@article{PMIHES_1988__67__145_0, author = {Lusztig, George}, title = {Cuspidal local systems and graded {Hecke} algebras, {I}}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {145--202}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {67}, year = {1988}, mrnumber = {972345}, zbl = {0699.22026}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1988__67__145_0/} }
TY - JOUR AU - Lusztig, George TI - Cuspidal local systems and graded Hecke algebras, I JO - Publications Mathématiques de l'IHÉS PY - 1988 SP - 145 EP - 202 VL - 67 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1988__67__145_0/ LA - en ID - PMIHES_1988__67__145_0 ER -
Lusztig, George. Cuspidal local systems and graded Hecke algebras, I. Publications Mathématiques de l'IHÉS, Tome 67 (1988), pp. 145-202. http://archive.numdam.org/item/PMIHES_1988__67__145_0/
[1] Faisceaux pervers, in “Analyse et topoligie sur les espaces signuliers”, Astérisque, 100 (1982), 5-17, Société Mathématique de France. | MR | Zbl
, , ,[2] Seminar on transformation groups, Ann. of Math. Studies, 46 (1960). | MR | Zbl
et al.,[3] Lagrangian construction for representations of Hecke algebras, Adv. in Math., 63 (1987), 100-112. | MR | Zbl
,[4] Intersection homology II, Invent. Math., 72 (1983), 77-129. | MR | Zbl
, ,[5] Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215. | MR | Zbl
, ,[6] Coxeter orbits and eigenspaces of Frobenius, Invent. Math., 28 (1976), 101-159. | MR | Zbl
,[7] Representations of finite Chevalley groups, C.B.M.S. Regional Conference series in Math., 39, Amer. Math. Soc., 1978. | MR | Zbl
,[8] Green polynomials and singularities of unipotent classes, Adv. in Math., 42 (1981), 169-178. | MR | Zbl
,[9] Intersection cohomology complexes on a reductive group, Invent. Math., 75 (1984), 205-272. | MR | Zbl
,[10] Characters sheaves, I-V, Adv. in Math., 56 (1985), 193-237; 57 (1985), 226-265, 266-315; 59 (1986), 1-63; 61 (1986), 103-155. | Zbl
,[11] Fourier transforms on a semisimple Lie algebra over Fq, in “Algebraic Groups-Utrecht 1986”, Lecture Notes in Mathematics, 1271, Springer, 1987, 177-188. | MR | Zbl
,[12] Induced unipotent classes, J. London Math. Soc., 19 (1979), 41-52. | MR | Zbl
, ,