Arthur, James
A local trace formula
Publications Mathématiques de l'IHÉS, Tome 73 (1991) , p. 5-96
Zbl 0741.22013 | MR 92f:22029 | 4 citations dans Numdam
URL stable : http://www.numdam.org/item?id=PMIHES_1991__73__5_0

Bibliographie

[1] J. Arthur, The characters of discrete series as orbital integrals, Invent. Math., 32 (1976), 205-261. MR 54 #474 | Zbl 0359.22008

[2] J. Arthur, A trace formula for reductive groups I: terms associated to classes in G(Q), Duke Math. J., 45 (1978), 911-952. MR 80d:10043 | Zbl 0499.10032

[3] J. Arthur, A trace formula for reductive groups II: applications of a truncation operator, Compos. Math., 40 (1980), 87-121. Numdam | MR 81b:22018 | Zbl 0499.10033

[4] J. Arthur, The trace formula in invariant form, Ann. of Math., 114 (1981), 1-74. MR 84a:10031 | Zbl 0495.22006

[5] J. Arthur, On the inner product of truncated Eisenstein series, Duke Math. J., 49 (1982), 35-70. MR 83e:22023 | Zbl 0518.22012

[6] J. Arthur, On a family of distributions obtained from Eisenstein series II: Explicit formulas, Amer. J. Math., 104 (1982), 1289-1336. MR 85d:22033 | Zbl 0562.22004

[7] J. Arthur, A Paley-Wiener theorem for real reductive groups, Acta Math., 150 (1983), 1-89. MR 84k:22021 | Zbl 0514.22006

[8] J. Arthur, The local behaviour of weighted orbital integrals, Duke Math. J., 56 (1988), 223-293. MR 89h:22036 | Zbl 0649.10020

[9] J. Arthur, The characters of supercuspidal representations as weighted orbital integrals, Proc. Indian Acad. Sci., 97 (1987), 3-19. MR 90c:22052 | Zbl 0652.22009

[10] J. Arthur, The invariant trace formula I. Local theory, J. Amer. Math. Soc., 1 (1988), 323-383. MR 89e:22029 | Zbl 0682.10021

[11] J. Arthur, Intertwining operators and residues I. Weighted characters, J. Funct. Anal., 84 (1989), 19-84. MR 90j:22018 | Zbl 0679.22011

[12] J. Arthur, The trace formula and Hecke operators, in Number Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 11-27. MR 90e:11072 | Zbl 0671.10026

[13] J. Arthur, Towards a local trace formula, in Algebraic Analysis, Geometry and Number Theory, The Johns Hopkins University Press, 1989, 1-24. MR 98h:22020 | Zbl 0765.22010

[14] J. Arthur, Some problems in local harmonic analysis, to appear in Harmonic Analysis on Reductive Groups, Birkhäuser. Zbl 0761.22013

[15] Harish-Chandra, A formula for semisimple Lie groups, Amer. J. Math., 79 (1957), 733-760. MR 20 #2633 | Zbl 0080.10201

[16] Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math., 80 (1958), 241-310. MR 20 #925 | Zbl 0093.12801

[17] Harish-Chandra, Two theorems on semisimple Lie groups, Ann. of Math., 83 (1966), 74-128. MR 33 #2766 | Zbl 0199.46403

[18] Harish-Chandra, Harmonic Analysis on Reductive p-adic Groups, Springer Lecture Notes 162, 1970. MR 54 #2889 | Zbl 0202.41101

[19] Harish-Chandra, Harmonic analysis on reductive p-adic groups, in Harmonic Analysis on Homogeneous Spaces, Proc. Sympos. Pure Math., 26, A.M.S., 1973, 167-192. MR 49 #5238 | Zbl 0289.22018

[20] Harish-Chandra, Harmonic analysis on real reductive groups I. The theory of the constant term, J. Funct. Anal., 19 (1975), 104-204. MR 53 #3201 | Zbl 0315.43002

[21] Harish-Chandra, Harmonic analysis on real reductive groups II. Wave packets in the Schwartz space, Invent. Math., 36 (1976), 1-55. MR 55 #12874 | Zbl 0341.43010

[22] Harish-Chandra, Harmonic analysis on real reductive groups III. The Maass-Selberg relations and the Plancherel formula, Ann. of Math., 104 (1976), 117-201. MR 55 #12875 | Zbl 0331.22007

[23] Harish-Chandra, The Plancherel formula for reductive p-adic groups, in Collected Papers, Vol. IV, Springer-Verlag, 353-367.

[24] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. MR 26 #2986 | Zbl 0111.18101

[25] D. Keys, L-indistinguishability and R-groups for quasi-split groups: Unitary groups of even dimension, Ann. Scient. Éc. Norm. Sup., 4e Sér., 20 (1987), 31-64. Numdam | Zbl 0634.22014

[26] R. P. Langlands, Eisenstein series, the trace formula and the modern theory of automorphic forms, in Number Theory, Trace Formulas and Discrete Groups, Academic Press, 1989, 125-155. MR 90e:11077 | Zbl 0671.10025

[27] I. G. Macdonald, Spherical Functions on a Group of p-Adic Type, Publications of the Ramanujan Institute, Madras, 1971. Zbl 0302.43018

[28] W. Müller, The trace class conjecture in the theory of automorphic forms, Ann. of Math., 130 (1989), 473-529. MR 90m:11083 | Zbl 0701.11019

[29] A. Silberger, Introduction to Harmonic Analysis on Reductive p-Adic Groups, Mathematical Notes, Princeton University Press, 1979. MR 81m:22025 | Zbl 0458.22006

[30] J. Tits, Reductive groups over local fields, in Automorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., 33, Part I, A.M.S., 1979, 29-69. MR 80h:20064 | Zbl 0415.20035

[31] J. L. Waldspurger, Intégrales orbitales sphériques pour GL(N) sur un corps p-adique, Astérisque, 171-172 (1989), 279-337. MR 91g:22027 | Zbl 0706.22015