBff,

and as F is an isometry, we have further

{F^A(Fa))=f^a^a^\\a\^>.C,\\a\\\

the last inequality being granted by (3.2). On the other hand, Lemma 8.4 says that
the operators Pi, Pg defined by (8.10), together with A given by (8.18), satisfy the
hypothesis of Lemma 8.2. From this lemma we deduce that there exists a constant
K. > o such that

(8.19) \W=\\Fa\\^K{\\^Fa\^+\\f,AFa^}
=K{||P,Fa||2+||P^F^||2}.

We compute, separately, the last two terms. By (8.16) and (8.8), we have

(8.ao) ||PiFa||=||rfrAFa||=]|^a][,

and by (8.15), (8.16) (used twice), (8.17) and (8.8),

(8. ai) 1 1 Pa*F*a 1 1 == 1 1 dr A ©P^a 1 1 = 1 1 •P^*)^F*a 1 1 = 1 1 (*)^F*a \ |

=|iP^a||=||rfrAF*fl||=||^a||.

From (8.19), (8.20) and (8.21), we get:
t || T ||2 || I \\2\

\\a\\2 <_Kl\\-Fda\\ + \\-Fd*a\\ ,

which proves the basic estimate (7.5).
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For which concerns the last assertion of Proposition 7.2, the new fact—which
otherwise characterizes the Euclidean metrics—is that jF* = *F. In consequence, if
we represent Fa = dr A b + c, with b and c pointwise orthogonal to dr, we have

dr A Fa == dr A c,
(8.M)

^/r A FM = dr A *Ffl == rfr A ((*;)& ± ^r A (^) == dr r\ wb,

and further, using (8.22) and (8.8),
[ |^ | |2==( [^ [ |2=| [^A&| |2+| |^ | | 2=| |^A®6| |2+| |^A. | |2

== ||^AF*a||2+ ||rfrA7^1|2= [I^M 2 + ||^F^||2.

9« Weak maximum modulus property

This section is independent of the remainder of the paper. We present here an
immediate application of the basic inequality (7.5).

Proposition 9.1. — Let Q be a relatively compact domain in R"*, and let F be a Lipschitz
Riemannian metric on t2. If co is a Lipschitz harmonic form on TS^ with support in Q, then co
is the zero form.
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THE EXCISION THEOREM FOR THE INDEX
OF SIGNATURE OPERATORS

io« Excisive triples

In the sequel we will show that, under certain circumstances, the indices of two
signature operators on two different Lipschitz manifolds, having a common open part,
are equal.

The following geometric situation is ever present in which follows, even if, later
on, additional conditions will be required.

Let S^ be a vector bundle over the Lipschitz manifold M^, a == 1,2. Let I\
be a Riemannian metric on M^, and V^ a linear connection in ^* ^e ^Y ^^
{(^i, Fi), (Vg, Fg), U} is an excisive triple if:

(i) the base manifolds Mi, M^ have a common open Lipschitz submanifold U:

Mi ̂  U ^ M^

(ii) F JU^FJU, and
(iii) a Lipschitz vector bundle isomorphism

^\U^^\V

is given, which carries the connection Vi [ U into the connection V^ | U, and
preserves the hermitian metrics.

We write A^ for A^1. Note that since A^p is hermitian on each fibre, A^p = A^
(pointwise adjoint). This isomorphism will be called identifying isomorphism of the triple.

Given an excisive triple as above, let fy^: M^ -> C, a = i, 2, be two Lipschitz
functions so as

(10.1) supp/.CU, U C M i U M ^ , /i | U =/2 I U ==/.

For any j €{o, 1} and a, (i e { i , 2}, let ^(/a?ApJ be the multiplier

^•(/a, ApJ : W;(M,, SJ ̂  W;(M3, Sp),
(10.2)

^(/a.ApJ : coh^Ap^o).
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Observe that (^(/^ApJ is well-defined because the Riemannian metrics agree on U
(recall that W^ depends on the metric).

If S and T are two continuous operators, we write S ^ T if T — S is a compact
operator. If T is a continuous operator, T* denotes its adjoint.

Proposition 10.1. — For any ^(/,,ApJ, j = o, i,
("•3) (^(/a, W ^ ^-(/p, AJ == (!,(/, A,p).

For this reason, the multiplier ^.(j^,ApJ will be simply denoted by Ap^/, and
(x,(/,,A^by(Ap,/)\

Proof. — The proof of (10.3) for La-norms is immediate and, in fact,
('O^) ^)(/a> ApJ* == ^(/p, A^).

We discuss the case j == i now. Let A:6WI(M<,,^), and j^eW^Mp,^)
be arbitrary elements. A straightforward computation (in which the cancellation of
some terms is involved), along with the Schwartz inequality give:
(10.5) |(^ [^(/oc^ApJ- ~ ̂ (/p,Aj]^|

= 1 (^l(/a. ApJ^,j)i - (̂ , (Ai(/p, A^)i|

^G{||^||o.|b|k+||^||i.lb||o},
where C is a constant depending on the Sup-norm of grad/.

In order to simplify the notation we introduce
K == ^i(/a> ApJ* — (^(/p, A^p).

We take x === K(j^) in (10.5), and so we have, for any y eWI(Mp, Sp),
(10.6) l|K^||^G{|lKy||o.|b||,+||Kj/l|i.|b||o}.

Let {^,}ngH be a bounded sequence in Wi(Mp, Sp). As K is a continuous
operator, there exists a constant Ci > o such that

IbnIll^C,

Io'7 IIKAlli^C,, for any n eVS.

The inclusion W^Mp, $p) t-^Wo(Mp, ^p) being compact, there exists a sub-
sequence—which we suppose to be the sequence itself—of the sequence {jyn}ne» wlt^
the property that it converges in Wo(Mp, ̂ ). In the same way, we conclude that a sub-
sequence—which we suppose again to be the sequence itself—of the sequence {K^}^c^,
converges in Wo(M,, ̂ ).

The inequality (10.6) gives for y ==j^ —A? m vlew °f C10-?)?
(10.8) l|K(^-^)||^2G.G,{||K(^-jJ||o+|b,-^||o}.
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The right hand side of (10.8) converges to zero as m, n tend to infinity. Therefore
(10.9) Urn |IK(^-^)||?=O,

M, ft —>• 00

which shows that the sequence {Kyn}nev converges in W^(Ma,Sa); therefore the
operator K = ^(/^ApJ* — ^(^,A^p) is compact.

This completes the proof of Proposition 10.1.

Proposition 10.2. — Given an excisive triple as above, we have, for any a, (3 e{i, 2},
(i) D^Ap,/, ̂  Ap,/,D^ : W?(M,, V -> Wo^Mp, Sp)

(I0'Io) (ii) A^(D^)* ̂  (D^)*A,p /p : Wo^Mp, ̂ ) ̂  W?(M,, ̂ ).

Proof, — (i) Taking into account that the operators D^ , D^. are first order
differential operators (and hence, local) along with the fact that/a is a Lipschitz function,
we find that there exists a positive constant G (depending on grad/) such that:
(lo.ii) IKD^Ap,/, -A^D^Ho^ G [MIo,

for any ^eW?(M,,^).
We know that the inclusion z r W ^ ^ W o is compact (Theorem 7.1). The

Proposition 7.3 applied to the operators
D^Ap,/,-A3,/,D^, z,

which are related by the inequality (10.11), concludes the argument.
(ii) follows from (i) along with Proposition 10.1, by passing to adjoints.

ii» The index of Skew-adjoint operators

If ^ is any bundle over M, we introduce (compare G. G. Kasparov [8]):
(i) the Hilbert space
(n. i) ^ == W^M, ̂  CWo-(M, SO;

(ii) the continuous operator

(11.2) D,=
/o -(Dm
W o /0? o

associated with the signature operator D^";

(iii) the involution
/i o\

(11.3) Jg= \:H^H,.
\o — i/

We have

(11.4) .DS<>JS= -Js0^-
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Clearly,

(11.5) D^-D,.

More generally, given an infinite dimensional separable Hilbert space H^ we
consider all pairs (D,J), where J is a Hermitian involution in H, and D is an operator
which has the properties:

(i) J o D ^ ^ D o J

(11.6) (ii) D^-D

(iii) D is a Fredholm operator.

The involution J splits out H in an orthogonal sum

(11.7) H==H+@H-,

where H± are the ± i-eigenspaces of the involution J.
The requirement (i) implies that 2), relative to the decomposition (11.7), has

the following matricial description:

/o D-\("•») D=^ j.
where D± : H±^H^,

while (n.6) (ii) gives that (D4-)"8 ^ — D~.
Notice that for any D satisfying (11.6) (i)-(iii),

(D—D^Y D—D*(11 .9) ————1 = —————v y / \ 2 / 2

and

( 1 1 . 9 ) D^Iy^D.

D being a Fredholm operator, KerjD is finite dimensional, and (n.6) (i) ensures that
J carries Ker D into itself.

Let 1K.eT± D denote the ± i-eigenspaces of the involution J in Ker D. Then:
(n.io) KeT±D==KeTD±.

If £T = - D, as (D^)* == - D^, we have

Index D+ = dim Ker D+ - dim Coker D4-
(n.n) = dim Ker D4- - dim Ker D-

= dim Ker4' D — dim Ker~ D.

These considerations suggest to introduce the following definition.
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For any pair {D,J) satisfying (n.6) (i)-(iii), we define:
D — D* . _ D — D*

(n. 12) Index (jD, J) == dim Ker4" ———— — dim Ker ————,

and then:
(i i. ia') Index (D^, J^) == Index D^.

With the pairs {D,J)y the following basic operations may be performed:
(11 .13 ) -(AJ) = (-A-J),
(11.14) (2\,.L) + (AsJis) = (D^D,,J,(BJ,);

by the way, this would allow us to define K-homology groups [8], but the use of that
terminology will be avoided in the sequel.

Theorem 1 1 . 1 . — The index of skew-adjoint pairs (n.6) has the properties:
(i) if K is a compact operator which anticommutes with J, then
(n. 15) Index {D + K, J) = Index (D, J);

(ii) if fl-> (Z),,J), t e [o, i], is a continuous homotopy of pairs (n.6), then

(n. 16) Index (£>o, J) = Index (Z\, J);

(iii)
(n. 17) Index [(2)i, Ji) + (AsJ^] = Index (£»i, Ji) + Index {D^, Ja);

(iv)
(n. 18) Index — (£», J) = — Index (D, J).

For {D,J) a pair (n.6), the homotopy [8]
f/Dcost — s i n < \ \ r 7t1(11.19) ^ . j'J®-^ f e hd\\ sin ^ — D c o s t ) ] L 2j

connects the pair (AJ) + (—^ —J) wlt!1 Ae zero element
Ho - i\ /J o\\

(".^0)
\\i o/ \o — ] ! !

acting on H@H. Everything is clear here, except for the fact that the homotopy is
a homotopy by Fredholm operators. For that, it is enough to show that the operator:

[Dcost —sint \2 /D2 cos21 — sin21 o \
(n.21) =

\ sin t — D cos t) \ o D2 cos21 — sin21)

ID*D cos21 + sin2 t o \
^ — |

\ o D*D cos21 + sin21]
(cf. (11.6) (ii)) is Fredholm.

The fact that the last operator from (i i .21) is a Fredholm operator is a particular
case of Lemma 12.2 below.
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i2« The excision theorem for Index D^

Theorem 12.1 (Excision). — Let M^, a === i, 2, ^ closed, oriented Lipschitz manifolds
with Riemannian metrics I\, and let ̂  9a ^ two Lipschitz vector bundles over M^ with linear
connections V^, V^. Suppose that U zj an open Lipschitz submamfold of Mi and Mg, awrf ^A^
V C U is an open subset with V C U. These objects are required to satisfy the following
hypotheses'.

(a) {(Vi, I\), (Vg, Fg), U) ^ fl7z excisive triple with identifying isomorphism

^|U-^^|U;

(b) {(V^, r^), (Vg, rg), U} is an excisive triple with identifying isomorphism

8 1 TT '^al Q I T T .
l| U ——> 02 | u;

(c) {(Va, r^), (Va, F^), M^\V}, a = i, 2, ij fl7! excisive triple with identifying isomorphism

SJ(M,\V)^6J(M,\V);

(d) the identifying isomorphisms are compatible; i.e. the diagram

^|(U\V) -̂ > ^1(U\V)

(12.1) Sx s,

6 1 1 (U\V) -^> 6 3 1 (U\V)

is commutative.
Then,

(12.2) Index D^ — Index D^ = Index D^ — Index D^.

7/* moreover^
(e) 61 anrf 6g ar^ trivial bundles, and

(f) SigMi=SigM^

^»

(12.3) Index D^ — Index D^ == o.

(Compare with the Excision Axiom of M. F. Atiyah and I. M. Singer [2].)

Proof. — Notice first that (12.3) is a consequence of (12.2) along with Theorem 5.3;
in fact, if (a)-(f) hold, then
(12.4) Index D^ - Index D^. = Index D^ - Index D^

= Rank 61. Sig Mi — Rank 62. Sig Mg = o.

278



THE INDEX OF SIGNATURE OPERATORS ON LIPSCHITZ MANIFOLDS 67

We are going to prove (12.2). For that purpose, we shall show that

(12.5) Index{[(£^,JJ - (D^J^)] - [(A^JeJ - (^e.Je,)]} == o

and then (11.12'), (11.17), (ii.i8) will complete the proof. Finally, in order to
prove (12.5)3 we shall perform, homotopies of the operators in the two brackets of (12.5),
and ultimately, a homotopy of their difference.

Let
Poc^c^ M^ ->[o, i], a= 1,2

be Lipschitz functions having the following properties:

(ia.6) (a) Supp 9, = Supp 92 C U,

and for any x eU, 9i(A;) == 92(^)5
(ia.6) (b) for any x e M<,, 9^) + ^{x) == i, a = i, 2,

(12.6) (c) Supp ̂ C (M,\V), a = i, 2.

A system of functions having these properties may be constructed as follows.
Let

X:U<[o,^]

be a Lipschitz function with the properties:

5 j aU=o and X l V ^ ^ .i i 2

We extend X by zero on Ma\U, and we get such a Lipschitz function \x, a = i, 2.
The functions

(p^ === sin ^
, . a = i, 2
^ == cos \

have the required properties.

First step. —We will deal here with the first bracket of (12.5).
By means of the functions <p^ +a? we ̂ all split out D^ into a sum of two operators:

one with support in U and the other with support in M^\V in such a way that those
with support in U agree, modulo compact operators. The homotopy (11.19) will
serve in order to cancel out these two operators which agree on U with each other.

We will focus on the operators D^. Proposition 10.2, with M^ = M^ = M,
Si = ^2, A^a = i, implies that:

/D^ o \ l^D^ o \ /^.2) î o \
(12'7} ^ I +

\ 0 —DJ \ 0 —<P2A;.?2/ \ ° —^-^S.-W
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We consider the homotopy:

/9i •D^ • Ti cos t — Ai2 <p2 sin t(12.8) A,^, ̂ )
A2i<p2 sin ( — 92-0^,92 cos </

/^^i.Vi ° \ r Tt\, f e o,-
-^.D^J L ' 2 J

+ , te\o,-\
\ o -^.D^' ' ' " '

where

A,(Si, ^2) : ̂  ® H^ -^ H^ ® ̂ f^,

with H^ defined by (11.1).

It is easy to check that (A,(^, iy, Js. ©-JJ satisfies (n.6) (i), (ii). Now,
we verify (n.6) (iii). We have:

(12.9) A î, ̂ ) =

(•Pî Si'Pi cos t + ̂ . D^. ̂ ) 2 - (y^yi cos t + +iZ)̂ i)Ai2<pJ sin f ̂
- yfyj sin2 f + A^ sin f (92^92 cos t + ̂ D^)

^iV?sin iW^ cos < + ̂ Z)^) (92D^V2 cos f + ̂ D^) 2
— (¥2^(P2 cos t + <î A^2)A2i<p! sin t
\ — y^.yjsin2^

(y2cosf+<^2)2^

— v2?!slln2 ^

(vJcosf+'H)2^
(by (10.10)) (i)

\ — y2^ sin2 f

^(^/i)*(^/i) + ̂ .& 0

(by (10.10), (11.5)) ,

\ (JD^)+(^/2)+^.&

where

(12.10) /a = ^COSt+ ̂  a= 1 ,2

^ = <pi sin .̂

(1) Notice that, for any x e U,

9iW = 92%.
9iM.+iW =9iM-+2M :92W•+lW =92M.+2M-
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Lemma 12.2. — The operator

(12.11) U, = (2^/J^/J +^a: H,^H^

is a Fredholm operator for any t e p, - .

That statement remains valid for any two Lipschitz functions f^ and gy^ such that
a + ga does not vanish on M^.

Proof. — Indeed, if x e Ker U, then

(12.12) o == (U ,̂ x)^ == {D^x, D^x)s^ + {g^x, g^x)s^

which shows that

D^x==o
(".13)

g^ == o-

Then

^,(/a + ̂  == 0,

or

(12.14) (/,+^eKerD^

which says that

(12.15) Ker U, ^ Ker D^ + ̂ ).

But Ker D^ is finite dimensional, and the operator defined by the function

/a + g. = ̂ (sin t + cos ^) + ̂

is inverdble (because this function is strictly positive on MJ; then (12.15) shows that

dim Ker U^ ̂  dim Ker D^{f, + g,).

The operator U^ is self-adjoint, and then Coker U^ = KerUa, provided that
the range of U^ is closed in H^ which we check here.

From (12.15) we get, by passing to orthogonal complements,

(12.15') (Ker UJ^ - [Ker D^ + g^,

where the second space of (12.15') is of finite codimension in the first one.
We have then:

(12.15") U,(^) = UJ(Ker Ujy = U,([Ker D^ + g^)

+ Ua (finite dimensional space).
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Therefore, in order to show that the range of U^ is closed, it is sufficient to show that

U,([Ker^(/,+&)]^)

is closed in Hv .^a,
To do this, it is sufficient to prove that there exists a positive constant K such that

(12.16) ||U^||^K|H|, for any xe[KerD^+g^.

Suppose such a constant did not exist. This means that there would exist a sequence

(12.17) {^^C[Ker2)^(/, + &)]^ IKIl = i,
such that
(12.17') Un^U^=o.

We then have, as in (12.12),
(12.18) o = Hm̂  (IU., ̂ ) = Um l̂lA^JI2 + ||̂ J|2},

which implies, in view of (12.17) and (12.17') that

"^0/^=0

C^-^)
lim g^ = o.
u -> oo

These last two relations, along with the continuity of D^ imply that
(12.20) Hm^ D^{f^ + g^ = o.

But (12.20) leads us to a contradiction. In fact, because the operator D^{f^ + g<x)
is a Fredholm operator, it is invertible on the orthogonal complement of its kernel.
Therefore (12.17) and (12.20) imply that lim x^ == o, which contradicts the second

ft -*• 00

relation (12.17). Therefore, the lemma is proven.
Theorem 11.1 (i)-(iv) now implies, by means of the homotopy (12.8),

(M.ai) IndexD^ - Index D^ = Index (A,(i^ S^U^ ~J^
2

where

I ^ A ^ ^ (^D^ -"-^^ \
(12.22) A,(^)= l .

2 \A2iyi - ̂ D^f

Second step. — Dealing with the second bracket of (12.5) in the same way we have
dealt with the first one, we obtain
(12.23) IndexDe^ - IndexD^; = Index (A^, e^Je^-Je,),

2

where

f ^ A /ft ^ ^1JD6^1 -A12?2 ^(12.24) A^o^e^) = .
2 V^y2 -^D^J

282



THE INDEX OF SIGNATURE OPERATORS ON LIPSCHITZ MANIFOLDS 7i

Third step. — We now pass to the proof of (12.5). To this aim, we consider the
homotopy of the operator (A^i, ̂ ) @ — ^(^i? 82):

(".25)
/^D^cost -A^ — Sf^sin^

Aai?! — ̂ D^ cost o - S^jsinf
A,(i;i,^9iA)=

Ti^smt o

\ o S^sin^

- <piA)^icos t ^2?!
-A^ ^De^cos^ /

7.1
which maps ^^ ® H^ ® Jfe, ® ̂ 2 mto hse]f^ for ^ e P^ •

(Notice that this homotopy acts effectively on H^@ H^ and on H^@H^).
We verify now that A((^, ^2? ^i? ^2) ls a Fredholm operator. In fact, we have

(see Appendix):
/Fredholm

Operator

(ia.a6)

Fredholm
OperatorA^S2,ei,e,)^

Fredholm
Operator

o
Fredholm
Operator )

A direct calculation shows that:
(12.27) A,(^ ̂  6,, Q,) o (J^® -J^® -Je,®Je,)

(J^® -J^9 -Je^Je,) o ̂ (^, ̂  61, 6,);

explicit computations are given in the Appendix.
We will show that

(12.28) Index (A,(^, ^, 61, e^J^® -J^® -Je,®Je,) - o.
2

and then (12.5) is proven.
We have, by Proposition 10.1,

A.(^^9i^)^A,

where

(12.29) A=

/ o -(A^!r -(W o \
Aai?! o o - 5:2-1^

Sî  o o A^p|

\ o (S,-̂ |)- - (A l̂r o /
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The operator A andcommutes with J ==J^ © —J^ ® — J Q ©Jo • To show this,
it is sufficient to observe that

(".30) J^ ==J^, (Je^)* =Jea. a == i, 2,

(see (11.2) (iii))? and

^2l?Usi == JS2^21 ?! ?

•^yUea =^0^29^

Si^ =Je^,
(".3i)

S2-^Ue,=J^^-1^;

if we pass to adjoints in (12.31), and take into account (12.30), we get
.WA^)* = (A^)*J^,

j6,(A^j)* = (A^)*J^,
(12.32)

Wi^r = (Si^)-Je,,

Je^Sa-^D* = (S,-WJ .̂

The Theorem 11. i (ii) tells us that

Index (A,(^, ̂ , O^, O^), Js, © - J^ © - Je, ®Je,)
== Index (A, J^ ® - J^ ® - Je, ®Je,).

The operator A is skew-adjoint, and hence, by (11.12),
(12.33) Index (A,J) = dim I^^ A — dim Ker~ A.

We show that Ker A = o, and then, a fortiori. Index (A, J) == o, which ultimately
will prove (12.28), and so (12.2) will be proven. Let (x^, x^,y^,y^) eKerA; then

fAz^i-S^j^^o

.Si^i+A^y^ ==o,
("•34)

f - (A^yD*^ - (Sî i = o
[^Vx,-{A^r^ =o.

To solve the system (I), we multiply the first equation by A^yj, and the second
by Sf1^ to eliminate j^. Indeed, this works because the commutativity of the
diagram (12.1) is equivalent to
(12.35) (A^)(S,-1^) = (Sr^KA^j),

and then x^ has to satisfy the equation

(".36) [(A^<PJ)(A^) + (Sr^KW^i == o,

which implies x^ = o (recall (12.6) (b ) ) .
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Then, we eliminate x^ by multiplying the first equation by Sg^j? and the second
by Agi^ to get, in a similar fashion, that y^ = o.

The system (II) is solved in the same way, being aware of the extra complication
due to the presence of the adjoints. For that purpose, we multiply the first equation (II)
by (Sr1^ and the second by (A^)*. The equality

(12.37) (s,-w(A r̂ = (A^r^-w
allows us to eliminate x^ and thenj^ has to belong to the kernel of the operator

(12.38) (SFW(W + (A^r(A îr,
which turns out to be invertible; therefore, y^ = o.

To check (12.37), notice that it follows from the commutativity of the dia-
gram (12.1) by the passage to adjoints. On the other hand, the operator (12.38) is
invertible because its adjoint is invertible.

Finally, we eliminate y^ by multiplying the first equation (II) by (Aigyl)* and
the second by (Sg^i)*? invoking the same kind of arguments, we get x^ = o.
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INDEX D^ IS A LIPSGHITZ INVARIANT

13. Independence of the Riemannian structure

Theorem 13.1. — For any Lipschitz complex vector bundle ^ over an oriented^ closed
Lipschitz Riemannian manifold M2 ,̂ Index D^ is a Lipschitz invariant.

Proof. — Corollary 7. i asserts that Index D^" does not depend on the linear connec-
tion in ^. It remains to show that Index D^ does not depend on the Riemannian metric
on M^.

We shall prove that Index D^" remains unchanged when the Riemannian metric F
is modified on an arbitrary small closed disc D2^ in M211; let T ' be the new Riemannian
metric. We choose a linear connection V in E;, and then {(V, F), (V, F'), M^D2^} is
an excisive triple, with identifying isomorphism i^. Because D2^ is contractible, the
bundle ^ is trivial over it; we choose such a trivialization T, and we may choose V so
that V | D2^ be carried by T into the trivial connection Vo in the product bundle 6,
Rank 6 == Rank $.

Then

{(v, r), (v, r'), M\D2'1}, {(Vo, r), (Vo, r'), M\D2'1},
{(v, r), (Vo, r), D2'1}, {(v, r'), (Vo, r'), D^}(13.1)

are excisive triples with identifying isomorphisms, respectively,

i^ | M\D2^ 19 | M\D2^
('S-a) T, T.

The hypotheses (a)-(f) of the Excision Theorem 12.1 are verified for:

Mi = Ma = M, Si = ^2 = S, 61 = 62 = e,
i\=r, r^r, v^=^=v, v[=^=^,
U == M\D2'1, V = MyS2'1,

and the specified identifying isomorphisms; here D^CM is a closed disc with
D^C Interior D^.

The Theorem 13.1 is completely proven.
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Remark 13.2. — Theorem 1.2 of [12] asserts that any smooth structure on a
PL-manifold may be characterized by means of metric data derived from Riemannian
metrics. Therefore, a (Lipschitz) Riemannian metric may be thought of as a generalized
smoothing. This explaines why proving that Index D^ is independent of the Riemannian
metric is a delicate step toward the proof of the topological invariance of this number.
The topological invariance of Index D^ is proven in a joint paper with Dennis Sullivan
in the same volume of this journal. In the same paper it is shown that the topological
nvariance of Index D^" implies the topological invariance of the rational Pontrjagin
classes (S. P. Novikov).

Remark 13.3. — The same scheme of proof may be used to show that Index D^
is invariant under elementary cobordisms (surgery).

14. Appendix

14.0 We show here that if the relation (1.4) (see section i)
(14.1) d{f^) =fW

holds for Lipschitz mappings/and smooth forms co, then it holds for La-forms co.
For, let co e U; then, by a simple convolution argument, we can find a sequence

of smooth forms {o^Jnem suc!1 that:
fi4.a) lim co., = co, lim d^ == rfco.
v ^ ^ n - ^ o o ' * n - ^ o o "

By (14.2) and (14.1)5 and recalling that/* is a bounded operator between
Lg-spaces, we have
(14.3) fW =/\lim^ AoJ = Hm /̂̂ coJ = Hm̂  rf(/-coj.

These relations show that if we set /"co,, = 6^, we have
(14.4) 6, eH, Hm^ ^co,

(14.4') ^eL^1, Hm^6,=/^co.

Let ^ be any smooth testing form. We then have, successively by (14.4), (i .2)
and (I4-4')?

(14.5) J/-coA^=HmJe,A^=Hm^(-I)r+ lJ^AS

-(-ly^J/^A^;

in view of the very definition of the distributional exterior derivative, (14.5) says that
d{f^)=fW, ;

which completes the proof of Proposition 1.2.
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14.1 We compute here A,(^, ̂ , 61, 63)2.

Hereafter, Qj denotes the i-column andj-row entry of A, (^, ̂ , 6^, 63)2. We have

(S) = ?^1 cos f)2 - <p ĵ - ̂ sin2 f

s: Fredholm Operator (Lemma 12.2)
/2\
\ J = - '?1 ^Al2 <PJ COS f + A^ 92 ̂ ^Z)^ ̂  COS t

^ — ^V2-DsiAi2y2 cos t + Ala^D,^ cos t a o

because ^93 = ^j^ and by Proposidon 10.2.

(^ = - ̂ ^^Si-1^2 sin t cos f

+ ̂ F^-Dei^isin < cos f s: o (Proposition 10.2).

(4) = Al2S2-lv|̂  sin f - Sr'A^tq)2 sin f = o by (12. i).

(^^Aiay^i^^cosf

~ ^-Dsz^Aaiy^cosfs: o (Proposition 10.2).

(^) = - <P!<PJ + (^a^^z cos t)2 - <j4 sin2 f

2: Fredholm Operator (Lemma 12.2).

(^=-^i^l^smt+^l^smtA^^=o by (12.1) .

(^) =" 4'2^2 cos f Sa-1^ sin t

— Sz'1^2^^ sin f cos f s: o (Proposidon 10.2).

Q) =Si^ smfZ)^ cos <

— ^1-Oei ̂ i2!t}'2 cos f sin < ̂  o (Proposidon 10.2).

(2\
^ = - s!̂  sin fAiayj + A^y^Sa^2 sin f = o by (12. i).

(^) - - 4-!̂  sin21 + (̂ 2)e î cos t)2 - ̂

^ Fredholm Operator (Lemma 12.2).

(^--^e^iCosfA^yJ
\ 0 /

+ ̂ PJ^A^ cos ^ ̂  o (Proposition 10.2).
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( 1 } == S^sm^Ag^—A^S^sin^ o by (12.1).
\4/

^= ̂ ^iD^smtcost

+ ^2^0 ^2^2^i sm t cos ^ ^ ° (Proposition 10.2).

^^Aa^^i-De^iCOS^
— ^^DQ ^cos^Ag^i ^ o (Proposition 10.2).

(1) = ~ ̂  sm2 ^ ~ 9!<p22 + ̂ A)^2 COS ^)2
^ Fredholm Operator (Lemma 12.2).

Therefore,
/Fredholm

Operator
\

(14.1)

Fredholm
Operator

A,(i;i^AA)2^ Fredholm
Operator

Fredholm
\ ° ° ° Operator/

14.2 We now check the anticommutativity of A((^, ^a» ®n ^2) wlt!1

J=Jsi©-J^®-Je.®Jv
We have:

(14.2) A,(^,^,e^,e,)oj
f^D^ cos fj^ A^y^ Sr'sinfyUel o

A2iVU?i 4'2^^2cosfj^ o -Sa- în^JJft

S^sinf^J^ o ^De^icosfje^ A^yUea

\ o — Sg sin f (j4J^ AaiyVe^ <^2z)e^2 cos tj^ /

and

(14.3) J ° A,(^, ^2, e^ Oa)

y<J^Z)^cosf -J^A^yJ -J^Sr '̂isinf o ^

-J^i^. J^D^cost o smtj^1^

—J^smt^ o J^D^cost —Je^A;2^

\ o smfJ^Sa+j -Je î?! Je^z^^cos </

The operators J^, J^ (a = i, 2) from (14.2) and (14.3) commute with <?,, ̂  as
given by (12.32) and they anticommute with D^, -Dg^ by virtue of (11.4), hence (12.27).
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