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Let F be a non-Archimedean local field (of any characteristic whatsoever) and
N > 1 an integer. Let K/F be a finite separable field extension. The local Langlands
conjectures demand the existence of a process & - /¢ p(%) which associates to an irre-
ducible smooth representation = of GL(N, F) an irreducible smooth representation
{xw() of GL(N, K). This is to be strictly analogous to the more obvious one of res-
tricting a Frobenius-semisimple representation of the Weil-Deligne group #%; of F
to its subgroup #%.
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Our aim here is to make the first substantial step towards defining /g in explicit
local terms when the extension K/F is tamely ramified, but not necessarily Galois. We
start from the classification of the irreducible smooth representations of the group
GL(N, F), in terms of explicit local data, given in [BK1]. Our approach is thus in the
spirit of [K], [KM], [Pa], and very different from the globally-derived ¢ base change ”
methods of, for example, [L], [AC]. This makes our task here a dual one. We must first
give a rigorous (albeit partial) definition of local tame lift, and then connect it with the
theory of base change. This is reflected in the structure of the paper.

The central concept of [BK1] is that of simple type. This is constructed in three
stages, starting with a simple stratum, which is basically a field-theoretic object. The second
step is a simple character, which is an arithmetically defined abelian character of a certain
compact open subgroup of GL(N, F) determined by the underlying simple stratum.
The final step will not concern us in this paper. An irreducible supercuspidal repre-
sentation 7 of GL(N, F) must contain a simple character 0y, say. Its lift ¢ (), whatever
that may be, is not necessarily supercuspidal. However, it will be built, via a familiar
process of parabolic induction [Ze], from a uniquely determined collection of irreducible
supercuspidal representations @; of groups GL(N;, K), with X, N, = N. Each of
these p; will contain a simple character 6. We proceed on the tentative hypothesis
that the collection { 6% } is in some way determined by the original character 65 (and,
we might add, conversely).

We therefore seek a way of lifting simple characters. There are, however, a number
of other factors which need to be taken into account. First, our original supercuspidal
representation w will contain many different simple characters. Any two of these will,
of necessity, intertwine in GL(N, F). A fundamental result of [BK1] then shows that
they will be conjugate in GL(N, F). However, they may arise from quite different cons-
tructions. In particular, they can be attached to distinct simple strata, and it is not
straightforward, given two explicitly defined simple characters, to determine whether
or not they are conjugate. See [BK3], [BK2], [KP] for some discussion of this matter.
Further, we have families of relations between simple characters in GL(N, F) and simple
characters in GL(N', F) for any integer N’. These relations reflect, among other things,
the connections between simple types and parabolic induction. They must therefore
be respected by any lifting process. There is a further complication. If we have two
conjugate simple characters in GL(N, F), it is not obvious @ priori that the related cha-
racters in some GL(N’, F) will be conjugate. This problem has to be resolved first, and
then we have to show that our definition of lift respects all of these relations. To do this,
we must first invent an object which encapsulates all the relevant relations.

We describe this briefly in the language of [BK1]. To define a simple character,
we first need a simple stratum [, z, 0, 8] in Endy(V), for some finite-dimensional
F-vector space V. Thus U is a hereditary og-order in Endg(V), » is a positive integer
determined by U and the element B € Auty(V), and B is such that the algebra F[B] is
a field whose multiplicative group normalises 2. There is also the technical condition
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“ko(B, A) < 0 of [BK1] (1.4) which we ignore in this overview. These data give rise
to a pair of open subgroups H!(B, o) C JY(B, U) of the parahoric subgroup U(A).
(Unexplained notations have their standard meanings, summarised below.) There is
then a distinguished finite set € (U, 0, B) of abelian characters of H(B, A), and these are
what we call simple characters.

The constructions of [BK1] (3.6) tell us how to assemble these simple characters
into what we clumsily delineate potential simple characters, or ps-characters for short. A
ps-character is a pair (0, 8). The component B is an element of some finite field extension
of F, of negative valuation and subject to a technical restriction *%y(B) < 0. The
other component 0 is a simple-character-valued function as follows. Let 8B be a hereditary
Oggorder in Endg, (V), for some finite-dimensional F[B]-vector space V. The lattice
chain in V which defines 8 also determines a hereditary pg-order U in End,(V), and
there is a unique integer ny > 0 such that [?, ny, 0, B] is a simple stratum. The func-
tion @ then gives a simple character ®(A) € ¥(A, 0, B) and the characters O(YA), as B
varies, are subject to a strict coherence condition. We call @() the realization of (9, B)
on A. Two ps-characters (@ B,) are then endo-equivalent if there exist realizations on
the same order U in some Endg(V) such that the characters ©() are conjugate in
Auty(V). This notion of an endo-class of simple characters (i.e., endo-equivalence class
of ps-characters) is formally set up in § 8, and relies heavily on the counting results
of [BK3]. A more straightforward version of it applies to simple strata (under the appel-
lation ¢ equivalence class of simple pairs ) and this is described in § 1.

It is time to introduce our concept of lifting. The underlying idea is extremely
simple. We are given a fixed, finite tamely ramified field extension K/F. If we have a
finite field extension F[B]/F, we can form the algebra K ® F[B]. This is a product of
fields E,;, and E; = K[B,], where B, is the canonical projection of B into the i-th factor.
The B, are what we call the K/F-lifts of . If B satisfies the crucial condition £g(B) < 0,
we then have k¢ (B;) < 0 as a consequence of our tameness hypothesis on K/F. This
trivial notion of lift, B — { B, }, is the foundation on which we erect our theory of lifting.
However, it takes § 2-6 to establish that it has the qualities necessary for this role. Note,
however, that it is self-evidently transitive in the field extension K/F.

For simple characters too, the basic idea behind the definition of lift is very easy.
We start with a simple stratum [?, #, 0, 8] over F and a simple character 6 € €(¥, 0, B).
This is the realization ®(%) of some ps-character (@, B). Let § be some K/F-lift of B,
and let V be a K[B]-vector space. In particular, V is an F[B]-vector space. We choose
a hereditary og-order € in Endg (V) which is normalized by K[B]*. We then get a simple
stratum [G, m, 0,B]. Let A’ be the hereditary og-order in Endy(V) defined by
the same lattice chain as €. The stratum [W',m, 0, B] is then simple (we need
not distinguish between B and B when working over F) and (@, () determines a
character 6’ = O(W') € €(W, 0, B). Two remarkable facts now reveal themselves. First,
we have

HI(B, A’) N Autg (V) = H'(, €).
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We can thus restrict the character 6’ to a character § of Hl([?, ¢), and we find
§ e (G, 0,B).

This is the starting point of § 7, where we investigate the correspondence 65 8 in
detail. The character § defines a ps-character (&, B), and the set of endo-classes of these,
as B ranges over the K/F-lifts of B, is defined to be the set of K/F-lifts of the endo-class
of (®, B). Of course, the first main result is that this definition does not depend on the
many choices made in the construction. The other properties are quick to state:

(1) the endo-classes (@,E) are distinct (as B ranges over the K [F-lifts of B);
(ii) the endo-class of any one of the (O, ) determines the endo-class of (O, ) uniquely;
(iii) any endo-class over K arises as a lift of some (uniquely determined) endo-class over F.

The lifting process is again transitive in K/F. All of this is proved in § 9.

This concludes the first half of the paper. At this stage, we have a coherent method
for lifting simple characters which respects the manifold relations between them. Our
next task must be to connect this abstract lifting with an operation on the set of irreducible
representations of some GL(N, F) =~ Aut,(V) containing some realization of a given
endo-class over F. This is the subject matter of § 10, 11. We take a simple stratum
[, z, 0, B] in Endg(V) and a field extension E/F[B] such that E/F is a maximal subfield
of Endg (V). This allows us to identify V = E. There is then a canonical choice of here-
ditary og-order Uy in Endy(E ®; K) and this gives rise to a simple stratum [y, 7y, 0, B].
We fix a simple character 0y € (U, 0, B). This defines, in an explicit manner via an
Iwahori decomposition, a character 0, € €(Uy, 0, B). (The characters 0, 6, are realiza-
tions of the same ps-character.) The order %, is constructed to be normalized by K*,
so € = Ay N Endg(V®K) is a hereditary og-order. We form the group

HL = H!(8, %) N Autg(V©K)

and the character

0, = 0, | HL.

The pair (Hg, 6;) is not, in general, a simple character: this happens if and only
if K@y E is a field. In the general case, it should be thought of as a * semisimple cha-
racter ”’, in the manner of the semisimple types of [BK4]. The group Hy admits an
Iwahori decomposition, and the restrictions of 0y to the diagonal blocks of this decompo-
sition are just the K/F-lifts (up to endo-equivalence and predictable multiplicity) of
the original 0;. This setup gives us a framework in which we can directly compare the
character 0, and its various lifts.

The situation becomes particularly interesting when we restrict to the case
in which K/F is ¢yclicc. We fix a generator ¢ of Gal(K/F). In this case, we
show in § 12 that the characters 6, O; are intimately related via the ¢ twisted
x> N x = x.0(x).0%(x) ... 6* I(x), x e GL(N, K), where d = [K: F]. More

norm '’
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than this is true; we get a formal term-by-term comparison between certain * character-
like > sums of values of 6y, 85 over appropriate conjugacy classes. (In fact, we only
treat unramified and totally tamely ramified extensions K/F in § 12, in order to confine
the burgeoning technicality. Theses cases are adequate for our purposes, but it looks
likely that the results hold in greater generality.)

In the standard theory of base change, as developed in [Sa], [Sh], [L], [AC], it
is the map A4 (on appropriate conjugacy classes) which provides the link between a
representation of GL(N, F) and its base change lift. Thus the results of § 12 give us the
starting point for a comparison between our naive local (and partial) definition of lifting
and that given by base change. To make such a comparison, it is enough to treat super-
cuspidal representations of GL(N, F): one knows that base change respects parabolic
induction and the corresponding feature has been built into the local definition of lift.
An irreducible supercuspidal representation of GL(N, F) must contain a simple cha-
racter 0, € €(U, 0, B), for some simple stratum [, z, 0, B] in M(N, F). The incomple-
teness of our local definitions now imposes a restriction: we consider only supercuspidal
representations of GL(N, F) containing a simple character 65 € € (U, 0, B) for whick the field
degree [F[B]: F] is equal to N. The general case requires further investigation and must be
postponed to another occasion.

Our main result comes in § 16. There we assume that K/F is a finite, tamely ramified,
Galois extension. We check that base change unambiguously defines a lifting process
relative to such extensions K/F, and then we prove:

An irreducible smooth representation w of GL(N, F) contains the simple character Oy if
and only if its K[F-base change contains the character 0.

One caveat is needed here: we assume without formal justification an algebraic
property of the character 8, defined above. This property (16.10) is a special case of
the more general considerations of [BK4], so it is appropriate to give the proof elsewhere.

This result is approached via a couple of special cases, treated (without recourse
to the unproven (16.10)) in § 14 and § 15. The arguments of § 14 apply to cyclic exten-
sions K/F which are either unramified or totally tamely ramified, and deal with the case
where the algebra K ®, F[B] is a field. This amounts to saying that our element § has
a unique K/F-lift, and that the character 0 is in fact a simple character over K. Moreover,
any irreducible representation of GL(N, K) containing 6y is supercuspidal. The tech-
nique of § 14 is to compare the character relation defining base change with the relations
given by § 12. We get an equality, indeed a term-by-term comparison, between a finite
sum of characters of representations over F and a finite sum of twisted characters over K
(and hence a partial answer to a question of L. Clozel). In fact, the relations of § 12
imply more general results of this kind: see especially the intriguing identity (14.5).
However, it is only in the present case, where F[B]/F has degree N, that we can inter-
pret (14.5) directly as a character relation.
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A different special case is treated in § 15. There, we assume that the extension K/F
embeds in F[B]/F: one can think of this as the case where 0,  splits completely >’
over K. Owing to the presently opaque nature of the relation (14.5), we cannot directly
compare the local lift with base change in this case. We therefore compare it with the
““dual ” process of automorphic induction, as treated in [HH]. We are able to show, in a
sufficient number of special cases, that our local lift is compatible with automorphic
induction. The two cases of § 14, 15 then combine with formal properties of base change
and automorphic induction to give the main theorem quoted above.

Some other points need to be made. First, given a little more work (largely omitted
here), the processes of base change and automorphic induction can be regarded as
different sides of the same coin. Thus our results show equally that local lifting is compa-
tible with automorphic induction. Further, the indirectly achieved comparison with
base change enables us, at this stage, to interpret (14.5) in more general cases.

Next, we have to recall that both base change and automorphic induction are
presently only available in characteristic zero, so our comparison results can only be
valid with that restriction. However, all our local arguments are entirely characteristic-
free. The restriction to characteristic zero is only ever invoked at the last stage of the
proofs, alongside the fact that characters of distinct irreducible supercuspidal repre-
sentations remain linearly independent on restriction to the elliptic regular set. This is
again only known in characteristic zero. However, when this result, base change and
automorphic induction become available in positive characteristic, along with some
unsurprising formal properties, our comparison results will become valid there. We give
a more precise description of the situation at the end of § 16.

We conclude with an Appendix on basic properties of characters. We need these
rather standard results in arbitrary characteristic not only for GL(N, F) but also for
open finite-index subgroups of GL(N, F) and for groups of the form GL(N, K) > Gal(K/F),
where K/F is a finite Galois extension. The required combination of hypotheses rarely
occurs in the literature. We found it more satisfactory to write these few pages than to
endlessly insert lame and automatically suspect statements along the lines of ¢ arguing
as in [Xx] (x.y.z) (which does not actually require the hypothesis...)... . Apart from
a couple of minor observations (see especially the finiteness properties in (A.14)), there
is nothing really new here. Rather similar comments apply to our § 13. We hope the
reader will indulge us in this small matter.

Notation. — Throughout, F denotes a non-Archimedean local field. We write
op = the discrete valuation ring in F;
py = the maximal ideal of og;
ky = 0g/pp = the residue field of F;
vp:F>Z U{o} is the normalised additive valuation on F.

If E/F is a finite field extension, we use similar notations relative to E. We also write
¢(E|F), f(E|F) for the ramification index and residue class degree of the extension E/F.
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Let V be a finite-dimensional F-vector space, and £ an pg-lattice chain in V.
Thus £ defines a hereditary pg-order U in A = Endg(V): we have % = End) (%) in
the notation of [BK1]. The Jacobson radical of U is invariably denoted P, and we put
U) = A%,

U"(A) =1+ P, for n> 1;
KU) ={xecAuty(V) : 27 Ax = A}.

There is a special case we shall frequently use. Let E/F be a finite field extension.
The set & = { p4 :j € Z}is an og-lattice chain in E, and we usually write A(E) for the
order End} (#). Alternatively, A(E) can be described as the unique hereditary og-order U
in Endg(E) such that E* C {().

Finally, if x € R, we write [x] for the greatest integer < .

1. Simple pairs

The simple pairs of the title of the section amount to an abstraction of the simple
strata of [BK1]. We start by recalling some of the salient features of simple strata, and
establishing a system of notation more convenient for our present purposes. Let V be
a finite-dimensional vector space over our non-Archimedean local field F, and let & be
a hereditary og-order in A = Endg(V), with Jacobson radical B, attached to the lattice
chain % in V. As usual, we write ¢ = ¢(% | 0p) for the pg-period of the lattice chain &£.

Let EDF be a subfield of A, so that we may view V as an E-vector space. We
write B = Endg(V). The pg-lattice chain & is then an pg-lattice chain if and only if
E* C K(A). When this condition is satisfied, the ring

B = % N B = End’,(.#),

is a hereditary og-order in B. Moreover, its radical is Q = P N B, and

e(U | og)
¢e(E|F)’

e(B | 0g) =

(All of this can be found in the first two sections of [BK1] Ch. 1.)
If # is an pg-lattice chain in V, say ¥ ={L,:jeZ}, L;2 L,,,, we write

4(ZL) = d7(&) = dim, (LLy,,), ieZ.

(1.1) Proposition. — Let V be a finite-dimensional F-vector space, and W a hereditary
og-order in A = Endy(V), defined by the lattice chain £ in V. Let E[F be a finite field extension.
There exists an embedding @ : E — A of F-algebras such that ¢(E*) C K(A) if and only if the
Jollowing conditions are satisfied:

a) f(E|F) divides d,(Z) for all j €Z,
b) ¢(E | F) divides ¢(N | og);
¢) we have d(&) = d; (L), for all j € Z, where t = ¢(W | og)[e(E | F).
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Proof. — This is just a restatement of [BK3] (1.2). O

In practice, our finite field extension E/F will always come with a distinguished
element B € E* such that E = F[B]. If E/F is also a subfield of A which normalizes %,
we then use the notation

(1.2) es(U) = ¢(B | o).

Since, in this situation, we have p € K(), there is an integer z such that B = P~".
Explicitly, this is given by
B = — (%) v5(B).

It will here be more convenient to use the notation

(1.3) ny(B) = — va(B),

so that n = ¢3(A) ny(B).

Now let a denote the adjoint map A — A given by x — px — #8. Recall ([BK1]
(1.4.5), (1.4.11)) the quantity ky(B, A) eZ U{ — o}, which can be defined as
follows: if B € F, then &,(B, A) = — oo, while, otherwise, £y(B, A) is the least integer &
for which

PB* N ag(A) C ag(N).

We mention a special case of this setup. We view E as a vector space over F. The
set { pj :j € Z } is then an og-lattice chain in E, giving rise to a hereditary og-order UA(E)
in Endg(E),

Y(E) = Endg, ({ px 1),
which is the unique hereditary og-order in Endg(E) normalized by E*. We write
(1.4) ky(B) = ko(B, U(E)).

If V is any finite-dimensional E-vector space and U is any hereditary pg-order in Endg(V)
normalized by E*, we then have (see [BK1], (1.4.13))

ko(B, A) = ky(B) a(N).
We also recall that if %,(B) is finite, then (see [BK1] (1.4.15))
ke(B) = — np(B)-

We therefore make the following definition.

(1.5) Definition. — A simple pair over F is a pair [m, B] consisting of a nonzero element
of some finite field extension of F and an integer m such that

m < min { ny(B), — ke (B)}-
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Two simple pairs [m;, B,], ¢ = 1,2, are isomorphic if m, = m, and there exists
an F-isomorphism ¢ : F[B,] — F[B,] such that ¢(B,) = B,.

Let [m, ] be a simple pair over F, and set E = F[B]. Let V be some finite-
dimensional E-vector space and B a hereditary pgz-order in Endg(V). Let U be the
hereditary og-order in Endy (V) defined by the same lattice chain asB. Set ny = n5(B) ¢3(%),
and let my be some integer satisfying

7]
eg()

Observe that this implies my < — £o(B, A) and my < ny, so [, ny, my, B] is a simple
stratum in Endg(V), in the sense of [BK1] (1.5.5). We call this stratum the realization
of the simple pair [m, 8] on the order %. Obviously, isomorphic simple pairs have effec-
tively the same realizations.

Conversely, if we are given a simple stratum [, z, m, B] in End,(V), for some vector
space V, then [[m/ez(A)], B] is a simple pair, of which [, n, m, B] is a realization.

Remark. — Tt is sometimes useful to view this situation slightly differently. Suppose
we are given only a finite-dimensional F-vector space V and a hereditary og-order U
in Endg(V). Let [m, f] be a simple pair over F. A realization of [m, B] on N is then a
simple stratum of the form [, n’, m’, (B)], where ¢ :F[B] — Endg(V) is a homo-
morphism of F-algebras such that ¢(F[B]*) C &) and m’ is an integer such that
[m'[e, 5 (A)] = m. Of course, we can view V as an F[B]-vector space via the map o,
and we are in the same situation as before. The following elementary result shows that
this concept is, in essence, independent of the embedding ¢ subject to the stated conditions:

(1.6) Lemma. — Let V be a finite-dimensional F-vector space, and let W be a hereditary
og-order in A = Endg(V). Let E[F be a finite field extension and, for 1 = 1,2, let ¢,: E - A
be an F-embedding such that ¢,(E*) C K(N). There exists u € U(W) suck that

Pa(x) = u ' @y(x) u, xeEX.
Progf. — Let us write V* for V viewed as an E-vector space via the embedding ¢;.
Let & ={L,:j € Z} be the lattice chain which defines . This determines an py-lattice

chain & = { Li }in V', for each value of i. The lattice chain #*is determined up to
pg-isomorphism by dimg(V*) and the sequence of integers

8 = dim, (L5/L, ,).
Of course, dimg(V?) = dimy(V?), while, in the notation of (1.1),
5 =f(E|F)" 4,(£).
Thus there exists an E-isomorphism V! — V2 which maps L} to L}, for each j. This

isomorphism is given by an element u € Auty(V) such that ¢,(x) = u™ ! @,(x) # and

15
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uL; = L;, for all x € E* and all j € Z. The second property here is equivalent to « € U(),
so this proves the lemma. O

We now recall some of the basic ideas associated with strata: see [BK1], especially
(1.5). For : = 1,2, let [U, n, m, b;] be a stratum in Endy,(V), for some finite-dimen-
sional F-vector space V. Thus m < n and b, € B~ ", where P is the radical of A. We say
these two strata are equivalent, denoted

[QI’ n, m, bl] ~ [913 n, m, bz],
if we have
by o+ B = by o+ B

We now summarize the implications of [BK1] (2.4.1) (ii) in this situation:

(1.7) For i = 1,2, let [, n, m, B,] be a simple stratum in Endy(V) and suppose that
(A, n, m, B;] ~ [A, n, m, B,]. We then have

e(F[B:] | F) = e(F[B]| F),
S(F[B | F) = f(F[B,]| F),
ko(Brs A) = Eo(Ba, A),
and therefore
eal(‘l[) = 392(9[),
ky(B1) = p(Be)s
ng(B1) = ng(B2).

On the other hand, we say that two strata [, n,, m;, b;] in Endg(V) intertwine
(formally) in Endg(V) if there exists ¥ € Auty(V) such that

&by + Br™) 20 (b + Py ™) + O
Now we recall one of the main results (2.6.1) of [BKI].

(1.8) Let [U, n,m, By], [, n, m, By] be simple strata in Endy(V), whick intertwine.
There exists u € U(N) such that

[QI, n, m, Bl] ~ [QL n, m, u? Ba u]'

In particular, the elements B, have the same arithmetical invariants, as in (1.7).

Thus intertwining is an equivalence relation on the set of simple strata with given
values of the parameters U, n, m. Our immediate task is to unify this family of equivalence
relations into an equivalence relation on the set of simple pairs. First, however, we note
that one can often ‘ extend the range” of an intertwining relation between simple
strata.
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(1.9) Fori = 1,2, let [, n, m, B;] be a simple stratum, and suppose that these two strata
intertwine. We then have eg (W) = e, (A). Let

m m
my = ¢5,(%W) [—em(%)] = ¢5,(%) [ e__ﬁz(ﬂl)]'

The strata [U, n, my, By], [N, n, my, By] then intertwine.

Proof. — The first assertion follows from (1.7), (1.8), and the second from (1.8)
and [BK1] (2.4.1), (2.2.1). O

We now investigate the intertwining relations between various realizations of
given simple pairs.

(1.10) Proposition. — Let [m, B,], [m, Bs] be simple pairs over F, and suppose that
[F[By] : F] = [F[B,] : F]. Let V be a finite-dimensional F-vector space, and W a hereditary
og-order in A = Endy(V). For i = 1,2, let [W, n,,m, ¢,(B;)] be a realization of [m, B;]
on . Suppose that the strata [W, ny, my, 1(B1)], [W, ng, Mo, ¢o(Bs)] intertwine in A. Then:

(i) We have

e(F[B,] | F) = e(F[B,] | F),
S(E[B.] | F) =f(F[8:] | F),
ng(B1) = np(Ba),
kp(B1) = kp(Bs).

(i1) Let V' be some finite-dimensional F-vector space and W' a hereditary oy-order in
A’ = Endy(V'). For i = 1,2, let [W,n,m, o;(B)] be a realization of [m,B,] on A'.
The strata [W,n,,m;, ¢;(B,)] then intertwine in A’.

Proof. — The strata [, n;, n, — 1, ¢,(B,)] are each equivalent to a simple stratum,
and certainly intertwine. It follows (see [BKI1] (2.6.2)) that n; = n, = n, say. By
symmetry, we can now assume that m, > m;. We choose a simple stratum [, n, m,, v]
equivalent to [, n, my, ¢,(8,)], as we may by [BK1] (2.4.1). The simple strata [, z, m,, v],
[, n, my, @,(Bs)] intertwine, so (1.7), (1.8) give us [F[y] : F] = [F[B,] : F]. By hypo-
thesis, we have [F[B,] : F] = [F[B,] : F], so [F[y] : F] = [F[B,] : F]. Appealing to [BK1]
(2.4.1), we deduce that the stratum [, n, m,, ;(B;)] is simple. The desired equalities
now follow from (1.8). This proves part (i) of the Proposition.

We turn to part (ii), the proof of which is considerably more intricate. We abbre-
viate E, = F[B,], and consider the order

U(E,) = End; ({ pf; :j € Z}) C A(E,) = Endyg(E,).
This is a principal order, satisfying ¢(U(E,) | og) = ¢(E, | F). A principal order ¥ in

some Endy(V) is determined up to isomorphism by the quantities dimy V, (% | og). The
relations [E, : F] = [E, : F], ¢(E, | F) = ¢(E, | F) thus imply A(E,) = A(E,) as og-orders.
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Therefore there exists an F-embedding ¢ of E, in A(E,) such that ¢(EX) C K(UA(E,)).
In particular, we get

391(91(1‘:1)) =1= eaz(‘u(El)):
whence we have simple strata
[QI(EI)’ ng, m, [31]) [%[(El)’ Ny, M, 4‘(‘32)]:

in which ny = ny(B,) = np(Bs)-

At this point, we break off to recall another structure, described fully in [BK1] (1.2).
Let V, be an E;-vector space and U, a hereditary og-order in End,(V,) which is normalized
by E;. Set®B; = A; N Endyg (V). By choosing an oy -basis of the lattice chain defining ¥,
we get a “ (W,, E;)-decomposition > of U,. This is, in particular, an isomorphism

Ay = A(Ey) ®,,, B,
of (A(E,), B,)-bimodules. If P, is the radical of A, and B(E,) that of A(E,), this iso-
morphism identifies P(E,)*®B; with P, a € Z, where ¢; = ¢; (A;). We also have
the property

K(AE,))®1C K(Y,).

Thus a simple stratum [A(E,), 7, 5, y] in A(E,) determines a simple stratum
[, rey, 51, YO 1]

in Endg(V,). Indeed, we get a family of simple strata

(1.11) (A, rey, 55, Y ® 1], 56, ;< (s + 1) ¢g.

It is easy to characterize the ‘image” of this inflation process.

(1.12) Lemma. — Let [y, ¢, u, 8] be a simple stratum, and put s = [ule,], where
e, = €5 (Wy) = e(Ay | 0g)/e(U(E,) | 0g) as above. The following are equivalent:
(1) there exists a simple stratum [W(E,), r, s, v] in A(E,) such that [N, t, u, 8] intertwines
with a stratum of the form (1.11);
(ii) we have:
Sf(F[3] : F) divides f(E,:F), and e(F[8]|F) divides e(E, | F);

(iil) the simple pair [[ufes(A,)], 8] admits a realization on W(E,).

Progf. — The implication (iii) = (i) follows from (1.6); (i) = (ii) is given by (1.7)
and (1.1), while (ii) = (iii) is given by (1.1). O

(1.18) Lemma. — For ¢ = 1,2, let [W(E,), r,s,v.] be a simple stratum in A(E,).
These two strata intertwine if and only if the sirata [U,, rey, sey, v, ® 1] in Endy(V,) intertwine.
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Proof. — Suppose first that the [A(E,),r, s, y,] intertwine in A(E,). Appealing
to (1.8), there exists x € U(A(E,)) such that

[A(E), 7, 5, 271 vy 2] ~ [W(EY), 7, 5, Y.

This implies that x~ !y, ¥ — v, € B(E,)~°, where PB(E,) denotes the radical of A(E,).
We have x® 1 € U(Y,), and we have

Tl 2@l = (x®1)7 ! (1, ®1) (x®1).
This gives us
1y 2x®1 — vy, ®1 e P(E,)"°® 1.

However, P(E;)"°®@1C P(E,) *®B; =B; **, and this proves one implication of
the lemma.

We can extract more from this implication: it shows that the inflation process
[UEy), 7, 5, Y] = [Wy, 7eq, 501, Y ® 1]

induces a well-defined map from intertwining classes of simple strata [W(E,), 7, s, y]
in A(E,) to intertwining classes of strata [, , ¢, , 8] in Endy(V,) satisfying the equivalent
conditions of (1.12). Moreover, by (1.12), this map is surjective. The opposite impli-
cation of the present lemma is equivalent to this map being injective. However, these
two sets of intertwining classes of simple strata are finite and have the same numbers of
elements, by [BK3] (1.15), and the lemma follows. O

Now we return to the proof of (1.10), and the strata [A(E,), ny, m, B4,
[A(E,), ny, m, $(Bs)] which realize our given simple pairs [m, 8;,] on A(E,). By (1.13),
(1.9), these intertwine, and (1.10) (ii) now follows from (1.13). O

We now define our basic equivalence relation.

(1.14) Definition. — For ¢ = 1,2, let [k;, B,] be a simple pair over F. We say these
pairs are equivalent, denoted

(%15 B1] = [%e, Bel,

if the following conditions are satisfied:
(i) &y = y;
(ii) [F[B4]: F] = [F[B,] : F]; . v
(iii) there exists a finite-dimensional F-vector space V and a hereditary og-order A in Endy(V),
together with realizations [W, n;, m;, o;(B;)] of the pairs [k;, B;] on W whick intertwine
in Endg(V).

(1.10) implies that ~ is indeed an equivalence relation, and (1.9) says that the
exact choices of the m; are irrelevant. We write /2 (F) for the set of these equivalence
classes of simple pairs over F, and (%, B) € 2 (F) for the equivalence class of [, 8].
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Before proceeding, we record some immediate consequences of (1.7), (1.8) in
this language.

(1.18) Fori =1, 2, let [k, B,] be a simple pair over F, and suppose that [k, B,] ~ [k, Bsl-
Then

ng(B1) = ng(Ba),
e(F[R.] | F) = e(F[B,] | F),
SER] | F) =f(F[B,] | F),

kp(B1) = Fp(B)-

Temporarily write SP(F) for the set of all simple pairs over F. If we have a field F’
and an isomorphism ¢ : F s F’, then ¢ induces a bijection SP(F) =~ SP(F’). Explicitly,
if [m, ] is a simple pair over F, the composition

F 2% F — F[g]

defines a simple pair [m, ¢(8)] over F’. This preserves equivalence in the sense of (1.14),
so we get a bijection ¢ : P (F) = LP(F').

As a particular case of this, suppose that F is a finite Galois extension of some
field F,, and write £ = Gal(F/F,). If we have a simple pair [m, B] and ¢ € Z, the iso-
morphism ¢7!: F — F thus determines a simple pair [m, ¢~ ()], which we prefer to
denote [m, p°]. We thus get an action

FPF) X = - SP(F),
((m, B), &) > (m, §°).

In more concrete terms, suppose we have a simple stratum [, z, m, ] in A = Endg(V),
for some finite-dimensional F-vector space V. This determines a simple pair [, B], say.
By choosing an F-basis of V, we identify A with M(N, F) for some N, and hence get an
action of ¥ on A. The stratum [U°, n, m, B°] is still simple. The simple pair which it
determines is then [, 8°], in the sense above.

(1.186)

2. Interior tame lifting

We now take a finite, lamely ramified field extension K/F of our base field F. In this
section, we make some preliminary investigations of the relations between simple strata
over K and simple strata over F.

Let V be a finite-dimensional K-vector space. We write G = Endg(V) and
A = Endg(V). Let € be a hereditary og-order in G, and U the hereditary og-order in A
defined by the lattice chain in V which defines €. Thus K* C K(A) and € = A N C.
We write R for the radical of €, and ¥ for that of U, so we have

(2.1) R =P NC, neZ
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It follows that if [€, n, m, ¢] is a stratum in C, then [, n, m, ¢] is a stratum in A, and the
process [C, n, m, ¢c] — [, n, m, ¢] respects equivalence of strata. Likewise, if we have a
stratum [, #, m, b] in A such that b commutes with K, i.e., b € G, then [C, n, m, 5]
is a stratum in C.

Recall that a stratum [U, n, m, ] is called pure if the algebra F[b] is a field which
normalizes A and dA = P~".

(2.2) Definition. — Let [U, n, m, b] be a stratum in A suck that W is normalized by K>,
as above. The stratum [U, n, m, b] is called K-pure if:
(i) b eC;
(i) 6% =P~";
(iii) the algebra K[b] is a field such that K[b]* normalizes A.

Immediately, a K-pure stratum [, n, m, ] in A is pure, and the corresponding
stratum [, n, m, ] in C is pure. By (2.1), we have:

(2.8) In the situation above, the process [€, n, m,c] > [, n, m, c] gives a bijection,
respecting equivalence, between the set of pure strata in G and the set of K-pure strata in A.

The situation with regard to simple strata requires more investigation. This brings
us to the main result of this section.

(2.4) Theorem. — Let K/[F be a finite, tamely ramified field extension, and let V be a
[inite-dimensional K-vector space. Write G = Endg(V), A = Endg(V). Let [U, n, m, B] be
a K-pure stratum in A, and set € = U N C. Then

ko(B, €) < ko(B, U).
In particular, if [N, n, m, B] is simple, then [C, n, m, B] is simple.

Progf. — We start by recalling, from [BK1] (1.3), the notion of tame corestriction.
For the moment, let V be some finite-dimensional F-vector space and put A = Endg(V).
Let E/F be some subfield of A and write B = Endy(V). A tame corestriction on A relative
to E/F is then a (B, B)-bimodule homomorphism s: A — B with the property

s (‘2‘[) =ANB,
for some (equivalently, any) hereditary pg-order % in A such that {() > E*. This

condition does not determine s uniquely: if s is a tame corestriction as above, and # € oy,
the map a > us(a) is also a tame corestriction on A relative to E/F, and they all arise
this way.

Immediately from the definition, we get

(2.5) Let E,>E, D F be subfields of A = Endy(V), and write B, = Endg(V),
t=1,2. Let sy p (resp. sg,u,) denote a tame corestriction on A (resp. By) relative to EofF
(resp. Eq[Ey). Then sg g, 0 Sgy 15 a tame corestriction on A relative to E,[F.
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We now return to the situation of (2.4), so that, in particular, V is a K-vector
space and U is a hereditary og-order in A = Endy(V) normalized by K*. We use the
following notation throughout the proof:

C =Endg(V), €=UAnC,

E =F[B], B =EndgV), B=UANB,
D = Endgy(V), D=UAND,

P =rad(A), R =rad(€), &S =rad(D).

(2.6)

(2.7) Lemma. — Use the notation above, and let sy (resp. sgy) be a tame corestriction
on A relative to E[F (resp. K[F). Then:
(i) sgp | B is a tame corestriction on B relative to K[B]/E;
(ii) sgg | C is a tame corestriction on C relative to K[B]/K.

Proof. — We start with (i). Since any two choices of sgp differ by a factor u € og,
we see that (i) holds for one choice of sy if and only if it holds for all. This enables us
to choose sg conveniently.

To do this, we write C* for the orthogonal complement of C in A relative to the
(nondegenerate) symmetric F-bilinear form

(%,9) > tryp(x), x5 €A,

where tr,; denotes the trace mapping A — F. Thus A = C® C!, and the orthogonal
projection A — C is a tame corestriction on A relative to K/F (see [BK1] (1.3.8)).
This is our choice for sg . It is characterized among the set of these tame corestrictions
by the property

sgpc) =¢, ceC.

Since D =B N C, the restriction sgp | B is indeed a (D, D)-bimodule homo-
morphism B — C. We have to show that sg(B) C D and that sgp(B) = D. For 4 €B,
we have Bb — bB = 0. Since B € D, this implies

0 = sgp(Bd — 6B) = Bsgw(b) — sxp(6) B, b eB.

This shows that sg(B) is contained in the C-centralizer of 8, which is D. Thus we also
have

sep(B) C sgp(¥) ND=CEND ="2.

On the other hand, we have D C C, so sgy(x) = x for all x €D. Surely B>D, so
sgp(B) =D, as desired.

To prove (ii), we proceed with the same s 5. Let sggx be some tame corestriction
on C relative to K[B]/K. By the choice of sg, we have

ek = Sz © See | G-
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However, by (2.5), sg@gyx o Sg/ is 2 tame corestriction s, on A relative to K[B]/F.
Thus sggx = Sggyr | C. Property (2.5) further implies that sy p = Sgigyg © Sgp> fOr
our given sy and some tame corestriction sg,; on B relative to K[B]/E. This gives us

SiBYE = SKIBIE © SE/F | C.

The field extension K[B]/E is tamely ramified, so we can adjust our original choice
of sggyx (Py a unit of ) to arrange that sgg,y | D is the identity map.

The restriction sgp | C is surely a (D, D)-bimodule homomorphism C — B. We
show next that sg(C) C D. For x €K and ¢ € G, we have xc — ¢cx = 0, so

0 = sgp(xc — cx) = xsgp(c) — sgp(c) %,
since x € K C B. Thus sg(C) is contained in the B-centralizer D of K. This gives us
ko (6) = Sxaye(Ser(c)) = spp(e), ¢ G,

since we have arranged for sgg) 5 to be the identity map on D. We have therefore shown
that sgp | C = sggx, as required. O

Before proving the Theorem, we need to recall another piece of the machinery
of [BK1]. Starting with our pure stratum [, », m, ] and an integer 2, we define

NBA) ={xeW:ag(x) e P*}.
Here, a, is the adjoint map x + Bx — B, as above. By [BKI] (1.4.5), we have
k> ko(B, A) < N(B, A)CB + B,

using the notation (2.6).

We take k € Z, k> ky(B, A). We have to show that &> %y(B, €), or, equivalently,
that

N, C)CD + R.

It is immediate from the definition that R,(8, €) = N, (B, A) N C, so it is enough to
show that

(2.8) B+P)NnC=D+ K.
We certainly have

B+P)NCOXBNCH+PNC=D+ R

On the other hand, let sg 5 be the orthogonal projection A — C, as in the proof of (2.7).
Then for any additive subgroup M of A, we have sg (M) D M n C. In particular,
sgp(B) =D, by (2.7), while sgp(P) = R, by [BK1] (1.3.4). Thus

(B + P) N CCsgp(B + P) = 5xp(B) + 5xp(P) =D + R
The desired equality (2.8) now follows. O

16
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(2.9) Remark.—1In (2.4),itis easy to produce examples in which %, (B, €) < &¢(B, A),
in other words, examples of simple strata [€, n, m, 8] such that [, z, m, B] is not simple.
The generic example, in a certain sense, is given by taking m = n — 1, with g e K*
such that $ is not minimal over F. (We recall this concept below). However, one of
our main results below will show that a simple stratum [, n, m, «] in C is equivalent
to some simple stratum [G€, n, m, o] such that [, n, m, «'] is simple.

It is worthy of note that (2.4) depends crucially on the tameness of the rami-
fication of the extension K/F. To illustrate this, write p for the residual characteristic
of F, and let K/F, E/F be totally ramified extensions of degree p such that KE/F is totally
ramified of degree p* this is not difficult to arrange. We then have E = F[«], for
some element « which is minimal over F: it has only to satisfy the condition
ged(vg(a), ¢(E | F)) = 1. However, EK = K[a], and vgg(«) = pvg(a), which is certainly
not relatively prime to p = ¢(EK/K). Thus « is not minimal over K.

The property mentioned in (2.9) also fails for wildly ramified extensions K/F: a
simple stratum over K need not be equivalent to one which is simple over F. An enter-
taining example of this is provided by taking F = Q, (cf. [W]). This field has a quartic
extension K/Q , whose normal closure has Galois group A,. In particular, K/Q , has no
quadratic subextension. We view K as embedded in Endg, (K) = M(4, Q,), and norma-
lizing the principal order % = Endy ({ p% }) (which has ¢(% | o5) = 4). We take « e K
with vg(a) = — n = 2 (mod 4). The stratum [og, 7, n — 1, «] is simple in K. If it were
equivalent to a simple stratum [og, n, n — 1, B] with [U, n, n — 1, B8] simple, we would
have:

a) B eK, since p must commute with K;

b) ¢(Qa(B) | Q) = (U | og)/gcd(n, e(A | 0g)) = 2.
Since K/Q, is totally ramified, 5 ) would imply [Q,(B) : Q.] = 2, which isimpossible.

3. Tame lifting of simple pairs

We now come to our main results concerning tame lifting of simple strata. Thus
we fix a finite, tamely ramified field extension K/F, and consider relations between the
sets P (K), SP(F) of equivalence classes of simple pairs induced by the inclusion F — K.

We start with a little elementary field theory. This corresponds to lifting field
elements, ignoring the metric considerations imposed by stratum structures. Let E/F be
a finite field extension, and « € E* such that E = F[«]. We can form the K-algebra

& =E®; K.

Simply because K/F is finite separable, we get a canonical decomposition

¢ = 11E,
i=1

of & as a direct product of field extensions E,/K. We write =, for the canonical projection
w,: & - E,.
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We then get elements
o, =m(a®1) €k,

such that E;, = K[w,], 1 < i< 7. These «;, we call the K/F-lifts of «. They are distinct
over K: if 7 4 j, there exists no K-isomorphism K[«] = K[«,] carrying «; to «;. One
can, of course, phrase this in terms of polynomials: if ®,(X) e K[X] is the minimal
polynomial of «; over K, then II, ®,(X) lies in F[X] and is the minimal polynomial ¢,(X)
of « over F. Thus the K/F-lifts of « are given precisely by the K-irreducible factors
of @y(X).

This lifting process a+—>{ o : 1< i< 7} is fransitive in the field extension KJF.
Indeed, if L/K is a finite tamely ramified extension, and if {B;,;: 1< j< r;} is the set
of L/K-lifts of «;, then {f;;: 1<j< r,1<i< r}is the set of L/F-lifts of «.

(8.1) Let K[F be a finite Galois extension with I' = Gal(K(F), and use the notation
above. We have:

(i) T' permutes the factors E, transitively, and the stabilizer of E, is the canonical image of
Gal(E,/E) in T';

(ii) T acts transitively on the set { ay, oy, ..., @, }, and the stabilizer of o, is Gal(E,[E);

(iii) e(E; | K) = ¢(E; | K) and f(E; | K) =f(E, |K), for all i,j.

This is standard. The situation is not so tidy when K/F is not Galois, but we do
get a useful property concerning ramification in the fields E,.

(8.2) Proposition. — Let K[F be a finite, tamely ramified, field extension, and use the other
notation above. The field extensions E,[F then all have the same ramification index, namely

e(E, | F) = lem(e(E | F), e(K | F)), 1<i<r

Proof. — This follows readily from the standard structure theory of tamely ramified
extensions: see, for example, [F] § 8. O
In the situation of (3.2), where K/F is tamely ramified, it will be convenient to
have the notation
ep(@) = e(E | F),
¢(K|F)

(3:3) (K1 F) = e o TEy = 5 B

(o) = () e6(K | F).

Here, ng(«) is just ng(«;) = — vg,(«;) in our earlier notation: it is in particular independent
of i.

In general, the residue class degree f(E, | K) will vary with ¢, at least when K/F
and E[F are both ramified and K/F is not a Galois extension. For example, suppose
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that K/F is totally tamely ramified of prime degree ¢/ and not Galois. Thus F contains
no primitive ¢-th root of unity. Suppose also that ¢ divides ¢(E | F). Then one of the
factors E, has degree 1 over E, and the others are all isomorphic (over E) to the field E[(],
where { is a primitive /-th root of unity.

(3.4) Proposition. — Let [m, o] be a simple pair over F, and let K[F be a finite, tamely
ramified field extension. Let o, be a K[F-lift of «, and M an integer satisfying

M <
)
Then [M, o] ts a simple pair over K.

Proof. — We have ng(a) > m, so ng(«;) = ng(a) < M, as required by the definition
of a simple pair.

As above, write E, for the factor F[o,] of & = K®, E. We view E, as a K-vector
space, so that we can form the algebras
A(E;) = Endy(E),

C(E;) = Endg(E).

We have a natural embedding F[«] — E,, given by « > «;, which we may use here
to identify «; with «. Let A(E,) denote the order

End] ({ pg,:J € Z}).

We then have e(UA(E,)|op) = ¢(E;|F), so that ¢, (AE,)) = ¢(K|F). Thus
[AE,), ny(a) (K | F), me,(K | F), «] is a realization of [m,«] on UA(E,). Further,
this stratum is K-pure, in the sense of (2.2). The intersection A(E;,) N C(E,) is just

C(E,) = End; ({ p,:j € Z}).
Theorem (2.4) now tells us
ko(a, €(E;)) < koo, A(Ey)),

whence
k(@) < ky(a) (K | F)

(see (1.4) et seq.). We are given the relation (m + 1) < — ky(a), and the pair
[M, «] is simple over K provided (M + 1)< — kg(«). This will hold provided
M+ 1)< (m + 1) ¢,(K | F), which is equivalent to [M/e,(K | F)] < m, as required. O

Thus the simple pair [m, ], together with a choice of integer M such that
[M/e,(K/F)] < m, gives rise to a finite set [M, «] of simple pairs over K. We refer to
these as the K/F-lifts of [m, «] (relative to the choice of M). This dependence on M is
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somewhat spurious: see (6.1) below. The process [m, «] — {[M, «]} is again transitive
in K/F: this follows from the relation ¢,(L | F) = ¢,(K | F) ¢,,(L | K).

Our first result asserts that this lifting process preserves the relation of equivalence
between simple pairs, as in (1.14).

(3.5) Theorem. — Let K|F be a finite, tamely ramified field extension, and let [m, o] be a
simple pair over F. Let oy, . .., o, be the K[F-lifts of «, and let M denote the integer
M=(m+1)e¢(K|F) — 1
The set
Lgp(m, o) ={(M, o) :1<i<r}

of equivalence classes of simple pairs over K depends only on the equivalence class (m, a):
if [m,a'] is a simple pair equivalent to [m, «], then Lggp(m, «') = Lgg(m, o). Moreover,
we have (M, o) = (M, o;) if and only if © =j.

Thus the process
(m, @) > Ligp(m, «) = {(M, «;)}

(in the notation of (3.5)) gives us a well-defined map from FZ(F) to finite subsets
of ¥2(K). This process is, moreover, injective in the following sense:

(3.8) Theorem.— Let [m, «], [k, B] be simple pairs over F. Suppose there exist K[F-lifts «,
B of a, B respectively, and an integer M satisfying

M+ 1<min{(m+ 1) ¢,(K|F), (8 + 1) ¢g(K | F)},
suck that [M, &) ~ [M,B]. We then have [¢, «] ~ [¢, B], where £ = min{m, k}.
We also have a surjectivity property:

(8.7) Theorem. — Let [k, B] be a simple pair over K. There exists a simple pair [m, o]
over ¥ and a K[F-lift o, of o suck that

k —_—
] =
and [k) ﬂ] ~ [k) a'i]'

The proofs of these theorems occupy the next three sections. In the remainder of
this section, we present some corollaries. First, we answer the question left open by (2.4)
(see also (2.9)).

(3.8) Corollary. — Let [€, n, m, B] be a simple stratum over K. Let N be the hereditary
og-order defined by the same lattice chain as €. There exists a simple stratum [, n, m, B'], which
is equivalent to [€, n, m, B], such that [N, n, m, B'] is simple.
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We will be able to deduce (3.8) from (3.7) once we have proved (4.3) below.
We can summarize our lifting theorems as a list of properties of a certain base-field
restriction or “ induction > map as follows.

(3.9) Corollary. — Let K[F be a finite, tamely ramified field extension. There exists a
unique map

Resgp: PP(K) - FP(F)

with the following property: if (&, B) € P(K), then Resgy(k, B) = (m, o), where
[le (K| F)] = m and [k, B] ~ [k, @], for some K[F-lift & of the element «. Moreover,
(i) the map Resgp is surjective;
(ii) for (m, «) € SP(F), the fibre of Resgy over (m, o) is the set {(k, o;)}, where k ranges
over all integers satisfying

-+
(K |F)|

and { o;: 1 < i< 1} is the set of K[F-lifts of the element «;
(iii) o (i), we have (R, o;) = (B, «;) if and only if &, = o;, 1< ¢, j< 1

If K/F is also Galois, with T' = Gal(K/F), the fibre of Resg; over (m, a) is the
union of Galois orbits {(k, @°) : 6 € I'}, for a fixed lift @ of «.

The transitivity property of the lifting process for simple pairs is a direct conse-
quence of the same property for lifting of field elements. However, it can be expressed
very tidily in terms of the map Res:

(3.10) Let L/K, K/F be finite tamely ramified field extensions. Then
Res;y = Resgp o Resp .

Remark. — One can simplify the statements of the lifting theorems by specializing
to the following case. Write SZ°(F) for the set of equivalence classes of simple pairs o
the form [0, «]. Lifting gives us a map from FZ°(F) to finite subsets of S#°(K), and
base-field restriction a surjective map SZ°(K) — F2°(F) whose fibre above a given (0, «)
is the set {(0, ;) }, with «; ranging over the K/F-lifts of the element «. Once the basic
theory is established, this is the only case which will interest us. However, the extra
generality is essential, both for the proofs of the lifting theorems here and for the explicit
constructions of § 7.

The proofs of the results stated here occupy the next three sections. We prove (3.6)
in § 4, along with some general preliminary results. We also show how to deduce (3.8)
from the theorems. The theorems themselves are proved inductively. The first step is
given in § 5, and the general case of the induction occupies § 6.
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4. Preliminary reductions

We start with:

Proof of (3.6). — We use the notation of the statement. Also, for a finite
field extension L/K, we write

C(L) = Endy ({ pi })-

The hypothesis [M, o] ~ [M, B] implies (see (1.15)) that g (%) = ng(B) and
C(K[&]) = C(K[B]). We can therefore find a K-vector space V of dimension
[K[&]:K] = [K[B]: K], and a hereditary og-order € in Endg(V), together with
K-embeddings ¢ : K[a] — Endg(V), ¢: K[B] » Endg (V) whose images normalize €.
Note that € = §(K[&]) = €(K[B]) as og-orders. Thus we have realizations [€, 7, M, ¢(%)],
[C, 7, M, $(B)] of our simple pairs, with #n = ng(%) = ng(B). By (1.10) and hypothesis,
these realizations must intertwine in Endg (V). By (1.8), we can adjust ¢, say, by a
U(E)-conjugation and assume we have an equivalence

[(S’ n, M, ?(a)] ~ [G’ n, M, ‘I’(E)]‘

Let A be the hereditary pg-order defined by the same lattice chain as €. This means we
have an equivalence of simple strata

(A, n, M, ?(&)] ~ [‘2'[’ n, M, 4)(6’)]-

Of course, when working over F, we do not need to distinguish between «, & and like-
wise for B. This last equivalence of simple strata implies ny(a) = ny(B). Combining this
with the equation ng (&) = ng(B), we get

eu(K | F) = ¢g(K | F).

The above equivalence of strata now further implies that [¢, «] = [4, B], for any integer
¢> [M/e(K | F)].

This completes the proof of (3.6). O

Having proved (3.6), Theorems (3.5) and (3.7) when taken together are transitive
in the field extension K/F in the following very strong sense.

(4.1) Lemma. — Let L|K, K/F be finite tamely ramified ficld extensions. Suppose that (3.5),
(3.7) hold for two of the extensions L/K, K[F, L[F. They then hold for the third.

Progf. — We only prove one of the three assertions of the Lemma: of the others,
one is very similar and the remaining one easy. We assume that (3.5) and (3.7) hold
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for the extensions L/F, L/K, and deduce them for the extension K/F. Let [m, «] be a
simple pair over F, and let «;, ..., «, be the K/F-lifts of «. Define

M=(m+1)e¢K|F)—1,
= (M + 1) ¢ (L|K) —1,
M'"=(m+1)e,(L|F) — 1

Note that the definition of ¢, (L | K) is independent of the choice of ¢, and indeed
ea(Li| F) = ex(K | F) ¢, (L | K).

Let o;;, 1 < j< 5; be the set of L/K-lifts of «;, so that { «; } is the set of L/F-lifts of a.
The classes (M", «;;) are all distinct, by (3.5) applied to L/F. Applying the first state-
ment of (3.5) to L/K, we see that the (M’, «;) are distinct.

Next, we take a simple pair [m, «’] over F equivalent to [m, «]. Applying (3.5)
to L/F, these pairs have the same sets of equivalence classes of L/F-lifts. Theorem (3.6),
applied to L/K, now shows that they have the same sets of equivalence classes of K/F-lifts.
This proves (3.5) for K/F.

To prove (3.7) for K/F, let [, ] be a simple pair over K. Let § be an L/K-lift
of 8, and let £’ be the least integer for which [%'/es(L | K)] = k. Applying (3.7) to L/F,
there exists a simple pair [m, «] over F and an L/F-lift & of « such that [%'/e,(L | F)] = m
and [%,&] ~ [¥,B]. We finish the proof by applying (3.6) to the extension L/K. O

Our next result is a conditional one, relating the assertion of (3.7) to the more
concrete considerations of § 2. As always, K/F denotes a finite tamely ramified field
extension.

(4.2) Proposition. — Let V be a finite-dimensional K-vector space, and [C, n, m, 8] a
simple stratum in G = Endg(V). Let A be the hereditary og-order in A = Endg(V) defined
by the same lattice chain as §. Suppose there exists a simple stratum [€, n, m, 8] in C such that

a) [G) n, m, 8] ~ [Gy n, m, B]a and
b) [N, n, m, 8] is simple.

There then exists a K[F-lift S of & suck that the simple pairs [[m/ea((i)],'g], [[m/eg(€)], B]

are equivalent.

Proof. — The obvious embedding F[3] — Endg (V) extends uniquely to a K-algebra
homomorphism F[3] ®; K — Endg (V). The image here is a field (namely the field K[3]),
so this map factors through the canonical prOJecnon of F[3] ® K to one of its field factors.
This factor is of the form K[3], for some K/F-lift § of 8. Our given map F[3] — Endg (V)
therefore extends to a K-embedding K[3] — Endg(V) which maps 3 to our
original element 3. Because of the equivalence [C,n, m, 8] ~ [C, n, m, 8], we have
e5(€) = ¢4(€). Thus [€, 7, m, 8] is a realization of the simple pair [[m/e,(€)], 3],
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which intertwines with the given realization [€,n, m, B] of [[m/es(€)], B]. In other
words, [[m/es(€)], 8] ~ [[m/ez(€)], B], as required. O
There is also a conditional result converse to this.

(4.3) Proposition. — Let [k, B] be a simple pair over K. Suppose there exists a simple
pair [m, o] over ¥ and a K[F-lift & of « such that
a) [ke(K | F)] = m and
b) [k, B] ~ [k, «].
Let [C, n, g, B] be some realization of [k, B], and let W be the hereditary og-order defined by the
same lattice chain as ©. There then exists a simple stratum [€, n, q, B'], equivalent to [C, n, g, B],
such that [U, n, q, B'] is simple.

Proof. — The equivalence [k, @] ~ [k, B] implies, via (1.15), that
e(K[a] | K) = ¢(K[§] | K),
and likewise for residue class degrees. Therefore there exists a realization [€, z, ¢, ()]

of [k, @] on € by (1.1). Further, this must intertwine with [€, n, ¢, 8] by (1.10). Thus,
by (1.8), we can replace ¢ by some U(€)-conjugate and assume that

[C, 7, ¢, 9(2)] ~ [€, n, ¢, B].
We have
g< (k+ 1) ¢(C) = (& + 1) e5(C)
= (k + 1) (€ | og)fe(K[a] | K)
= (k + 1) e(U | og)/e(K[a] | F)
= (k + 1) ¢(U) [e.(K | F)
< (m+ 1) (K| F) ¢,(W)/e(K | F)

and this is < — ko(«, A) because [m, «] is simple. Thus [, 7, ¢, ¢(a)] is simple, and the
result follows. 0O

Theorem (3.7) asserts that the hypotheses of (4.3) are satisfied for any simple
pair over K. Thus (3.8) is a consequence of (3.7).

We now need some technical results concerning the extrastructure available when
the lifting extension K/F is Galois.

(4.4) Proposition. — Let K[F be a finite Galois extension, and F[«][F a finite field extension.
Let oy, ..., a, be the K[F-lifts of «.

Let V be a finite-dimensional K-vector space, and € a hereditary og-order in C = Endg (V).
Suppose there exists an embedding ¢, : K[o,] — C of K-algebras such that ¢,(K[o ]*) norma-
lizes €. Then, for each i, there is a K-embedding o, : K[o,] — C suck that o,(K[x]*) nor-
malizes .

Progof. — This follows from (1.1) and (3.1). O

17
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Of course, one can vary the embedding of K in € by composing with the action
of the Galois group I' = Gal(K/F). The next two results describe the effect of this on
the elements «,.

(4.5) Proposition. — Let K[F be a finite Galois extension with T' = Gal(K/F). Let V be
a finite-dimensional K-vector space, and let € be a hereditary og-order in C = Endg (V). Let U be
the hereditary og-order in A = Endy(V) defined by the same lattice chain as €. Then:
(1) The K(N)-centralizer of K* is K(C).
(i1) Let A (K) denote the K(WN)-normalizer of K*. Then Ay(K) normalizes K(€), and res-
triction to K induces an isomorphism

Ha(K)/K(C) =~ T
Proof. — This follows from (1.6) and the Skolem-Noether theorem. O

Remark. — In the situation of (4.4-5), we have K(UA) = K(C€) U(A). Thus here
and in (4.6) below, we could replace R(2) by U(A) without changing anything.

(4.6) Proposition. — Let K[F, a, €, @, be as in (4.4), and W as in (4.5). For 1 < i< r,
let @, be the set of K-embeddings ¢, : K[;] — C with ¢,(K[x]*) C K(C), and put & = Ud,.

(1) Let x € /y(K), and let 6 €' be the element satisfying o(y) = xyx~ ", y e K.
Given i, there exists a unique j such that o extends to an F-isomorphism o : K[a,] - K[a,]
satisfying o(a;) = «;. The extension o is uniquely determined. Moreover, if ¢, € ®,, then
Ad(x) o®;o o ! E(Dj.

(1) The action of N4(K) on ® given by (i) is transitive.

(iii) The stabilizer of ®; is N x(K[p;(0;)]) K(C), where @, is any element of ©; and B
is the hereditary Oy, qn-order W N Endyg, o0y (V).

Proof. — Part (i) is self-explanatory. Given any pair (z,7), together with ¢, € ®,
and ¢, € @,, there is an F-isomorphism & : K[;(x;)] — K[o;(x;)] with &(;(e;)) = @;(«;).
We have £(K) = K, and £ | K e I'. This isomorphism £ is realized by conjugation by
some element z € U(A), by (1.6). However, u conjugates K to itself so u € #/4(K), as
required for (ii).

In part (i), if we allow x to range over the stabilizer of ®;, the corresponding
element ¢ € I' ranges over I', = Gal(K[«;]/F[«]). The inverse image of I'; in A%(K)
is the group A x(K[g;(«,)]) K(€), and the result follows. O

5. Tame lifting for minimal pairs

In this section, we deal with the lifting theorems (3.5), (3.7) in a special case,
which will form the first step of an inductive argument.

A simple pair [m, «] over F is called minimal if we have m = ny(«) — 1. Thus
k(o) equals — oo or — ng(«). This is equivalent to « being minimal over F, in the sense
of [BK1] (1.4.14). Explicitly, this means
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(5.1) () ged(ny(a), ep(e)) = 1, and
(ii) ¢f wy is a prime element of F, the coset

@ | Pra(C U(ogy))

generates the residue field extension kg, [kg.
For our choice of prime element ny, we write

ex(®) = pp(a; mg) = (g «™® 4 Py € Koy

The minimal simple pair [m, «] then determines a triple of invariants, namely the integers
ng(a), ep(a) and the (monic) minimal polynomial f,(X) € ky[X] of pg(«) over ky. The
integers eg(«), np(a) are subject to the conditions

ex(a) > 1,
ged(eg(x), np(«)) = 1,
while the monic irreducible polynomial f,(X) is subject only to
Jfu(X) £ X,
Of course, the polynomial f,(X) does depend on the initial choice of prime element 7.
(5.2) Proposition. — Fix a prime element ©y of F. The map
[m, a] = (ng(a), ep(a), fu(X))

establishes a bijection between the set of equivalence classes of minimal simple pairs [m, o] over F
and the set of triples (n, e, f(X)) consisting of an integer n, a positive integer e such that gcd(e, n) = 1,
and a monic irreducible polynomial f(X) € kg[X] suck that f(X) + X.

Proof. — In view of (1.10), this is simply a restatement of [BK3] (1.4). O

This enables us to treat lifting of minimal simple pairs in terms of invariants.

(5.8) Proposition. — Let [n — 1, o] be a minimal simple pair over F (so that n = ng(a)).
Let K[F be a finite tamely ramified field extension, and let { o;: 1 < 1 < r} be the set of K[F-lifts
of a. Then:
(1) [ne (K| F) — 1, o] is a minimal simple pair over K;
(ii) the equivalence classes (ne (K |F) — 1, ;) € SP(K), 1< i< 1, are distinct, and the set
Lep(n — 1, 0) ={(ne,(K | F) — 1, &) : 1 < i< 7} depends only on (n — 1, «) € SP(F).

(5.4) Proposition. — Let K[F be as in (5.3), and let [m — 1, B] be a minimal simple pair
over K. There exists a unique minimal (n — 1, o) € SP(F) such that (m — 1,B) eLgp(n — 1, a).

We note that Proposition (5.3) (i) is a special case of (3.4), while the uniqueness
statement in (5.4) is a special case of (3.6) (which we have already proved in general).
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(5.5) Lemma. — Let LK, K/F be finite tamely ramified extensions. Suppose that (5.3),
(5.4) kold for two of the extensions LK, K/F, L[F. They then hold for the third.

This is just a special case of (4.1). We can therefore assume, when convenient,
that K/F is either unramified or totally ramified (of prime degree).

We treat first the case where K/F is unramified. We take a minimal simple pair
[n — 1, «] over F. We fix a prime element =y of F, so that, in addition, =, will serve as
a prime element of K. Let p denote the residual characteristic of F, and let 3, be the
unique p-prime root of unity in F[a] such that

fp = pp(2; mp)  (mod pyy).

If we view By as an element of kg, then f,(X) is the minimal polynomial of 3, over kg.
Further, we have

Opw = Opl P> Tl

where w, denotes some prime element of F[«]. Now write
¢ =F[a]® ;K= Il E,
i=1

as before, where E; is the field K[«,]. Since K/F is unramified, the identification of &
with II E; induces further identifications

r

Dgreg @op Ox = 'H1 Dg;»
P
r

Pria @op 0x = I_I Px;»
T

Kgoy ®y, kg = 11 kEi.

i=1

However, kg, & kg[X]/(f.(X)). Since kg/kg is a finite separable extension, f,(X) splits
as a product ¢,(X) ¢4(X) ... 9,(X) of distinct irreducible factors in kg[X], which we
may number so that

kg, = ke[X]/(9:(X)).

However, we have ng(«;) = ng(a), and eg(«;) = ex(«), by (3.1) since K/F is unramified.
If we write x — x; for the canonical projection & — E,, we thus have

(Py(o; mg))i = P(%i; op)-

It follows that the invariants of the simple pair [ne, (K | F) — 1, o] (which is minimal
simple by (3.4)) are

(np(a), ep(x), 9:(X))-
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These are distinct, and the set
{(ng(a), ep(e), 9(X)) : 1< i< 7}

depends only on (ng(«), ep(«), f,(X)). This proves (5.3), and (5.4) is now immediate
(assuming that K/F is unramified).

We now have to treat the case in which K/F is totally tamely ramified. Indeed,
appealing to transitivity, we can (and do) assume that K/F is of prime degree ¢, say.
There is an easy case of which we can dispose immediately, namely that where ¢/ does not
divide ep(a) = ¢(F[a] | F). Here, the algebra & = F[«] ® K is a field, we have r = 1,
and the first part of (5.3) (ii) is trivial. We may choose prime elements =y, g so that

(5.6) T = T,

The extension &[F[«] is totally ramified of degree?, so ng(a;) = ¢ny(a), while eg (a;) = eg(a).
This means that py (a;; 7) = pg(a; wy). Hence the invariants of the lifted pair [/ — 1, «,]
are (nf, egx(«), f,(X)), and these depend only on the invariants (n, ez(a), f,(X)) of the
given pair. This proves (5.3) in the case £ 1 eg(a).

In the opposite direction, suppose we are given a minimal simple pair [m — 1, 8]
over K, where K/F is totally ramified of degree ¢, with invariants (m, ¢, ¢(X)). We
assume that ¢ has been calculated relative to a prime element satisfying (5.6). Suppose
also that ¢ divides m. It follows that ¢ does not divide e. Then by the calculation above,
[m — 1, B] is equivalent to the unique lift of the simple pair over F with invariants
(mft, e, 9(X)). Thus (5.4) holds for such pairs [m — 1, B].

We must next treat the case where K/F is totally ramified of prime degree ¢ and ¢
divides ep(a). This has the effect that each extension K[«;]/F[«] is unramified. Let L/F
be some finite unramified extension. We know that (5.3), (5.4) hold for the exten-
sions L/F and KL/K. As in (5.5), they will therefore hold for K/F provided they hold
for KL/L. The effect of this observation is that we can replace F by any convenient
finite unramified extension of F.

First, replacing F by the maximal unramified subextension of F[«]/F, we can reduce
to the case in which F[«]/F is totally ramified. Since /¢ is not the residual characteristic,
we can further enlarge F (by an unramified extension) and assume that it contains a
primitive /-th root of unity. Now abbreviate E = F[«]. With these conditions, we have
r ={, and each of the extensions K[«]/E is trivial.

Take some prime element 7 of E. Since E/F is totally ramified, we have n'g ¥ = mnyu,
for some u € U'(pg), and some prime element =y of F. Replacing F by a finite unramified
extension, we can now assume that we have a prime element ng of K such that nf = my.
Let E°/F denote the unique subextension of E/F of degree ¢. There is then a prime
element m, of E° which satisfies

Ty = nlnp:m/t

! —
Ty = T

(mod Ul(og)).
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Our element « has the form {rg " , where » € U'(0g), n = ng(a), and ¢ is a root of unity
in F of order prime to p. In particular, we have f,(X) = X — {*®, Consider the
element

§=a*@xke b

We have n = ng(a) = ng(«), and so & = py(«; 7). On the other hand, the image §; of §
in Kfe] is just pg(o;; mg). We can rewrite

S =M s @ xk,

for some w € U'(og). To compute the §;, we consider the subalgebra E°® K of &. We
have

E'®; KK XK x ... XK,

as K-algebra, with ¢ factors here. The projections E® — K are given by =, > v, 7y
(mod U(og)), where v;, 1 < i< ¢, ranges over the ¢-th roots of unity in F. Thus

— { —
8@ = Cep(a)/ n n

mod 1-units. These ¢ values are distinct, since z is prime to £. This says that the invariants
of the lifted pairs [n — 1, «;] are (n, ex()/t, X — n7 ™ =), This proves (5.3).

Combining these calculations with the first part of the proof (where K/F was
unramified), we have:

(5.7) Let [n — 1, o] be a minimal simple pair over ¥, let K[F be totally ramified of prime
degree . Suppose that ¢ divides ex(x). Calculating relative to primes my, T satisfying we = Ty,
the invariants of the K/[F-lifts of [n — 1, «] are (n, ex(a)/t, @;(X)), where ¢,(X) ranges over
the irreducible factors of f,(XY).

It remains only to finish the proof of (5.4). We are given a totally ramified exten-
sion K/F of prime degree £ and a minimal simple pair [m — 1, f] over K. We have to
find a minimal simple pair [z — 1, «] over F of which [m — 1, 8] is a lift. The case
where ¢ divides m has been dealt with above. We therefore assume that ¢ + m. Take
prime elements 7, m, such that n% = m,. If, relative to this choice, [m — 1, B] has
invariants (m, ¢, (X)), we take [z — 1, «] to be the pair with invariants (m, ¢/, (X)),
where f(X) is the minimal polynomial over ky of &, for some root & of ¢(X) in kgq.

This completes the proofs of (3.5), (3.7) in the special case. O

6. Completion of the proofs

We now treat the general case of our * lifting theorems ” (3.5), (3.7). We start,
however, with a useful result which does not form part of the main sequence. Its attractive
feature is that it gives us some latitude in the treatment of the * level > of lifted simple
pairs.
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(6.1) Proposition. — Let [m, «] be a simple pair over F, and let & be some K|F-lift of .
Let [m, B] be another simple pair over ¥, and assume that
a) [m, B] ~ [m, a], and
b) there exists a K[F-lify B of B such that [M, B] ~ [M, &1, where M = (m + 1) ¢,(K | F) — 1.

Then
[¢,B] ~ [¢, &1

Jor any integer q suck that

q
[eq(K I F)] -

Suppose further that we have [m — 1, o] ~ [m — 1,B]. Then [M’', %] ~ [M',B], where
M' =me,(K|F) — 1.

Proof. — We choose convenient, equivalent, realizations of our simple pairs [M, «],

[M, B], as follows. Let V = K(&), viewed as a K-vector space, and let € denote the
hereditary order

€ = Endo ({ Pkiz })

in C = Endg(V). By (1.10), (1.15), (1.6), we can choose a K-embedding of K[B]
in C so that the stratum [€, n, M, 3] is simple and equivalent to [€, n, M, & ], where
n = ng(¥) = ne(B).

Now write A = Endg(V), and let %A denote the hereditary pg-order in A defined
by the same lattice chain as €. Write E = F[«]. The subfield F[a] of K[«]is isomorphic
to E via @ —» «. We therefore regard E as a subfield of K[«] such that K[x] = KE.
Let s denote a tame corestriction on A relative to E/F. According to (2.7), the restriction
of s to G is a tame corestriction relative to K[« ]/K.

Now write M’ = me,(K/F) — 1. Let ¢ be the least integer, M > ¢ > M’, such
that the strata [C,n, ¢, ], [C,n, g, E] intertwine in C. We assume that ¢ > M’, and
there is no harm in changing our embedding of K[’E}'] in C to arrange that

[(g’ n, q, &/] ~ [G; n, g, B’]’

Write B = Endg(V), D = Endg3(V),8 = A N B,D =A N D, and consider the derived
stratum [D, ¢, ¢ — 1, s(8 — &)]. By [BK1] (2.4.1), this is either equivalent to a simple
stratum [D, ¢, ¢ — 1, 3], or it is the null stratum [D, ¢, ¢ — 1, 0]. We can exclude the
latter case, since this would imply, via [BK1] (2.2.1), that the strata [€, n, ¢ — 1, ],
[C, n, g — 1, B] intertwine, contrary to hypothesis. Further, by (5.4) and (4.3) applied
to the extension K[« ]/E, we can assume that the equivalent strata

[SB’ 79 — 118]’ [%3 79— 13 S(B— 0()]
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are simple. This implies that the strata [, n, ¢ — 1, «], [, #, ¢ — 1, B] do not intertwine
(see [BK3] (1.9)). However,

qg—1
[ea(w}“"

If we have equality here, this contradicts the assumption that [m, «] ~ [m, B]. We
deduce that ¢ — 1 = M’, and the argument above implies [m — 1, «] % [m — 1, B].
Thus, if we do indeed have [m — 1, «] = [m — 1, ], we must have ¢ = M'.

This completes the proof of the Proposition. O

Now we start the proofs of the lifting theorems (3.5), (3.7). By (4.1), we can assume
that our lifting extension K/F is Galois of prime degree /. We prove the following state-
ment, which is a rephrasing of the results we seek.

(6.2) Let K[F be a tamely ramified, Galois field extension of prime degree £. Let [M, B]
be a simple pair over K. Then:
(1) there exists a simple pair [m, o] over ¥ such that m = [M/e, (K | F)] and a K[F-lift &
of o such that [M, ] ~ [M, B];
(ii) if [m, o] is as in (i), and if & is a K[F-lift of «, then [M, @] ~ [M, B] if and only if
& =a;
(iii) in the same situation, if [m, «'] is some simple pair over ¥ equivalent to [m, «], there exists
a K[F-lift &' of o' such that (M, '] ~ [M, «].

Here, (i) implies (3.7). By (2.4) and (3.4), any (m, «) € %(F) and any K/F-lift ¥
of « arise from some (M, B) € 2 (K) in the manner of (6.2) (i). Thus (3.5) is implied
by (6.2) (ii) and (iii).

We prove (6.2) by induction on the positive integer n(B) — M. The
case ng(B) — M =1 is covered by the arguments of § 5. We therefore assume that
ng(B) — M > 2, and that (6.2) holds for all simple pairs [M’, '] over K with
ng(B’) — M’ < ng(B) — M. Before proceeding, it will be useful to note one consequence
of this inductive hypothesis.

(6.3) Lemma. — Suppose that (6.2) holds for all simple pairs [M, B] over K such that
ng(B) — M < &, for some constant k. Let V be a K-vector space, and [€, n, m, B] a simple stratum
in C = Endg (V) defining a simple pair [M, B] with n (B) — M < k. Let W denote the here-
ditary og-order in A = Endy(V) defined by the same lattice chain as €. Let [N, n, m, o] be a
simple stratum in A which intertwines with [W, n, m, B]. There then exists a K[F-lift & of « and
a K-embedding ¢ of K[a] in C with the following properties:

(i) o(K[2]*) C K(€);
(1) [€, n, m, («)] intertwines with [C, n, m, B].

Proof. — By inductive hypothesis and (4.3), we can replace [C, n, m, ] by an
equivalent stratum and assume that [, n, m, B] is simple. Since this intertwines with the
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simple stratum [, n, m, «], the F-simple pairs defined by these strata are of the form
[#, 8], [%, «], for some &, and [k, B] =~ [, «]. The lemma now follows from (6.1) and
the part of the inductive hypothesis corresponding to (6.2) (iii). O

We now take [M, B] as in (6.2), and start by proving (6.2) (i). Let V be some
finite-dimensional K[B]-vector space, and take a realization [C,zn, M, B] of [M, B]
on V, where € is a principal order in C with ¢(€ | o) = ¢(K[B] | K). Thus, in par-
ticular, n = ng(B). We write C = Endg(V), A = Endg(V), and we let A denote the
hereditary og-order in A defined by the same lattice chain as €. We next use [BK1] (2.4.1)
to find a simple stratum [C, n, M 4 1, y] equivalent to [€, n, M + 1, 8]. The quotient
e, = ¢(K[B] | K)/e(K[y] | K) is an integer, by [BK1] (2.4.1). Thus the simple pair
defined by [€,n, M 4+ 1, v] is of the form [M,, y], where ‘

M1=[M+l].

21

We also have ng(y) = ng(B)/e;, so altogether
ng () — My < ng(B) —

We can therefore apply our inductive hypothesis to find a simple stratum [€, n, M + 1, ¥']
equivalent to [€, n, M + 1, y] and such that [, n, M + 1, ¥'] is simple. Indeed, we can
now economize on notation and assume that y = y’, i.e. that [%, n, M + 1, y] is simple.

Now let us write E = F[y], B = Endg(V),B = AN B. We alsoset D = Endg,,(V),
D = A N D. We choose a tame corestriction s on A relative to E/F, so that, by (2.7),
the restriction s | G is a tame corestriction on C relative to K[y]/K. We form the derived
stratum [D, M + 1, M, s(B — v)]. This is either null or equivalent to a simple stratum
[®, M + 1, M, 3]. Then, by (4.3) and (5.4) (or inductive hypothesis), we can assume
that [8, M + 1, M, 3] is simple or null.

By [BK1] (2.2.8), there exists a simple stratum [, n, M, «] such that
[, n, M + 1, «] is equivalent to [U, n, M + 1, y] and [B, M + 1, M, s(x — v)] is equi-
valent to [B, M + 1, M, 3].

(6.4) Lemma. — In the situation above, let & be a K/[F-lift of a. Then
e(K[«] | K) = ¢(K[B] | K).
Proof. — By [BK1] (2.4.1), we have ¢(K[B] | K) = ¢(K[y] | K) ¢(K[y, 3] | K[¥]).

Likewise, ¢(F[B] | F) = e(F[y] | F) e(F[y, 8] | F[y]). The lemma now follows from (3.2)
via a straightforward computation. O

The situation for residue class degrees is a little more uncertain at this stage:
(6.5) Lemma. — In the situation above, f(K[a] | K) divides ¢f (K[B] | K).

Progof. — When K/F is unramified, an argument analogous to. that of (6.4) gives
us f(K[«] | K) =f(K[B] | K). We therefore assume that K/F is totally ramified. as

18
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well as being Galois of prime degree ¢. This means that, if L/F is any finite extension
and L’ is some field component of L ®g K, then f(L’ | K) is either f(L | F) or ¢f(L | F).
The latter can only occur if £ divides ¢(L | F) and L®K is a field. We therefore have

S(K[@] | K) = &, f(F[«] | F)
= eof (F[v] | F) f(F[y, 8] | F[¥])
=g g f(K[]|K)f(Ky, 3] | K[y])
=& g fK[E]]|K),

where the ¢; are constants with value 1 or ¢. The assertion follows. O

We now impose a further condition on our vector space V, and assume that its
K[p]-dimension is divisible by the prime number ¢ = [K: F]. By (1.1), (6.4), (6.5),
our choice of ¢ gives us:

(6.6) In the situation above, let & be any K[F-lift of a. There exists a K-embedding
¢ : K[a] — C whose image normalizes .

We choose a lift « and an embedding ¢ as in (6.6), and abbreviate € = ¢(a).
The stratum [C, #, M, €] is then simple. By construction, its restriction [, n, M, €]
is also simple, and indeed U(A)-conjugate to [A, n, M, «]. Now we apply our inductive
hypothesis again to produce a simple stratum [€,», M + 1, ¢] equivalent to
[€, n, M + 1, €] and such that [U, n, M + 1, ¢] is simple. It follows that [U, n, M + 1, ¢]
intertwines with [, n, M + 1, y]. By inductive hypothesis and (6.3), there is a lift §
of ¢ and a K-embedding ¥ of K[¢] in C such that ¥(K[$]*) C R(€) and such that
[C,n, M+ 1,¥(@)] ~[C n M+ 1, y]. Now we appeal to (4.6): we can replace ¢
by a A4 (K)-conjugate to arrange [€,n, M + 1,e] ~ [€, n, M + 1, y]. In other words,
at this stage, we may as well take ¢ = y. Now we compare the derived strata
[O,M+ 1,M,s(8 —v)], [ M+ 1, M, s(s — vy)]. These are equivalent to simple
(or null) strata [D, M + 1, M, 3], [D, M + 1, M, §'] respectively, such that (by inductive
hypothesis) the restrictions [8, M + 1, M, 8], [B, M + 1, M, §'] are simple (or null).
Moreover, by construction (and [BK3] (1.9)), these restrictions intertwine. By (6.3)
and inductive hypothesis, we can now conjugate by an element of A x(K[y]) to arrange
[O,M+ 1, M3 ~[D, M+ 1, M, 3]. It now follows that the strata [C, n, M, B],
[€, n, M, €] intertwine. This element ¢ has become an A% (K)-conjugate of the ori-
ginal o(«). By (3.4), the stratum [€, n, M, €] therefore defines a simple pair [M, &],
for some K/F-lift & of «. We have shown that [M, &] ~ [M, B], and this proves (6.2) (i).

It is worth recording the conclusion of this argument, in a more general context.

(6.7) Proposition. — Let K|F be a finite, Galots, tamely ramified field extension. Let V
be a finite-dimensional K-vector space, and [C, n, m, B;] simple strata in Endg(V), ¢ =1, 2.
Let N be the hereditary og-order in Endy(V) defined by the same lattice chain as €. Suppose that
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the strata [N, n, m, B;] are both simple, and intertwine in Endy(V). Then there exists x € #y(K)
such that

[@, n, m, 2t B: x] ~ [6) n, m, 52]~

Proof. — The assertion is transitive in the extension K/F, so we may assume that
K/F has prime degree £. When /¢ divides dimg(V), the assertion is then given by the
arguments above.

For the general case, we write ¥ = {L,} for the lattice chain defining A. We
write V=V @ ... ®V (¢ factors), and define a lattice chain %’ ={L;} in V' by

L, =L,oL®...0L, jeZ

We write A’ = End} (#’), and define €' similarly. The stratum [U', n, m, «]
defines the same simple pair as [, n, m, «;], so the strata [W', n, m, a,], [W, 7, m, op]
intertwine. Likewise, the strata [€', n, m, B;], [€, n, m, B,] define the same simple pair,
call it [, B;], over K. The case above gives x € #4.(K) such that

[6,’ n, m, 1 B1 x] ~ [6-:" n, m, 92]

This says, via (4.6) and the remarks concluding § 1, that there exists ¢ € Gal(K/F)
such that [%, B{] ~ [%, Bo]. The proposition now follows from (4.6). O

We can now deduce (6.2) (iii). We choose K/F-lifts @, @’ of «, ' respectively.
By (1.15), we have eg(x) = ex(a’), so (by (3.2)) ¢,(K|F) =¢,(K|F). We choose
a K-vector space V and a hereditary og-order € in G = Endg(V) for which there exist
simultaneous realizations [€, n, M, & ], [€, n, M, &’] of the simple pairs [m’, @], [m', «'],
where m’ = (m + 1) ¢,(K | F) — 1. If W is the hereditary pg-order in Endg(V) defined
by the same lattice chain as €, then by hypothesis, the strata [, n, M, «], [U, 7, M, «']
intertwine. Now we apply (6.7), and the result follows.

This leaves us with proving (6.2) (ii). We start with a simple pair [m, «] over F,
and choose some K/F-lift & of a. If m + 1 < — kg(«), the assertion follows immediately
from our inductive hypothesis. We therefore assume the contrary. We let V = K[« ],
viewed as K-vector space, and let € be the unique hereditary og-order in G = Endg (V)
which is normalized by K[« ]*. We set M = (m + 1) ¢,(K | F) — 1, so that [M, ] is
a simple pair over K, of which we have a realization [€, n, M, « ] on €, for some integer n.
Let U be the hereditary og-order in A = Endg(V) defined by the same lattice chain
as @, so that the * restriction > of [€, n, M, a] is [U, n, M, «].
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