@article{PMIHES_1987__65__61_0, author = {Ramanathan, A.}, title = {Equations defining {Schubert} varieties and {Frobenius} splittings of diagonals}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {61--90}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {65}, year = {1987}, mrnumber = {908216}, zbl = {0634.14035}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1987__65__61_0/} }
TY - JOUR AU - Ramanathan, A. TI - Equations defining Schubert varieties and Frobenius splittings of diagonals JO - Publications Mathématiques de l'IHÉS PY - 1987 SP - 61 EP - 90 VL - 65 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1987__65__61_0/ LA - en ID - PMIHES_1987__65__61_0 ER -
%0 Journal Article %A Ramanathan, A. %T Equations defining Schubert varieties and Frobenius splittings of diagonals %J Publications Mathématiques de l'IHÉS %D 1987 %P 61-90 %V 65 %I Institut des Hautes Études Scientifiques %U http://archive.numdam.org/item/PMIHES_1987__65__61_0/ %G en %F PMIHES_1987__65__61_0
Ramanathan, A. Equations defining Schubert varieties and Frobenius splittings of diagonals. Publications Mathématiques de l'IHÉS, Tome 65 (1987), pp. 61-90. http://archive.numdam.org/item/PMIHES_1987__65__61_0/
[1] Schubert varieties and Demazure's character formula, Aarhus Preprint Series No. 44, June 1984. | Zbl
,[2] Schubert varieties and Demazure's character formula, Invent. Math., 79 (1985), 611-618. | MR | Zbl
,[3] Désingularisations de variétés de Schubert généralisées, Ann. Sci. E.N.S., 7 (1974), 53-88. | Numdam | MR | Zbl
,[4] Algebraic Geometry, Graduate Texts in Math., Springer-Verlag, 1977. | MR | Zbl
,[5] Methods of algebraic geometry, Vol. II, Cambridge Univ. Press, 1952.
and ,[6] Linear Systems on homogeneous spaces, Ann. of Math., 103 (1976), 557-591. | MR | Zbl
,[7] The Grothendieck-Cousin complex of an induced representation, Adv. in Math., 29 (1978), 310-396. | MR | Zbl
,[8] Rigorous foundation for Schubert's enumerative calculus, in Mathematical developments arising from Hilbert problems, A.M.S. Proc. of Symposia in Pure Math., Vol. XXVIII (1976), 445-482. | MR | Zbl
,[9] Geometry of G/P-V, J. of Algebra, 100 (1986), 462-557. | MR | Zbl
and ,[10] Singular locus of a Schubert variety, Bull. A.M.S., 11 (1984), 363-366. | MR | Zbl
and ,[11] Representation functors and flag algebras for the classical groups I, J. of Algebra, 59 (1979), 16-38. | MR | Zbl
and ,[12] Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math., 122 (1985), 27-40. | MR | Zbl
and ,[13] Abelian Varieties, Bombay, Oxford Univ. Press, 1974.
,[14] Varieties defined by quadratic equations, in Questions on algebraic varieties, Rome, C.I.M.E., 1970, 29-100. | MR | Zbl
,[15] Projective normality of flag varieties and Schubert varieties, Invent. Math., 79 (1985), 217-224. | MR | Zbl
and ,[16] Schubert varieties are arithmetically Cohen-Macaulay, Invent. Math., 80 (1985), 283-294. | MR | Zbl
,[17] Standard monomial theory and the work of Demazure, in Algebraic varieties and analytic varieties, Tokyo, 1983, 355-384. | MR | Zbl
,[18] Normality of Schubert varieties (Preliminary version of [19] below), Manuscript, April 1984.
,[19] Line bundles on Schubert varieties, To appear in the Proceedings of the Bombay colloquium on Vector Bundles on Algebraic varieties, 1984. | Zbl
,[20] The algebraic theory of spinors, New York, Columbia University Press, 1954. | MR | Zbl
,[21] Reductive groups are geometrically reductive, Ann. of Math. 102 (1975), 67-84. | MR | Zbl
,