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MODULI OF REPRESENTATIONS
OF THE FUNDAMENTAL GROUP

OF A SMOOTH PROJECTIVE VARIETY. II
by CARLOS T. SIMPSON

Introduction

This second part is devoted to the subject of the title, moduli spaces of represen-
tations of the fundamental group of a smooth complex projective variety X. We study
three moduli spaces for related objects. The Betti moduli space Mg(X, n) is a coarse moduli
space for rank n representations of the fundamental group of the usual topological
space X^. A vector bundle with integrable connection is a pair (E, V) where E is a vector
bundle and V : E -> E ® Q^ is an operator satisfying the Leibniz rule and V2 = 0.
The de Rham moduli space Mjy^(X, n} is a coarse moduli space for rank n vector bundles
with integrable connection on X. A Higgs bundle [Hil] [Si5] is a pair (E, 9) where E
is a vector bundle and 9 : E —> E ® Q^ ls a morphism of 6^-modules such that 9 A 9 = 0.
There is a condition of semistability analogous to that for vector bundles, but only
concerning subsheaves preserved by 9. The Dolbeault moduli space M^(X, n) is a coarse
moduli space for rank n semistable Higgs bundles with Chern classes vanishing in
rational cohomology. In all three cases, the objects in question form an abelian category
in which we can apply the Jordan-Holder theorem. Let gr(E) denote the direct sum
of the subquotients in a Jordan-Holder series for E, and say that E^ is Jordan equivalent
to Eg if gr(E^) ^ gr(Eg). The points of the coarse moduli spaces parametrize Jordan
equivalence classes of objects.

The constructions of these moduli spaces are reviewed in § 5. The construction
of MB is a classical one from the theory of representations of discrete groups. The cons-
truction of Mp^ follows from the construction of Part I, § 4, for the case where A^ = Q^
is the full sheaf of rings of differential operators on X. We give two constructions of M^.
One is based on an interpretation of Higgs sheaves as coherent sheaves on T* X, and
uses the construction of the moduli space of coherent sheaves constructed in Part I, § 1.
The other consists of applying the general construction of Part I, § 4, to the case
A^ == Sym-(TX).

The three types of objects are related to each other. The Riemann-Hilbert corres-
pondence between systems of ordinary differential equations and their monodromy repre-
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sentations provides an equivalence of categories between vector bundles with integrable
connection and representations of the fundamental group. To (E, V) corresponds the
monodromy of the system of equations V(<?) = 0. The correspondence between Higgs
bundles and local systems of [Hil], [Do3], [Co], [Si2], and [Si5] gives an equivalence
of categories between semistable Higgs bundles with vanishing rational Chern classes,
and representations of the fundamental group. Together, these correspondences give
isomorphisms of sets of points

Ms(X, n) ̂  M^(X, n) ^ M^(X, n).

In § 7 we use the analytic results of Part I, § 5, to show that the first map is an isomorphism
of the associated complex analytic spaces, and that the second is a homeomorphism of
usual topological spaces.

There is a natural algebraic action of the groupe C* on the moduli space Mp^(X, n),
given by ^(E, 9) = (E, ^p), and our identifications thus give a natural action—no longer
algebraic—on the space of representations. The fixed points of this action are exactly
those representations which come from complex variations of Hodge structure [Si5].
Although Mp^ is not compact, the properness of Hitchin's map (Theorem 6.11) implies
that M^i(X, n) contains the limits of points tE as t -> 0. This yields the conclusion
that any representation of the fundamental group may be deformed to a complex variation
of Hodge structure (Corollary 7.19 below). This theorem was in some sense the principal
motivation for constructing the moduli spaces. See [Si5] for more details on some
consequences.

The reason for the terminologies Betti, de Rham and Dolbeault is that these moduli
spaces may be considered as the analogues for the first nonabelian cohomology, of the
Betti cohomology, the algebraic de Rham cohomology, and the Dolbeault cohomology
(B^^H^X,^) ofX. The first nonabelian cohomology set H^X, G\(n, C)) is the
set of isomorphism classes of rank n representations of T^(X). This has a structure of
topological space, but it is not Hausdorff. The universal Hausdorff space to which it
maps is the Betti moduli space Mg(X, n). To explain the analogies for the de Rham
and Dolbeault spaces, we have to digress to discuss the Cech realizations of the cohomology
groups with complex coefficients.

The algebraic de Rham cohomology is the hypercohomology of X with coefficients
in the algebraic de Rham complex Q^ 4. O.^ 4. ... If X = U U^ is an affine open
covering of X, and if we denote multiple intersections by multiple indices, then the
cocycles defining Hp^(X, C) consist of the pairs of collections ({g^}, { a^}) where
^ap are regular functions U^p ->• C, and a^ are one-forms on U^, such that

Sa^ ==: S^v T" S<x.f9

^03) = ^a - ̂

and d(a^) == 0.
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Addition of the coboundary of a collection { ̂  }, where s^ are regular functions U^ -> C,
changes the pair ({ g^ }, { a, }) to ({ ̂ p + ̂  - ̂  }, { ̂  + ̂ J}). The group of cocycles
modulo coboundaries is H^(X, C). The nonabelian case has formulas which are more
complicated, but which reduce to the above if the coefficient group is abelien. A vector
bundle with integrable connection is defined by a pair ({^pM A^}), where
g^: Ua3 -> G\(n, C) are the gluing functions for the vector bundle, and A^ are
n X n matrix-valued one forms defining the connection V = d + A^. These are subject
to the conditions

^3Y ^a3 = gix-f9

A^ = <?a31 ^C?ap) + ̂ a'P1 A3^p,

and rf(AJ + A^ A A, = 0.

A change of local frames by a collection of regular functions s^:V^-> Gl{n, C) changes
the pair {{g^},{\}) to ({^ 1 <?ap ^a M ̂  ' A^ + ^a1 ̂ a)}). The set of pairs up
to equivalence given by such changes of frames, is the first nonabelian de Rham cohomo-
logy set H^(X, G\(n, C)), the set of isomorphism classes of vector bundles with integrable
connection on X.

A similar if somewhat looser interpretation gives an analogy between the abelian
Dolbeault cohomology group H^X, 0^ C H°(X, Q^ and the first nonabelian Dolbeault
cohomology set H^X, G\{n, C)), the set of isomorphism classes of Higgs bundles (E, 9)
which are semistable with vanishing rational Ghern classes. Here E is a vector bundle
and 9 e H°(X, End(E) 00^ ̂ )- Such a pair may be given a cocycle description similar
to the above (just eliminate the terms involving d). The conditions of semistability and
vanishing Chern classes are new.

Following this interpretation, we can think of the first nonabelian cohomology
as a nonabelian motive in a way analogous to [DM], with its Betti, de Rham and Dolbeault
realizations. It would be good to have /-adic, and crystalline interpretations in charac-
teristic p.

We treat everything in the relative case of a smooth projective morphism X -> S
to a base scheme of finite type over C. This creates some difficulties for the Betti moduli
spaces: we have to introduce the notion of local system of schemes over a topological space.
The relative Betti spaces M^X/S, n) are local systems of schemes over S .̂ The de
Rham and Dolbeault moduli spaces are schemes over S, whose fibers are the de Rham
and Dolbeault moduli spaces for the fibers X^. The interpretation in terms of nonabelian
cohomology suggests the existence of a Gauss-Manin connection on Mp^(X/S, n), a foliation
transverse to the fibers which when integrated gives the transport corresponding to the
local system of complex analytic spaces Mg^X/S,^). We construct this connection
in § 8, using Grothendieck's idea of the crystalline site.

In § 9, we treat the case of other coefficient groups. If G is a reductive algebraic
group, we may define the Betti moduli space Mg(X, G) to be the coarse moduli space
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for representations of 7^(X) in G. We construct the de Rham moduli space M^(X, G)
for principal G-bundles with integrable connection, and the Dolbeault moduli space
Mp^(X, G) for principal Higgs bundles for the group G, which are semistable with
vanishing rational Ghern classes, and extend the results of §§ 7 and 8 to these cases.

One corollary is a result valid for representations of any finitely generated discrete
group Y: if G -> H is a morphism of reductive algebraic groups with finite kernel, then
the resulting morphism of coarse moduli spaces M(Y, G) -> M(Y, H) is finite (Corol-
lary 9.16).

Parallel to the discussion of moduli spaces, we discuss the Betti, de Rham and
Dolbeault representation spaces R^X.^/i), R^(X, A;, ?t), and R^i(X,^,%). These are
fine moduli spaces for objects provided with a frame for the fiber over a base point x e X
(here we assume that X is connected). There are relative versions for X/S where the
frames are taken along a section ^ : S -> X, and there are versions for principal objects
for any linear algebraic group. In § 10, we discuss the local structure of the singularities
of the representation spaces, using the deformation theory associated to a differential
graded Lie algebra developed by Goldman and Millson [GM]. By Luna's ^tale slice
theorem, this also gives information about the local structure of the moduli spaces.
The differential graded Lie algebra controlling the deformation theory of a principal
vector bundle with integrable connection or a principal Higgs bundle is formal if the
object is reductive (in other words, corresponds to a closed orbit under the action of G
on R(X, x, G)). By the theory of [GM], this implies that the representation space has
a singularity defined by a quadratic form on its Zariski tangent space. Furthermore,
the differential graded Lie algebras controling the deformation theories of the flat bundle
and the corresponding Higgs bundle are the same. This gives a formal isomorphism
between the singularities of the de Rham (or Betti) representation space and the singu-
larities of the Dolbeault representation space, at semisimple points which correspond
to each other. This isosingularity principle holds also for the singularities of the moduli
spaces. The homeomorphism between Mp^ and Mp^ is not complex analytic, so these
local formal isomorphisms are not directly related to the global homeomorphism.

Finally, in § 11 we discuss the case of representations of the fundamental group of
a Riemann surface of genus g ^ 2. Hitchin calculated the cohomology in the case of rank
two projective representations of odd degree, where the moduli space is smooth [Hi I],
We do not attempt to go any further in this direction. We simply treat the most elementary
property, irreducibility (which is more or less a calculation of H°). We treat the case
of representations of degree zero, so the moduli space has singularities corresponding
to reducible representations; we prove that the singularities are normal. The technique
is to use the fact that the Betti moduli space is a complete intersection, and apply Serre's
criterion (following a suggestion ofM. Larsen, and prompted by a question ofE. Witten).
We have to verify that there are no singularities in codimension one. To prove irredu-
cibility it suffices to prove that the space is connected, which we do by a simple argument
derived from Hitchin's method for calculating the cohomology.
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Relationship with part I

It is worth reiterating the nature of the connections between this second part
and Part I of the paper. The sections are numbered globally, so we begin with § 6.
References to lemmas and such, numbered for sections 1-5, are references to the statements
in <( Moduli of representations of the fundamental group of a smooth projective variety I ".
We rely on the technical work done in part I for many of the constructions of moduli
spaces, identifications, and criteria for convergence used here. For the most part, we
apply statements from the first part, so Part II can be read without having read Part I
in a very detailed way, but just having a copy at hand for reference.

Origins

The correspondence between Higgs bundles and local systems, reflected in the
homeomorphism between the Dolbeault and the de Rham or Betti moduli spaces, comes
from work of Hitchin [Hil], Colette [Go] and Donaldson [Do3], as well as [Si2]. The
formalism of this correspondence is developed in [Si5].

The original correspondence of this type was the result of Narasimhan and
Seshadri [NS] between unitary representations and stable vector bundles. This was
subsequently generalized by Donaldson [Dol] [Do2], Mehta and Ramanathan [MR1]
[MR2], and Uhlenbeck and Yau [UY].

The idea of obtaining a correspondence between all representations into a non-
compact group, and vector bundles provided with the additional structure of a Higgs
field, comes from Hitchin's paper [Hil] with the appendix [Do3] of Donaldson. Hitchin
established the correspondence between rank two Higgs bundles and rank two repre-
sentations on a Riemann surface (and his arguments are easily extended to any rank).
Independently, I had arrived at a correspondence between certain representations
with noncompact structure group (the complex variations of Hodge structure), and
certain holomorphic objects involving an endomorphism valued one-form (systems of
Hodge bundles) [Sil]. Deligne and Beilinson had also arrived at a correspondence
between systems of Hodge bundles and variations of Hodge structure over a Riemann
surface (unpublished work). My definitions and very first results were independent of
those of Delinge and Beilinson, then Deligne explained their work and made some
important suggestions. I didn't see, until W. Goldman directed me to Hitchin's paper
which had just appeared, that one could hope to obtain a correspondence involving
all representations. In light of Hitchin's definition, systems of Hodge bundles could be
seen as special types of Higgs bundles, and my arguments in higher dimensions could
be generalized to the case of Higgs bundles [Si2]. This provided one direction of the
correspondence. The other direction (corresponding to Donaldson's appendix to
Hitchin's paper) was provided by the results on equivariant harmonic maps and the
Bochner formula obtained by Colette in his thesis [Co],
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This correspondence provided the motivation for the construction of the moduli
space of Higgs bundles. Hitchin gave an analytic construction in his paper, and he
obtained all of the interesting properties, such as the properness of the map given by
taking the characteristic polynomial of the Higgs field. In my thesis, I had constructed
a moduli space for systems of Hodge bundles, using Mumford's construction for vector
bundles on curves. The construction presented in part I grew out of this, but uses
methods of geometric invariant theory more suited to higher dimensions, as pioneered
by Gieseker [Gi] and Maruyama [Mal] [Ma2]. See the introduction of Part I for further
details. When I first discussed this with him, Hitchin advised me that Nitsure had given
an algebraic construction for Higgs bundles over a curve [Nil],

Early on, while I was looking at systems of Hodge bundles, J. Bernstein made
the comment that a system of Hodge bundles could be considered as a sheaf on the
cotangent bundle of the variety. This remark, generalized to the case of Higgs bundles,
forms the basis for one of the constructions of the moduli space of Higgs bundles presented
in § 6.

The discussion of the Gauss-Manin connection in § 8 was prompted by a discussion
with S. Mochizuki, wherein he pointed out that the analytic connection provided by
the Betti trivialisation of M^(X/S, n) over S, was not a priori algebraic. The methods
used to prove algebraicity are the crystalline methods envisioned by Grothendieck in
connection with his construction of the Gauss-Manin connection for abelian co homo-
logy [Gr3]. The existence of the Gauss-Manin connection was announced in [Si3],
and a brief sketch of the proof was given.

The material in § 10 about deformation theory is an easy extension of the work
ofGoldman and Millson [GM]. Their work was, in turn, based on a deformation theory
developed by Schlessinger, Stasheff and Deligne.

The proof of irreducibility in § 11 was motivated by an old question posed to me
byj. Bloch, and made possible by Hitchin's method of using Morse theory or the C* action
to calculate the topology of the moduli space (which we use just to show connectedness).
My original proof contained a long and technical part showing that the singularities
were locally irreducible. E. Witten later posed the question of whether the singularities
were normal, and M. Larsen helped by directing me to the place in [Ha] explaining
how to use Serre's criterion to prove normality of a complete intersection. The only
technical part now needed is an inductive verification that the singularities are in
codimension at least two, which makes the argument much shorter.
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6. Moduli spaces for representations

The Betti moduli spaces

We begin with a classical construction from the theory of spaces of representations
of discrete groups. Suppose F is a finitely generated group. Fix n. Put

R(F, n) = Hom(r, G\{n, C)).

It is a scheme over Spec(C) representing the functor which to a C-scheme S associates
the set Hom(r, Gl(n, H°(S, ^g))). The scheme R(r, n) can be constructed by choosing
generators yi, ..., Y& ̂  r- Let Rel denote the set of relations among the y,. Then

R(F, n) C G\{n, C) x ... X Gl(%, C) (k times)

is the closed subset defined by the equations r(m^ ..., m^) == 1 for r e Rel. It is easy
to see that this subset represents the required functor—a representation p : F -> Gl(n)
corresponds to the point (m^ ..., wj with m, == p(Y»). Note that R(F, n) is a closed
subset of an affine variety, so it is affine.

The group Gl(n, C) acts on R(F, n) by simultaneous conjugation of the matrices.
The orbits under this action are the isomorphism classes of representations.

Two representations p and p' are said to be Jordan equivalent if there exist compo-
sition series for each such that the associated graded representations are isomorphic.
The theorem of Jordan-Holder says that the associated graded doesn't depend on the
choice of composition series; this semisimple representation is an invariant of the repre-
sentation, known as its semisimplification.

Proposition 6.1. — There exists a universal categorical quotient R(F, n) ->M(r, n) by
the action ofG\(n, C). The scheme M(F, n) is an affine scheme of finite type over C. The closed
points o/'M(r, n) represent the Jordan equivalence classes a/representations.

Proof. — This is well known. The quotient is constructed by taking the coordinate
ring A=H°(R(r,^),^J, setting B=AG l ( n t c ) to be the subring of invariants,
and putting M(F, n) = Spec(B). Hilbert proved that B is finitely generated. Mumford
shows in [Mu] that Spec(B) is a universal categorical quotient of Spec(A) = R(F, n).
Finally, Seshadri shows that the closed points of the quotient are in one to one corres-
pondence with the closed orbits [Se], The closed orbits are the orbits corresponding
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to semisimple representations, and the closed orbit in the closure of a given orbit is the
one corresponding to the semisimplification of the given representation. D

Suppose X is a conected smooth projective variety over Spec(C). Choose x eX
and let T = ^(X^, x). We will use the notation

R,,(X, x, n) ̂  R(F, n)

and call this the Betti representation space; and the notation

Ms(X, n) ̂  M(F, n)

calling this the Betti moduli space. This terminology is suggested by the terminology
of [DM].

The space Mg(X, n) does not depend on the choice of x. More precisely, if we
include the choice of x in the notation then there are canonical isomorphisms

T(^):MB(X,^^)^MB(X,J,^)

such that r(j^, z) ^(x,jy) == r(x, z), given as follows. We may choose a path from x toy,
giving ^(X^, x) ^ TC^X^,^) and hence RB(X, x, n) ^ Rs(X,j/, n). This isomorphism
is compatible with the action of G\{n, C) so it descends to the desired T(A?,J/). Choice
of a different path gives a different isomorphism of representation spaces which differs
by the action of a section g : Rj^X.j, n) -> Gl(n, C). By the definition of quotient, the
two natural maps

RB(X,^, n) x Gl(n, C) -^MB(X,J/, n)

are equal. Hence the two maps from the graph of g to M^X.j/, n) are the same. Thus
the two maps from Rfi(X, x, n) to Mg(X,j/, n) are the same, so the two isomorphisms r(;v,j/)
are the same. Thus r(^,j/) is canonically defined; and this independence of the choice
of path implies the formula r(^, z} ^(x,y) == r{x, z). We will identify the spaces obtained
from different choices of base point, and drop the base point from the notation for
MB(X,^).

Local systems of schemes

Suppose T is a topological space. A local system of schemes Z over T is a functor from
the category of C-schemes to the category of sheaves of sets over T, denoted (backward)

Z : (S e Sch, U C T) H> Z(U) (S),

such that: there exists a covering by open sets T === Ua U<x!suc!1 Aat for any open set V
contained in one of the U^, the functor S i-> Z(V)(S) is represented by a scheme Z(V)
over C; and such that if W C V are connected open sets contained in one of the U^
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then the restriction map Z(V) -> Z(W) is an isomorphism (note that the restriction
morphisms of functors are automatically morphisms of schemes).

Choose a point t e T. The stalk

Z< ̂  lim Z(V)
Fe^

is a scheme.

Lemma 6.2. — IfZ is a local system of schemes on T, the group TCi(T, /) acts on the stalk Z,
by C-scheme automorphisms. If T is connected and locally simply connected, the construction Z \—> Z^
is an equivalence between the category of local systems of schemes over T and the category of schemes
with action of 7ri(T, t).

Proof. — Suppose Z is a local system of schemes over T. Let T === Ua U^ be an
open covering as in the definition. We may suppose that the U^ are connected. We
have schemes Z(UJ. If v e U^ n Up then we have isomorphisms of schemes

Z(Uj£-Z,^Z(Up).

If v e U^ n Up n Uy then the resulting hexagon commutes. If < r : [0, 1] -> T is a path
with (T(O) == (r(l) == t then we may choose 0 == SQ < s^ < ... < ̂  = 1 e [0, 1] and
(XQ, .. .3 o ;̂ such that

^([^i-H^Uo,.

We obtain Z^^ ^ Z(Ua.) ^ Zg^. p Putdng these isomorphisms together we get an
isomorphism of schemes Z^ ^ Z^. One can check that a homotopic path </ ̂  a gives
the same isomorphism, so we get an action of 7^(T, /) on Z^.

Suppose T is connected and locally simply connected, so the universal covering T
exists. Given a scheme Z^ with action of 7Ci(T, t), form the constant local system of
schemes Z over the universal covering T, whose fiber at the base point t is Z^ (the sheaf
is given by the rule Z(U)(S) = Z^(S) for connected open sets U$ the restriction maps
are the identity). The group of covering transformations Aut(T/T) = ^(T, t) acts
on Z over its action on T, by the given action on Z^. Now define Z(U)(S) to be the
set of invariants in Z(U)(S), where U is the inverse image ofU in the universal covering.
This gives a local system of schemes Z over T. This construction is the inverse of the
previous construction. D

We can make a similar definition of local system of complex analytic spaces over
a topological space T; and the analogue of the previous lemma still holds. IfZ is a local
system of schemes then we obtain a corresponding local system of complex analytic
spaces Z^. The stalk Z^ is the complex analytic space associated to Z^.

If T is a complex analytic space and Z is a local system of schemes over T then
we denote by Z^ the total analytic space over T constructed as follows. Choose an open
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covering T = U, T, such that the restriction of Z to T, is a constant local system with
stalk Z,. For each connected component of T, n T, there is an isomorphism Z, ^ Z ,
satisfying a compatibility relation for triples of indices. Let Z^ be the space obtained
by glueing together the complex analytic spaces Z^ x T, using these isomorphisms.

The Betti moduli spaces in the relative case

Suppose thaty: X -> S is a smooth projective morphism to a scheme S of finite
type over C. Suppose that S and the fibers X, are connected. The associated map of
complex analytic spaces /an is a fibration of the underlying topological spaces. Choose
base points t e S and x e X<. Let F = ^(X^, x). Let Aut(F) denote the group of auto-
morphisms ofr; Inn(r) C Aut(F) the image of the natural map Ad : F -> Aut(F) (which
sends y to the inner automorphism Ad(-^){g) == y^Y"1)? and Out(F) == Aut(r)/Inn(r).
The group ^(S^, t) acts on F by outer automorphisms, in other words there is a map

TT^S^) ->0ut(r).
This may be defined as follows: if a : [0, 1] -> S^ is a loop representing an element
of^S^, t), then the pullback CT^X^) is a fibration over [0, 1]; it is trivial, so we obtain
a homeomorphism X^ ^ X^ between the fibers over 0 and 1; this gives a map
TC^X^, x) ^ ^(X^.j/) for some other point y\ finally, choose a path joining x andj/,
to get an automorphism of F = Tr^X^, x)—which is well defined independent of the
choice, up to inner automorphism. The resulting outer automorphism is independent
of the homotopy class of the path (T.

The group Aut(F) acts on the representation space R(F, n). This descends to an
action of Out(F) on the moduli space M(F, n), as inner automorphisms act on the
representation space through functions R(F, n) -> Gl{n, C) and hence trivially on the
moduli space. In our case, we have denoted M(F, n) by Mg(X(,7z). Composing this
action with the action ofT^S^, t) on F, we obtain an action of ^(S^, t) on Ms(X(, n)
by C-scheme automorphisms. From Lemma 6.2, we obtain a local system of schemes
Mg(X/S, n) over the topological space underlying S .̂

The relative version of the Betti moduli space is this local system of schemes
Mg(X/S, n). It is independent of the choice of base points t and x. The stalk over s e S is

MB(X/S,^=M^(X,,;Z).

Suppose ^ : S - > X is a section. Then ^(S^, t) acts on ^(Xg, ^(t)) by auto-
morphisms. We obtain a local system of schemes Rp(X/S, S, n), which is again inde-
pendent of the choice of t. The stalk over s e S is

RB(X/S,^,TZ),=RB(X,,^)^.

The constructions M^X/S, n) and Rg(X/S, S, n) may be extended to the case of non-
connected base S by taking the disjoint union of the spaces over each connected com-
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ponent of S. The construction Mg(X/S, n) may also be extended to the case where the
fibers are not connected. If s e S and if Xg == X^ u ... U X^ is the decomposition of
the fiber into connected components, then

M^X/S, n), == M^Xi, n) x ... X M^X,, n).

The action of TC^S^, s) permutes the factors in the product appropriately.
We close the discussion of the Betti moduli spaces by giving the universal and

co-universal properties they satisfy.

Proposition 6.3. — Suppose/: X -> S is smooth and protective with connected, fibers, and
suppose that ^: S —^ X is a section. Then for any scheme Y and any open set U C S^ the set
Rg(X/S, ^,n)(U)(Y) is equal to the set of isomorphism classes of pairs (L, (B) where L is a
locally constant sheafof'H°(Y, (9^-modules onf-^V) and (B: ̂ (L) ^ H°(Y, fiy)^

Proof. — It suffices to prove this for small open sets U, for example connected
open sets over which the topological fibration (X^ X |11 U, ^) is trivial. In this case,
choose s e U. A locally constant sheaf L of H°(Y, tfy) -modules on/'^U) together with
a fram (B is the same thing as a representation of TC^{X,, ̂ {s)) in Gl(^, H°(Y, ^y)), hence
the same thing as a morphism Y -^R^X,, ^{s), n). This is the set of Y-valued points
of the local system of schemes over the set U, since the local system of schemes is trivial
and U is connected. D

Proposition 6.4. — Suppose f: X —^ S is a smooth projective morphism. Let M|(X/S, n)
denote the functor from C-schemes to sheaves of sets over S^ which associates to each scheme Y and
each open set V C S^ the set of isomorphism classes of locally constant sheaves of free H°(Y, Com-
modities of rank n (W/-1(U). There is a map of functors from M^(X/S, ri) to Mg(X/S, n).
If Z is any local system of schemes over S^ with a natural transformation of functors
M^(X/S, n) ->Z, there is a unique factorization through a map Mg(X/S, n) ->Z.

Proof. — This is a translation to the case of local systems of schemes, of the property
that the fiber Mg(X,, n) universally co-represents the functor M^(X,, n). D

Moduli of Higgs bundles

Suppose thatjf: X -> S is a smooth projective morphism to a scheme of finite
type over C. A Higgs sheaf on X over S is a coherent sheaf E on X together with a
holomorphic map 9 : E -^ E ® ti^/s suc^ ^^ 9 A 9 == 0. Similarly, a Higgs bundle is
a Higgs sheaf (E, 9) such that E is a locally free sheaf.

Higgs bundles on curves were introduced by Hitchin in [Hi2] and [Hil], The
condition 9 A (p == 0 for higher dimensional varieties was introduced in [Si2] and [Si5],
Hitchin gave an analytic construction of the moduli space [Hil] (this part of his argu-
ment works for any rank). Nitsure gave an algebraic construction of the moduli space
of Higgs bundles over a curve [Nil],



16 CARLOS T. SIMPSON

We give two constructions of the moduli space of Higgs bundles, based on two
different interpretations. The first is simply to note that a Higgs bundle is a A-module
for an appropriate sheaf of rings A. This does not give too much other information,
and is based on all of Part 1. The second construction uses only the moduli space of
coherent sheaves of§l , and it gives some additional information about the moduli space:
the properness of Hitchin's map.

Lemma 6.5. — Let A^ = Sym'(T(X/S)). Then a Higgs sheaf on X over S is the
same thing as an (!) ̂ -coherent A^^-module on X.

Proof. — This follows from the discussion of split almost polynomial rings A at
the end of§ 2, Part I (Lemma 2.13). In this case it is easy to see that an action of the
symmetric algebra on a sheaf E is the same thing as a map 9 : E -> E ® T*(X/S) such
that <p A 9 == 0. D

Fix a relatively very ample ^x(l). Define the notions of pure dimension, ^-semi-
stability, ^-stability, pi-semistability and p-stability for Higgs sheaves to be the same as
the corresponding notions for A^^-modules. These coincide with the notions defined
in [Si5] for the case when S = Spec(C) (pure dimension d = dim(X) is the same thing
as torsion-free). Recall that in the relative case, the conditions of semistability and
stability contain the hypothesis that the sheaf is flat over the base S. Let M^ggg(X/S, P)
denote the functor which associates to an S-scheme S' the set of isomorphism classes
of^-semistable Higgs sheaves E on X' over S' with Hilbert polynomial P. This is univer-
sally co-represented by the moduli space MH^(X/S, P) d!f M^A111888, P) constructed in
Theorem 4.7, Part I. The points of M^ggg(X/S, P) parametrize Jordan equivalence
classes of j&-semistable Higgs sheaves with Hilbert polynomial P on the fibers X^. If
P has degree dim(X), then these are the same as torsion-free ^-semistable Higgs sheaves
which were discussed in [Si5].

Let Po denote the Hilbert polynomial of fi^* ^et ^M^/S? n} denote the functor
which to an S-scheme S' associates the set of isomorphism classes of^-semistable Higgs
sheaves E on X' over S' of Hilbert polynomial yzPo, such that the Chern classes ^(E<)
vanish in H^(X^, C) for all closed points s e S'.

In general, ify: X —> S is a smooth projective morphism and E is a coherent sheaf
on X which is flat over S, then the Ghern classes ^(E) are sections of the relative algebraic
de Rham cohomology R^/^x/s? ^) which are flat with respect to the Gauss-Manin
connection. Thus the condition that the Ghern classes ^(Eg) e H^(Xg, C) vanish
depends only on the connected component of S containing s.

The functor M^i(X/S, n) is universally corepresented by a scheme Mpoi(X/S, n)
which is a disjoint union of some of the connected components of M^ggg(X/S, nfo)
(the fact that Mp^(X/S, n) may be a proper subset of M^ggg(X/S, nfo) was pointed
out to me by J. Le Potter [Le]). The points of Mpoi(X/S, n) correspond to Jordan
equivalence classes of^-semistable torsion-free Higgs sheaves of rank n on the fibers Xg,
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with Ghern classes vanishing in the complex valued (or equivalently, rational) cohomology
ofX,. We call M^i(X/S, n) the Dolbeault moduli space. There is an open set M^(X/S, n)
parametrizing ^-stable Higgs sheaves, and there a universal family exists 6tale locally.

Proposition 6.6. — Suppose X is a smooth projective variety over S = Spec(C). IfJ^is
a [L-semistable torsion free Higgs sheaf with Chern classes equal to zero, then E is a bundle, and
is in fact an extension of ̂ 'stable Higgs bundles whose Chern classes vanish. Any sub-Higgs sheaf
of degree zero is a strict subbundle with vanishing Chern classes.

Proof. — [Si5] Theorem 2. D

Corollary 6.7. — If X is smooth and projective over a base S, if S' is an ^-scheme, and
ifEis an element o/M^(X/S, %)(S'), then E is locally free over X'. The points o/M^i(X/S, n)
correspond to direct sums of ^-stable Higgs bundles with vanishing rational Chern classes on the
fibers X,.

Proof. — This follows from the previous proposition and Lemma 1.27, Part I. D

Remark. — For Higgs sheaves with vanishing Ghern classes, ^-semistability (resp.
^-stability) is equivalent to [A-semistability (resp. (A-stability). This follows from Pro-
position 6.6.

Suppose X is smooth and projective over S. A Higgs bundle E on X (flat over S)
is of semiharmonic type if the restrictions to the fibers E, are semistable Higgs bundles
with vanishing rational Chern classes. Say that E, is of harmonic type if it is a direct sum
of stable Higgs bundles with vanishing rational Chern classes. The Higgs bundles of
semiharmonic type are those which correspond to representations of the fundamental
group in [Si5]. Those of harmonic type correspond to semisimple representations. The
closed points of M^i(X/S, n) parametrize the Higgs bundles of harmonic type of rank n.

Suppose X ->- S is a smooth projective morphism with connected fibers, and
suppose ^ : S -> X is a section. Let B^A11186®, ^ nPo) denote the representation space
for framed A^^-modules constructed in Theorem 4.10, Part I. By Proposition 6.6,
all ̂ -semistable Higgs sheaves with vanishing rational Ghern classes satisfy condition LF(X)
and hence condition LF(S). Let Rp^(X/S, ^ n) denote the disjoint union of those
connected components ofK^A111888, ^, n^o) corresponding to Higgs sheaves with vanishing
rational Ghern classes. Then Rj^i(X/S, ^, n) represents the functor which associates to
an S-scheme S' the set of isomorphism classes of pairs (E, JB) where E is a Higgs bundle
of semiharmonic type on X' over S' and (3 : ̂ (E) ^ 0^ is a frame. We call this scheme
the Dolbeault representation space.

The C* action

Recall that an action of an algebraic group G on a scheme Z is a morphism
G X Z -> Z satisfying the usual axioms for a group action, with the axioms written in

3
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terms of diagrams of morphisms: the two maps G x G x Z —^ Z are the same (asso-
ciativity) ; and the map Z -> Z induced by the identity element e e G is the identity.
We can define similarly the notion of an action on a functor Y^: this is a natural trans-
formation of functors G X Y^ -> Y^ satisfying the same axioms. IfG acts on a functor Y11,
and <p : Y^ -> Y is a natural transformation so that the scheme Y universally corepre-
sents Y^ then there is a unique action ofG on the scheme Y which is compatible with 9.
The morphism G X Y -> Y is obtained from the natural transformation of functors
G x Y^ -> Y by applying the universality hypothesis, that G X Y corepresents the
functor (G X Y) X y Y11 == G X Y^. The axioms are checked using the uniqueness part
of the definition of universally co-representing a functor.

The algebraic group C* acts on the functor M^(X/S, P) in the following way.
If S' is an S-scheme, t: S' -> C* is an S'-valued point, and (E, 9) e M^(X/S, P)(S')
is a ^-semistable Higgs sheaf with Hilbert polynomial P on X' over S', then (E, ^p) is
again an element of M^(X/S, P) (S') (the property of ^-semistability is preserved
because the subsheaves preserved by /<p are the same as those preserved by 9). We obtain
a morphism of functors giving the group action. By the above discussion, there is a unique
compatible action of C* on M^^(X/S, P). This gives an action of C* on M^i(X/S, n).
Similarly, if the fibers X, are connected and ^ is a section, the formula
^((E, 9)3 (B) = ((E, ^9), p) gives an action of C* on the Dolbeault representation space
^DoiC^/S? S? ^). This commutes with the action of Gl(%, C) and the good quotient
^Do^/S? S? ri) -> Mp^(X/S, n) is compatible with the action of C*.

The subspace Mp^(X/S, n)^ of points fixed by C* is a closed subvariety. Alge-
braically the structure of a Higgs bundle on X, fixed by C* is the following (cf. [Si5]
Lemma 4.1). If (E, 9) ^ (E, ^9) for some t e C* which is not a root of unity, let/be
the isomorphism. By appropriately combining the generalized eigenspaces of/, we get
a decomposition E = © E^ such that 9 : E^ -> E^""1 ®0^- SY tlw analytic results
of [Si5], the points of Mp^(X/S, n)^ correspond to Higgs bundles which come from
complex variations of Hodge structure.

The second construction

The idea behind this construction is that a Higgs bundle on X can be thought
of as a coherent sheaf € on the relative cotangent bundle T^X/S). Let Z denote a
projective completion of T*(X/S), and let D = Z — T^X/S) be the divisor at infinity.
Choose Z so that the projection extends to a map TT : Z -> X.

Lemma 6.8. — A Higgs sheaf ̂  on X over S is the same thing as a coherent sheaf S on Z
such that supp(E) n D = 0. This identification is compatible with morphisms, giving an equi-
valence of categories. The conditions of flatness over S are the same. For s e S, the condition that
E, is torsion-free is the same as the condition that S\ is of pure dimension d == dim(XJ.
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Proof. — The projection TC : T*(X/S) -> X is an affine morphism, in other words
T*(X/S) is the sheafified spectrum of the sheaf of rings TC^ ^T*(x/8) on X- This sheaf of
rings is naturally isomorphic to the symmetric algebra on the tangent bundle Sym' T(X/S),
so giving a quasicoherent sheaf S on T^X/S) it is equivalent to giving a quasicoherent
sheaf E = TC, € on X together with an action ofSym* T(X/S). But Sym* T(X/S) == A^888,
so by the discussion in § 2, this action is the same as the data of a map <p : E -> E ® 0.^
such that 9 A 9 = 0. A coherent Higgs sheaf E is the same thing as a sheaf € on T*(X/S)
such that T^ € is coherent. This condition of coherence means that § is coherent on
T^X/S) and the closure of the support of € in Z does not meet the divisor at infinity D.
A morphism of coherent sheaves € —^ ^is the same thing as a morphism T^(<?) -> ̂ (^r)
compatible with the action of the symmetric algebra, or equivalently compatible with 9.
Since TT T*(X/S) is an affine map, flatness of S over S is equivalent to flatness of T^(<?)
over S. Finally note that the dimension of support of any subsheafofE is the same on X^
as it is on Zg, because of the condition that the support doesn't meet Dg. Therefore
the conditions of pure dimension d = dim(XJ on Xg and Zg are the same. On X^,
the condition that a sheaf has pure dimension d = dim(XJ is the same as the condition
that it is torsion free. D

{^af

Choose k so that ^z(l) = ^ ^xW ®0z ^z(^) ls ample on Z (here we suppose
that Z is the standard completion of the cotangent bundle to a projective space bundle).
In particular, ^T*(X/S)(^) = 7r* ^x(^)- Thus, for any coherent sheaf S on Z with support
not meeting D, the Hilbert polynomials of S and TT,, S differ by scaling:
^(<?, m) == p{^ €,km).

Corollary 6.9. — The notions of p-semistability, p-stability, \i-semistability, and ^-stability
for a Higgs sheafJL on X over S are the same as the corresponding notions/or the coherent sheaf S
on Z associated to E in the previous lemma.

Proof. — The sub-Higgs sheaves of E correspond to the coherent subsheaves of <?,
since a subsheaf of S is the same thing as a subsheaf of TC, S preserved by the action
of the symmetric algebra. Scaling the Hilbert polynomials preserves the ordering and
scales the slope. D

Fix a polynomial P of degree d = dim(X/S), and put k* P(w) = f[km). Fix a
large N as required by the constructions of § 1 for sheaves on Z. Put H^ == 0^(— N)
and V = G^^, and let Hilb(V®^; A* P) denote the Hilbert scheme of quotients
V®')T-> § ->0 on Z, flat over S, with Hilbert polynomial k* P. Let Qi and Qg
denote the subsets defined in § 1 (not those defined in § 3), and let Q^CQ^ denote
the open subset parametrizing quotient sheaves § whose support does not meet D.
By Theorem 1.19, Part I, and [Mu], a good quotient M^^P) = Q^/81^) exists.
The open set Q^ is S1(V)-invariant and is set-theoretically the inverse image of a subset
ofM(^5 ^* P) (since the support of S\ is the same as the support of gr(<?J). Therefore
a good quotient Q^3/S1(V) exists and it is equal to an open subset which we denote
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M(^x/sp k' p) of'M(^, ̂  P). Theorem 1.21, Part I, Lemma 6.8, and Corollary 6.9
imply that M(^*(X/S), k* P) universally co-represents the functor M^ggg(X/S, P), and
we have all of the properties of Theorem 1.21, Part I. We may put

Mn^(X/S,P)=M(^^,^P).

Define the subset Mpoi(X/S, n) C M^ggg(X/S, nPo) as before. These moduli spaces
are the same as those constructed previously, because they co-represent the same
functors.

Hitchin^s proper map

We will now define a map from the space of Higgs bundles to the space of possible
characteristic polynomials for 6. This map is the generalization of the determinant map
that Hitchin studied in [Hit]. In Hitchin's case it turned out that this map was proper
([Hil] Theorem 8.1), and we will prove the same here also. Roughly speaking this
means that the only way for a Higgs bundle to <( go to infinity " is for the characteristic
polynomial to become singular.

For any n let Y^(X/S, n) -> S be the scheme representing the functor which to
an S-scheme S' associates

©^H°(X'/S',Sym1^)

[Gri] [Mu], We consider the points of Y^(X/S, n) as polynomials written
^ + ̂  ^n-i + ... + ̂  with a, e H°(X'/S', Sylrf Q^).

Let (TI, ..., Gy denote the symmetric polynomials in an r X r matrix variable A
such that

det{t - A) = f + oi(A) f-1 + . . . + ^(A).

For example, ^(A) == — Tr(A) and CT,(A) == (— l^de^A).
Let P be a polynomial of degree d == dim(X/S) and rank r ==- deg(X) n, so that

sheaves of pure dimension d and Hilbert polynomial d on the fibers Xg are torsion-free
with usual rank equal to n. Suppose S' is an S-scheme and (E, 9) is a ̂ -semistable Higgs
sheaf with Hilbert polynomial P on X' over S'. Then there is an open subset U'C X'
such that the intersection of X' — U' with any fiber has codimension at least 2, and
such that E is locally free over U'. Over U', 9 is an Qy^-vsilued endomorphism of
a rank n-vector bundle. Furthermore, the endomorphisms obtained by contracting <p
with different sections of T(X'/S') commute with each other. Thus we can evaluate
the elementary symmetric polynomials to obtain

^(9|^)eHO(U',Sym^(^^)).
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Since Sym^Q^g,) is a locally free sheaf, Hartog's theorem applied over artinian
subschemes of S', coupled with the theorem on formal functions and Artin approxi-
mation, imply that <y,(<p[u') extend uniquely to sections which we denote

^(^eH^X'.Sym1^^)).

Define (T(E, 9) e y^(X/S, n) (S') to be the point corresponding to (^(y), . . . , ( r^(y)) .
This construction defines a morphism from the functor M^ggg(X/S, P) to Y^(X/S, %),
and hence a morphism of schemes a: Mgiggg(X/S, P) -^ ^(X/S, yz). We call cr(E, 9)
the characteristic polynomial of (E, 6). The morphism a was introduced by Hitchin for
Higgs bundles on curves in [Hi2] and [Hil],

There are universal sections

a^ : X Xg ^(X/S, n) -> Sylrf T*(X/S) Xg ^(X/S, »).

Here Sym1 T*(X/S) denotes the total space of the i-th symmetric power of the relative
cotangent bundle. There is a multiplication map

Sym1 T*(X/S) Xx Sym^ T*(X/S) -> Sym^3 T*(X/S)

as well as a map corresponding to addition. There is a closed subscheme

^T(X/S, n) C T-(X/S) Xg ^(X/S, ^)

defined by the equation
f» 4- îv ^-1 4- . . . + ̂  == 0.

This represents a functor which can be seen by considering ^ and a^^ as points in the
total spaces of the symmetric powers, then multiplying them together and adding to
get a point in Syn^ T*(X/S) which is required to be in the zero section.

Lemma 6.10. — Suppose S' is an ^-scheme and (E, 9) is a p-semistable Higgs shea/with
Hilbert polynomial P on X' over S', corresponding to a coherent sheaf § on T^X'/S'). Let
cr(E, 6) : S' -> y^(X/S, n) be the characteristic polynomial defined above. Then S is supported
set theoretically on

^(X/S,^) X^/S,n),o(E.<p)S'CT-(X7S').

Proof. — In general, if A is a vector space and Sym'(A) acts on a vector space B,
then the support of B considered as a coherent sheaf on A* is equal to the set of eigen-
forms of the action of A. Now let U' C X' be the open set used above in the construction
ofo(E, 9). Then the zeros of the characteristic polynomial <y(E, 6) over U' are the eigen-
forms of <p|^. Thus ^(X/S, n) X^(x/s,n),o(E,<p) S' is the spectral variety of the endo-
morphism 9|n'. From the above general principle, <?|T*(U'/S') ls supported on this
spectral variety. On the other hand, any section of € whose support is contained in
T^X'/S') — T*(U7S') restricts to a section of the fiber §^ supported over the com-
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plement Xg — Ug (which has dimension less than or equal to d — 2). The S\ are finite
over Xg, so such a section is supported in dimension less than or equal to d — 2. By
the hypothesis that S\ are of pure dimension d, such a section is zero. Hence any section
of € supported in T*(X'/S') — T*(U'/S') restricts to zero in all the fibers, so it is zero.
Since the spectral variety is closed, this implies that all the sections of € are supported
in ^T(X/S, n) X ̂ ,/s, n), O(E. <p) S'. D

Remark. — Using Cayley's theorem, one can see that the support is scheme-
theoretically contained in the spectral scheme ^(X/S, n) X^x/s, n),o(E,q» S'.

Theorem 6.11. — The map a : M^g,(X/S, P) -> ̂ (X/S, n) is proper.

Proof. — Note, first of all, that all schemes involved are separated. Suppose S'
is a curve, s e S' is a closed point, and put S" = S' — {•?}• Suppose that

^:S"-^MH^(X/S,P)

is a map such that the composed map ag extends to a map h: S' -> ^(X/S, n). Recall
that M^gg^X/S, P) is an open set in M(^,A* P), and that M(^,^P) is projective
over S. The map g extends to a map g ' : S' -> M(6^ ̂  P)- Let 9 : Q^ -> M(fl^ ̂  P)
be the good quotient of the parameter scheme Q^ f01' sheaves on Z used in the cons-
truction of § 1. Then Q^ Xwz,k*p) S' -> S' is a categorical quotient. Thus there is
a quasi-finite morphism of curves Y -> S' such that s is the image of a pointjy e Y, such
that Y' ̂  Y — {jy } maps to S" C S', and such that the resulting map Y -> M(6^, 1€ P)
lifts to a map Y -> Q^- Let <? be the resulting sheaf on Z X g Y. If w e Y' then §^ is
a sheaf corresponding to a point in Mmggg(X/S, P). Thus ^ has support contained
in T*(XJ. This implies that the support of €\^, is contained in T*(X/S) X g (Y'),
so it corresponds to a Higgs sheaf (E', 9') on X X g (Y') over Y'. The map
Y' -> MH(ggg(X/S, P) corresponding to (E', 9') is equal to the map obtained by composing
Y' -> S" with g. In particular, the characteristic polynomial (y(E', 9') : Y' -> ^(X/S, n)
is the composition ofY' -> S" with ag. Thus <y(E', 9') extends to a map/: Y -> V(X/S, n),
equal to the composition of Y -> S' with A. By the previous lemma, ^jy' is supported
^/""^(X/S, n) C T*(X/S) X s Y. Since S is flat over Y, it has no local sections supported
on Zy. Thus € is supported on the closure of/*^(X/S, n} in Z X g Y . But since the
equation defining ^(X/S, n) is monic, the subscheme ^(X/S, ^) is closed in
Z Xg^X/S,^). Therefore/'^(X/S.yx) is closed in Z X g Y , and <? is supported
in /^(X/S.^CT^X/S) X g Y . Hence <? corresponds to a Higgs sheaf (E, 9) on
X X g Y over Y, restricting to (E', 9') over Y'. As € is a ^-semistable sheaf, (E, 9) is
a ^-semistable Higgs sheaf by Corollary 6.9. We obtain a map Y ->Mg^(X/S, P)
extending the composition Y' -> S" -> Mg^gg(X/S, P). But this map is also equal to
the composition Y -> S' —^M(^g, k* P) since the moduli space is separated. In this
last map, the image ofjy is equal to the image g\s). From the fact that Y maps into
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MH^WS, P) we obtain g\s) eM^(X/S, P). Thus g ' maps S' into M^(X/S, P).
This is the extended map required to prove properness of a. D

Remark. — Hitchin gives an analytic proof of the properness of a in the case when
X is a curve [Hil].

Corollary 6.12. — Any p-semistable torsion-free Higgs sheaf on a fiber Xg can be deformed
to one which is fixed by the action of C*. A Higgs bundle of semiharmonic type can be deformed to
a Higgs bundle of semiharmonic type which is fixed by C*, through a family of Higgs bundles of
semiharmonic type.

Proof. — Suppose (E, 9) is a j&'semistable torsion-free Higgs sheaf on X^. Write
the characteristic polynomial as

o(E,<p) =f1 +a^tn-l + ... +^.

For z e C", the characteristic polynomial of z^ is

G(E, Z^} = ^ + ^1 ̂ ~1 + . . . + ^ ̂ .

As z ->0 these polynomials approach the limit /w in ^(Xg, n). The orbit of (E, 9) is
a map C* -^Mg^(X,, P) such that the composed map C*-> Y^(X,, 71) extends to
a map A1 -> y^(Xg, %). By the theorem, the orbit extends to a map A1 -> Mg,ggg(X/S, P).
Let Q,2 be the parameter scheme used to construct Mg^gg(X/S, P). Then

0.2 X MHigggtX,, P) ̂  -->^1

is a good quotient. In this situation, the unique closed orbit lying over 0 e A1 is contained
in the closure of the union of orbits corresponding to (E, 2'<p). Thus (E, 9) may be
deformed to a Higgs sheaf corresponding to a closed orbit over 0 e A1. The map
A1 -> Mg,ggg(X/S, P) is equivariant under the action of C*, so the image of the origin
is a fixed point. Since there is a unique closed orbit lying over the origin, this closed
orbit is preserved by C*. Thus the Higgs sheaf corresponding to the closed orbit over
the origin is fixed up to isomorphism by the action ofC*. This proves the first statement.
For the second statement, note that by Proposition 6.6, if the rational Ghern classes
of E vanish, then all of the Higgs sheaves involved are Higgs bundles. D

When X is a curve, Hitchin has a beautiful description of the generic fiber of
the map o [Hi2]. In terms of our description of the moduli space, the idea is as follows.
For a generic point s e S, the corresponding polynomial defines a smooth curve in the
cotangent bundle, counted with multiplicity one. A Higgs bundle E in the fiber over
that point is a coherent torsion free sheaf on the curve, of rank one. In other words,
it is a line bundle. Furthermore, all line bundles of the appropriate degree occur. Thus
the fiber is the Jacobian of the curve. See also [Ox].
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Vector bundles with integrable connections

In this section we will apply the results of § 4, Part I, to construct a moduli space
of vector bundles with integrable algebraic connection. For greatest generality, suppose
that S is a base scheme of finite type over C, and that X is smooth and projective over S.
A vector bundle with connection on X/S is a vector bundle or locally free sheaf E on X,
together with a map of sheaves

V : E -> E ® Qx/s

such that Leibniz's rule V(a<?) = d^{a) e + aV{e) is satisfied for any sections a of 0^
and e of E. Here d^: 0^ -> ii^/s ls the relative exterior derivative. Given a vector
bundle with connection, we can extend V to an operator

V:E®^-^E®^1

by enforcing Leibniz's rule for forms a, using the usual sign conventions. In particular,
the square of V is an operator

V'.-E ->E®Q|^.

Using Leibniz's rule and the fact that (^x/s)2 == O? lt ls ^sy to see that V2 is ff^-imesir.
Thus it is given by a section V2 e H°(End(E) ®Q^g) called the curvature of V. A vector
bundle with integrable connection is a vector bundle with connection (E,V), such that the
curvature vanishes, V2 = 0.

We could make a similar definition of coherent sheaf with integrable connection.
However, it is a well known fact (which we will not prove here) that if E, is a coherent
sheaf with integrable connection on X,, then Eg is locally free, and the Ghern classes
of Eg vanish (hence the normalized Hilbert polynomial of Eg is the same as that of fly-
It E is a coherent sheaf on X with integrable relative connection, such that E is flat
over S, then E is locally free by Lemma 1.27, Part I. Because of this, we may as well
assume that the pure dimension d is equal to the relative dimension of X/S, and that
the normalized Hilbert polynomial ?Q is equal to that of 0^—otherwise the moduli
spaces are empty. Furthermore, any subsheaf of Eg preserved by V is again a vector
bundle with integrable connection, with the same normalized Hilbert polynomial RQ.

Theorem 6.13. — Suppose X is smooth and projective over S. There is a scheme M^(X/S, n)
quasi-projective over S, universally co-representing the functor M^(X/S, n) which assigns to an
S-scheme S' the set of isomorphism classes of vector bundles with integrable connection (E, V)
on X'/S' of a given rank n.

Suppose X is smooth and projective with connected fibers over S, and suppose x : S -> X
is a section. There is a scheme Rp^(X/S, S? ^) quasi-projective over S, representing the functor
which assigns to an S-scheme S' the set of isomorphism classes of (E, V, a) where (E, V) is a vector

bundle with integrable connection on X/S, and a : E ̂ ^ -^ (H)^. is a frame along the section.
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Furthermore^ with respect to an appropriate line bundle all points o/'Rj^(X/S, ^, n) are semistable
for the natural action of G\(n, C), and the universal categorical quotient is naturally identified with
M^(X/S,7z).

Proof. — Let A^ be the sheaf of rings of all relative differential operators on X
over S. It is split almost polynomial, and the sheaf H arising in the description of § 2,
Part I, is equal to i^x/s^lts dual H* is the relative tangent bundle T(X/S). The derivation 8
is the standard one, and the bracket { , }^ is given by commutator of vector fields. The
description of A^-modules given in Lemma 2.13, Part I, coincides with the above
definition of vector bundle (or sheaf) with integrable connection. If E is a vector bundle
with integrable relative connection on X over S, then any subsheaf of Eg preserved by
the connection has the same normalized Hilbert polynomial RQ, so Eg is j^-semistable
as a A^-module. If E is flat over S then E is a j^-semistable A^-module. The theorem
follows from the general construction of moduli spaces given in Theorem 4.7, Part I.
For the second paragraph, note that any vector bundle with relative integrable connection
automatically satisfies condition LF(^). Hence we may apply Theorem 4.10, Part I,
to obtain R^(X/S, ^, n). D

Dependence on the base point

In the Betti case, given two different base points x and y^ and a choice of path y
from x to jy, we obtain an isomorphism T^ : Rs(X, x, n) ^ Rg(X,j/, n). This projects
to a canonical isomorphism of Mg(X, n), justifying dropping the basepoint from the
notation for the moduli space. On the other hand, there is no natural isomorphism
between R^(X, x, n) and Rp^(X,j^, n). Our construction began with a construction
of Mp^(X, n) independent of the base point. On the complex analytic spaces, the
isomorphism T^ gives a complex analytic isomorphism (cf. § 7 below). This projects
to an algebraic isomorphism (the identity) in the quotient, and on each orbit of the
group Gl(?z, C), it comes from an algebraic automorphism of groups; however Ty
doesn't seem to be algebraic. One might conjecture that, in good cases, the isomorphism
class of Rp^(X, A", n) is a distinguishing invariant of the point x.

7. Identifications between the moduli spaces

The analytic isomorphism between the de Rham and Betti spaces

Suppose f: X -> S is a smooth projective morphism with connected fibers, and
suppose ^ : S -> X is a section. Recall that R^X/S, ^, n) denotes the complex analytic
space over S^ associated to the local system of complex analytic spaces R^(X/S, S? ^)-
Let R^(X/S, ^, n) denote the complex analytic space associated to the de Rham
representation scheme.
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Theorem 7.1. — (The framed Riemann-HiIbert correspondence.) There is a natural
isomorphism of complex analytic spaces

RW/S, ̂ n) ̂  R^(X/S,^),

compatible with the action of Gl{n, C).

We will prove this by showing that both spaces represent the same functor from
the category of complex analytic spaces over S^ to the category of sets.

Lemma 7.2. — Suppose Y and Z are topological spaces which can be exhausted by relatively
compact open subsets^ and suppose Y is locally simply connected. Suppose A is a sheaf of rings on Z.
Suppose F is a locally free sheaf of p^1 (A) -modules on Y X Z. Then G =^,(F) is a locally
constant sheafofH°(Z, A) -modules on Y, and the stalk at y e Y is given by

G,=HO(O}XZ,F|^,).

Proof. — First of all, suppose that U is a connected open subset of Y. Then
A,* (AT1 (A) j u x z ) = A- This implies that ifF is free over p^1 (A), UC Y is a connected
open subset, and y e U, then

A,.(F|nxz) -^2,*(F|^xz)

is an isomorphism of free sheaves ofA-modules. Suppose that there exists an open covering
Z == Ua Z^ such that F is free of rank n on Y x Z^. The previous result implies that
ifj/ e U C Y and U is connected, then

A,»(F[uxz) ~>P2,^¥\{y}xz)

is an isomorphism of locally free sheaves on Z. This gives an isomorphism of spaces
of global sections, in other words the restriction maps

HO(U x Z, F ̂  ̂ ) -> HO(O } x Z, F [̂  , ̂

are isomorphisms. This implies the lemma in this case. It follows that the lemma is true
for sheaves F such that there exist open coverings Y = U^ Y^ and Z == U^ Z^ with F
free on each Y^ x Z^.

Finally we treat the general case of a locally free F. Suppose that Z' is an increasing
sequence of relatively compact open subsets exhausting Z. Then, for any relatively
compact open set Y'C Y, F|y^ satisfies the hypotheses of the previous paragraph.
Thus G1 ^A.^^IYXZ*') ls locally constant when restricted to any Y'. This implies
that G' is locally constant. The stalk at y e Y is

G^H^xZ-,!^^).
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Finally, we have
G = Hm G\

and since Y' is locally simply connected, the inverse limit of a system of locally constant
sheaves is again locally constant. This proves that G is locally constant. The stalk Gy
is the inverse limit of the stalks G^, hence equal to the desired space of global sections. D

Lemma 7.3. — The complex analytic space R^X/S, S? n) over S^ represents the functor
which to each morphism S' -> S"1 of complex analytic spaces associates the set of isomorphism
classes of pairs (̂ r, (B) where y is a locally free sheaf of f'1^^)'modules of rank n on
X' = X^ Xgan S', and (3 : S"1^) ^ (P^ is a frame over the section S.

Proof. — Let X^ denote the topological space underlying X^. Note that the
quantities appearing in the statement of the lemma are local over S^ and depend only
on the structure ofj^X^ -^S^ as a fibration of topological spaces with a section
over S .̂ Thus we may suppose that X^ = Xo X S^ and ^) == {x, s) for x eXo.
Let F == 7Ti(Xo,^). Then

R^(X/S, ̂  n) = R^r, n) x S-

so the set of S^-morphisms from S' to R^X/S, ̂  n) is equal to the set of morphisms
from S' to R^r,^.

The scheme R(F, %) is affine. It follows that the complex analytic morphisms
from S' to the associated analytic space R^F, n) are given by the homomorphisms
of C-algebras

HO(R(r,7z),^r,n))-^HO(S',^)

(this can be seen by embedding R(r, n) in an affine space). In particular,
R^x/s.^n^s^^R^r.^cs')

=R(r,^)(Spec(HO(S',^)))

==Hom(r,Gl(^HO(S',^))).

Let p^ and p^ denote the first and second projections on XQ x S'. Suppose ^ is
a locally free sheaf of ^(fl^)-modules on XQ X S'. Let ^ =A,*(^r)• This is a sheaf
of H°(S', 6?g,)-modules on Xo. Lemma 7.2 implies that ^ is locally constant, with
fiber ^ = y\^ ^ s, over x e Xg.

The monodromy of the locally constant sheaf ^ is a representation
r^AutHo^^w.

If (3 : ̂ (^) ^ % then by Lemma 7.2 the fiber is ^ ̂  H°(S', ^g,)", so the mono-
dromy of ^ gives a representation

r->Gl(n,HO(S^))-
This gives a map from the set of isomorphism classes of^, (3) to Hom(r, Gl(n, H°(S', Sy)).
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For the inverse map, note that X^ is locally simply connected, so a universal
covering Xo exists. Choose a base point ^ over x e X^. Set ^ == P^^W) on Xo X S'.
The identity gives ̂  : ̂ |^} xs' ^ %• A representation

r-^Gl^H^S',^))

gives an acdon of F on ̂  over the action on Xo X S'. We can use this to descend J?
to a locally free sheaf of ̂ "1 (6^)-modules ̂  on XQ x S', with the required frame (B.
This is the inverse of the previous construction. We obtain an isomorphism between
the set of S'-valued points of R^X/S, S, n), and the set of (^, (B) on X' over S' as
desired. D

This lemma provides half of the proof of the theorem. For the other half, we begin
with a lemma and some corollaries.

Lemma 7.4. — Suppose that VCC^^ is an open disc and S'C V is a complex analytic
subspace, such that all embedded components pass through a single point s e S'. Suppose U is an
open disc centered at the origin in Ck. If (E, V) is a holomorphic vector bundle with integrable
connection on V x S' over S', then the map

v : H°(U x S', E^-> H°({ 0 } x S', E ̂  ,,,)

is an isomorphism (here the exponent V means the space of covariant constant sections).

Proof. — This is well known ifS' is a point. It follows that it is true ifS' is an artinian
complex analytic space (the same as an artinian scheme), for the result in that case
follows from the same result forj&i,(E, V) on U. It is also well known if S' is a smooth
complex analytic manifold. We show how to deduce the theorem when S' may be
nonreduced, for example.

Choose a point s e S' containing all irreducible embedded components of S. Let
S^ be the m-th infinitesimal neighborhood of s in S'. The map v is injective: suppose e
is a section with V(<?) = 0 and v(^) ==0; then from the result for artinian spaces, e L =0
for all m, and this implies that e == 0.

With the same hypotheses on S', suppose also that dim(U) = 1. We show that
v is surjective in this case. The holomorphic bundle E is trivial, so it has an extension
to a trivial bundle E^ on U X V. Let d denote the constant connection on E^. We
may write

^^^uxs' +A(M)^

where K(u, t) is a holomorphic section of End (E) over U X S. There exists an extension
of A to a holomorphic section A^ of End(Eex) on U X V, and we can then put

V^ = d + A63 ,̂ v) du.
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This is an integrable holomorphic connection on E®2 relative to V (it is integrable
because dim(U) == 1 implies Q^v/v = 0)- Suppose CQ 6H°({0} x S^E^^sO? ^d
choose an extension to e^ e H°({ 0 } X V, E j^ x v)* BY tne fesult for smooth base spaces,
there exists e^ e H°(U X V, E^)^ with v^) == ^x. Putting ^^^^g, gives a
section with V(^) =0 and v(^) == ^o. This proves that v is an isomorphism in the case
of relative dimension 1.

Now proceed by induction on the relative dimension A, assuming that the theorem
is known for relative dimension k — 1. Let U\ denote the disc of dimension k — 1
obtained by intersecting U with one of the coordinate planes. By the inductive hypothesis,
there exists a section ^ in H°(Ui X S', E [^ x s'^ wltn e! restricting to CQ on { 0 } X S'.
Let h: U X S' -> Ui x S' denote the vertical projection. Let Vj^ denote the projection
ofV into a relative connection for the map h. The map h is smooth of relative dimension 1,
so by the previous result, there exists a section e in H°(U X S', E)71 restricting to e^
on Ui X S'. In order to show that V(^) = 0 we use the infinitesimal neighborhoods S^.
There exist sections em' in H°(U X S^E^g.^ such that ^l^xs' = ^ o | { o } x s „ ^ •
By the uniqueness result for U^ X S^ over S^, e^ is equal to e^ on the subspace Ui X S^.
By the uniqueness for U X S^ over Ui X S^, ^ | u x s ; == em' But V is fi^-linear, so
V(^) | u x g ' == V(^J •== 0. This is true for any infinitesimal neighborhood, so V(^) = 0.
This shows that v is surjective in relative dimension k, D

Keep the same hypotheses as in this lemma. Suppose E is a trivial bundle of
rank n. We can choose n sections e^ . .., e^ in H°(U X S', E^ such that v(^) form a
frame for E j ^ ^ g , . The lemma implies that

H°(U x S', E)7 ^ H°{S\ ̂ ) ®c (Q?! @ • • • @ c^)-

Conversely, if the ^ are a collection of sections such that this formula holds, then the v(^)
form a frame for E|^^g,, We claim that the ^ form a frame for E over U. It suffices
to show that over each closed point (^, s) e U X S', the ^ are a basis for the fiber of E.
But this follows from the above statement and its converse applied to { u} X S' instead
o f { 0 } X S'.

Corollary 7.5. — Suppose e^ . . ., e^ are sections chosen as above. Then the map

A'W^c^i®...®^)-^

is an isomorphism of sheaves on U X S'.

Proof. — This is injective, because the ^ are a frame for the holomorphic bundle E.
For surjectivity, suppose e is a section of Ev over an open set V C U X S'. Then V can
be covered by subsets U' X S" of the form considered above. The restriction of { ^ }
to a section { u} X S" is a frame for the restriction of the bundle E, so the previous
argument applies. There exist a, e H°(S", G^,) with S a, e, == e on U' X S". This
shows that the map of sheaves is surjective. D
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Corollary7.6. — Suppose f: X' -> S' ^ ^ .ywoo/A morphism of complex analytic spaces.
Suppose (E, V) ^ a vector bundle with integrable holomorphic connection relative to S'. Let ̂  == Ev

flfe^o^ /^ sheaf of sections e o/'E ^cA ^A^ V(^) = 0. TA^ e^ is a locally free sheaf of f~^((9^-
modules.

Proof. — Let k denote the relative dimension of X' over S'. We can cover X' by
a collection of open subsets of the form U X S" where U C <? is an open disc, and
S"CS' is a subset satisfying the hypotheses of the lemma. By the corollary, ^ jvxg-
is free over/-1 (6^). Thus ^ is locally free. D

Lemma 7.7. — The complex analytic space R^(X/S, ^, n) over S^ represents the functor
which to each morphism S' -> S^ of complex analytic spaces associates the set of isomorphism
classes of pairs (̂ r, (B) where 3^ is a locally free sheaf of f~l((P^)-modules of rank n on
X' == X^ Xgan S', and jB : S"1^) ^ % ^ a frame over the section ^.

Proof. — Note that by Lemma 5.7, Part I, the argument of Theorem 6.13, and
the analogue of Lemma 2.13, Part I, for the complex analytic case, R^(X/S, ^, n)
represents the functor which to each morphism S' -> S1"1 of complex analytic spaces,
associates the set of isomorphism classes of triples (E, V, a) where E is a holomorphic
vector bundle over X' = X^ XganS', V is a holomorphic integrable connection on E
relative to S', and a : ̂ (E) ^ 0^. is a frame. We have to identify this functor with the
functor given in the lemma. First, note that the trivial bundle (9^, has a natural
connection ^x'/s'? t^le exterior derivative with values projected into ^xys" This
connection isy"1^.) -linear. If y is a locally free sheaf ofy'^^g^-modules on X', then

E=^®^^

is a locally free sheaf of (P^-modules, and it has a relative holomorphic integrable
connection V == 1 ®^/s'- A frame P : ̂ ~1W ^ ^l' V^ds a : S*(E) ^ fl^. This
gives a map from the set R^X/S, ^, n) (S') to the set R^(X/S, S, ^)(S').

Suppose (E, V) is a holomorphic vector bundle with integrable connection on X'
over S'. By Corollary 7.6, the sheaf ^ = Ev is a locally free sheaf ofy-^g^-modules.
Suppose a is a frame for E along ^. Let (B denote the composed map

rw -^-'(E) ^(E)->^.
The arguments from the proof of Lemma 7.4 show that this is an isomorphism. This
completes the construction of the inverse to our previous map, so we obtain an iso-
morphism between the set of (E, V, a) and the set of («^", (3). D

Proof of Theorem 7.1. — Lemmas 7.3 and 7.7 show that the spaces R^X/S, ̂  n)
and R^(X/S, ^, n) both represent the same functor. Thus they are naturally isomorphic.
The isomorphism between functors is compatible with the group action, so the iso-
morphism between spaces is too. D
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Proposition 7.8. — (The Riemann-Hilbert correspondence.) Suppose f: X -> S is a
smooth projective morphism, Then there is a natural isomorphism

MW/S,^) ^ M^(X/S^).

If f has connected fibers and ̂  is a section, then this isomorphism is compatible with the isomorphism
given by Theorem 7 .1.

Proof. — Suppose first of all that/has connected fibers and a section S exists. Then
MI^(X/S, n) is a good quotient of Rp^X/S, ^ n) by the action of Gl{n, C). Propo-
sition 5.5, Part I, implies that M^(X/S, n) is a universal categorical quotient of
^^(X/S, ̂  n) in the category of complex analytic spaces over S .̂ On the other hand,
Mg(X,, n) is the good quotient of Ra(X,, ^(.r), n) by the action of G\{n, C), so again
by Proposition 5.5, M^(X,, n) is a universal categorical quotient of R^(X,, ^M, n).
The space M^X/S, n) is, locally over S ,̂ of the form M^(X,, n) X S .̂ The property
of being a universal categorical quotient is preserved under taking the product with
another space, as well as localization in the quotient space (hence by localization in S^),
so M^(X,,^) x S^ is a universal categorical quotient of R^(X,, ^{s), n) X S .̂ The
isomorphism of Theorem 7.1 is compatible with the action of G\{n, C), so it induces
an isomorphism of universal categorical quotients

M^X/S.^M^X/S,^).

Suppose that X is a disjoint union of components, each of which has connected fibers
over S and admits a section. The resulting moduli spaces M^X/S, n) and M^(X/S, n)
are then products of spaces obtained by taking quotients of representation spaces. The
above isomorphism for each factor gives the desired isomorphism.

In general, we can make a surjective ftale base change S' -> S such that X'/S'
satisfies the hypotheses of the previous paragraph. The isomorphism

MW/S', n) ^ M^(X'/S', n)

descends to give the desired isomorphism, n

The homeomorphism between the de Rham and Dolbeault spaces

Recall some facts from [Si5]. These results are based on non-linear partial diffe-
rential equations, and in particular on the works [NS] [Go] [Dol] [Do2] [Do3] [Hit]
[Si2] [UY]. There is a notion of harmonic metric for a vector bundle with integrable
connection (flat bundle) or a Higgs bundle on a smooth projective variety X. Given
a flat bundle and a harmonic metric, one obtains a Higgs bundle, and vice versa. The
structures of Higgs or flat bundles obtained from the harmonic metric do not depend
on the choice of harmonic metric. The conditions for the existence of a harmonic metric
are as follows. A flat bundle has a harmonic metric if and only if it is semisimple [Go]
[Do3]. A Higgs bundle has a harmonic metric if and only if it is a direct sum of ^-stable
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Higgs bundles with vanishing rational Ghern classes [Hil] [Si2]. A harmonic bundle consists of
a flat bundle and a Higgs bundle related by a C00 isomorphism such that there exists
a common harmonic metric relating the structures. The set of isomorphism classes of
harmonic bundles is exactly the same as the set of flat bundles parametrized by points
of the moduli space M^(X, n). It is also the same as the set of Higgs bundles para-
metrized by points of the moduli space Mp^(X, n). We obtain an isomorphism of sets of
closed points between these two moduli spaces [Si5].

If X -> S is a smooth projective morphism, we can take the isomorphisms of sets
given in each fiber all together to get an isomorphism between the sets of closed points
of MDR(X/S, n) and Mp^(X/S,7z). Recall that the superscript M^ denotes the topo-
logical space underlying the complex analytic space M^. We will show that our isomor-
phism of sets gives a homeomorphism of topological spaces M^(X/S, n) ^ M^(X/S, n).

We recall a weak compactness property for harmonic bundles, following the
notation of [Si5] (except that the Higgs field which was denoted by 6 there is denoted
by cp here, to conform with Hitchin's original notation). Suppose X -> S is smooth with
connected fibers, and suppose ^ : S -> X is a section. Suppose { ^ } is a sequence of points
converging to t in S. Choose a standardized sequence of diffeomorphisms Y^: X^. ̂  X^,
such that Y^^^)) = ^{t). Choose a family of metrics on Xg. which, when transported
via Y^, are uniformly bounded in any norm with respect to a metric on X^. Use these
metrics to measure forms on Xg..

Proposition 7.9. — Fix q> 1. Suppose V^ is a harmonic bundle on X^. with harmonic
metric K,/or each i, such that the coefficients of the characteristic polynomials of the Higgs fields 9^
are uniformly bounded in L1 norm. Then there is a harmonic bundle V, a subsequence {i' }, and
isomorphisms ^ : Y,< *(V^) ^ V of C00 bundles satisfying the following properties. There is
a harmonic metric Kfor V with "^(K,) == K, and ifO represents any of the operators S, ^, 9, 9

or combinations thereof, the differences dif(0, i') ̂  -^(0^) — 0 converge to zero strongly in
the operator norm for operators from L^ to L3.

proof. — This is essentially the same as Lemma 2.8 of [Si5], which is based in
turn on Uhlenbeck's weak compactness property [Uh] and the properness of Hitchin's
map [Hil]. There are a few new twists. The main difference is that the underlying
spaces X,. are varying. In particular, the differences dif(0, i) are differential operators,
so they must be measured with respect to operator norms. We recall the proof with
this in mind.

First of all, the hypothesis that the characteristic polynomials are bounded in
L1 norm implies that they are bounded in G° norm, since the coefficients are holomorphic
sections of certain bundles on X^..

Fix p large. The bound for the coefficients of the characteristic polynomials implies
that | 9JK- are uniformly bounded [Si5], Lemma 2.7. The curvatures

F^.^. = — 9, 9, — 9, 9,
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are therefore uniformly bounded in G°. Uhlenbeck's weak compactness theorem [Uh]
gives a unitary bundle (V, K) with unitary connection 8 -{-'8 (of type Lf) and a sequence
of unitary isomorphisms T], : ̂ ^(V,) ^ V such that

dif(a + a, i) = 7^(a, + ^) - a - a
converges to zero weakly in Lf. In particular, for ^ big enough this converges strongly
to zero in G° (note that dif(^ 4- <9, z) is a 0-th order operator), and dif(B + B, i) ->0
Strongly in the operator norm for Hom(L?, L^). We have

(^+^)(9,)=0

so (a + a) (7^ 9,) - dif(a + a, z) (^, 9,).
Since 7)^ are unitary isomorphisms, | T], „ 9, |̂  are uniformly bounded. Thus
dif(B + a, i} (-y^, 9,) ->0 strongly in 0°, so (B + B) (^ , 9,) ^0 strongly in G°. We
have to be slightly careful, since T^ „ 9^ are one-forms—this doesn't constitute an estimate
for the full covariant derivatives. The ̂  „ 9^ are of type (1, 0) but each for a different
complex structure. More precisely, let T^°C Tc(X<) denote the subbundle of forms of
type (1,0) with respect to the complex structure of X^. as transported to X^ by T,.
Then

^. 9, e H°(X<, End(V) ®^) T^ °).

We can choose an open subset U C X< and a sequence of open immersions 0,: U -> X(
which converge to the identity in any norm, but such that <I\*(T^°) =T1'OV is the
subbundle of forms on U of type (1, 0) with respect to the holomorphic structure ofX^.
We may also choose a sequence of unitary isomorphisms ^ : 0^(V) ^ V converging to
the identity in any norm, so for example ̂ 0^ + <9) — 8 — ~6 converges to zero in Lf.
Then ^0,* Y}^ 9, are End (V)-valued (1, 0)-forms on U with

(8+~9){W^^ \

uniformly bounded in G°. Now we can conclude (from the elliptic estimates for ~ff) that
^0^ Y), „ 9, are uniformly bounded in Lf on any relatively compact subset of U. This
argument, done for a collection of open sets U covering X^, implies that •y^*(9,) are
uniformly bounded in Lf. By going to a subsequence, we may suppose that t\^ ^ 9,
approach a limit 9 weakly in Lf (hence strongly in G°). The limit satisfies (6 + ^) (9) == 0
and 9 A 9 === 0. Finally, in the conclusion of Uhlenbeck's weak compactness theorem,
f\i ,(F^.+^) approach Fg^.^ weakly in L^. In particular (even taking into consideration
the change of complex structure), the component of type (0, 2) is the weak limit of the
components of type (0, 2), which are zero. Therefore 32 == 0, so (V, 3, 9) is a Higgs
bundle- The T], ,(9,) approach the K-complex conjugate 9 weakly in Lf, and the
operator 8 is the one associated to 1) by the metric K. If we set D = 8 + 8 + 9 + ?
then the differences

dif(D,z)-^.(D,)-D
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are 0-th order operators converging to zero weakly in Lf. In particular, they converge
to zero strongly in G° and hence they converge to zero in the operator norm for operators
from L^ to L0. The weak convergence in Lf implies that the curvature D2 is the weak
limit of the curvatures 7]^(D2), which are zero. Thus D2 == 0, proving that V together
with all of its operators and its metric, is a harmonic bundle.

We know from above that dif(0, i) -> 0 strongly in G° for 0 = 9 and 0=3+8 .
The same argument as for 9 works for 0=9. We have to extract the cases of 0 = 8
and 0 = 8 from the case 0 = 8 + 8 . Let P^° denote the projection onto T^°, and
let P110 denote the projection for the complex structure of X^. Then P^'° -^P1'0 in
any norm. We have

^^)==^°^^+8,).

Thus dif(8, i) = P^° dif(8 + 8, z) + (P^10 - P1'0) (8 + 8).

Since dif(8 + 8, i) -> 0 in G° and the P,1' ° are bounded, the first term converges to zero
in the operator norm. Now 8 + 8 is a bounded operator from Lf to L0, and P,1'0 — P1'0

converges to zero in G0, hence in the operator norm of Hom^, L®). Therefore their
composition, the second term, converges to zero in the operator norm of Hom(L?, L0).
The same argument works for dif(8, i). This proves the proposition. D

Let J denote the standard unitary metric on C". Let

R^(X/S,^)CR^(X/S,^)

denote the subset consisting of triples (s, E, (B) where s e S, E is a Higgs bundle of
harmonic type on Xg, and P : E^ ^ C^ is a frame, such that there exists a harmonic
metric K for E with (B(K^) =J. Note that the harmonic metric K is uniquely deter-
mined once it is fixed at one point $(•?) [Si2]—we call this K the chosen harmonic metric.
Endow R^i(X/S, S? n) with the topology induced by the analytic topology of
R^(X/S,S^).

Suppose ^ is a sequence of points approaching t in S. Choose a standardized
sequence of diffeomorphisms Y,: X^. ̂  X, such that Y,(^)) = S(^).

Corollary 7.10. — Suppose (E,, (3,) are points in R î(X .̂, ^(^), n) which remain inside
the inverse image of a compact subset ^M î(X/S, ̂ , n). Then after going to a subsequence, there
is a point (E, (3) in R î(X,, ̂ (f), n) and a sequence of bundle isomorphisms T], : Y^(E,) ^ E
such that: the ^preserve the chosen harmonic metrics'^ the operators ^^(8,) and '̂ ,(9,) converge
to 8 and 9 in the operator norm for operators from L? to L ;̂ and finally, the frames "^(j^) converge to p.

proof. — Since the points remain in the inverse image of a compact subset of
M^i(X/S, ^,w), the eigenforms of the Higgs fields 9, for E, are uniformly bounded
(this is because of the existence of the map a sending (E,, 9,) to the characteristic
polynomial of 9,—see the discussion above Lemma 6.10). From the previous proposition,
we can go to a subsequence and obtain a Higgs bundle E with harmonic metric K and
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a sequence of bundle isomorphisms T], with the desired convergence properties. Since
the unitary group is compact, we may, by going to a further subsequence, assume that
the frames "^((3,) converge to a unitary frame p. Then (E, (B) is a point in
RSoi(X^(^). D

Corollary 7.11. — The subset Rioi(X/S, ̂  n) C R^i(X/S, ̂  n) is closed.

Proof. — Suppose (^, E,, (B,) is a sequence of points in Rj^i(X/S, ^, 72), converging
to a point (^, E', (B) in R^(X(, S(^)? ^). The images in M^(X(, S(^), ^) converge,
so they lie in a compact set. Apply the previous corollary to obtain a point {t, E, (3)
in R^i(X/S, S? ^) and a sequence of bundle isomorphisms T],. By Theorem 5.12, Part I,
for the case of A001, the points (J,, E,, (3,) converge to {t, E, (B). Since R^i(X/S, ^, T?)
is separated, {t, E', (B') = {t, E, (B). Thus the limit is in R^i(X/S, ^, n). D

Corollary 7.12. — Tfe? ĵ î  R^(X/S, S, ^) ^ proper over M^(X/S, w).

Proo/l — Suppose (.$,, E,, (3,) is a sequence of points in R^(X/S, ̂  ^) lying over
a compact subset of M^(X/S, ^5 ^)- First, we may choose a subsequence so that the
points ^ converge to a point ^. Then we can apply Corollary 7.10 and Theorem 5.12,
Part I, for the case of A^, to obtain a subsequence which has a limit (/, E, (B) in
R^(X/S,S^). D

We do the same thing for the de Rham spaces. Let

R^(X/S, ̂  n) C R^(X/S, S, n)

denote the subset consisting of triples (j, E, j3) where s e S, E is a semisimple vector
bundle with integrable connection on Xg, and (B : E^ ^ C" is a frame, such that there
exists a harmonic metric K for E with (B(K^)) = J. The harmonic metric K. is uniquely
determined once it is fixed at the point ^(^) [Go], and we again call K the chosen harmonic
metric. Endow R^(X/S, ^, n) with the topology induced by the analytic topology of
R^(X/S,S^).

Suppose ^ is a sequence of points approaching t in S. Choose a standardized
sequence of difFeomorphisms Y,: Xg. ̂  X^ such that Y,(^(^)) = ̂ ).

Lemma 7.13. — Suppose (E^, (3,) ^ points in Rĵ (X,., ^(^4), ^) z^A^A remain inside
the inverse image of a compact subset o/'M^(X/S, ̂  ̂ ). TA^ <z/̂ ^r 50^ ^0 a subsequence, there
is a point (E, (3) GR^(X(, ^(^), n), W a sequence of bundle isomorphisms ^ : ̂ (̂E,) ^ E
^M^A ^Afl^: ̂  ̂ preserve the chosen harmonic metrics \ the operators ^ ̂ (^) and ̂  ^(VJ converge
to 8 and V in the operator norm for operators from L? to L^; and the frames Y]i((BJ converge to P.

Proo/*. — This is the same as for Corollary 7.10, except that we have to show that
the characteristic polynomials of the Higgs fields cp^ of the harmonic bundles corres-
ponding to E,, are bounded. We follow the argument of ([Si4], Lemmas 3 and 5).
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Let r = 7^i(X(, SW)? which is also equal to 7ri(X^., ^(^)) via the diffeomor-
phisms Y,. The condition that the points lie over a compact subset of M^(X/S, S? ^)
implies that the monodromy representations of Y, ,(E,,VJ lie over a compact subset
of M(F, n) (by Theorem 7.1).

The first thing we note is that it is possible to choose frames ( '̂ for E, such that
the monodromy representations of (E^, (B^) lie in a compact subset of R(F, n). The
argument (from [Si4], Lemma 3) is that the subset of zeros of the moment map in R(r, n)
is proper over M(r, n) [Ki] [KN] [GS]; our monodromy representations come from
harmonic bundles, so they are semisimple—lying in the closed orbits—thus by appropriate
choice of frames we can assume they correspond to points in the set of zeros of the
moment map.

Let p^ denote the monodromy representations corresponding to (E,, (B,'). Since
they are bounded, it is possible to choose initial p^-equivariant maps from the universal
covers X^. to G\(n, C)fU{n), which have uniformly bounded energy (note that the
diffeomorphisms T^ are uniformly bounded in any norm). See [Si4], Lemma 5, for a
description of how to do this (the process described there works the same way for any
rank). Finally, the harmonic equivariant map has lower energy, and the energy is equal
to the L2 norm of 9^. Thus | [ <p^ j |^(x.) are uniformly bounded. This implies that the
eigenforms of <p, are uniformly bounded in L2 norm. The eigenforms of 9, are multi-
valued holomorphic sections oft^x which do not depend on our choices of frame '̂.•̂ i"
The maximum norm of an eigenvalue of a holomorphic matrix is a subharmonic function,
so the eigenforms of <p^ are uniformly bounded in C°. Thus the characteristic polynomials
of the Higgs fields <p^ are uniformly bounded in C°.

The rest of the proof is the same as that of Corollary 7.10. D

Corollary 7.14. — The subset R^(X/S, S, n) C R^(X/S, ̂  n) is closed.

Proof. — The same as for Corollary 7.11, but using Theorem 5.12, Part I, for
the case of A^. D

Corollary 7.15. — The subset R^(X/S, ^, n) is proper over M^(X/S, n).

Proof. — The same as for Corollary 7.12, but using Theorem 5.12, Part I, for
the case of A^. D

There is an isomorphism of sets Rp^X/S, ̂ , n) ^ Rp^X/S, ^, n). Over each
fiber X^, this comes from the equivalence between the category of semistable Higgs
bundles with vanishing Chern classes, and the category of flat bundles, constructed
in [Si5J. This equivalence of categories is compatible with pullback to a point S(J) -> X^,
so it gives an isomorphism between the sets of isomorphism classes of framed objects
in the two categories. In other words we get an isomorphism between the set of points
in Rp^(X^ ^{s),n) and Rp^(X^ ^(^), n). Putting these together for all s we obtain
the isomorphism of sets stated above.
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Lemma 7.16. — This isomorphism of sets induces a homeomorphism between the subsets
RL(X/S, ^, n) and R^(X/S, ̂  7z).

Proo/ — We prove continuity of the map from the Dolbeault space to the de Rham
space. Suppose ^ is a sequence of points approaching t in S. Choose a standardized
sequence of diffeomorphisms Y,: X^. ̂  X< such that Y,(S(^)) = S(^). Suppose
(.y,,E,,(y are points in R^X^., ̂ ), %), converging to a point (^, E', (3') in
^o^n S(^), ^). The points lie over a compact set in M^i(X<, ̂ ), %). Choose any
subsequence. Apply Proposition 7.9 to obtain a harmonic bundle V over X< and (after
going to a further subsequence) a sequence of bundle isomorphisms -^ : Y, ^.(EJ ^ V,
such that the transported structures of harmonic bundle on E^ converge to the structure
of harmonic bundle on V. Then the convergence statements of Lemma 7.13 hold for
the operators d" and V giving the structures of vector bundle with integrable connection:
the ^(^//) and "/^(VJ converge to d" and V in the operator norm for operators
from L? to L°, and the frames ^{^) converge to a frame p. By Theorem 5.12, Part I,
for the case A^, the points {s,, (E,, <\ V,), (B,) converge in R^(X/S, ̂  n) to the
point (/, (V,rf",V),(3). Similarly, (^, (E,, a^ 9,), (BJ converge to {t, (V, B, y), p) in
R^(X/S, ^ 7,). But this implies that (^, (V, B, 9), (B) = ^ E', (37), so (^, (V, d " , V), (3)
is the point in R^(X/S, ^, n) corresponding to {t, E', (B')«

We have shown that every subsequence has a further subsequence where the
corresponding points converge to the correct limit. This proves that the sequence of
points in R^(X/S, ^ n) corresponding to the original sequence of points (^, E,, (B,)
converges to the point corresponding to (t, E', [B). Thus the map from the Dolbeault
space to the de Rham space is continuous. The proof of continuity of the map from
the de Rham space to the Dolbeault space is exactly the same. D

Note that the unitary group V{n) = Au^C^J) acts on the representation spaces,
and preserves the subsets R^(X/S, ^, n) and R^(X/S, S, n). This action is continuous
in the analytic topology.

Lemma 7.17. — The moduli spaces M^(X/S, ̂  n) and M^(X/S, ̂  n) are the
topological quotients of the representation spaces R^(X/S, ̂  n) and R^(X/S, ^, n) by the
action of U(%).

Proof. — Let

N = R^(X/S, ̂ )/UM

denote the topological quotient. Since V{n) is compact, N is separated (Hausdorff).
Two points in R^i(X/S, S, n) map to the same point in M^i(X/S, S, n) if and only
if the underlying harmonic bundles are isomorphic, thus if and only if the points are
related by a unitary change of frame. Thus the map/: N -> Mp^(X/S, $, n) is one-to-one.
The map from the representation space to the moduli space is continuous and proper,
and since N is the topological quotient, this implies that the map/is continuous and
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proper. Therforeyis a homeomorphism identifying the moduli space with the quotient.
The proof for the de Rham spaces is the same. D

We state our next corollary as a theorem.

Theorem 7.18. — The isomorphism of sets induced by the equivalence of categories given
in [Si5] is a homeomorphism

M^(X/S, n) ̂  M^(X/S, n)

of the topological spaces underlying the usual analytic spaces.

Proof. — It is easy to reduce to the case where X -> S has connected fibers and
admits a section. Then we may refer to the previous discussion. The moduli spaces are
identified, in the previous lemma, as topological quotients of R^i(X/S, ^, n) and
R^(X/S, S, n}. But Lemma 7.16 says that the identification between the representation
spaces given by the equivalence of categories of [Si5] is a homeomorphism. This gives
a homeomorphism between the quotients. D

Remark. — Combining this with Proposition 7.8, we obtain a homeomorphism

M^(X/S, n) ̂  Mr(X/S, n)

where the right hand side denotes the topological space underlying M^^X/S, n).

Corollary 7.19. — IfX. is a smooth projective variety, then any representation of the funda-
mental group of X can be deformed to a representation which comes from a complex variation of
Hodge structure.

Proof. — By Corollary 6.12, any point in Mj^(X, n) can be deformed to a fixed
point of the action of C*. These fixed points correspond to representations which come
from complex variations of Hodge structure [Si5]. By the continuity result of the theorem,
any connected component of Mg(X, n) contains a point parametrizing a complex
variation of Hodge structure. But the inverse image of a connected component in
Mg(X, n), is connected in Ra(X, 72), since M^(X, n) is a universal categorical quotient
of Rfi(X, n} by a connected group. A point in the closed orbit over a fixed point of C*
comes from a complex variation of Hodge structure. Thus in any connected component
of the space of representations, there is a representation which comes from a complex
variation of Hodge structure. D

Remark. — This has topological consequences that were explained in [Si5]. The
corresponding result is also true for principal bundles (cf. § 9 below).

Counterexample

We show that the isomorphism of sets Rp^X, x, n) ^ Rpoi(X, x, n) given by the
equivalence of categories constructed in ([Si5] Lemma 3.11) is not, in general, continuous.
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In fact, the isomorphism on the open subset of stable points (which is continuous), has
no continuous extension over the whole representation space.

Let X be an elliptic curve, with nonvanishing differential dz. Let E = 0^ @ 0^
be the trivial bundle of rank 2, with the canonical identification (B : E^ ^ C2. Let

ft /° dz \°( =
\0 atdzj

Suppose t is real and approaches 0. Then the point (E, 6<, (3) approaches the
point (E, Go, p). This limit is independent of the choice of a. However, we will see that

the associated representations approach a limit that depends on a. Let g^ == ( |
Then V ' /

e;=^,-(° ° 1 .
\0 atdzj

Now the metric for (E, G() is the usual constant metric, and the associated flat connection
is given by the matrix

(° °- )•\0 at dz + at d z )

Thus the flat connection associated to (E, Q() is given by the conjugate of this matrix by^:

( at
(0 0 \ 0 dz+-dz

gt L . -. ]ST1== at
\0 at dz + at d z ] _ _ _

0 at dz + at dz at dz^

(note that the entries of^ are constant so there is no need to differentiate in conjugating
the connection). Since we assumed that t was real, this connection matrix approaches

^0 d z + ^ d A°{0 0 /

as t -> 0. The limit depends on arg(a). Thus the map between the space of representations
and the space of (E, (3) cannot be continuous.

It might still be the case that there is a homeomorphism between the topological
quotient spaces R^(X/S, ̂  n)IG\{n) and R^(X/S, ^, ^)/Gl(w), which are non-
Hausdorff spaces. Philosophically it would be important because of the interpretation
of the topological quotient spaces as non abelian first cohomology spaces. This is an
interesting problem for further study.



40 CARLOS T. SIMPSON

8. The Gauss-Manin connection

Suppose f: X ->- S i s a smooth projective morphism. We have constructed the
relative de Rham moduli spaces M^(X/S, n). On the other hand, the relative Betti
space is in fact a local system of schemes Mg(X/S, n). The associated analytic total
space M^X/S, n) has a connection, namely a compatible system of trivializations over
artinian subspaces of S .̂ The isomorphism of Theorem 7.1 gives a connection on
MSuCX/S, yz). We will show that this comes from an algebraic connection on M^(X/S, n).
We will call this connection the Gauss-Manin connection because it is the analogue for
nonabelian cohomology of the usual Gauss-Manin connection on the relative abelian
de Rham cohomology. For constructing the algebraic connection, we follow the ideas
of Grothendieck's construction for the case of abelian cohomology.

Crystalline interpretation of integrable connections

The first step is to give an interpretation of vector bundles with integrable connection
on X/S as crystals. The advantage of this is that if S' is an S-scheme which contains a
closed subscheme So defined by a nilpotent ideal, and we set X^ === X' X g - So, then
a crystal on X'/S' is canonically the same thing as a crystal on X^/S'. The set of crystals
on XQ/S' depends only on the restricted map SQ -> S, so the functor M^(X/S, n) is
itself a crystal on S. The resulting stratifications for Mp^(X/S, n) and Rp^(X/S, ̂  n)
provide the Gauss-Manin connections on these schemes over S. This argument shows
that the notion of a crystal can be useful in characteristic zero too. We will begin with
an intermediate interpretation of vector bundles with connection on a smooth X/S,
then proceed to describe what is meant by a crystal (in the present simple case).

The contents of this discussion are based on the ideas of Grothendieck [Gr3], by
now well known. We present them here for the convenience of the reader, since most
of the literature on crystals has concentrated on characteristic p. Our terminology may
not be completely standard.

Suppose as usual, that X/S is smooth and projective. Denote by

( X X g X ) 7 ^ and ( X X g X X s ^

the formal neighborhoods of the diagonals in products of X. We have projections denoted/?,
or p^ in an obvious manner.

Lemma 8.1. — Suppose E is a vector bundle on X. Then an integrable connection V is the

same thing as an isomorphism 9 : p\ E -^> p^ E on (X Xg X)\ such that the restriction of 9
to the diagonal is the identity, and

QM (^2 9) =^39

^ ( X X a X X s X ) ^
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Proof.— Given such an identification 9, we obtain a connection V as follows.
Let J denote the ideal of the diagonal in X Xg X. If e is a section of E, then set

V(^) -^)-9(^))(modJ2).

It is an element ofp^ E ® (J/J2), and considered as a module on the diagonal X, J/J2 is
(by definition) equal to the module of relative differentials Q^/s • Note that P\ K/J = E

on the diagonal, so V(<?) is an element of E^Q^/s- ^om the discussion below, it will
be clear that V is an integrable connection.

We would like to see that this construction gives a correspondence between 9
and V. This statement does not depend on the fact that X is projective. We can cover X
by open sets V which are finite ftale covers of open sets U in affine space A^, and it
suffices (by considering the direct image from V to U, and the ^-module structure
over U) to verify the lemma for vector bundles on U. We may further assume that E
is a trivial bundle, E ^ fl%. The isomorphism 9 is then given by a function g[x,y) with
values in Gl(7z), defined for x,y eU withj/ infinitesimally close to x (more precisely it
is defined on the formal scheme (U X U)^. The conditions on g are that g{x, x) == 1,
and that g[y, z) g{x,y) == g{x, z].

Given such a function g, we can write g{x,y) == 1 + A{x) {x —y) + 0{{x —j02),
where A(x) is an n X n matrix-valued one-form on U. Then

V(<?) {x -y) == e[y) - g(x,y) e{x) = e[y) - e{x) - A(x) e{x) {x -j/),

in other words V == d — A. This shows that V is a connection. The cocycle condition
for g, taken when {y — z) is a first order infinitesimal, becomes a differential equation:

g{x,jy) + A(jQ {y - z) g{x,y) = g{x, z}

g{^ z} - &{^V) = A(j/) g(x^) {y - z)
or d,g[x,y} -A^)g(x^).

The subscripts indicate that the differentials are of the form dy. This equation uniquely
determines g given the initial conditions g(x, x) = 1, so V determines 9 uniquely.

To complete the proof we have to show that 9 org exists if and only ifV is integrable.
Note that if we can solve the equation dyg{x,jy) == \{y) g{x,y) with initial conditions
g(x, x) == 1, then the solution will satisfy the cocycle condition. This is because both
<?(j^ z) g{^jy) a11^ g{x, z) satisfy the same differential equation in z, and they are equal
when z ==j^, so they are equal for all values of z.

Change variables by setting t =y — x. Set A{x + t) == S, A,{x, t) dt,. This is a
formal power series in t with coefficients which are regular functions of x eU. The
differential equation (really a system because there are several ^, ..., tj becomes

Sg(x, t)
^ 9 ) ==A^t)g{x,t).
^
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This is an ordinary differential equation for g{x, t) which is a formal power series in t
with coefficients which are regular functions in x e U. The initial conditions are
g(x, 0) == 1. It has a solution if and only if it satisfies the integrability condition

^-t^-
The solution may be constructed inductively to higher and higher order in t. This
integrability condition is equivalent to {d — A)2 = 0, so the function g exists if and
only if V is integrable. This completes the proof of the lemma. D

Crystals of schemes

Suppose that X is a scheme of finite type over S, not necessarily smooth. Define
a category Inf(X/S) as follows. Its objects are pairs (U C V) consisting of an X-scheme
U -> X and an S-scheme V, with an inclusion U c-^ V over S, which makes U into
a closed subscheme defined by a nilpotent sheaf of ideals (by this we mean a sheaf of
ideals I such that P == 0 for some k). Such a nilpotent inclusion is sometimes referred
to as an infinitesimal thickening. A morphism

/: (UCV) ->(U'CV)

consists of a morphism./: V -> V of S-schemes, such that the restriction f: U -> U'
is a morphism of X-schemes.

Let Inf^X/S) denote the full subcategory of Inf(X/S) consisting of objects
(U C V) such that there exists a morphism V ->• X compatible with the map from U.
This morphism is not, however, considered part of the data of (UCV).

Remark. — If X/S is smooth, then any object of Inf(X/S) is, locally in the Zariski
topology, isomorphic to an object ofInf^X/S). This is because the infinitesimal lifting
property for smooth morphisms guarantees the local existence of V -> X.

A crystal of schemes F on X/S is a specification, for each (UC V) in Inf(X/S), of
a V-scheme F ( U C V ) ^ V ; and for each morphism /: (UC V)-> (U'C V), an
isomorphism

^/^(UCV^/WU'CV'));

such that ^{gf) ^f*^^)) ̂ {f)- A crystal of vector bundles, or just crystal for short, is a
crystal of schemes F with structures of vector bundles for F(UC V), such that the ^{f)
are bundle maps. Equivalently, it is a specification of locally free sheaves F(U C V)

on V, with isomorphisms of locally free sheaves ^(/) : F(U C V) -^>/* F(U' C V).
A stratification of schemes F on X/S is the same sort of thing as a crystal of schemes,

but with F(UCV) defined only for (UCV) in the restricted category Inr(X/S).
Similarly for a stratification of vector bundles. According to the above remark, if X/S is
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smooth then stratifications are the same as crystals. In general, a crystal gives a strati-
fication but not necessarily vice versa.

We will also use the following terminology. If F -> X is a morphism of schemes,
a relative integrable connection for F on X over S is a stratification of schemes with F as
the value over X. The corresponding notion for vector bundles is the same as the usual
notion of vector bundle with relative integrable connection. This follows from Lemmas 8.1
above and 8.2 below.

Suppose F and G are crystals or stratifications of schemes on X/S. A morphism
u: F -^ G consists of a specification of morphisms of schemes u: F(U C V) ->• G(U C V),
compatible with morphisms/in Inf(X/S) in the sense that ^(/) u = u^{f). A morphism
of crystals or stratifications of vector bundles is the same, with the condition that the u
should be morphisms of vector bundles, in other words linear.

Lemma S.2. — A stratification of schemes on X/S is the same thing as a scheme F(X) -> X,
together with an isomorphism

9 : F(X) Xs X|^^ ̂  X x, F(X)|^^

satisfying a cocycle condition. This condition says that the two resulting isomorphisms ^3(9) ̂ 2(9)
and ^3(9) between the restrictions of F(X) X g X X g X ^ X X g X Xg F(X), are equal.
A stratification of vector bundles on X/S is the same as above but where F(X) has a structure of
vector bundle over X and 9 is an isomorphism of vector bundles.

Proof. — Suppose F is a stratification of schemes on X. This gives a scheme F(X)
over X. Let (X XsX)^ denote the n-th infinitesimal neighborhood of the diagonal
in X X s X, and similarly in triple products. These are objects in the category Inf^X/S).
The maps p^ and p^ from (X X g X)^ to X give, by definition, isomorphisms

F((XXgXn^,(n)(F(X))
and F((XXsX)<w^^^(F(X)).

Composing these, we get isomorphisms

9n:K(n)(F(X))^^^(F(X)).

Since the pullback isomorphisms defining the stratification F are functorial and satisfy
an associativity, we have

ym!(XxsX)W == Pn

for n^ m, so these isomorphisms fit together into an isomorphism 9 between the two
pullbacks to the formal scheme (X X g X)\ This provides the desired 9. The associativity
rule for the pullback maps implies that on (X Xg X Xg X)A the two isomorphisms

^ (X^FaXXsXXsX)^
and ^F(X) ^^F((X XgX)^ ^ F((X X g X x^X)^
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are equal. Similarly in other combinations. Thus, all of the resulting isomorphisms
between p\ F(X) and ̂  F(X), are equal. This provides the cocycle condition.

Suppose given, on the other hand, an isomorphism 9 satisfying a cocycle condition
as described in the hypotheses. For every object U C V in the category Inr(X/S),
choose a map iy : V •— X compatible with the map U -> X. Define

F(UCV)=^(F(X)) .

Suppose/: V ->V. Then z'v'/lu ^ equal to iy [^, although they may not be equal on V.
Since U C V is defined byanilpotent ideal, the pair (^, i^f) maps V into (X Xg X)\
Note that

(^v'/r^F(X) =F(V).

while (^, i^fYp^ F(X) ==/+ F(V).

Our hypothesis gives 9 : p\ F(X) ^ ̂  F(X). Thus we may define 9(/) = (^, ̂ ,/)* (9),
to obtain

<p(/):F(V)^/*F(V).

Given/: V -> V and ̂  : V -> V", we obtain a map

(^ ̂ /, ̂ "&/) : V -> (X x, X Xg X)/^.

The cocycle condition for 9 implies that the two possible maps i*y F(X) ^ (^/)'1' 4,, F(X)
are equal. In other words,/* (9^)) 9(/) = ^{gf). This shows that we have defined a
stratification of schemes. These two constructions are essential inverses, so we get an
equivalence of categories. D

Corollary 8.3. — Suppose X/S is smooth. A vector bundle with integrable connection on X/S
is the same thing as a crystal of vector bundles on X/S.

Proof. — This follows immediately from the previous two lemmas, and the contention
that crystals and stratifications are the same if X/S is smooth. This contention follows
from the remark several paragraphs ago, that any object of Inf(X/S) is locally in
Inr(X/S). In order to define F(UCV) for (UCV) e!nf(X/S), cover V by Zariski
open sets V^ which are in Iftf^X/S). Then use the isomorphisms which are provided
on overlaps V^, to glue together the objects F(VJ, forming F(V). D

Remark. — Suppose Z/S is another S-scheme, and j : Z -> X is a morphism of
S-schemes. We obtain a functor j :Int(Z/S) -^Inf(X/S) in an obvious way. In fact,
Inf(Z/S) is a subcategory of Inf(X/S). If F is a crystal of schemes or vector bundles
on X, then the restriction is a crystal of schemes or vector bundles j 'F on Z/S. The
equivalences of categories given by the preceding lemmas and corollary are compatible
with pullbacks.

The following proposition was Grothendieck's main observation.
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Proposition 8.4. — Suppose SoC S is a closed sub scheme defined by a nilpotent sheaf of
ideals. Suppose X is an ^-scheme. Let X^ = X X g So, still considered as an S-scheme. Let
j : XQ -> X denote the inclusion. Then the pullback functor F \->j* F is an equivalence from the
category of crystals of schemes on X/S to the category of crystals of schemes on XJS. The same
is true for crystals of vector bundles.

Proof. — We have a functor a: Inf(Xo/S) -> Inf(X/S) defined by
a(UCV) == (UCV) ,

and a functor b : Inf(X/S) -> Inf(Xo/S) defined by b{V C V) = (Uo C V). The compo-
sition ba is equal to the identity. On the other hand, if (U C V) e Inf(X/S) then there
is a natural map (UoCV) ->(UCV), so we get a natural morphism ab ->1. The
functors a and b (and this natural morphism) preserve the schemes V. We obtain
functors a*, from the category of crystals of schemes on X/S to the category of crystals
of schemes on Xg/S, and b*, from the category of crystals of schemes on X^/S to the
category of crystals of schemes on X/S. We have a* b* == I, and there is a natural
morphism from ^^ to the identity. Note that (^ a* F) ( U C V ) =F(UoCV). The
natural morphism is given by the pullback (using j: (UoC V) -> (UC V)),
9(j) : (F(UoCV) -^F(UCV). But 9(7) is an isomorphism of schemes. A morphism
of crystals of schemes which is an isomorphism over each element of Inf(X/S), is an
isomorphism of crystals of schemes—the inverse will also be a morphism. Hence
b* a* F ^ F. Thus a and b give an equivalence of categories. D

Representability

One can define, in exactly the same way as before, the notions of crystal of functors
or stratification of functors. These mean that for any object (U C V), F(U C V) is a functor
of schemes Y -> V. The set of such functors forms a pre-stack. In fact, given any stack
or pre-stack %7 over the category of schemes, one can define a notion of crystal of ^-objects.
The above lemmas, done for the stacks of schemes or vector bundles, remain valid.
(Any comments about glueing are valid only for stacks, not pre-stacks.)

Lemma 8.5. — Suppose F^ is a stratification of functors on X/S. Suppose F^(X) is repre-
sented or universally co-represented by a scheme F(X). Then we obtain a stratification of schemes F,
such that for any V eInf^X/S), F(V) represents or universally co-represents F^(V).

Proof. — Use the characterization of Lemma 8.2. Note thatj^ F(X) represents or
universally co-represents the functor p\ F^(X), and so forth. Hence the isomorphism 9
of functors on (X X g X)7^ translates into an isomorphism between the pullback schemes.
The cocycle condition for the isomorphisms of functors implies the cocycle condition
for isomorphisms of schemes. D

Remark. — It is in this lemma that we are forced to go from crystals to stratifications.
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The Gauss-Manm connections

Suppose S is a scheme over C, and X/S is a smooth projective family. Suppose
S: S ->X is a section. Define crystals of functors M^yg and R^yg on S/C as follows.
For (S^C S') in Inf(S/C), define M^S^C S') to be equal to the set of isomorphism
classes of crystals of vector bundles of rank n, on X^/S'. Define R^yg(SoC S') to be equal
to the set of isomorphism classes of pairs (E, (B) where E is a crystal of vector bundles
of rank n, on Xg/S', and

P^ks^l"-

Here 1 is the trivial crystal on ;^/S' ^ S^/S'. These crystals of functors restrict to strati-
fications of functors. By Lemmas 8.1 and 8.2, we have M^yg ^ M^(X/S, n),
and R^g ^ R^(X/S, S, n). The first is universally co-represented by Mp^(X/S, n),
and the second is represented by R^(X/S, ^, n). By the previous lemma, we obtain
stratifications of schemes Mg^(X/S, n) and R^(X/S, ^, ^) on the stratifying site
Inf^S/C). By Lemma 8.2, these data are equivalent to the data of isomorphisms

9 : p\ M^(X/S, n) ̂  p\ M^(X/S, n)

and 9 : p\ R^(X/S, ̂  ^) ^ ̂  KBK(X/S, S, ^)

on (S XcS)^ satisfying the cocycle condition on (S X c S XcS)^ These are the
Gauss-Manm connections.

We can make the same definitions as above for the category of complex analytic
spaces. The algebraic connections induce analytic connections on R^(X/S, ^, n) and
M^(X/S,7z). We would like to show that these agree with the connections coming
from the Betti realizations.

Recall that the Betti objects R^X/S, S, n) and Mg(X/S, n) are local systems of
schemes over S .̂ The associated spaces R^X/S, ̂  72) and M^X/S, %) are, by
definition, products locally over S. In other words, i f j e S then there exists a neighbor-
hood U of s such that (with the subscript U denoting the inverse image of U)

R^X/S, ̂  ^)u = U x R^(X,, SM, ^)

and M^^X/S, ̂  = U x M^(X,, n).

A product space of the form U X Z has an analytic relative integrable connection,
given by the natural equalities of objects over U X U

^(U x Z) =^(U x Z) = U x U x Z.

Thus R^X/S, S;, n)^ and M^X/S, n)u have analytic relative integrable connections.
The local product structures over open sets U and V agree over connected components
of U n V, so the connections agree over U n V. These then glue together to give
analytic relative integrable connections on R^X/S, ^, n) and M^X/S, n).
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Theorem 8.6. — The isomorphisms

RB^X/S, ̂  n) ^ R^(X/S, ̂  n), M'^(X/S, ̂  ^ M^(X/S, ̂

identify the connections coming from the locally constant structure of the Betti objects, with the
Gauss-Manin connections constructed above for the de Rham objects.

Proof. — It suffices to treat the case where S == Spec (A) with A an artinian local
C-algebra of finite type, and X/S is smooth, connected and has a section ^. Let s e S
denote the closed point. The Gauss-Manin connections are equivalent to trivializations

RDE(X/S, ̂ n) ̂  S x R^(X,, SM, n)
and M^(X/S, n) ^ S X M^(X,, ^).

In order to show that the associated trivializations of analytic spaces agree with the
trivializations

RB^X/S, ̂ n) == S x R^(X,, i;(.), „)
and M^X/S, ^) = S x M^(X,, n),

it suffices to treat the cases of the representation spaces, since the maps
R(X/S, S, n) -> M(X/S, n) are universally submersive.

For the representation spaces, it suffices to show that if/:S' ->Rp^(X/S, ^, n) is
a point with values in an artinian scheme S' = Spec(A'), which has constant projection
on the second factor in the above product decomposition, then the resulting monodromy
representation

^(X,,^)) ->G1(^,A')

takes values in Gl(^, C). The point f corresponds to a vector bundle with integrable
relative connection (E, V) on X' = X X g S', and frame (B : E ^g^ ^ 0^.. The fact
that the projection on the second factor of the product decomposition given by the
stratification is trivial, implies that there is an open set U C X' (containing the image
of S) and trivializations T : U ^ S' X U, with r(S(S')) == S' X ^{s) and

(E,V,p)^^(^Tr((E,,V,,^)|^).

The local system of relatively constant sections of (^3 r)*((Eg, Vg) |^j) is just the tensor
product of the local system of constant sections of (Eg, Vg)|^ with A'. Thus the mono-
dromy representation of {p^ T)*((Eg, Vg, jBJ |̂  ) takes values

^i(u^)) ^Gic^qcGi^A').
Note that the map on fundamental groups is a surjection

^i(U,,^))->^(X.,^))^l.

The trivialization of (E, V, (B) L implies that the monodromy representation takes values
in G1(%,C). D
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Remark. — The above proof gives the following criterion: an artinian scheme-
valued point f: S' -> Rp^(X/S, ^, n) has constant projection on the second factor
Rj^(X,, S(j-), n) if and only if there exists an open set UC X' (containing the image
of ^) and trivializations T : U ^ S' X U, with r(^(S')) == S' X ^) and

(E,V,p)^^(^Tr((E^V,,M^).

For, if such an open set and trivializations exist, then the monodromy representation
takes values in G\{n, C). Thus the pointy has constant projection on the second factor
for the stratification of the Betti spaces. But since the de Rham and Betti spaces are
analytically isomorphic, and this isomorphism is compatible with the stratifications, the
pointy has constant projection on the second factor for the stratification of R^(X/S, ^, n).
Hence it has constant projection for the algebraic stratification.

9. Principal objects

Suppose X is a scheme of finite type over C. In what follows, we will use the term
tensor category to denote an associative commutative C-linear tensor category with unit
object. A tensor functor is a functor together with natural isomorphisms of preservation
of the tensor product, compatible with the associative and commutative structures
[Sa] [DM].

Suppose G is a complex linear algebraic group. Let Rep(G) denote the tensor
category of complex linear representations of G. Let Vect(X) denote the tensor category
of vector bundles (considered as locally free sheaves) over X. A morphism u: E ->• F
of objects in Vect(X) is strict if coker(^) is a locally free sheaf. In this case, the kernel
and image of u are locally free sheaves.

A principal right G-bundle over X is a morphism P -> X together with a right action
ofG on P such that there exists a surjective dtale morphism/: X' -> X and a G-equivariant
isomorphism

P X x X' ^ X' X spec(C) ^T-

If P is a principal right G-bundle over X, let P X°V be the locally free sheaf in the
Zariski topology obtained by descending the sheaf

YeX^
{CM)eP(Y) X (V®^et(Y))}

{Pg, v} - (p, gu) for g e G(Y)

from the ^tale topology X^ to the Zariski topology. We obtain a functor

pp:Rep(G) ^Vect(X)

by setting pp(V) == P X°V. This has the following properties: that pp is strict, in other
words i f ^ : V - > W i s a morphism in Rep(G) then pp(^) is a strict morphism m Vect(X);
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that pp is exact, that is pp(ker(^)) == ker(pp(^)) and pp(coker^)) = coker(pp(^)); and
that pp is faithful. Furthermore, for any closed point x e X the functor V \-> pp(V),,
is a fiber functor [Sa] [DM]. Nori has proved the following converse:

Proposition 9.1. — Suppose p : Rep(G) ->Vect(X) is a strict exact and faithful tensor
functor. Then there exists a principal right G-bundle P over X and an isomorphism of tensor
functors p ̂  pp; and P is unique up to unique isomorphism.

proof. — [No]. D

Principal Higgs bundles

Suppose X -> S is a smooth projective morphism to a scheme of finite type over C.
Let g denote the Lie algebra of G with G acting by the adjoint representation. A
principal Higgs bundle on X over S, for the group G, is a principal right G-bundle P -> X
together with a section Q of (P x° g) ®t2x/s such that [e? 6] = 0 in (P x°g) ®^|:/s.
This is the relative version of one of the definitions given in [Si5]. Given such an object
and a representation V of G, we get a relative Higgs bundle pp(V) == P x°V. Say
that P is of semiharmonic type if the Chern classes of the restrictions of P to fibers X are
zero in rational cohomology, and if there exists a faithful representation V such that
pp(V) restricts to semistable Higgs bundles on the fibers. In this case, the same is true
for any other representation (cf. [Si5], remarks after Lemma 6.13). The category of
semistable Higgs bundles with vanishing Ghern classes (Higgs bundles of semiharmonic
type) has a natural structure of tensor category—the tensor product of two semistable
Higgs bundles is again semistable [Si5].

Lemma 9.2. — The construction P i-> pp provides an equivalence between the categories
of principal Higgs bundles of semiharmonic type for the group G, and strict exact faithful tensor
functors p from Rep(G) to the category of Higgs bundles of semiharmonic type on X over S.

Proof. — This follows from the previous proposition—see [Si5], remarks after
Lemma 6.13. D

Lemma 9.3. — Suppose E is a Higgs bundle of semiharmonic type on X over S. Fix a
number k. There is a projective ^-scheme N(E, k) -> S representing the functor which associates
to each S-schemef: S' -^ S the set of quotient Higgs bundles /*(E) -> F -> 0 of rank k such that
the Chern classes of F vanish on fibers of X' ->• S' (note that any such F is a semistable Higgs
bundle on X' over S', hence of semiharmonic type). Suppose that the fibers X, are connected, and
^: S -> X is a section. Then the morphism N(E, k) -> Grassy (E), k) is a closed embedding.

Proof. — Let RQ denote the Hilbert polynomial of 0^ over S. Let Hilb(E, kpo)
denote the Hilbert scheme parametrizing quotient sheaves E —>• F -> 0 flat over S,
with Hilbert polynomial kp^. Denote the kernel by 0 ->K-^E->F->0 . Let
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N(E, k) C Hflb°(E, kpo) denote the closed subscheme representing the condition that
the map 6 : K -> F ®^ Q^/s is zero (see the first paragraph of the proof of Theorem 3.8,
Part I). The points of N(E, k) with values in/: S' -^S correspond to quotient Higgs
sheaves/* (E) -> F -> 0 on X' over S', such that F is flat over S' with Hilbert polynomial P.
If F is such a quotient, then for any s e S' the fiber Fg == F L' is a quotient Higgs sheaf
of Eg = E|^ with normalized Hilbert polynomial equal to that of Eg. Let Kg denote
the kernel of Eg -> Fg. Then Kg is a sub-Higgs sheaf of Eg with the same normalized
Hilbert polynomial. By Proposition 6.6, Kg is a strict subbundle with vanishing Chern
classes, hence Fg is locally free and has vanishing Ghern classes. By Lemma 1.27, Part I,
this implies that F is locally free. Thus the points of N(E, k) correspond to quotient
Higgs bundles F which are locally free of rank k and have Chern classes restricting to
zero on the fibers. This is the desired parametrizing space. Note that Hilb(E, kpo) is
projective over S and N(E, k) is a closed subset, hence it is also projective.

Suppose X has connected fibers over S and ^ : S -> X is a section. Associating,
for each quotient E -> F ->0, the quotient vector bundle ^(E) -> S*(F) -^0, gives a
morphism N(E, k) -> Grass (^(E), k). It is proper, since N(E, k) is proper over S.
Suppose Pi and F^ the quotients given by points ofN(E, k) (S), such that S*(Fi) = ^(F^)
as quotients of ^(E). Let Ki denote the kernel of E -> F^. Then Ki and Fg are Higgs
bundles on X over S with the same normalized Hilbert polynomials. By Proposition 6.6,
they both satisfy condition LF(X). The morphism ^ : K^ — Fg has ^(^) = 0, so by
Lemma 4.9, Part I, for the case ofA^8, ^ == 0. Thus Fg is a quotient of F^; similarly
in the other direction, F^ is a quotient of F^ so F^ = Fg. This shows that the map
N(E,A) (S) —^Grass^E), k) (S) is injective. The same is true for points with values
in any S-scheme S'. A morphism which is proper and injective on the level of points
is a closed embedding. D

Suppose that the fibers Xg are connected, and ^ : S -> X is a section. Suppose
G C H is a subgroup. Suppose P is a principal Higgs bundle for the group H which is
semistable with vanishing Ghern classes, on X over S. Suppose b : S -> S*(P) is an
S-valued point. We say that the monodromy of (P, b) is contained in G if the following
condition holds: for every linear representation V of H, and every subspace W C V
preserved by G, there exists a strict sub-Higgs bundle of semiharmonic type

F C P x ^
such that

^(F) ={b} X WC^(P x^).

If S is a point, we define the monodromy group Mono(P, b) to be the intersection of all
algebraic subgroups G C H such that the monodromy of (P, b) is contained in G. Note
that the monodromy group jumps down under specialization.

Lemma 9.4. — Suppose G C H. Suppose P' is a principal Higgs bundle of semiharmonic
type on X over S, for the group G. Then the principal Higgs bundle P = P' x° H obtained by
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extending the structure group to H is also of semiharmonic type. This construction gives an identi-
fication between: (1) the set of isomorphism classes of pairs (P', b') where P' is a principal Higgs
bundle of semiharmonic type for the group G and V is an S'valued point of ̂ (P'); and (2) the
set of isomorphism classes of pairs (P, b) where P is a principal Higgs bundle of semiharmonic
type for the group H and b is an S-valued point of ̂ (P'), such that the monodromy of (P, b) is
contained in G.

Proof. — The Ghern classes of P are induced by those of P', hence they vanish.
To check semistability of P, choose a faithful representation V of H. This restricts to
a faithful representation of G, and we have P X H V == P' XG V. By the assumption
of semistability of P', this is semistable, so P is semistable. Our construction gives a
functor from the category of objects (1) to the category of objects (2). To go in the
opposite direction, let Rep(G, H) denote the category whose objects are pairs (V, W)
where W is a representation ofH and V is a G-invariant subspace $ and whose morphisms
are the G-equivariant morphisms between the subspaces V. Forgetting W gives an

equivalence of categories Rep(G, H) -^ Rep(G). On the other hand, suppose we have
a principal H-bundle P with a point b e ̂ (P) (S), such that the monodromy is contained
in G. By definition, for any (V, W) e Rep(G, H) there is a unique sub-Higgs bundle
F(V, W) C P x11 W of semiharmonic type with S*(F(V, W)) = { b } X V. Given (V, W)
and (V, W) and a G-equivariant morphism /: V -> V we obtain a G-invariant
subspace L C W ® W giving the graph of the map /. The hypothesis of monodromy
in G implies that there exists a sub-Higgs bundle L(/) C F(V, W) © F(V, W) which
restricts to L on the section ^. This gives the graph of a morphism F(V, W) -> F(V, W)
restricting to/over the section ^ (and the morphism is unique by Lemma 4.9, Part I).
We obtain a functor from Rep(G, H) to the category of Higgs bundles of semiharmonic
type on X over S, commuting with the functor of taking the fiber along ^. Composing
with the inverse of the above equivalence of categories gives a functor from Rep(G).
This has a natural structure of neutral tensor functor (one can define a tensor operation
(Vi, Wi) ® (Va, W^) =Vi®V2,Wi®W2) on Rep(G, H) as an intermediate in the
definition of the tensor structure). By Lemma 9.2, this gives a principal G-bundle P'
as desired. D

Lemma 9.5. — Suppose E is a Higgs bundle of semiharmonic type, of rank n on X over S.
Then the frame bundle P of E has a natural structure of principal Higgs bundle of semiharmonic
type for the group G\{n, C) on X over S. The Higgs bundle is recovered as E == P x01^'^ C .̂
This construction provides an identification between the sets of isomorphism classes of(Ei, JB) and (P, b).

Proof. — Define a category Rep(Gl(^, C), std) whose objects are pairs (V, T^C"))
where the second element refers to the tensor product (C")®"® ((C71)*)0^ and
V C T^^C") is a Gl(w, C)-invariant subspace. The morphisms are equivariant morphisms
of the subspaces V. This category is equivalent to Rep(Gl(^, C)) (and it even has a
tensor operation compatible with the tensor product on Rep(Gl(n, C))). Suppose
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VCT^C!^ is a Gl(%, C)-invariant subspace. Then for any ^-dimensional vector
space U we obtain a subspace VCT^^U) which does not depend on the choice of
basis. The same construction holds for vector bundles, so we get a subbundle F C T^ b ( ' E )
with (B(F) = V. The construction of V is also compatible with infinitesimal auto-
morphisms, so the subbundle F is preserved by 6. There is a complementary subspace V1,
and a corresponding complementary subbundle F1. The tensor product T^E) is
also of semiharmonic type [Si5], so any direct factor such as F is of semiharmonic type.
Morphisms of representations V give rise to morphisms of the Higgs bundles F, and
it is compatible with tensor product, so we obtain a tensor functor from Rep(Gl(^, C), std)
to the category of Higgs bundles of harmonic type on X. Lemma 9.2 gives the desired
principal bundle P. D

Suppose GCGl(/z, C). Suppose E is a Higgs bundle of semiharmonic type on X
over S, of rank n, and suppose (3 : ̂ (E) ^ 0^. Let P denote the frame bundle of E,
and b the point corresponding to p. We say that the monodromy of (E, (B) is contained in G
if the monodromy of (P, b) is contained in G in the sense defined above. If S is a point,
the monodromy group Mono(E, (B) is again the intersection of all subgroups GCGl(n, C)
such that the monodromy of (E, (3) is contained in G.

Theorem 9.6. — Suppose S : S -> X is a section. There is a scheme R î(X/S, S, G)
over S representing the functor which associates to any S'scheme S' the set of pairs (P, b) where
P is a principal Higgs bundle for the group G on X' = X x g S' over S', semistable with vanishing
Chern classes, and b : S' -> ̂ (P) is a section over $. Iff: G <-̂  H is a closed embedding, then
f induces a closed embedding R^(X/S, ̂  G) c-> R^X/S, S, H).

Proof. — By Lemma 9.5,

RBOI(X/S, ^ Gl(^, C)) ^ R^(X/S, ̂  n)

does the job for the group GI(^, C).
Suppose now that the existence of R^H) = R^(X/S, ^, H) is known, and

that G C H is an algebraic subgroup. Suppose that V is a representation of H and W is
a subspace preserved by G. Let (P^, ^univ) denote the universal principal object on
x ^^(H), and let E^ = P^ Xs V denote the universal Higgs bundle asso-
ciated to the representation V. Let ^ == V ®p 0^ ^ and let (B1"1^: ^(E^) ^ i^
denote the frame given by the point b^. Let k == dim(V) — dim(W), let
IT = W ®c ^RDO!^ denote the corresponding subobject of V, and let

^/^ ^ RDOI(H) -^ Grass^H)(^ k)

denote the section corresponding to the quotient Y^/^. Let N^E1"1 ,̂ k) C Grass p „ (Y^ k)
denote the closed subscheme given by Lemma 9.3 and transported by the frame B1"1 .̂
Define the closed subscheme

C(V, W) ̂  (^(^E^ A)) C R^(H).
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By Lemma 9.3, this subscheme represents the condition on points g : S' ->Rj^(H),
that there exists a quotient Higgs bundle F' of harmonic type of ^(E1"1^), with
^((3^) (^(P)) == ̂ (^T). This is the same as the condition that there exists a strict
sub-Higgs bundle F of harmonic type with g\^} (^(F')) =^)lt(^r). Set

RDOI(X/S, S, G) = n C(V, W)
(V,W)

where the intersection is taken over all representations VofH and subspaces W preserved
by G. It is a closed subscheme of R^i(H) which represents the functor associating to
an S-scheme S' the set of (P, b) where P is a principal Higgs bundle of semiharmonic
type for the group H on X' over S', and b is a point, such that the monodromy of (P, b)
is contained in G. By Lemma 9.4, R^(X/S, ^, G) also represents the functor associating
to S' the set of (P', b ' ) where P' is a principal Higgs bundle of semiharmonic type for
the group G and b' is a point. Every linear algebraic group G is a subgroup of Gl(^ C)
for some n, so we obtain all of the required spaces Rp^(X/S, ^ G). The last statement
is immediate from this construction. D

Remark. — The last statement of the theorem, applied to GCGI(TZ,C), gives
RM(X/S, S, G) C R^(X/S, S, n), because Ri>oi(X/S, ̂  G\{n, C)) = R^(X/S, ̂  n).

Our next task is to study the universal categorical quotients of these representation
spaces. Assume from now on that G is reductive. Note that G acts algebraically on
RD^(X/S, ̂  G). IfG C Gl(%, C) is a faithful representation, then G acts on R^(X/S, ^, n)
through its inclusion in Gl(^, C), and this induces the natural action on the subscheme
RDOI(X/S^,G).

Choose a G\(n, C)-linearized line bundle oSf on Rp^(X/S, S;, n)^ such that every
point is semistable for the action ofGl(^, C) (cf. Theorem 4.10, Part I). By Mumford's
criterion involving one parameter subgroups [Mu], every point is also semistable for
the action of G. Thus every point of the closed subset R^i(X/S, ^, G) is semistable
for the action ofG with respect to the linearized line bundle JSfja (X/S.^G)- By [Mu],

we may form the universal categorical quotient M^X/S, ^, G) ^ R^X/S, ^, G)/G.

Proposition 9.7. — Suppose that X -> S is smooth and projective. There exists a space
^Doi(X/S, G) which universally co-represents the functor associating to S' -> S the set of iso-
morphism classes of principal Higgs bundles P of harmonic type on X' over S' for the group G.
If the fibers Xg are connected and ^ '" S -> X is a section, then there is a natural isomorphism
between Mp^(X/S, G) and the universal categorical quotient Mp^(X/S, ^, G) constructed
above. Inthiscase, the points ofM^(X,, G) parametrize the closed G-orbits in Rooi(X,, ^(^), G).

Proof. — Choose an ^tale morphism S' -> S with S/ connected, such that each
connected component X^ of X' admits a section ^. Then

M^(X'/S', G) == nM^(X:/S', ^, G)
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universally co-represeiUs the appropriate functor. If{ S^}is a collection ofdtale S-schemes
covering S, then the collection of spaces Mj^(X^/Sa, G) constructed in this way is
provided with descent data (since the functors they co-represent are provided with the
corresponding descent data). They descend to give Mp^(X/S, G) which co-represents
the desired functor. D

Theorem 9.8. — Suppose G is a reductive group and f: G -> Gl( ,̂ C) is a faithful
representation. Suppose (P, b) eRp^(X,, ̂ ), G) maps to (E, (B) eRp^(X,, ^(^3 n). Then
(P, b) is in a closed G-orbit in Rp^Xg, ^(j-), G) if and only if (E, (B) in a closed Gl{n, C)-orbit
in Rpoi(Xg, ^(J"), n), or equivalently the monodromy group of E is reductive^ or equivalently E is
semisimple.

Proof. — The subobjects of (E, j3) correspond to the subspaces of C" preserved
by the monodromy group of E. The monodromy group is reductive if and only if the
representation C71 is completely reducible, thus if and only if E is semisimple. The
statement of the theorem is true if G = Gl(^, C): in Theorem 4.10, Part I, as applied
in § 6, we have identified the closed Gl{n, C)-orbits in Rpoi(Xg, $M? ^) as corresponding
to the semisimple representations.

Certainly if E is semisimple, then its G-orbit is closed, since the G orbit is a closed
subset of the G\(n, C)-orbit.

Suppose E is not semisimple, so H == Mono(E, [3) is not reductive. Let U be the
unipotent radical of H. There exists a one parameter subgroup C* -> G and a family
of morphisms f^: H -> G for t e C such that f^g) == tgt~1 for t e C*, and such that
the image/o(H) is not conjugate to H. To see this, we apply the theorem ofMorozov [Mo]
—see also [BT]—to conclude that since H is not reductive, it is contained in a proper
parabolic subgroup Q^, and its radical U intersects the unipotent radical of Q. Now
we may assume that Q^ is defined by a torus C* -> G. The Levi component of Q is the
centralizer of this torus, and the torus acts with positive weights on the unipotent radical
of Q,. In particular, if q e Q^ then the limit lim<_o^/~1 exists. These limits give the
t^p /o? which completes the family f^q) == tqF1 defined for t + 0. The limits of the
elements of the unipotent radical of Q^ are the identity element, so there is u e H whose
limit is the identity. In particular /o(H) has dimension smaller than that of H. This
is the required family.

The construction of the previous paragraph gives a morphism of group schemes
over A1, /: H x A1 -> G X A1. Let (P', b ' ) be the principal Higgs bundle for the
group H with P = P' XH G. The map / gives an associated relative principal Higgs
bundle P7 = P' X^G on X x A1 over A1, with an A^valued point &< For t eA1,
Mono(Pf, b{) =/((H), and furthermore (Pf, b{) ^ (P, tb) for t + 0. Thus (Pf, b{) are
points in the G-orbit of (P, &), which approach the limit (P^, b^) as t -> 0. This limit
is not in the same orbit, since its monodromy group,/o(H), is not conjugate to H. Thus
the G-orbit is not closed. D
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The de Rham spaces

We can define spaces Rp^(X/S, ^, G) and M^(X/S, G) in the same way as
above, and obtain the same results. Suppose X -> S is a smooth projective morphism
to a scheme of finite type ovre C. Let g denote the Lie algebra of G with G acting by
the adjoint representation. A principal bundle with integrable relative connection on X over S,
for the group G, is a principal right G-bundle P -> X together with an integrable
connection V. For purposes of brevity, we can define an integrable connection as being
a G-invariant structure of stratification of schemes for P on X/S in the sense of § 8.
Given (P, V) and a representation V of G, we get a vector bundle with integrable relative
connection p p ( V ) = = P x ° V . The construction P i-> pp provides an equivalence
between the categories of principal bundles with integrable relative connection, and
strict exact faithful tensor functors p from Rep(G) to the category of vector bundles
with relative integrable connection.

Lemma 9.9. — Suppose E is a vector bundle with relative integrable connection on X over S.
Fix a number k. There is a projective scheme N(E, k) -> S representing the functor which associates
to each S-scheme f: S' -> S the set of quotients f* (E) -> F -> 0 compatible with the connection.
Suppose that the fibers X^ are connected, and ^ : S -> X is a section. Then the morphism
N(E, k) ->• GrasSg(^*(E), k) is a closed embedding.

Proof. — Let A = A^ be the sheaf of rings of all relative differential operators
on X over S. We may consider E as a A-module. Let po denote the Hilbert polynomial
offi?x over S. The Hilbert scheme Hilb(E, kpo) parametrizes quotient sheaves E -> F -> 0
flat over S with Hilbert polynomial kpo. Let E^ — F^ -> 0 denote the universal
quotient on X^ == X XgHab(E,^o), and let K^^CE""^ denote the kernel. We
get a map

Auniv <9\ T^univ _. Tuniv
1 ^'(p^vaiiv -lx- —> £

Let N(E,A) be the closed subscheme representing the condition that this map pulls
back to zero. Then N(E, k) parametrizes quotients E -> F -> 0 compatible with the
action of A, such that F is flat with Hilbert polynomial kpo over the base. Any such
quotient restricts to a sheaf with connection on each fiber, hence to a locally free sheaf.
By Lemma 1.27, Part I, F is locally free, so it is a vector bundle with integrable relative
connection. From the Hilbert polynomial, it has rank k. Thus N(E, k) represents the
desired functor. Furthermore, N(E, k) is projective over S and the natural morphism
to Grass(^*(E), A) is injective on the level of S'-valued points, by an application of
Lemma 4.9, Part I. Hence the map to the Grassmanian is a closed embedding. D

Suppose that the fibers Xg are connected, and ^ : S -> X is a section. Suppose
G C H is a subgroup. Suppose P is a principal bundle with relative integrable connection
for the group H on X over S. Suppose b: S-> S*(P) is an S-valued point. We say that
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the monodromy of (P, b) is contained in G if the following condition holds: for every linear
representation V of H, and every subspace W C V preserved by G, there exists a strict
subbundle preserved by the connection

F C P x^V

such that
^*(F) =={b}x WC^(P x^).

If S is a points we define the monodromy group Mono(P, b) to be the intersection of all
algebraic subgroups G C H such that the monodromy of (P, b) is contained in G.

We obtain the same result as in Lemma 9.4. Note that the concept of "semi-
harmonic type " is not needed, since all A^-modules are automatically ^-semistable
with vanishing rational Ghern classes. Suppose G C H. Suppose P' is a principal bundle
with relative integrable connection on X over S, for the group G. Then P = P' X ° H
is a principal bundle with relative integrable connection for the group H. This cons-
truction gives an identification between: (1) the set of isomorphism classes of pairs (P', A')
where P' is a principal bundle with relative integrable connection for the group G and
b' is an S-valued point of ^*(P') $ and (2) the set of isomorphism classes of pairs (P, b)
where P is a principal bundle with relative integrable connection for the group H and
b is an S-valued point of ^(P')? such that the monodromy of (P, b) is contained in G.

Suppose E is a vector bundle of rank n with integrable relative connection on X
over S. Then the frame bundle P of E has a natural structure of principal bundle with
integrable relative connection for the group Gl(n, C), and E is recovered as P x01^'^ C .̂
This construction provides an identification between the sets of isomorphism classes
of (E, p) and (P, 6).

Theorem 9.10. — Suppose ^ : S -> X is a section. There is a scheme Rp^(X/S, ^, G)
over S representing the functor which associates to any S-scheme S' the set of pairs (P, b) where
P is a principal bundle with relative integrable connection for the group G on X' = X X g S'
over S', and b : S' -> ^(P) is a section over ^. Iff\ G '-> H is a closed embedding^ then f induces
a closed embedding Rp^X/S, ̂  G) ̂  R^X/S, ̂  H).

Proof. — The same as the proof of Theorem 9.6. D
The analogues of Proposition 9.7 and Theorem 9.8 also hold.

Relationship with Betti spaces

Suppose X -> S is smooth and projective, with connected fibers, and suppose
^ : S -> X is a section. If G is any linear algebraic group, we obtain a local system of
schemes Rg(X/S, ^, G) on S .̂ These are obtained from the fundamental group
r = -n:i(X,, ^(J)) by setting R(F, G) =Hom(F,G); the fundamental group TT^S, s)
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acts on r so it acts on R(F, G), and RB(X/S, ^, G) is the corresponding local system
of schemes.

IfG is reductive then define M^X/S, G) to be the local system of schemes whose
fibers are the good quotient R(F, G)/G (which exist because the representation space
is affine). If X -> S is any smooth and projective morphism, we obtain Mg(X/S, G)
by the same descent as usual.

Recall that the superscript <c (an) " denotes the analytic total space associated to
a local system of schemes.

Theorem 9 .11. — We have isomorphisms of complex analytic spaces

R^(X/S, S, G) ^ Rr(X/S, S, G)

and, if G is reductive,

M^(X/S, G) ^ Mr(X/S, G).

These are compatible with the morphisms of functoriality induced by homomorphisms of algebraic
groups, and they are equal to those given by Theorem 7 .1 in the case G == G\(n, C). The monodromy
group corresponding to a point in R^(Xg, ?,{s), G) is equal to the Zariski closure in G of the
image of the representation parametrized by the corresponding point in Rg(X,, ̂ {s), G).

Proof. — Fix an injective homomorphism GCG\(n, C). Over an analytic base, a
relative vector bundle with integrable connection has monodromy contained in G if
and only if the corresponding family of representations has image in the subgroup of
points with values in G. Thus the subsets

R^(X/S, ^ G) C R^(X/S, S, G\{n, C))

and KW/S, S, G) C R^X/S, ̂  G\(n, C))

represent the same functor of analytic spaces S' -> S .̂ Hence they correspond under
the isomorphism of Theorem 7.1. We obtain an isomorphism between the moduli spaces
by applying Proposition 5.5, Part I. D

Corollary 9.12. — IfGCG\(n, C) is a closed embedding then the Gauss-Manin connection
preserves the subspace Rp^(X/S, ^, G) C Rp^(X/S, i;, n). If G is reductive, we obtain a Gauss-
Manin connection on the universal categorical quotient Mp^(X/S, G).

Proof. — The Gauss-Manin connection on the associated analytic space is the
same as the connection given by the local trivializations of the Betti spaces. These trivia-
lizations are compatible with the subspaces of representations for the group G. Thus
the analytic connection preserves the analytic subspace R^(X/S, S, G). This implies
that the algebraic connection preserves the subspace R^(X/S, i;, G). The connection
descends to the universal categorical quotient by Lemma 8.5. D
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Principal harmonic bundles

Let J denote the standard metric on C71. Recall that we defined in § 7 the space
^^(X/S, ̂  n) whose points over s e S consist of pairs (E, (B) where E is a Higgs bundle
on X, and (B is a frame for E^) such that there exists a harmonic metric K on E with
P(K^g)) ==J. Similarly, Rj^(X/S, ^, 72) was the space whose points over s consist of
pairs (E, (3) where E is a vector bundle with integrable connection and (B is a frame
for E^) such that there exists a harmonic metric K for E with (B(K^) ==J.

Suppose G is a reductive algebraic group. Fix a maximal compact subgroup
V C G. Choose an inclusion G -> Gl(yz, C) so that the standard metric J is invariant
under V$ then V = G n V{n). Define

R^(X/S, ̂  G) = R^(X/S, ̂  G) n R^X/S, ̂  n).

Endow this space with the topology induced by the usual topology of R^i(X/S, ̂  G).
Define

RUX/S, ̂  G) == R^(X/S, ̂  G) n R^(X/S, ̂  ^),

endowed with the topology induced by the usual topology of R^(X/S, ̂  G). Note
that V (with its usual topology) acts continuously on R^i(X/S, ̂  G) and R^(X/S, ̂  G).

Zmwfl 9.13. — The map Rioi(X/S, ^, G) ->M^(X/S, G) ^ ^r^^ and proper,
and identifies M^(X/S, G) Z£;Z/A the topological quotient R^(X/S, ^G)/V. The map
^i^/S, S, G) -> M^(X/S, G) ij surjective and proper, and identifies M^(X/S, G) with
the topological quotient R^(X/S, ̂  G)/V.

Proo/. — We give the proof for the Dolbeault spaces. Recall that R^X/S, ̂  G)
is a closed subset ofR^(X/S, ̂  n), so R^(X/S, ̂  G) is a closed subset ofR^(X/S, ̂  ̂ ).
But Rioi(X/S, $, n) is proper over M^(X/S, n), so R$oi(X/S, ̂  G) is proper over
M^(X/S,G). Furthermore, if R^(X/S, ̂  G) -^ M^(X/S, G) is surjecdve, then
M^(X/S, G) is proper over M^(X/S, n).

To show surjectivity, suppose s e S and suppose y is a point of Mp^(X,, G).
This can be lifted to a point (E,(B) in a closed G orbit ofR^X,, SM, G), in which
case, by Theorem 9.8, the associated rank n Higgs bundle E is semisimple. Write
E = © E^ ® A, where E, are the distinct stable summands of E, and A^ are vector
spaces. Choose good metrics K, for E,. Then the good metrics for E are those of the
form SK,®L, where L, are any metrics on A,. The monodromy group fixes the
decomposition of E and acts irreducibly on the components E^.

Choose a metric K = SK,®L, for E. Let Mono(E, 1^) CGl(E^) denote the
monodromy group induced by the identity frame 1^ : E^) ^ E^). Let

W = Mono(E, 1,J n U(E^, K^,).
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We claim that this is a maximal compact subgroup of Mono(E, l^). Let a denote
complex conjugation in GI(E^)) with respect to the metric K^. We will prove that
a fixes Mono(E, l^), and also that every component of Mono(E, 1^) contains a
fixed point of or. Then W, being a compact real form which meets every component,
will be maximal compact.

Since Mono(E, 1^) is reductive, it is equal to the group of elements fixing a
subspace of tensors TC Ejj^(®E^^)0b. Furthermore we may assume that T is the
space of all tensors so fixed, and hence there is a decomposition of Higgs bundles

E0^® E*)06 = (T ® fly e F

with F not containing any trivial subobjects. In particular, Mono(E, 1^) preserves
the subspace F^gp Now the harmonic metric K on E induces a harmonic metric on
the tensor product, and it follows that the direct sum (T ® (P^) @ F is an orthogonal
direct sum of bundles with harmonic metrics. For any g e GI(E^)), let g* denote the
adjoint with respect to the metric K^gp defined by the formula {ge,f) == { e 9 g * f ) (we
will suppress reference to the metric K^) in the notation (., .) for the metric on E^)
or any tensor power thereof). The complex conjugation a is given by a{g) == {g*)~~1.
Suppose,? e Mono(E, 1^). Then for t e T and/e F^, we have (^* t,f) = {t, gf) == 0,
since gf e F^. Similarly if s, t e T then {g* t, s) = {t, gs) == {t, s). Therefore if t e T,
g* t == t. In other words, g* e Mono(E, 1^)). Thus a{g) = {g*)~1 is also in Mono(E, l^).
This proves that W is a compact real form of Mono(E, 1^)).

We still have to prove that it meets every component; this we do by a standard
argument. Suppose g e Mono(E, l^^). Then gg* is a positive definite self adjoint matrix,
so it can be raised to any real power, and we get a real one parameter subgroup ofGl(^)
consisting of the self adjoint matrices {gg*)\ t eR. Furthermore, it is easy to see that
(gg*)1 preserves any tensor preserved by gg*, so this one parameter subgroup is in
Mono(E, 1^). Furthermore, we have aWY) == W^ Let f(t) =g-l{gg'FY; it is
in Mono(E, 1^). Note that/(0) = g~1 and/(I) == g\ On the other hand,

^(/w) = gwr' == g~W) w -/(i - ̂ )-
Thus/(1/2) is fixed by a. We have joined the element g~1 to an element of W by a path
of elements of Mono(E, l^). This shows that every component of Mono(E, 1^)
contains an element of W, completing the proof that W is a maximal compact subgroup.

The group W preserves the metric K^) on E^gp and fixes the factors E,, so it
preserves the metrics K, on E, ̂ ^. On the other hand, Mono(E, 1^) acts irreducibly
on E^ c^p and W—being a maximal compact subgroup—does too. Therefore K.̂  ^,)
is, up to scalars, the unique metric on E, ̂ ^ preserved by W.

Since W is compact, there exists g e G such that g^g~1 C V. Then we may replace
the point (E, (B) by (E,^(B) eRp^(X,, ^(.?), G), so we may assume WCV. Now J is
a W-invariant metric on E^ = © E, ̂  ® A,. But since K^ ̂  is the unique W-invariant
metric on E, ̂ ^ up to scalars, and the E^(^ are distinct irreducible representations
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of W, there exist metrics L^ on A^ such that J == S K^ ® 1̂ '. Thus our point lies in
RSoi(X,, $(.?), %). Set K' == SK,®L;, and (B(K^)) ==J. This proves that

R^(X/S,S,G)^M^(X/S,G)

is surjective.
The map is clearly V-invariant, so finally we must prove that two points in

R^(X/S, ^, G) which map to the same point in Mj^(X/S, G) differ by an element
of V. Then the properness and surjectivity will imply that M^(X/S, G) is the topo-
logical quotient space. Again, we may restrict our attention to the fiber over a point
s e S. Any point in R^(Xg, S(^), G) corresponds to a semisimple object, in other words
it is contained in a closed orbit. But the inverse image of a point in Mp^(X^, G) contains
exactly one closed orbit. Thus if two points map to the same point in Mj^(Xg, G), we
may assume that the two points are (E, (B) and (E,^(B). Then there are two harmonic
metrics on E, say S K, 0 L^ and S K^ ® L^, which map to the metric J via (B and g^
respectively. Note that the stabilizer of E in Gl(^, C) is Stab(E) == II G1(A,). There is
an element s e Stab(E) such that ^(B takes the metric (S K, ® L,)^) to J. Thus gs e V(n),
so g e V{n) .Stab(E). We have a unique decomposition

Stab(E) = (U(TZ) nStab(E)).(exp(p) n Stab(E)),

where gl(^) == u(%) ® p is the Cartan decomposition. Thus we may write g == up for
u e V{n) and^ e exp(p) n Stab(E). Furthermore, since V == G n U(/z), we get a Gartan
decomposition g == v© (p n g), and we may write g = vp/ uniquely for v eV and
p ' e exp(p n g). It follows that v == u and p ' == p. In particular, p ' e exp(p) n Stab(E).
Thus (E,^' p) ^ (E, p) so (E,^p) ^ (E, yp). Thus our two points differ by an element
of the maximal compact group V. This completes the proof for the Dolbeault spaces.
The proof for the de Rham spaces is the same. D

Lemma 9.14. — The equivalence of categories constructed in [Si5] gives homeomorphisms
of topological spaces

R^(X/S^, G) ^ R^(X/S, ^ G) and M^(X/S, G) ^ M^(X/S, G).

Proof. — The equivalence of categories of [Si5] gives an isomorphism of sets

R^(X/S, ̂ n) S Rp^X/S, ̂ n).

We have seen in Lemma 7.16 that this restricts to a homeomorphism of subspaces

RUX/S, ̂ n) ̂  R^(X/S, ̂ n).

Furthermore, the equivalence of categories is a tensor functor, so it preserves the mono-
dromy groups. Thus it gives an isomorphism of subsets

R^(X/S, ̂  G) ^ R^(X/S, ̂  G).
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Note that R^i(X/S, S, G) and R^(X/S, ̂  G) are respectively closed subsets of
R^oi(X/S, S? ^) and R^(X/S, ̂  ^)? endowed with the subspace topologies. Therefore
the above isomorphism gives a homeomorphism of topological spaces

R^(X/S,^G)^R^(X/S,S,G).

Furthermore, this is compatible with the action of V. Thus it descends to a homeo-
morphism between the quotient spaces which are Mp^(X/S, G) and M^(X/S, G).
To finish the proof, note that this homeomorphism is compatible with descent data for
going from the case where the fibers are connected and there exists a section, to the
general case where the moduli spaces are constructed. D

Corollary 9.15. — Suppose G and H are reductive algebraic groups, and G -> H is an injective
homomorphism. Then the induced maps between moduli spaces Mpoi(X/S, G) -> Mpoi(X/S, H)
and Mp^(X/S, G) -> M^(X/S, H) are proper.

Proof. — We may assume that X -> S has a section ^, and that the fibers are
connected. Then R^(X/S, ^, G) is a closed subset of R^(X/S,^H). Therefore the
map R^(X/S, ^, G) ^Mp^(X/S, H) is proper. But this factors through M^(X/S, G),
and the map R^(X/S, ^, G) -> Mp^(X/S, G) is surjective. Therefore the map
Mp^(X/S, G) -> Mp^(X/S, H) is proper. The same proof works for the de Rham spaces. D

Surprisingly, we obtain a result about representations of any finitely generated group.

Corollary 9.16. — Suppose Y is a finitely generated group. Suppose G -> H is an
injective homomorphism of reductive algebraic groups. The resulting morphism of moduli spaces
M(Y, G) ->M(Y, H) is finite.

Proof. — Suppose X is a connected smooth project! ve variety with basepoint
x e X. The previous corollary implies that Mp^(X, G) -> Mj^X, H) is proper. By
Theorem 9.11, this implies that the map Mg(X, G) -^Mg(X, H) is proper. However,
the Betti spaces are affine, and an affine proper map is finite. Thus Mg(X, G) -> Mg(X, H)
is finite. If F^ denotes the free group on n generators, and if X is a smooth connected
projective curve of genus g with basepoint x, then there is a surjection from
7ii(X, x) -» F^ -> 1 (this is easy to see by drawing a picture of the Riemann surface X^
as the surface of a solid with g holes). Thus if Y is any group generated by g elements,
there is a surjection T^(X, x) -> Y. The additional relations in Y give closed conditions
on the representation space, so

R(Y, G) C Re(X, x, G) and R(Y, H) C R^X, x, H)

are closed equivariant embeddings. Reductivity of the groups G and H implies that
the corresponding maps on good quotients

M(Y, G) -. Ms(X, G) and M(Y, H) -> M^X, H)

are closed embeddings. This implies that the map M(Y, G) -> M(Y, H) is finite. D
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Lemma 9.17. — Suppose A ^ a C-algebra of finite type, and N is a finitely generated
A-module. Suppose that a reductive algebraic group G acts algebraically on A and N. Then the
module of invariants N° is finitely generated over A0.

Proof. — [Mu]. D

Corollary 9.18. — Suppose Y is a finitely generated group. Suppose G ->H is a homo-
morphism of reductive algebraic groups with finite kernel. Then the resulting morphism of moduli
spaces M(Y, G) -^M(Y, H) is finite.

Proof. — Let G'CH denote the image of G. From Corollary 9.16, the map
M(Y, G') -> M(Y, H) is finite. The map G -> G' is finite, and the representation spaces
are embedded as closed subsets in products of copies of the groups, so the map
R(Y, G) ->R(Y, G') is finite. The map G -> G' is surjective, so M(Y, G') is a good
quotient of R(Y, G') by the action of G. The previous lemma implies that the map
M(Y, G) -^ M(Y, G') is finite. Composing these statements gives the corollary. D

This in turn gives finiteness for the maps of Corollary 9.15.

Corollary 9.19. — Suppose G and H are reductive algebraic groups, and G-^-H
is a homomorphism with finite kernel. Then the induced maps between moduli spaces
M^(X/S, G) ^M^(X/S, H) and M^(X/S, G) ->M^(X/S, H) are finite.

Proof. — The map M^X/S, G) -> M^X/S, H) is finite by the previous
corollary, and the Dolbeault and de Rham spaces are homeomorphic to these Betd
total spaces. Thus M^(X/S, G) ->M^(X/S,H) and M^(X/S, G) ->M^(X/S,H)
are finite. This implies that the corresponding algebraic maps are finite. D

Limits of the C* action

There is an action of C* on the category of principal Higgs bundles: z e C* sends
(P, 9) to (P, z(f). If G is a reductive group, we obtain an action of C* on M^i(X/S, G).
This is compatible with the morphisms of functoriality induced by morphisms of groups,
and is equal to the action defined in § 6 in the case G = Gl(/z, C).

Corollary 9.20. — For any point y eMpoi(X/S, G) the limit lim^o zy exists, and is a
fixed point of the action of C*, in M^i(X/S, G).

Proof. — Corollary 6.12 gives this statement for the group Gl{n, C). Choose a
faithful representation GCG1(^,C). The map C* -> Mp^(X/S, n) extends to a map
A1 ->Mpoi(X/S, n), and by the properness of the maps in Corollary 9.15, the orbit
C* -^M^i(X/S, G) extends to a map A1 ->Mp^(X/S, G). The image of the origin is
the desired fixed point of C*. D
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Corollary 9.21. — Suppose X is a smooth connected projective variety with basepoint x,
and G is a reductive complex algebraic group. Any representation 7Ci(X, x) -> G can be deformed
to a representation which comes from a complex variation of Hodge structure.

Proof. — The points in the closed orbit of Rp^(X, x, G) lying over fixed points
of C* correspond to the representations of the fundamental group which come from
complex variations of Hodge structure [Si5], The same proof as for Corollary 6.12
now works. D

10. Local structure

We will now review the deformation theory of Goldman and Millson (descended
from Deligne, Schlessinger and Stasheff) [GM], The cases of R^ and Rg are identical
to [GM], and the case of Rpyi is analogous.

A differential graded Lie algebra [GM] is a collection A == (A°, A1, . . . ) of C-vector
spaces, with differentials d'.A^-^A^1 and a bracket [ , ] : A'®^ A 3 —^A' 4 ' 3 such
that the following axioms hold: d2 = 0; the bracket is graded-anticommutative,
[a, b] = (— l)1^'4-1 [b, a] for a e A1 and b eA3; the differential and bracket are compa-
tible, d[a, b] == [da, b] + (— 1)' [a, db] if a e A'; and the Jacobi identity holds with the
appropriate signs.

Fix a finite dimensional Lie algebra g. A ^-deformation diagram is a pair (A, e)
where A* is a differential graded Lie algebra and s : A° -> g is a morphism of Lie algebras.
Let H1 denote the t-th cohomology of the complex (A*, d). We say that (A, e) is finite
dimensional if the spaces H1 are finite dimensional. We say that (A, e) is rigid if the map
e : H° -> g is injective. Denote by h the image of H° in g, and let h1 denote a subspace
transverse to h (for example, if g is semisimple we can take the perpendicular space
with respect to the Killing form).

The main examples are as follows. Suppose X is a connected smooth projective
variety over Spec(C) with a point x e X. Let E be a Higgs bundle of semiharmonic
type of rank n, with a frame (B : E^ ^ C". Let g = gl(^, C). Then we can define a
g-deformation diagram (Ap^(E), e) with A1 equal to the space of smooth z-forms with
coefficients in End E, the differential d given by the operator D", and the Lie bracket
given by the graded commutator of forms. The map s is evaluation at x composed with
the frame p.

Let G C G\(n) be a complex algebraic subgroup, and suppose (E, p) satisfies
condition Mono(E, (B) CG (in other words (E, (3) represents a point in Rp^X, x, G)).
Put g == Lie(G). Let P be the associated principal Higgs bundle and Ad(P) == P x0^
the adjoint Higgs bundle. We can define a g-deformation diagram (Ap^(P), e) with A1

equal to the space of smooth z-forms with coefficients in Ad(P). The Lie bracket comes
from the Lie bracket of g and the graded commutator of forms, and the augmentation s
is given by evaluation at x using P^ G.
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Similarly, suppose E is a flat bundle (thought of as a representation of the
fundamental group, or equivalently as a holomorphic vector bundle with integrable
connection), with frame (B : E^. ̂  C71. Let g = gl(^, C). The g-deformation diagram
(Ag(E), s) = (Ap^(E), s) has A4 equal to the space of smooth z-forms with coefficients
in End(E), with differential d given by the flat connection D on E, Lie bracket given
by graded commutator of forms, and augmentation s given by evaluation at x.

If the monodromy group is contained in GCG1(^,C) (in other words (E, (B)
represents a point in Rg(X, x^ G) or Rp^(X, x, G)), and P denotes the associated flat
principal bundle, then we obtain a Lie (G)-deformation diagram (A;g(P), e) = (Aj^(P), s)
where A^ are the spaces of forms with coefficients in Ad(P), the differential is again
given by D, the Lie bracket comes from that of Lie (G), and the augmentation is given
by evaluation at A*.

The deformation theory associated to a deformation diagram

We recall the basic elements of the theory of Goldman and Millson—see [GM]
for details. Let Art denote the category of artinian local schemes of finite type over
Spec(C). An object S eArt is of the form S = Specks) for a local C-algebra 0^ of
finite length. Let nig denote the maximal ideal of ^Pg. Fix a Lie algebra g and let G
be an algebraic group with Lie(G) = g. Let G°(g, S) C G(S) denote the set of S-valued
points sending the closed point to the identity in G. The group G°(g, S) depends only
on g, not on the choice of G. We have an exponential map from g®c nig to G°(g, S),
denoted u \—> €u^ which is an isomorphism of sets. The formulas giving the group structure
of G°(g, S) in terms of the exponential isomorphism of sets are universal, applying also
to the case of infinite dimensional Lie algebras.

Suppose (A, s) is a deformation diagram. For S e Art, we obtain a group G°(A0, S)
with exponential map A0^*^ ~" G°(A°, S). The Lie algebra A° acts on the A\ and
this gives an action of the group G°(A°, S) on A^ging. We denote the composition
of this action with the exponential map by {u, a) }-> e~u aeu. There is also an expression
e~u d^) eA^ciiig. The formulas for these actions are the same as those that one
calculates from the terminologies in the case of a finite dimensional Lie algebra.

Given a g-deformation diagram (A, e) and an artinian scheme S e Art, let
F(S, A, e) denote the set of pairs (•/], g) with T] e A1 ®^ "̂  3Ln^ g e G°(S) such that

dW +^M=0.

The group G°(A°, S) acts on F(S, A, s) by the formula

^: {^g) ̂  (Ad(^) T] + e^d^^e-^g).

Let R(S, A, c) denote the quotient of the set F(S, A, e) by the action of G°(A°, S).
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Lemma 10.1. — Suppose the diagram (A, e) is rigid and finite dimensional. Then the
functor S h-> R(S, A, e) is pro-represented by a formal scheme R(A, e).

proof. — [GM]. D

Lemma 10.2. — Fix a linear algebraic group G and Rut g = Lie(G). If (P', b') is a
principal Higgs bundle of harmonic type (resp. a principal flat bundle) for the group G, with a
point V e P^, then (A^(P), s) (resp. (Ap^(E), € ) ) is a rigid and finite dimensional ^-deformation
diagram, and the formal scheme R(A, s) is naturally isomorphic to the formal completion of the
representation space Ri)oi(X, x, G) (resp. Rp^X, x, G) or RB(X, x, G)} at the point corres-
ponding to (P',6').

Proof. — This is a simple variant of one of the theorems of Goldman and
Millson [GM]—theirs is the statement for the space Ra(X, x, G). Note that the formal
completions of Ra(X, x, G) and Rp^(X, x, G) at corresponding points are isomorphic,
by the analytic isomorphism given in Theorem 7.1. This isomorphism is compatible
with the equality of deformation diagrams. We may thus restrict our attention to the
case of Ap^ and R^or

Suppose H is a linear algebraic group and N C H is a normal unipotent subgroup.
Fix a principal Higgs bundle ofsemiharmonic type with frame (P', b') for the group H/N.
Let S denote the set of triples (P, b, a) where P is a principal Higgs bundle of semi-
harmonic type for H, b is a frame, and a : (P, b) Xs (H/N) ^ (P', b ' ) is an isomorphism.
Choose (Po, &o, oco) e 2. Since H acts on Lie(N), we obtain a Higgs bundle with Lie
algebra structure Po X11 Lie(N). Let ^o be the operator giving the holomorphic structure
of Po, and let <po be the Higgs field. Let S' denote the set of pairs (u, T]) with u e N and

T] e Ai(X, Po X H Lie(N)), (^ + <po) W + \ h, ]̂ == 0,

up to equivalence under the action ofA°(X, Po X11 Lie(N)) given by the same formula
as above. Then there is a natural isomorphism between S' and S. The principal Higgs
bundle corresponding to (u, T]) is P^ = (Po, ̂  + -y]011, ?o + ̂ °), and the frame is
b^ = boU. The isomorphism stays the same, o^ = oco. These constructions are functorial
in terms of the pair (H, N).

Suppose G is a linear algebraic group and S is an artinian local scheme of finite
type over Spec (C). Then we obtain a new group scheme G(S) defined by setting
G(S) (T) = Hom(S X T, G). There is a morphism G(S) -> G, and the kernel G°(S)
is a normal unipotent subgroup. There is a morphism of group schemes over S,

^: G(S) x S -> G x S

equal to the identity in the second factor, and equal to the element ofHom(G(S) X S, G)
corresponding to the identity in Hom(G(S), G(S)) in the first factor.
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Let p^\ X x S ->X be the projection on the first factor. If Pg is a principal
object for the group G(S) on X, then ^(Pg) is a principal object for the group G(S)
on X x S over S, and

^(Ps) ^PW x^^Gx S)

is a principal object for the group G on X X S over S. There is a quasi-inverse: if P
is a principal G-bundle on X X S then put P(S) (T) = Hom(S X T, P); this is a
principal G(S)-bundle over X with P = F(P(S)). If P has some extra structure then
P(S) is provided with the same extra structure. Thus, the functor 0 gives an equivalence
of categories between principal objects for the group G on X x S, and principal objects
for the group G(S) on X. Furthermore, the S-valued points of ^(Ps) \{x}xs correspond
to the points of (Pg)a,. This construction works for principal bundles, principal Higgs
bundles, and principal bundles with integrable connection.

Denote by SQ e S the closed point. The restriction ofO(Pg) to X x { SQ } is naturally
identified with Pg x0^ G (and this identification is compatible with the identification
of the S-valued points above { A ? } X S given above). Consequently, the construction 0
applied to principal Higgs bundles preserves the property of semiharmonic type.

Applying the previous construction with H = G(S) and N = G°(S), we obtain a
natural identification between: the set of triples (P, b, a) where P is a principal Higgs
bundle of harmonic type on X x S over S, b is an S-valued point of P | {a ;}xs» and

a: ( ^ ^ I x x ^ o ) ^ (p^bf)^ and the set of elements of R(S,A^i,e). We obtain an
isomorphism of functors ofartinian local C-schemes of finite type, giving an isomorphism
of formal schemes between R(A^i, s) and the formal completion of Rpoi(X, x, G)
at (P', &'). D

Remark. — Under the isomorphism of functors given above, the G-orbit of (E, (3)
goes to the set of elements represented by (0,^).

Remark. — Let HCG be the stabilizer of (E, (3). Then H acts on Ri)oi(G). Since
HCG, it preserves the bundle Ad(Po). Thus H acts by conjugation on the diagram
Dpoi(E, G) (the action on the Lie algebra g is also by conjugation). Thus H acts on
the functor F and the representing formal scheme R(F). Our isomorphism is compatible
with these actions of H.

A morphism ffrom a diagram D^ to a diagram Dg is a collection of/1 from A^D^)
to A^Dg), such that/1 8, = S,/1"1, such that/(fl6) ==f{a)f{b), and such that of°{s) = e(^).
Given such a morphism we get a map of functors F(S, D^) -»F(S, D^), and hence a
map/:R(Di) -^(D^).

We say that a morphism / is a quasi-isomorphism of diagrams if

/O:HO(D,)^HO(D,)

/i:Hi(D,)-^Hi(D,)
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are isomorphisms, and if

/2:H2(Di)^H2(D,)

is injective.
The fundamental step in the theory of deformations of Goldman-Millson-Deligne-

Schlessinger-Stasheff is the following statement [GM].

Proposition 10.3. — Iff:'D^->'D^ is a quasi-isomorphism of rigid finite-dimensional

diagrams then it induces an isomorphism of formal schemes f: R(D^) -^ R(Dg).

proof. — [GM]. D

We will apply this by using the formality results from ([Si5] § 3). Suppose (A, e)
is a diagram where the differentials 8 are zero. Let G C H^A') be the quadratic cone
which is the zero set of the map from H^A") to H^A') given by T) h-> T) A T). Recall that
h1 is the perpendicular space of the image of H°(A') in g. Goldman and Millson show
that the formal scheme R(A, s) is equal to the formal completion of C X h1 at the
origin [GM].

Theorem 10.4. — Let G be a reductive algebraic group. Suppose (P,^) is a point in a closed
orbit in Hpo^? G) (res?- ̂ ^(^ G)). Let C be the quadratic cone in H^Ad P) defined by
the map T] h-> T] A T] 6 H^Ad P). Let C denote the cone defined above for the formal deformation
diagram (A^, e) and, let h1 denote the perpendicular space to the image under (B of H°(Ad P)
in g. Then the formal completion (R^X, G), (P,^))" (resp. (R^(X, G), (P,/^) is
isomorphic to the formal completion (C X h1, 0)^.

Proof. — Suppose (P, b) is a framed principal Higgs bundle of harmonic type.
We get a Higgs bundle Ad(P) with Lie algebra structure. The Higgs bundle Ad(P)
is a direct sum of stable Higgs bundles with vanishing Chern classes. By the results
of [Si5], there is an operator D' on C00 Ad (P)-valued forms. Let (Aiy(P),s) be the
diagram with A1 equal to the space of Ad(P)-valued i-forms u such that D'(^) == 0 (in
the notation of [Si5]). The map 8 is given by D" == ^ + 9 or equivalently by
D = D' + D". Let (Ag(P), e) be the diagram with A1 equal to the space of harmonic
forms, which is equal to H^Ap^P)). Here the maps 8 are zero, in other words (Ag(P), e)
is formal. Let (Ajy^(P), e) be the deformation diagram for the flat principal bundle (P, D)
corresponding to the principal Higgs bundle P by the correspondence of [Si5]. We
have natural morphisms

(AO,(P),S)^(A^(P),S)
(A^,(P), 6) -> (A^(P), 6)

(AB,(P),£)^(AH(P),£).
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By [Si5] Lemma 3.25 these are quasi-isomorphisms. By Proposition 10.3 we get iso-
morphisms of formal schemes

R(A^(P),c)^R(A^(P),s)

• R(A^(P),e)^R(A^(P),s)

R(A^(P),£)^R(AH(P),£).

Finally, the formal scheme R(Ag(P), s) is isomorphic to the formal completion of the
cone (C X h-^O)^ Now apply Lemma 10.2. D

Remark. — Following Goldman and Millson, we may apply the Artin approxi-
mation theorem [Ar] to conclude that the isomorphism of formal completions comes
from an isomorphism of analytic or ^tale neighborhoods.

Remark. — The stabilizer H of (E, (B) acts on all of the above spaces and diagrams,
and in particular, H acts on the cone C and on h1. The quasi-isomorphisms of diagrams
are compatible with the action ofH. Therefore the isomorphism of formal neighborhoods
is compatible with the action of H.

The cone C is affine and H acts linearly, so there is a good quotient G/H.

Proposition 10.5. — Suppose P is a principal harmonic bundle. The formal completion of
the moduli space M^(X, G) (resp. Mp^X, G), Me(X, G}) at the point P is isomorphic
to the formal completion of the good quotient G/H of the cone C by the action of IS..

Proof. — Apply Luna's Aale slice theorem [Lu] to construct an H-stable subscheme
Y C Rp^(G) passing through (E, (B), and such that the map H1 X Y->Rpoi(G) is
locally an isomorphism in the analytic or ^tale topology. Here H1 is an H-stable subspace
of G passing through the identity, such that H1 X H -> G is locally an isomorphism.
Now we have an isomorphism (H1 X Y)^1 ̂  (H1 X C)^ of formal schemes, preserving
the subscheme (H1 x {0})^ From this we get projections Y7^ -> CA and C^ -^Y^
Their composition is a map Y'^ -> YA such that the scheme theoretic inverse image of
the origin is just the origin. An argument of counting dimensions of the local ring modulo
powers of the maximal ideal shows that this must be an isomorphism, so we get an
isomorphism Y7^ ^ G^ This is compatible with the action of the group H. Let Y/H
and G/H denote the good affine quotients. Now H is reductive, since it is the stabilizer
of a point in a closed orbit [Lu], and because of this, we have (Y/H)7^ = Y^H and
similarly for G. Thus (Y/H)7^ ^ (C/H)^ But Y/H is equal to the moduli space M^G),
locally at E. Thus the formal completion of the moduli space is isomorphic to the formal
completion of the affine quotient of the cone G by the action of H. D

We get canonical isomorphisms between the formal completions of the spaces
RDOI(X,A;,G) and RpR(X,^,G), or Mpo^X, G) and M^(X, G), at points corres-
ponding to the same harmonic bundle. These isomorphisms are not related to the
identification between the sets of points given by the harmonic theory of [Si5].
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Theorem 10.6 (Isosingularity). — For any point y e R^X, x, G) (resp.
y e RDÎ  ^ G), j/ e M^(X, x, G), or j/ e M^(X, ̂  G); there exists a point
z e R^(X, x, G) (resp. y e R^(X, ̂  G), y e M^(X, ̂  G), or y e M^(X, x, G)) and
(Stale neighborhoods U ofy and \ of z such that (U,j/) ^ (V, -2:) $ ̂  ̂  foca/ .y^wj corresponding
to y and z have isomorphic semisimplijications.

Proof. — By the Artin approximation theorem [Ar], it suffices to show that the
formal completions atj/ and z are isomorphic. Suppose first of all thatjy lies in a closed
orbit, so it corresponds to a reductive representation. Then let z be a point in the other
space corresponding to the same reductive representation p. Then there are natural
isomorphisms of cohomology rings H^(X, Ad(p)) ^ Hp^(X, Ad(p)) [Si5]. Thus the
cones that appear in Theorem 10.4 for y and z are isomorphic. The automorphism
groups H are also the same in both cases. The formal completions of the representation
spaces are both isomorphic to the formal completion of the cone G X g1, and the
formal completions of the moduli spaces are isomorphic to C/H. Suppose y does not
lie in a closed orbit. Let;/ denote a point in the closed orbit adhering to the orbit oty.
There exists a point z ' in the other representation space, and isomorphic Aale neigh-
borhoods U' ofy and V of z\ There is a pointy e U', mapping to a point in the orbit
ofy. In particular, the formal completion ofU' atj/i is isomorphic to the formal completion
of the representation space at y. Let z^ denote the point corresponding to y-^ under the
isomorphism U' ^ V, and let z denote the image in the other representation space
of z^. The formal completion of V at z^ is isomorphic to the formal completion of U'
atj^i, so the formal completion of the representation spaces atj/ and z are isomorphic.
We may suppose thatj/' is in the closure of the orbit H^, so z ' is in the closure of the
orbit H2'i. In particular, the closed orbits adhering to the orbits ofy and z correspond
to the same reductive representations. D

Remark. —If y e R^X, G) (resp. y e Mp^(X, G)) and if z denotes the corres-
ponding point in Ra(X, G) (resp. M^X, G)) then there are ^tale neighborhoods U
ofy and V of z, and isomorphisms (U,j/) ^ (V, z). This follows directly from the Artin
approximation theorem, since the analytic isomorphism of Theorem 7.1 gives an
isomorphism of formal neighborhoods.

The Zariski tangent space

We give a result valid for any representation, not necessarily reductive.

Lemma 10.7. — Suppose (V,p) eRp^(X, G). Then the dimension of the Zariski tangent
space to Rp^(X,G) at (T?,p) is equal to ^(X, Ad(P)) + dim(g) - A°^(X, Ad(P)).
The same for R^X, G).

Proof. — Let D be the de Rham or Dolbeault deformation diagram corres-
ponding to (P,^), The Zariski tangent space of the representation space is equal to
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R(Spec(C[W, D). The set F(Spec(CM/^), D) is equal to the set of pairs (s, g) where
g e g and T] e A1 with d{r^) = 0. The action ofG°(A°, Spec(C[^2)) amounts to changing
<T], ^) by adding {d{s), s^)) for s e A°. The quotient by this action is H1 © (g/s(H°)). D

11. Representations of the fundamental group of a Riemann surface

Theorem 1 1 . 1 . — If X is a connected smooth projective curve of genus g > 2, then the
moduli spaces Mg(X, n), M^X, 72), M^(X,n), ̂  ̂  representation spaces R^X, ̂ ),
^DE^? 7l)? an^ ^Doi(X? ̂  a^ normal irreducible varieties.

Most of the rest of the section is devoted to the proof. First we prove that the
schemes are reduced and normal. Note that a normal connected variety is irreducible,
so for the second statement it suffices to prove connectedness, which we do afterward.
At the end of the section, we give some auxiliary statements about the local structure
of the representation space. These were obtained in my original proof of the theorem;
they are no longer needed in the present proof but it seemed like a good idea to record
them anyway.

Normality

The idea for this part of the proof was suggested by M. Larsen (cf. Corollary 11.6
below). Suppose X is a connected smooth projective curve of genus g > 2. Choose a
basepoint x e X.

Lemma 11.2. — Every irreducible component o/*Rg(X, A:, n) has dimension greater than
or equal to 2gn2 — n2 + 1. The Zariski open subset Rs(X, x, n) parametrizing irreducible
representations is smooth of dimension 2gn2 — n2 + 1.

Proof. — First note that Ra(X, x, n) is the subvariety of Gl(w, C)20 defined by
one relation. The relation is a map

R:Gl(w, C^^Sl^C),

and Rg(X, x, n) = ̂ ~l(e). This implies that every irreducible component of RB(X, A?, n)
has dimension ^ 2gn2 — n2 + 1. Suppose p is a point in RB(X, x, n). Let V denote
the local system corresponding to p and let Ad(p) denote the local system End(V). Then

Tr^X^p)) ^H^C)

are isomorphisms for i = 0 and i = 2. On the other hand, if T) e H^X, Ad(p)) then
Tr([73, T]]) =0. Therefore the cone C which appears in Theorem 10.4 is equal to all
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ofH^Ac^p)). By Theorems 7.1 and 10.4, RB(X, x, n) is smooth at p. Finally, the
rank of Ad(p) is n2 so a calculation of Euler characteristics gives

dim(G) = dim(H1) = (2g - 2) n2 + 2.

In the notation of the previous section, dim(h1) = n2 — 1, so the dimension of
Ra(X, x, n) sit p is 2gn2 — n2 + 1. D

Proposition 11.3. — 7^ dimension of any irreducible component of Rfi(X, A?, n) is equal
to 2gn2 — n + 1, all irreducible components are generically smooth, and RB(X, x, n) is a complete
intersection. The dimension of the subspace of reducible representations has codimension at least
two, except in the case g = 2 and n == 2 when it has codimension at one.

Proof. — We suppose that the proposition is known for any n' < n. We will prove
the proposition for representations of rank n.

For 1 ̂  k < n, let P^ denote the parabolic subgroup of GI(TZ, C) consisting of
block-upper triangular matrices with 2 blocks, where the first block has size k and the
second block has size n — k. There is an exact sequence

0 -> C^-^ -> P, -> Gl{k, C) x Gl(n - A, C) -> 1,

where the kernel represents the abelian group of block upper triangular matrices with
the identity matrix in the diagonal blocks.

For each P^, let G^ = Gl(n, C)/P^. It is the Grassmanian of A?-planes in C", with
dimension k(n ~- k). Choose a constructible section 9 : G^ -> Gl(w, C). Let Ra(X, x, P^)
denote the space of representations of 7i:i(X) into P^. We obtain a constructible family
of representations of TCi(X, x) into P^ indexed by G^ X Ra(X, x, PJ, corresponding
to the constructible map cr : G^ X Ra(X, x, P^) -»RB(X, x, Gl(%)) defined by
^(^ P) = y(j0 P9(j0~1- This has the property that a{y, p) is a representation of7Ci(X)
into the conjugate J/P^"1 (this conjugate doesn't depend on the choice of lifting 9(j0).
Let R^(X, - x , Gl(^, C)) denote the space of reducible representations. Since every
reducible representation has a fixed subspace and is therefore conjugate to a represen-
tation in some P^, we have

U <r(G, x RB(X, x, P,)) = R^X, x, G\(n, C)).
l^k<n

In particular, the dimension ofR^X, x, Gl{n, C)) is bounded by the maximum of the
dimensions of G^ X RB(X, x, PJ.

Lemma 11.4. — Suppose that Proposition 1 1 . 3 is known for representations of rank n' < n.
Then for any 1 ^ k < n, the dimension ofG^ X RB(X, x, P )̂ is less than or equal to 2gn2 — n2;
and if g ^ 3 or n ̂  3 then the dimension is less than or equal to 2gn2 — n2 — 1.

Proof. —We count dimensions, looking at the morphism

Ra(X, x, P,) -> Rs(X, x, G1(A, C)) X Rs(X, x, G\(n - k, C))



72 CARLOS T. SIMPSON

which associates to a representation p its diagonal parts (pi, pg). We would like to know
the dimension of the space of representations into P^ which have given diagonal part
(pi, p^). Let YD • • -9 T29 denote the standard generators of the fundamental group ofX,
and let r(yi, • • • ? T 2 ^ denote the relation. If we fill in the diagonal parts of the
matrices p(Y,) according to the given representations p^, pg, then to specify the remaining
part of the representation we have to choose a vector (A^, . . . , A^) with each A, in
the kernel C^"^ of the above exact sequence. Putting the resulting matrices into the
relation gives a map

ro : C^-^ x ... X C^-^ -> C^^.

The kernel of this map is the fiber over (pi, pa), in other words the space of representations
with diagonal parts p^, pg. This is the last part of a complex calculating the group
cohomology of TCi(X, x) with coefficients in the vector space Ck(n~k\ so the cokernel
of the map is H^TT^X, x), C^-^). The action of 7ri(X, x) on the vector space of
coefficients comes from the adjoint action on Lie(P^) using the representation p.
This only depends on pi and pg. More explicitly it can be seen by expressing
(y(n-fc) = ck®Cn~k, with action on C? given by pi and the action on C71"^ given
by pg. By Poincar^ duality, the dimension of the H2 is the same as the dimension of
H°(7ri(X, x), p^® pg). Thus the dimension of the fiber over (pi, pg) is

(2^-l)^-^+A°(^(X:),pI(x)p,).

If pi and p2 are irreducible and not isomorphic, then H^TTj/X, x), p ^ ® p a ) = 0.
Therefore we can count the dimension of the fiber over (pi, pg) as {2g — 1) k{n — k). By
induction, the dimension of the space of choices of (pi, p^) is (2g — 1) {k2 + (n — k)2) + 2.
The dimension of this part of G^ X RB(X, x, P^) is

{2g - 1) (^2 + (n - kY + k{n - k)) + 2 + k{n - k)

== {2g ~ 1) n2 + 1 - {{2g - 2) k{n - k) - 1).

In particular, as g ^ 2 and n > 2, the dimension is at most 2^2 — n2. If ^ ^ 3 or
yi ^ 3 then the dimension is at most 2gn2 — n2 — 2.

The set of pairs (p^, p^) such that both representations are reducible has (by
induction) dimension bounded by {2g — 1) {k2 + {n — k)2). For these points we make
a coarse counting of the dimension of the fiber over (p^, pg): it is less than 2gk{n — k).
The dimension of this part of Gj, X RB^? ̂  PA;) ls therefore bounded by

{2g - 1) {k2 +{n- k)2) + {2g + 1) k{n - k)
= {2g - 1) n2 + 1 - ((2^ - 3) ̂  - ̂ ) + 1).

The dimension is at most 2gn2 — n2 — 1 for g ^ 2 and n ^ 2.
The set of pairs (pi, pg) which are irreducible and isomorphic (hence of rank

k = n — k = ^/2) has dimension less than or equal to {2g — 1) k2 + 1. The H° has
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dimension 1, so the fiber has dimension (2g — 1) k2 + 1. The sum of the dimensions
is less than or equal to (2g — 1) rfi]2 + 2. For n > 2 and g > 2 this is less than or equal
to 2gn2 — n2 — 4.

The set of pairs (p^, p^) such that one representation is reducible and one repre-
sentation is irreducible has dimension bounded by {2g — 1) {k2 + (n -—^)2) + !• For
such a pair, the H° discussed above has dimension 0 or 1. Therefore the dimension of
the fiber over (pi, ^^) is bounded by (2g — 1) k(n — k) + !• The dimension of this
part of the space G^ X RB(X, ̂  Pfc) ls bounded by

(2g - 1) (k2 +(n- k)2 + k(n - k)) + 2 + k(n - A)
= (2^ - 1) n2 + 1 - ((2g - 2) k(n - k) - 1).

In this case, note that n must be at least 3. Therefore, the dimension is at most
2^2_^2_2.

We have shown, in all the cases, that the dimension of G^ X RB^? x^ ^k) ls ^ess

than or equal to 2gn2 — n2, and if n ^ 3 or g ^ 3 then the dimension is less than or
equal to 2gn2 •— n2 — 1. D

We continue with the proof of the proposition. It follows from the lemma that
the dimension of the subspace of reducible representations is less than or equal to
(2g — 1) n2. From the lower bound of Lemma 11.2, no irreducible component can
consist entirely of reducible representations. Therefore the open set of irreducible
representations is Zariski dense, so the dimension of each component is equal to
(2g — 1) n2 + !• It follows from the equations for Rs(X, x, n) given in the proof of
Lemma 11.2 that Ra(X, x^ n) is a complete intersection. Since RB(X, x, n) is smooth,
each component is generically smooth. Finally note that, except in the case g = 2 and
n == 2, Lemma 11.4 shows that the dimension of the subspace of reducible represen-
tations is less than or equal to (2g — 1) n2 — 1. This proves the proposition. D

Lemma 11.5. — The scheme Ra(X, x. n) is smooth outside of a subset of codimension ^ 2.

Proof. — This follows from the previous proposition except when g = 2 and n == 2.
We are reduced to that case, where the space of representations has dimension 13. From
the proof of Lemma 11.4, the codimension 1 part of the locus of reducible representations
consists of those representations conjugate to an upper triangular representation with
distinct diagonal parts. We show that the space of representations is smooth at such
points. This statement is invariant under conjugating the representation; so we may fix
an upper triangular representation p, with diagonal entries pi =t= p^. The space of
semisimple reducible representations has dimension 10, so we may assume that p is
not semisimple. For a 2 X 2 representation, this implies that there is a unique sub-
representation of rank 1 and a unique quotient. Make the convention that the sub-
representation is pi and the quotient is p2.

We claim that there are no nonscalar endomorphisms of the representation p.
10
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For if/is an endomorphism of rank 1, then the image ofymust be the subrepresentation p^,
while the coimage must be the quotient pg, contradicting the condition that pi 4= pg.
Thus ifX is an eigenvalue of an endomorphism f, thenf— X == 0 and f is a scalar. Thus,
as claimed, H°(X, Ad(p)) = { 0 } (we say that p is simple).

By Lemma 10.7, the dimension of the Zariski tangent space to Rfi(X, x, n) at p
is equal to ^(Ad(p)) + n2 — A°(Ad(p)). Since p is simple, A°(Ad(p)) == 1. By PoincanS
duality, ^(Ad(p)) = 1, so

^(Ad(p)) == (2g - 2) n2 + 2 == 10,

and the dimension of the Zariski tangent space is 1 0 + 4 — 1 = 13. Since this is equal
to the dimension of any irreducible component of the space, the local ring is regular
and Rs(X, x, n) is smooth at p. This completes the proof of the lemma. D

Corollary 11.6. — The space a/representations Ra(X, x, n) is reduced and normal.

Proof. — This was pointed out to me by M. Larsen (he refered me to [Ha],
Proposition 11-8.23). By Proposition 11.3, Rg(X, A?, n) is a complete intersection. The
local rings of a complete intersection are Cohen-Macaulay, hence satisfy Serre's condi-
tion Sg. The previous lemma shows that the space of representations is regular in
codimension 1. By Serre's criterion, Ra(X, x, n) is reduced and normal. D

Corollary 11.7. — The representation spaces R^(X, x, n), Rj^X, x, n)^ and Ra(X, x, n)
are normal varieties of dimension 2gn2 — n2 + 1. The moduli spaces Mĵ p Mp ,̂ and Mg
are normal varieties of dimension 2gn2 — 2n2 + 2.

Proof. — We have shown that RB(X, x, n) is normal of dimension 2gn2 — n2 + 1.
By the isosingularity principle (Theorem 10.6 and the following remark), the same is
true for the de Rham and Dolbeault spaces. Good quotients of normal varieties are
normal. (This can be seen by proving that if A is a ring which is integrally closed in
its field of fractions K and a group acts, then A° is integrally closed in its field of frac-
tions K0.) Thus the moduli spaces are normal varieties. To calculate their dimensions,
note that there is a Zariski dense open set of points of the representation space where
SI(TZ, C) acts with finite stabilizer. The dimension of the quotient is the dimension of
the representation space minus the dimension of Sl{n, C). D

This corollary provides the first half of the proof of Theorem 11.1. To complete
the proof, it suffices to prove that these varieties are connected. Connectedness of the
representation spaces is equivalent to connectedness of their universal categorical
quotients, the moduli spaces. By Proposition 7.8 and Theorem 7.18, the three moduli
spaces are homeomorphic. Thus it suffices to prove that Mpoi(X, n) is connected.

The idea for the proof of connectedness comes from Hitchin's calculation of the
cohomology of the moduli space of rank 2 projective bundles with odd degree. In that
case, the moduli space is smooth, and Hitchin uses a Morse function, the moment map
for the action of S1, to calculate the cohomology. The lowest stratum is the space of
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unitary representations, known to be connected by the work ofNarasimhan and Seshadri
using a lemma of Atiyah. Hitchin deduces from Morse theory that the moduli space
is connected and hence irreducible, and in fact he calculates the Betti numbers. It would
be good to carry through this program for higher ranks and for the case when there
are singularities. We will not attempt this here, but we will do enough to show that
the moduli space is connected. Because of the presence of singularities, we will avoid
Morse theory and instead proceed by algebraic geometry, using the C* action discussed
in § 6 (which is the complexification of Hitchin's S1 action). The relationship between
these approaches is that the critical point set of the moment map is equal to the fixed
point set of the C* action. In ([Si5] § 4), the fixed point set was identified with the set
of complex variations of Hodge structure. We remark that in order to apply Hitchin's
method to compute the Betti numbers, one would have to be able to compute the Betti
numbers of the moduli spaces of variations of Hodge structure.

Actions of C*

Suppose that Y is a quasiprojective variety on which C* acts algebraically.
Suppose that L is an ample line bundle with a linearization of the action. Then C* acts
locally finitely on H°(Y, L® n). Therefore we may choose n and a subspace V C H°(Y, L0 w)
which is preserved by C* and which embedds Y into the projecdve space P(V*), so
that C* acts on this projective space and acts compatibly on the very ample ^(1). This
action is compatible with the embedding ofY and with the isomorphism L0" ̂  ^y(l)-

Write V == (B Va where the sum is over integers a, and / e C* acts by t"- on V^.
Then the fixed point sets of C* on ?(¥'') are the subspaces P(V^). The fixed point sets
in Y are Y<, == Y n P(V;). The action of^ e C* on L |y^ is given by ^a. Let Z be the closure
of Y in P(V*). Then Z is preserved by C*, and its fixed point sets are Z^ = Z n P(Vy.

If z eZ then there are unique points lim^o^ and lim,^^ tz in Z. These are
fixed points, hence are in some fixed points set Zpo and Z^oo respectively. We will
describe the weights ^°{z) and ^{z) explicitly (see the discussion near the end o f § l ,
Part I). Lift z to a point w eV*, and write w = = S z ^ with z^eV;. Then p°(^)
(resp. P°°(^)) is the smallest (resp. largest) integer a such that w^ 4= 0.

From this description, if z e Z then ^°(z) ^ ^{z) and equality holds if and only
if z is a fixed point.

Assume that Y has the property that lim^ _^o tx exists in Y for all x e Y. Let (3 == (3°(Y)
be the smallest integer such that Yp is nonempty. Then (3 is also the smallest integer
such that Zp =t= 0. If x e Y^ and there exists y e Y such thatj/ =t= x and lim^^o ty = ^
then a > (3. In particular, we obtain the following criterion.

Lemma 11.8. — Suppose that Y has the property that lim^o tx exists in Y for all x e Y.
Suppose U C Y is a connected subset of the fixed point set of C*, and suppose that for any fixed
point x not in U, there exists y 4= x in Y such that lim<_^ ty = x. Then Y is connected.
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Proof. — Suppose Y' is a connected component ofY not containing U. Let (B = j3°(Y').
Choose x e Yp. By hypothesis there exists y =t= x in Y' such that lim^^ ty = x. On the
other hand, z == lim^o ty is also in Y', say in Y^. Butj/ is not a fixed point, so a < (3,
contradicting minimality of (3. D

Connectedness

Lemma 11.9. — Suppose E u ̂  .yto&fc Higgs bundle of degree zero, fixed up to isomorphism
by the action of C*. Suppose that 9 =t= 0. Then there is a Higgs bundle F not isomorphic to E, such
that lim^oo ^F == E in the moduli space.

Proof. — Since E is a fixed point, it has the structure of system of Hodge bundles,
in other words E == © E^ with 9 : E^ -> E3''"1®^. Assume that the indexing is
normalized so that 0 ^ p ^ r, and E° =t= 0 and E*' 4= 0. Note that r ^ 1 since 9 =f= 0.
Furthermore, note that deg(E°) < 0 and deg(Er) > 0, since E is stable of degree zero.
Hence Hom^E^ E°) has degree < 0. In particular the Riemann-Roch theorem implies
that there exists a nonzero extension class T) in Ext^E^ E°) == W^tlom^y E0)). For
each t e C, let M( be the extension

0 -> E° -> M( -> E*" -^ 0

given by the class V Y]. Let F( be the Higgs bundle M( ® ®o<p<r Ep- The Higgs field 9
is given by the usual maps for 1 < p < r and by the compositions

E1 -.E°®ax->M(®Qx

and M< ->W -.E^1®^-

Note that Fo = E. We have isomorphisms <P( : F( ^ t~~1 F^ given as follows. On E^,
0 < p < r, <P( is given by multiplication by ^p. On M, 9^ is the isomorphism fitting into
the middle of the diagram

E° —> M( —> Er

y Y y
EO —> Mi —> E^

Note that 96 == t~1 69. Thus we have a family of Higgs bundles F( with Fo = E and
F( = t~1 Fi for t =t= 0. Since E is stable, so are F( , by the openness of the condition of
stability. Hence lim^ _ „ ^F^ = E. To complete the verification, we will show that the
vector bundles underlying E and Fi are not isomorphic.

First we show that Mi 4= Mo. Let AC V be the (3-subsheaf, in other words the
subsheaf of highest slope, and highest rank among subsheaves of that slope. We may
choose T] to be a nontrivial extension of A by E°. Note that the degree of any subsheaf
of E° is < 0, whereas the slope of A is > 0. Thus ify: A ̂  M is an inclusion, we must



MODULI OF REPRESENTATIONS. II 77

have p of: A ^ A where j& is the projection from M to E'. Thus (p ofY{^) 4= 0. But
the map/is a splitting of {p o/)^^). This contradiction shows that there is no inclusion
of A into Mi, and hence there can be no isomorphism MQ ^ M^.

The bundle M^ is a deformation of Mo. By semicontinuity,

A°(Hom(Mo, Mo)) ^ A°(Hom(Mo, Mi)).

Furthermore, the inequality is strict: for if not then t \-> H°(Hom(Mo, M()) would
form a vector bundle over the Mine, and 1 e H°(Hom(Mo, Mo)) could be lifted to
ft E H°(Hom(Mo, M,)) with /< -> 1 as t -> 0; then / : Mo ^ M( = M^ for t near 0,
which would contradict the conclusion of the previous paragraph. Now in our situation
there exists a vector bundle B (the direct sum of the other Hodge components) such
that E = Mo C B and F = Mi ® B. We get

A°(Hom(Mo, E)) = A°(Hom(Mo, Mo)) + A°(Hom(Mo, B)),

while A°(Hom(Mo, F^)) = A°(Hom(Mo, M^)) + A°(Hom(Mo, B)).

Thus A°(Hom(Mo, E)) > A°(Hom(Mo, F^)),

so the vector bundles E and F^ are not isomorphic. D

Corollary 11.10. — The moduli space Mpoi(X, n) is connected.

Proof. — The ample line bundle L on M^i(X, n) has a linearization of the action
of C*. This is because we constructed Mpoi(X, n) as the moduli space of some sheaves
on the cotangent bundle to X, and the action ofC* came from the action of multiplication
on T* X, so C" acts functorially on the Hilbert schemes, the Grassmanians, and the
line bundles over the Grassmanians. We apply the criterion of Lemma 11.8.

Let U be the subspace corresponding to Higgs bundles with 6 == 0 (these are
the ones corresponding to unitary representations). It is isomorphic to the moduli space
of vector bundles of rank n on X. The moduli space of vector bundles is projective, so
U is a closed subset of Mj^i(X, n). The subset U is connected—this fact was used by
Narasimhan and Seshadri [NS] and comes from a lemma of Atiyah.

Suppose that E is a direct sum of stable components, representing a point in
Mpoi(X, n) — U fixed by C*. All of the stable components of E are then fixed by C*.
We can write E = E^OEg with E^ stable and not unitary. Apply Lemma 11.9 to
obtain F^ with lim^.^ Fi = E^, and Fi 4= Ei. Set F == F^Eg. Then lim<_^ F = E,
but gr(F) =h gr(E). The criterion of Lemma 11.8 now implies that Mp^(X, n) is
connected. D

Proof of Theorem 11.1. — From the homeomorphism given by Proposition 7.8
and Theorem 7.18, the varieties Mg(X, n) and Mp^(X, n) are also connected. By
Corollary 11.7, all the moduli varieties are normal, and a normal connected variety
is irreducible. D
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