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METAPLECTIC CORRESPONDENCE
by YUVAL Z. FLICKER and DAVID A. KAZHDAN

Shimura attached modular forms of even weight k — i to cusp forms of weight k / 2 ,
initiating the study of the metaplectic correspondence. Gelbart, Piatetski-Shapiro and
Waldspurger extended his techniques, and the converse theta-series approach of Shintani,
to the context of automorphic representations of the two-fold covering group ofGL(2).
[F] used the trace formula to establish the correspondence for the automorphic repre-
sentations of the metaplectic n-fold covering ofGL(r) when r == 2, for all n ̂  2. This
gave a complete description of the representations of the metaplectic group locally and
globally in terms of those of GL(2, A). The purpose of the present work is to develop
the last approach for any integer r ^ 2 in the local and global cases, continuing a pro-
gram started in [KP], [KP'].

Let r, n be positive integers; F a number field containing the group ̂  of n-th roots
of unity; F,, a completion of F at a place v, A the ring of adeles of F; G == GL(r);
G,, an Tz-fold covering group of G,, = G(FJ (by ^); G(A) a non-trivial central topo-
logical extension of G(A) by ^, which splits over the group G(F) of F-rational points
on G (see [Mo], [Mi], and (2)). We fix a character S of the center of G(A) (and G,,)
whose restriction to ^ has order n, and deal only with the genuine representations %
(or %„) of the metaplectic group, those with central character 5. If the restriction of S
to (!„ has order n' dividing n, then % can be viewed as a representation of an yz'-fold covering
group of G(A) (or GJ.

We shall first describe our local results. Let p denote the residual characteristic
of F,,. Our aim is to develop a local theory relating admissible genuine G^modules %„
with certain admissible G,,-modules n^. In the case where p does not divide n, we study
in (16), (17) the correspondence for representations which occur in the composition
series of representations induced from unramified characters of a Borel subgroup. We
show, generalizing a well-known result for G,,, that this category of representations
consists of the G^-modules with a vector fixed under the action of an Iwahori subgroup I*
(I* is a subgroup ofG,, isomorphic (as in (2)) to an Iwahori subgroup I of GJ. More-
over, it is naturally isomorphic to the category of finite dimensional complex represen-
tations of the Hecke algebra H of G,, with respect to I*. Thus H is the convolution
algebra of complex-valued P-biinvariant functions on Gy which transform under the
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center by S~1, and are compactly supported modulo the center. The isomorphism is
given by V -> V1*, V1* being the space of P-fixed vectors in V. Thus our aim is to
define an isomorphism/row, the category ofH-modules to that ofH-modules. In fact we construct
an explicit isomorphism of the algebras H and H. We also verify that the properties of being
square-in tegrable (= discrete-series) or tempered are preserved under this isomor-
phism of modules. The proof is based on exhibiting a presentation of H by means of
generators and relations, generalizing the one given by Iwahori-Matsumoto [IM] in
the case of H(w == i). It will be interesting to extend this geometric description of
the correspondence to the categories of all algebraic representations. We define the
notion of local correspondence for general admissible representations by means of cha-
racter relations; see below.

To study the correspondence in the context of the categories of admissible repre-
sentations locally, and to develop a global theory of correspondence, we use the trace
formula. All our local results, and most of our global results, rely only on the simple
trace formula, which is proven in (18). Before we describe the results which depend
on the trace formula, note that they are proven only in the case when (n, N) = i. Here
N is the least common multiple of all composite (non-prime) positive integers r' ̂  r.
Our proofs reduce the general case (any n, r) to a statement (see Assertion 12) concer-
ning algebraic groups only. It relates orbital integrals of unit elements in the Hecke
algebras with respect to a maximal compact subgroup in G,, and H,,, when {n,p) == i
(see below, (12) and [K]), where H,, = GL(r', EJ, £„ is an extension of F,, with
r '[E,:FJ=r.

We say that a genuine admissible G,,-module %„ corresponds, or lifts, to an admissible
G,,-module ^, if they satisfy a character identity, see (26.1), relating the value of the
character ^(^) of%^ at a good element x* (see (4)), with a certain sum of values of 3c(^)
at the (< yz-th roots " x in G,, of x*. The image of the correspondence consists of TT,, whose
central character co is determined by S and the relation u(z) = S^^1)). In particular
the restriction ofco to the subgroup ̂  of F^ is trivial. To describe the image of the corres-
pondence we say that an irreducible Hy is metic (for met(eplect)ic) if it is equivalent
to a G^-module unitarily induced from an M == 11̂  M^-module II ̂  or, v81, where
M^ == GL(r^), the ^ are real, and the a^ are square-integrable M^-modules whose central
character is trivial on ?.„ for all i. Our main local theorem asserts that the correspondence
relation defines a bijectionfrom the set of genuine tempered G^-modules %„ to the set of metic tempered
Gy-modules T^. It commutes with induction, bijects square-integrables with square-integrables,
irreducibles with irreducibles. If \n\y == i it maps unramified^ to unramified TC,,, and coincides
with the correspondence of (16), (17). In fact, for global purposes we introduce in (27.2)
the notion of relevant representations, and Theorem (27.3) asserts that the correspondence
bijects genuine relevant ̂  with metic relevant n^. The relevant representations are induced
from square-integrables which are twisted "only a little" ([^1^ ^s). Tempered
%„ are relevant. Each component of a cuspidal (automorphic) G (A)-module which
lifts (see below) to a cuspidal G (A)-module is relevant.
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METAPLECTIC CORRESPONDENCE 55

The first step in the proof is the square-integrable case. This is applied in the proof
of Proposition (27) which asserts that a Gy-module unitarily induced from a tempered irreducible
(in particular square-integrable) representation of a Levi subgroup is irreducible. This in turn
is used to show in Theorem (27.2) that a relevant G ̂ -module is irreducible.

It is clear from the character relation that if%y lifts to a supercuspidal T^ then ^
is supercuspidal; but a supercuspidal %„ may lift to a non-supercuspidal T^,. This occurs
already in the well-known case of r == 2 and even n, when %„ is a Well representation
and ̂  is an odd special representation (see, e.g., [F]). The character relation yields
a formula for the number ofWhittaker vectors of%,,;see (22) and [KP], p. 99.

The definition ofmetic local 7^ which is not necessarily relevant is given in (27.2).
The case of the non-tempered unitary G^-module n^ which is dual, in the sense of [Z],
to a metic (generalized) Steinberg representation T^,, is particularly interesting. For
example, n^ can be a one-dimensional representation, a case studied by [KP]. In (29)
we show that for such a representation T:y there exists a matching unitary %„ so that TT
and %„ satisfy the character identity (26. i), possibly up to a sign. Since the character
of^ occurs in (26. i) as a weighted sum, the weights being roots of unity, we may have
that a non-tempered n^ is matched with a discrete-series, and even supercuspidal %„.
This phenomenon occurs already in the case of r == 2 (see, e.g., [F]). Such %„ can be
viewed as a generalization of the Well representation.

To describe our global results we say that the genuine representation % = 09%v
of G(A) lifts to the automorphic representation n == ®TC,, of G(A) if%,, corresponds
to n^ for all places v. Our global results are described in (28). A characteristic special
case which uses only the simple trace formula of (18) asserts the following. Suppose
that % is a cuspidal genuine G (A) -module whose components %„, ̂  at two places u, u' are super-
cuspidal, and^^ lifts to a supercuspidal G ̂ -module T^. Then there exists a unique metic cuspidal
G (A)-module n such that % lifts to TC. Moreover, iffi' is a cuspidal genuine G {A)-module whose
components at u, u' are also %„, ?r^, and ̂  is equivalent to ^for almost all y, then %' is equal
to %. The last statement combines the rigidity (strong multiplicity one) theorem for G(A),
with multiplicity one theorem, for such representations of G(A). The components of a
cuspidal TT are relevant (by [BZ], [B]). It follows from Theorem (28) that all compo-
nents of a cuspidal % as above are also relevant.

In (29) we deal with those automorphic % which correspond (== lift) to discrete-
series non-cuspidal TC, of a certain type (these can be conjectured to be all the discrete-
series non-cuspidal TT;). This includes the case of the one-dimensional TC, studied in [KP].
The phenomenon which occurs here is that there are cuspidal % with supercuspidal components,
which (lift to these TT. Consequently the %) have non-tempered local components which are
not relevant for almost all places. This is the global analogue of the local statement noted
above that supercuspidal %^ match sometimes with non-tempered T^. Such examples
occur already in the case of r = 2; see [F].

To apply the trace formula we show that corresponding spherical functions fy
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^ ^
andj^, on Gy and G,, (see (n)) are matching, namely have matching orbital integrals
(see (8)). The case of the unit element of the Hecke algebra is given in (12). It is
due to [KP'], and relies on the results of [K]. However the methods of [K] apply
only in the case specified in Theorem (12). This is the reason why our results are proven
completely only when (n, N) == i, as explained in Corollary (12). From this we
deduce the case of general spherical functions in (19) using a new technique which is
based on the usage of the <( regular functions " introduced in (15). These are not spherical
functions. They are essentially functions in the Hecke algebra with respect to an
Iwahori subgroup, which isolate the representations with a vector fixed by the action
of an Iwahori subgroup, and whose support can be conveniently controlled. Here
we use our work on the Iwahori algebra, in particular Proposition (17). But it is clear
from the proof of (19) that we could work with a congruence subgroup instead of an
Iwahori subgroup. Since our technique does not require detailed knowledge of repre-
sentation theory, it may be applicable in the study of transfer of orbital integrals of sphe-
rical functions for arbitrary groups; this was the main motivation for us to develop
our technique; see ["F] for the rank one case of the Symmetric Square lifting.

/^/
We also use the transfer of a supercusp form fy to a matching function fy on G,,,

which is carried out in (13), again using [K] (hence we need (%, N) = i), and the
theory ofHarish-Ghandra [H] and [K'], relating orbital integrals, characters and Fourier
transforms of nilpotent measures, locally.

Finally we note the analogy between the metaplectic correspondence and the
base-change lifting. While the second is a reflection of the norm map of field extensions,
the first reflects extraction of n-th roots.

The work is presented in three parts. Chapter I consists of §§1-13, Chapter II
of §§14-20, and Chapter III of §§21-29.

Thanks are due to J. Bernstein, S. J. Patterson and the referee in connection with
this work.
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I. — ORBITAL INTEGRALS

i. Notations. — Let r ^ 2, n ̂  i be integers, and F a local or global field of
characteristic o which contains the group ̂  of n-th roots of i. If n ^ 3 and F is global
then F is totally imaginary. If F is global and v is a place of F, we write F^ for the
completion ofF in the valuation | |y, normalized as usual so that the product formula
holds. Ifv is non-archimedean, we put p for the residual characteristic of F^; R = R^
for the ring of integers; n for a uniformizer; q for the cardinality of the field R/wR.
Then | | = | |,, satisfies \n\~1 = y. We denote by Z, R, C the rings of integral,
real and complex numbers.

Put G = GL(r, F), denote by A the diagonal subgroup and by N the group of
unipotent upper triangular matrices. The Weyl group W = W(G, A) of A in G is
identified with the group of matrices in G with a single non-zero entry i in each row
and column. The roots of A in G are denoted by pairs a = (y) (i ^ i 4= j ̂  r) and
a(a) == aja^ for a == (^, . . ., a,) in A. The root a == (y) is positive if z< j . If
^ is the matrix with entry i at the place a and o elsewhere, then we denote by N^ the
group of matrices n = I + xe^ {x in F). Note that ana-1 == I + a (a) xe^. The
group W acts on A by d" == w~1 aw, and on the set of roots d> == (&(A, G) by
{wo) (a) == a^). Then ^ == we^ w~1.

The n-th Hilbert symbol ( , ) is a continuous bilinear map from F" x F" onto p.̂
with (<z, b) (b, a) = (a, - a) == {a, b) (- bfa, a + b) == i, which satisfies (fl, 6) = i
for all b in Fx if and only if a lies in F^.

By a two-cocycle on a locally compact group H we mean a map ? from H^ x H^
onto ^ with

j3(^', ̂ ") (3(^, ^') = (B(^, ^' x " ) p(^', ^'/) and p(^, x) = |B(̂ , ,) = i

for all x, x ' , x" in H; e denotes the unit ofH. It is said to be non-trivial if there is no map
s from H to ^ so that p(^, x ' ) == s{x) s^^xx') for all x, x ' in H. An w-fold covering
group H of H is a central extension

i ^*^ P
i -^->H^H->i.

i is an injection of ̂  into the center offt; we identify ^ with z(^J. The map s is a
section; in other words, p o s == IH, so that the multiplication in H is given by the
two-cocycle (B; thus s(x) s ( x ' ) = s(xxr) ^{x, x ' ) .

57
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Recall that a torus T is called elliptic if T/Z is compact. An element t is called
^//^ if it lies in an elliptic torus, and regular if it has distinct eigenvalues. Iftis regular
elliptic its centralizer G( in G is an elliptic torus T.

2. Covering groups. — A covering A of A is given by the two-cocycle
<r(ff, fl') = n^.(^., op. Note that

(a. i) s{a) s{b) s(a)-1 == s{b) (dot a, det A)/!!̂ ., ̂ .).

Extend a to Y = AW == WA by a{w, w ' ) = i, a(a, w) = i, and
d(w, a) = (det w, det a) II^^(- i, ̂ .)/(^ ^),

where 0(w) == {a > o; WOL < o}. Then
a(aw, a' w') == 0(0, fl'^1) (r(w, a')

defines a cocycle on Y and a corresponding covering ^.
The map r : G ->Y, r{nyn'} =y, is well-defined by the Bruhat decomposition

G=NWAN. Put X=={(^,J); ^inG.jrinY, r(^) =^(J)}. Consider the group L,(X)
of automorphisms of X generated by \(n) (n in N), X(^) (am A) and X(^) (t is a simple
reflection in W, namely there exists a unique a> o with t<x< o), where

W^jO == (%J), W(gj) = (^(^)^yj),
and ^)(5,J) ={tg^[r(tg)r(g)-l]y).

1,(X) acts transitively on X, and so does the group R(X) of automorphisms ofX gene-
rated by r{n), r{3'), y{t) where

(^30 ̂ W - {gnj). te,30 r(a-) == (gp^^a-),
and (gj) r{t) = (gtjs[r(gt)-1 r(g)]-1).

Since {gx) ̂  = ^(^*) {g in L(X), ̂  in R(X), x in X) (see Milnor [Mi], §12),
both L(X) and R(X) act simply transitively on X and R(X) is isomorphic to L(X). The
fiber of the map X -̂  G, (^,J) -^g is ̂ . Hence L(X) is an extension of G by ^.
The covering Y is a subgroup of L(X) which preserves {(^(30, J); J in Y}. We put
5 === L(X). With respect to the section s : G -> G defined by s(nyn') == X(w) s(y) X(%')
(n, n' in N;j^ in Y, s{jy) in Y C G), the covering group G is described by a cocycle a
extending the cocycle on Y defined above, and which satisfies
(2. a) a{ng, g' n') = a(g, g') {n, n' in N).

Other covering groups G^ (o ̂  m < n) are defined by the cocycles
^ g ' ) = <^.?') (det ̂ , det ̂ )w

Let B =^AN be the upper triangular minimal parabolic subgroup of G, B^ the
subgroup of G^ covering B, and Z^ the pullback through p : G^ -> G of
^m =JA:I; ̂ ~14-2rwl in F^} ̂  F^^, where rf = (%, r - i + 2rm). It follows from (2.1)
that Z^ is the center ofSL, hence of G...j^ -i.t3 mv/ v/^Al.l.l/A ^A — w ? •l-ldl̂ -̂' UJL v-1'-,*

^



METAPLECTIC CORRESPONDENCE 59

I fFis non-archimedean and its ring of integers is denoted by R, then there exists
(see Moore [Mo], pp. 54-56) an open compact subgroup K in GL(r, R) which splits <r^
Note that (det A, det k ' ) == i for A, k' in a sufficiently small K. Thus

<TjMO = K(^)/K(A) K(A')

for some function K : K -> ̂ . As i = a{k, n) = K(^)/K(A) ic(w), the restriction of K
to K n N is a homomorphism, hence trivial. If \n\ == i we can choose K == GL(r, R)»
Consider the homomorphism K* : K -> 6^, k->s{k)K{k). It is not unique. But
ifK^ is another such map then K*/^ is locally constant. Hence the topology on G defines;
a unique topology on &„,, which makes K* a local homeomorphism. Then 6^ is a
locally compact totally disconnected Hausdorff topological group, and p : 5^ -> G
is a local homeomorphism.

We say that G^ splits over a subgroup H of G if there is a homomorphism
h: H -> G^ whose composition with p : 6^ -> G is the identity map on H. Whenever
(A, H) are fixed, we identify H with A(H). The map s : N -> 6^ splits 6^ over N-
The map K* : K -> G^ splits G^ over K. We now extend K to a map from G to (JL,^

If F is global and A is its ring of adeles, we define a global two-cocycle T^ on
G(A)=GL(r,A) by T^, x ' ) = II,, T ,̂ ^'), where ^ == (^), ^ '= K) are
in G(A). Here T ,̂ x ' } == T^(^, <) is the cocycle (T^(^, ^) K,(^) K,(^)/K,(^ ^)
which is cohomologous to ^(^9 ̂ ) and obtains the value i on Ky x K,,. The pro-
duct ranges over all places v of F and it makes sense since T^(A*, x ' ) == i for almost
all u. The product formula II,,(a, b)^ == i (a, b in F^ implies that (T^A-, A:') == n<y^(^, x ' )
is i for ^, x ' in G(F), hence that the map x ->s{x)fK{x) is a homomorphism from G(F)
to 6(A), where K(;c) = IIK,,(^). Note that K^) = i for almost all v by [KP]^
Prop. 0.1.3. Hence G(A) splits over G(F), a fact which permits the development
of a theory of automorphic representations on 6 (A).

3. Commutators. — Let x be a regular (distinct eigenvalues) element of G.
The centralizer Gg of x in G is a torus T, and for any g in T we write \x, g] for ^ g ' ^ " 1 ^ 1 ,
where y, ̂  are elements of G^ which project to x, g. Note that [x, g] depends only
on x and g, but not on the lifts ?, g ' of A*, ,§f.

Proposition. — [x, g] = i for all g in T if and only if x lies in Z^ T".

Proof. — The torus T is a direct sum (D F^ of the multiplicative groups of field exten-
sions F, of F, with Sj[F^.: F] = r. Writing x == (^.), g = ( .̂) accordingly, we have

[x,g] = (det^det^)14-2^^,,^)^.

([F], p. 128, for r = 2; [KP], Prop. 0.1.5, all r). Here ( , )p. is the n-ih Hilbert
symbol on F,. Now [x, g] = i for all g in T if and only if for all j, and all g. in F^ ^
we have

i = (det^N^F^)^2^,^?,^ (det^^2^,,^)^..
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Hence .̂ lies in (det xY^F^. Since detx == n^Np./p^ we have that (det ^+2m)r-i
is in F^. It follows that x is of the form^z withy in T and z = (det A:)14-^ in Z

\ / wi *

4. Definition of A:*. — We need to relate conjugacy classes on G and 6. If n
is odd we put ^ == ̂ n. Then ^ = ̂ n) if x is diagonal. The map x -> ̂  pre-
serves conjugacy classes ([F], Lemma 0.3.1). If n is even we put ^ == .ŝ  M(A:) for x
in the subset Go of A: in G such that x, + x^ 4= o for any pair x,, ̂ . of eigenvalues of x.
Here M is a class function which has the property that x' = s^) for any diagonal A:
in Go(F). Theorem 2. i of [KP'J proves the existence of a continuous such function u
on Go with

t
u(x^ ..., x^ = n u^) n (det ̂ , det x^

if ^ = (A-i, . . ., Xt) lies in a standard Levi subgroup of type (r^, ..., r^) and u ' is the
analogous function on GLo(r,, F), and

<
^1, . . ., ̂  = ̂ n (A,., (- I)- P,(- ^,)/2^,F,(- I, RW)2.F

if^. is elliptic in GLo(^., F), generating an extension F,. of F. Here ( , )^ signifies
the 2nd Hilbert symbol of E, and x^ is regarded as an element of F .̂. The polynomial
^x{y) = det(j/I — x) is the characteristic polynomial of x, R{x) == 11,̂ .(^ + x ' ) ,
where x[, ..., x', are the r eigenvalues of A: in Go. Further, for z in F" we have

u(zx) == u{x){z, (- lY^-^detx^1)^

Hence we have (zxY == j(^) A;*. The case of r = 2 is in [F], Lemma 1 . 2 . 3 .

5. Order. — The Jordan decomposition asserts that for any A: in G there is a
unique pair of a semi-simple element s and a unipotent element u in G so that x == su = us.
Up to conjugacy in G(F)—where F is an algebraic closure of F—we have

^ {^\, . . . ,^I^) ,

where ̂  . . ., A:( are the distinct eigenvalues of x with multiplicities r^, ..., ^ and u is
of the form (^, . . . , ^ ) where ^ is an upper triangular unipotent r, X r, matrix.
Such unipotent u, consist of Jordan blocks of sizes j,, j\, ..., which we arrange so that

Joe ^ Joc+i ^ °- Note that u, lies in the closure of the conjugacy class of u\ if and only if
^SLiJa ^ S^i^ for all (3 (= i, 2, .. .). We say that x^ x ' if s, s ' are conjugate
and the u, are injhe closure of the conjugacy class of the ^ for all i. Similarly we define
s{x) ̂  s ( x ' ) in G if x ^ x ' in G.

6. Orbital integrals. — Suppose F is local. Fix unitary characters u:Z ->CX

and S : Z -> Cx with u{z) == S^(^)) so that the restriction of S to ^ is injective.
Throughout f and / denote smooth (this means locally constant in the non-archimedean
case) complex-valued functions on G and G, which satisfy f{zx) == ^(z)-1^) {z in Z)

GO
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^/ /v/ /^
and f^Tc) ==• SC?)"1/^) (? in Z), and whose support is compact modulo the center.
Let G^ be the centralizer of^m G. It depends only on x == p ( V ) . Let Z^ be the split
component in the center of G^p. Similarly we have G;p, Z^. For example Z^ = Z
if x is regular elliptic, for then GJZ is compact. Let dg, dt, dz, d"g, dt, dz denote Haar
measures on G/Z, GJZ, ZJZ, G/Z, GJZ, ZJZ. For x in G, ^in G with p ( x ) = x, such
that ^y=yrx whenever xp^J) == p { J ) x, the measures are related by dgfdt == dgfdt
via the isomorphism G/Ga; ^ G/G^. For x in G, and ^in 6, we put

^f) - f f{g~1 ̂  dl ^^f) = f f{g-1 ̂  ̂JG^\G dt •/z^\G a-2:

^7) = L ./(r1^)^ ^>"(yj) - L ./^-l%)^
^^AG ^ ^Z^\G ^^

'̂ /
The convergence of these integrals for all x has been shown in [R], Note that 0(?,y) == o
whenever there is g in G with g ~ l ' x ' g = i^Q Tc and ^ + i. Also let T){x) be the dis-
criminant of the characteristic polynomial of x in G, namely D{x) == Tl^^ — Xj)2,
where ̂ , x^, .. . are the distinct eigenvalues of ^. Put A(;c) = |D(A:) [^/[det A:]^"1^.
Hence

1/2A W = n.(xt - ̂ )2
| t< i ^^ |

if^ has distinct eigenvalues x^ .. .5 A:y. Put

F ( x J ) == AM (D(^/), F(yj) = A(^(y)) $(y,7).

Then 0(/) :^ ->^)(^/) and F(/) are functions on the space X(G) of conjugacy
^ ^ ^

classes in G, and 0(jQ and F(jf) are functions on X(G), the space of conjugacy classes
in G. Similarly we define F" using O".

We shall deal only with functions f with the property S(-s') 'F{x,f) = F{x\f)
for any x, x ' in G with zx* == x ' * for some z in Z.

7. Change of variables. — From now on we denote by P a parabolic sub-
group of G, with unipotent radical N and Levi subgroup M containing A. Denote
by 8p the modulus homomorphism on P, thus d(ab) == 8p(fl) db {a, b in P) for any
right Haar measure db on P. There is a bijection between the sets of parabolic Sub-
groups ? == MN of 5 and P == MN of G, given by j&(P) = P, and ?(M) = M.
In (2) we identified N and ^(N). For % in M which projects to m ==?{%) in M, put

yte = S^m)112 f f ^{k-^nk) dndk.
J K J N

It depends on N, but its orbital integral at a regular element depends only on M. Also put

OG/M^) == |det(l -Ad(w))|L,eG/LieMl

== [det(i -Ad(m))|^eN4-LieNl = |det(i - Ad(m))|ueNl2 W;
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