@article{PMIHES_1990__71__173_0, author = {Borel, Armand and Prasad, Gopal}, title = {Addendum : {Finiteness} theorems for discrete subgroups of bounded covolume in semi-simple groups}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {173--177}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {71}, year = {1990}, mrnumber = {1079647}, zbl = {0712.11026}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1990__71__173_0/} }
TY - JOUR AU - Borel, Armand AU - Prasad, Gopal TI - Addendum : Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups JO - Publications Mathématiques de l'IHÉS PY - 1990 SP - 173 EP - 177 VL - 71 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1990__71__173_0/ LA - en ID - PMIHES_1990__71__173_0 ER -
%0 Journal Article %A Borel, Armand %A Prasad, Gopal %T Addendum : Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups %J Publications Mathématiques de l'IHÉS %D 1990 %P 173-177 %V 71 %I Institut des Hautes Études Scientifiques %U http://archive.numdam.org/item/PMIHES_1990__71__173_0/ %G en %F PMIHES_1990__71__173_0
Borel, Armand; Prasad, Gopal. Addendum : Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups. Publications Mathématiques de l'IHÉS, Tome 71 (1990), pp. 173-177. http://archive.numdam.org/item/PMIHES_1990__71__173_0/
[1] Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ. Math. I.H.E.S., 69 (1989), 119-171. | Numdam | MR | Zbl
and ,[2] Theorem of properness of Galois cohomology maps over function fields (in Russian), Dokl. Acad. Nauk BSSR, 23 (1979), 1065-1068. | MR | Zbl
,[3] Nombres de Tamagawa et groupes unipotents en caractéristique p, Invent. Math., 78 (1984), 13-88. | MR | Zbl
,[4] Volumes of S-arithmetic quotients of semi-simple groups, Publ. Math. I.H.E.S., 69 (1989), 91-117. | Numdam | MR | Zbl
,[5] Quadratic and hermitian forms, Springer-Verlag, Heidelberg (1985). | MR | Zbl
,