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NON-UNIFORMLY EXPANDING DYNAMICS
IN MAPS WITH SINGULARITIES

AND GRITICALITIES
by STEFANO LUZZATTO and WARWICK TUCKER

ABSTRACT

We investigate a one-parameter family of interval maps arising in the study of the geometric Lorenz
flow for non-classical parameter values. Our conclusion is that for all parameters in a set of positive Lebesgue
measure the map has a positive Lyapunov exponent. Furthermore, this set of parameters has a density point
which plays an important dynamic role. The presence of both singular and critical points introduces interesting
dynamics, which have not yet been fully understood.
wmcn plays an important dynamic role. ihe presence
dynamics, which have not yet been fully understood.

FIG. 1. — Lorenz-like families with criticalities and singularities
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1. INTRODUCTION AND STATEMENT OF RESULTS

In this paper we study the dynamics of one-dimensional maps in which critical
points and singular points (discontinuities) with infinite derivative coexist and have
meaningful dynamical interaction. We consider the simplest setting of a one-parameter
family with one singularity and two symmetric critical points, although the techniques
are quite general and can easily be applied in the case of arbitrary numbers of critical
points or singularities. The specific class of maps we consider are also motivated by
models of the return map for the Lorenz flow for certain parameter values close to
the classical ones, see [Spa82].

We prove that for a positive measure set £2* of parameters, the critical points
satisfy a strong bound on the recurrence in both the critical and singular regions, and
exhibit exponential growth of the norm of the derivative. We also show that there
exists a parameter value which is a full Lebesgue density point of ^2* for which on
the contrary the critical points land on the singularity after a finite number of iterates.
The arguments and estimates obtained in the proof can be used to prove the existence
of an absolutely continuous (with respect to Lebesgue) invariant probability measure
for all parameters in Q*. Under the additional hypothesis of topological mixing this
measure exhibits exponential decay of correlation. The details will appear in a future
paper [HL].

On a more technical level we develop further the work started in [LVOO] and
make significant progress in clarifying the effect of the interaction of the critical and
singular points on the dynamics. In particular we uncover a remarkable duality between
criticalities and singularities as far as control of the distortion and the dynamics is
concerned. The infinite expansion at the singularity allows us to obtain somewhat
stronger statements as compared to analogous results in the smooth case but it creates
non trivial technical difficulties which require strong control of the recurrence. It turns
out that the bounded recurrence condition which is needed is exactly the same as that
needed to control the recurrence near the critical points. Consequently the arguments
for estimating the parameter exclusions need to be significantly generalized compared
to those used (for example by Benedicks and Garleson [BG91]) for the quadratic family
which take advantage of certain characteristics of the critical point (in particular the
notion of binding) which cannot be used in the context of singularities. We have set up
the statistical argument in a more general way which allows us to treat the singularities
and criticalities simultaneously and also clarifies the principal steps in the smooth case.

We will consider one-parameter families of interval maps {fa}a^R of the form

/^)=sgn^(/(M)-^),
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where/: R'^ —> R^ is C2 (except at the critical point where it is C1) and satisfies:

l./(^=^), 0 < ^ < 1 ;

z./^-^-y^+^d^-^), ^>i;
3./^)<0, .̂,

4. 0 <^) < x^ where/'(^) = ^/2,

5. K/2/^)! > 2 for all x E [-^, ^ \ {0} such that^) € [x^c].

We also require the orders of the critical points and the singularity to satisfy

0 < ^ A < 1 and ^ + ^ < 2 .

We shall call families of maps satisfying the above conditions, Loren^-like families of maps
with criticalities.

Conditions 1 and 2 just say that/has a singularity at 0 and a critical point at c.
Condition 3 is a natural convexity assumption. Conditions 4-5 are open conditions used
in [LVOO] to prove that for parameters a < c the dynamics is uniformly expanding. At
the parameter value a = c the critical points enter the domain of the maps (see Fig. 1),
and for a > c there will be parameters for which it is periodic. Thus there will exist
open sets of parameters for which an attracting periodic orbit exists. Nevertheless, as
shown in [LVOO], c is a Lebesgue density point of parameters for which the dynamics
continues to be of an expanding nature. The proof uses the fact that for a = c the
singularity maps to the critical point, and the condition 0 < £^c < 1 which implies
that the expansion near the singularity is stronger than the contraction near the
critical point in the sense that the norm of the derivative off^(x) tends to infinity as
x approaches the singularity (2Lndf(x) approaches the critical point). This implies that
the maps /, a > c continue to be uniformly expanding outside some small, parameter
dependent, neighbourhood of the critical points.

Here we will impose quite different starting conditions on our maps: we will start
bifurcating with the critical points well inside the domains under consideration, and
we consider the situation in which the critical points are mapped into the singularity
after some finite number of iterations, thus making no assumptions on the orbits of
the singularity. Figure 2 illustrates the situation we are considering. To guarantee the
suitable expansivity properties for this new starting parameter and its perturbations,
i.e., uniform expansion estimates outside some parameter dependent neighbourhoods
of the critical point, we need to impose the additional condition is + ^c < 2, see the
proofs of Propositions 3.2 and 3.3 for details of the way in which this condition comes
into play.



182 STEFANO LUZZATTO, WARWICK TUCKER

FIG. 2. - (a) At the bifurcation we have /^g(=bc) = 0. (b) f^^{±c)^ 0

To state our results precisely, we suppose that f^(±c) = 0 for some small e > 0
and k = 2. The case A: ^ 2 can also be treated with very minor modifications in the
proof. Our bifurcation parameter will be r|, and we will study the bifurcation

Jc+e ^c+e+ri-

Theorem 1.1. — Let {fa} be a Loren^- like family of maps with criticalities and suppose
thatf^c) = 0 for some small e > 0 and k = 2. Then there exists K > 0 and a set a* C R of
positive measure such that, for all a € ^2* and for a.e. x € {—a, d\,

liminf^ log |(/:)^)|^.
n—roo ^

Also, the parameter a = c + £ is a two-sided Lebesgue density point ofQ*, i.e.,

m(fl* n [c + £ - K } , C + £ + T|]) _

TI-O 2T1

The proof actually gives a stronger but rather more technical statement about
the recurrence of the critical points in the singular and critical regions. It also shows
that each parameter value a G Q* is accumulated by parameters not belonging to £2*
for which the conclusions of the theorem hold, i.e., which satisfy the properties of
our map fc^ and which can be used as starting points for the entire construction.
We remark once again that we could easily suppose k ^ 2 in the assumptions of the
Theorem and obtain the same result with essentially no modification of the arguments;
we only use the fact that the derivative of/^~1 is uniformly bounded above and below
(in phase and parameter space) in a neighbourhood of the parameter c + e and of the
point fa(c).
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Before giving an outline of the proof, we make a final remark on the relation
between the families of maps we have defined and the so-called Loren^ Equations [Lor63].
This system of ordinary differential equations in R3 has been enormously influential
in Dynamics, providing inspiration for the definition of a variety of examples including
the geometric models of [ABS77, GW79] and Henon maps [Hen76, HP76]. The
one-dimensional families of maps we study are a simplified model for two-dimensional
return maps associated to the flow of the Lorenz Equations. Here we attempt to
describe the transition between the essentially hyperbolic dynamics for r w 28, and
the dynamics for r w 32 in which the geometry changes through the appearance of
folds, modelled by critical points. In joint work with M. Viana [LV], the first author is
generalizing the one-dimensional techniques presented here and the two dimensional
techniques of [BC91, MV93] to study the dynamics of a two-dimensional model of
the return maps. For the so-called classical parameter value r = 28, the second author
has recently solved a more than 30 years-old open problem by showing that the actual
Lorenz equations exhibit a global non-trivial attractor whose first return map satisfies
strong hyperbolic properties [Tuc99].

Acknowledgments. — We gratefully acknowledge the financial support of the
Swedish Royal Academy of Sciences and the PRODYN programme of the European
Science Foundation as well as IMPA, Warwick University and Uppsala University
for financial support and for providing the most stimulating and productive research
environments.

2. OUTLINE OF THE PROOF AND REMARKS

2.1. Notation

In what follows, we will use the positive constants 9, 67 and K, satisfying the
following conditions:

i<e<e'<^ ,nd i<-«^.

We also fix some small £ > 0 and a > 0. Our bifurcation parameter T| is always small
compared to £, i.e. £ 3> T|.

We define the parameter space ̂  = [c + e — T|, c + £ + T|], and its associated
dynamical space 1̂  = [—{c +£+T| ) , ( ;+£+T| ] .

We will also be using a few neighbourhoods in our proofs. Let us define the
following critical neighbourhoods

A^ = (±.-£K, ±.+£K), ̂  = (±,-^9, ±^9), A^ = (±C-^\ ±C^\
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and the following singular neighbourhoods

Af^-e21^), A9^-^), A^-^'V).

Observe that we have A^, D A^, D A '̂,, and A8 D A® D A®'. We will also define unions
of these neighbourhoods:

A^A^UA^UA8,

and similarly for 6 and 9'.
We will define a dynamic distance as follows:

S{x) = min{|4, \\x\ - c\}, S)((o) = infS)(^),
jceco

where (D is a non-empty interval. Throughout the text, we will also use the notation
Xj = xj{d) =fja{x) for all x e [—a, a] and for allj ̂  0. In particular, we will study

)̂ =/^),

and view this as a function from parameter space to dynamical space. Finally we
introduce the notion of bounded recurrence.

Definition 2.1. (Bounded Recurrence). — If a G 0^ and if 1 < Vi < ... < \s < n are
the times at which c^ C A0', we say that the parameter a satisfies (BR)̂  = (BR)̂ (a, T|) if for all
k G [1, n\ we have

^{c^^e-^ and ^^ ^ e-^.
n-

V^k ''

Notice that the first condition becomes redundant for times larger that

e' - e ,
N = ———logrT1.

uc

2.2. Outline

In section 3 we discuss the dynamics and in particular the derivative estimates
outside the critical region A9' (from now on we shall often talk about critical region
when referring to the union of the corresponding critical and singular regions). We state
some estimates from [LVOO] which show that the dynamics is essentially expanding
outside A8: the small derivative at points near A^ is pre-compensated by the large
derivative at their preimages which lie very close to the singularity The neighbourhoods
A^, however, are much smaller and this is not longer true for points in A^\A^. Thus
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the main idea here is to use the fact that, at the bifurcation, points near the critical
points are mapped very close to the singularity. This suggests that the contraction
near the critical points can be compensated almost immediately, and in fact result in
expansion. For these points the derivative is post-compensated by the large derivative at
their images which lie near the singularity. We also show that condition (BR)^ implies
exponential derivative growth along the critical orbit at rates which are bounded above
and below by constants independent of n.

On both a heuristic and technical level these expansion estimates are the
fundamental and essentially the only ingredients of the entire proof. Combined with a
Lemma comparing derivatives with respect to the parameter to derivatives in the phase
space they imply a degree of randomness in the distribution of high iterates of the
critical points (for different parameter values). Therefore iterates of the critical points
at certain given times are essentially equally likely to be anywhere in phase space.
Consequently there is a very small probability of them being very close to the critical
points or the singularity. The fact that our bounded recurrence condition implies an
exponential growth of the derivatives allows us to continue to take advantage of this
principle for those parameters which are good at a given stage in the iteration. The
fact that Q* is not an open neighbourhood of T) reflects the fact that the uniform
expansion estimates only hold a priori outside a neighbourhood of the critical points.
On the other hand, the fact that T| is a full Lebesgue density point of t2* reflects the
fact that the expansion estimates hold on a set which tends to the entire phase space
as T| —> 0.

The precise formulation and formalization of these ideas involves the construction
of a special family of partitions satisfying some combinatorial and analytic estimates
which allow us to show that sufficiently often the distribution in phase space of high
iterates of critical points is sufficiently close to that of a random process. In section 4
we give the complete proof of the Theorem modulo two technical estimates which are
proved in the remaining sections. We start with the inductive definition of a nested
sequence of sets Q.^ C ... C ^(1) = ̂  and associated partitions ^9(n)...^(l) satisfying
certain properties, maybe the most important one being that the recurrence junction

^)--Ei°g^
V^k 'I

is essentially constant on elements on ^(A;), k ^ n (we note that the definition of ^{k}

given below differs slightly from this one) and satisfies J^ ^ OCTZ, i.e., condition (BR)^
is satisfied. The precise definition is by induction and the general inductive step will
be proved in sections 7.1 and 7.2.

We then define the set B* as the intersection of all ^), and show that |Q*| > 0
and that it has c + e as a Lebesgue density point. To achieve this, we show that the
measure of t2^~^ \ Q,^ is uniformly exponentially small in n and that there exists
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N(r|) —> oo as T| —> 0 such that no exclusions need to be made before time N,
i.e., Q.^ = ^(J-1) for all j < N. The second part of this statement depends on the
specific combinatorics of the maps; the first part amounts to estimating, in probabilistic
language, the conditional probability of not satisfying (BR)^ given that (BR)^_i is satisfied.
The approach is the following: we consider the 72:th iterates of maps in Q^"^ and
refine ^2-1) to a partition S^ {ri) of Q^"^ based on the dynamics up to time n, and

such that J%^ is essentially constant on elements of S^ ^. A key technical estimate
(whose proof is postponed to sections 6.1 and 6.2) allows us to link the si^e and number
of elements of S^ {n) to their recurrence, and in particular to show that the elements
with large recurrence are small and not too many. Therefore the average value of J^^ over
Q(^-I) is very low and it follows by a standard large deviation argument that for most
parameters J^ will be small and so they will belong to Q^.

2.3. Remarks

The kind of results and techniques presented here can be traced back to the
fundamental paper ofjakobson [Jak81] in which he proved the (measure-theoretical)
persistence of maps with absolutely continuous invariant probability measures (acip's)
for the quadratic family of one-dimensional maps. There exist today several proofs
of this result, including [BG85, Ryc88, Tsu93b, Yoc] (see also [LuzOO] for a proof
in the spirit of the proof given here and for a discussion of the similarities and
differences between some of these approaches), and some generalizations including
[dMvS93] where smooth maps satisfying a non-recurrence condition of the critical
points are shown to be Lebesgue density points of maps with acip's for generic
families and [Tsu93a] where this is further generalized to smooth maps satisfying a
bounded recurrence condition similar to our condition (BR) and some other technical
assumptions. In [Ree86] an analogous result was proved for rational maps', in [Rov93]
a family of so-called contracting Loren^ maps was studied where a discontinuity coincides
with the critical point; the case of coexisting critical points and singularities with
infinite derivative was first studied in [LV99]; in [PRV98] a class of maps with an
infinite number of critical points and in [Thu98] a family of maps with completely
degenerate (flat) critical points are considered. There exist also some higher dimensional
generalizations of the methods and results presented here, see [BC91, MV93, Ly PRV.
Gos98].

We remark that the existence of acip's is a consequence of some more basic
geometrical/analytical properties. Thus the kind of results we are discussing can be
conveniently split into a first stage in which such conditions are shown to be persistent
in parameter space and a second stage in which they are shown to imply the existence
of an acip. Several of the references mentioned above only deal with the first part of
the work although remarkably the invariant measures can usually be constructed using
essentially the same arguments and estimates as those used in parameter space, see for
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example [You98, HL]. In fact this is a very deep aspect of the theory whose complete
significance is not yet completely clear. Notice also that in the higher dimensional
context the invariant measures are not usually absolutely continuous with respect to
Lebesgue since they are supported on zero-measure sets but they satisfy the so-called
SRB property: conditional measures on unstable manifolds are absolutely continuous
with respect to Lebesgue measure restricted to these manifolds.

It also seems worth to point out that notwithstanding the extensive amount of
research work mentioned above, the feeling is that we are just breaking into the field
and do not yet have a complete and clear understanding of the basic principles at
work. In particular, specific examples still have to be approached on an ad hoc basis
and it is not clear how general the methods used so far really are. The proofs of most
of the results mentioned are long and technical. This appears to be due in part to the
nature of the subject and in part to the fact that it can still be considered pioneering
work. Therefore an overall, mature, heuristic overview is not easy to present. We have
made a special effort here to break up the proof as much as possible into small steps
so as to clarify the extent to which the various arguments hold more generally, and
the extent to which they are tied to our specific example.

Finally we give a few words of motivation and some open questions which arise
naturally out of the present work. Maps with discontinuities are extremely natural and
important, arising for example in billiards or as return maps for flows with equilibrium
points, and very often in modeling and applications. Discontinuities bring with them a
significant amount of technical problems even in the uniformly expanding or uniformly
hyperbolic situations and thus so far must research has been essentially restricted
to these cases. However it is to be expected that critical points, or in the higher
dimensional context folds and homoclinic tangencies, will also occur quite naturally
and therefore examples of systems in which both phenomena occur are bound to
constitute an important object of study in the next few years. Techniques such as the
ones presented* here will hopefully play a significant role.

Clearly it would be particularly interesting to identify and study phenomena
which do not occur in the smooth context and which arise specifically from the
interaction between criticalities and singularities. For example we mention the question
of the existence of renormalizable maps in which the renormalization domain includes
both the critical points and the singularity. Are there such infinitely renormalizable
maps? What are their dynamical and ergodic properties? Are there fixed points of
renormalization? Another question is the existence (and persistence) of maps having
strictly non-uniform negative Lyapunov exponents., i.e., maps in which the derivative
along certain orbits is asymptotically decreasing exponentially but which accumulate the
singularity This problem might be related to the existence of wandering intervals since
by Pesin theory such a point would have a local stable manifold which would amount
essentially to a wandering interval.
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3. EXPANSION ESTIMATES

In this section, we will prove that critical points satisfying certain bounded
recurrence properties (see Definition 2.1) have positive Lyapunov exponents. The rest of
the paper will be devoted to estimating the measure of the set of parameters for which
the corresponding critical points satisfy the required bounded recurrence condition.

For the results of this section we shall rely constantly on some estimates about
the relative positions of first and second interates of the critical and singular regions
with respect to each other. These estimates are collected in the Appendix. For the
moment we just observe that by our definition offa-> we have the following inequalities:

Ml: For all x ^ 0 close enough to the origin,

|/^)+sgn(^| ~ \xf5,

/^)-1^-1.

M2: For all x close enough to one of the critical points, ± c,

\fa(c)-Mx)\^\\X\-cfc,

I/^MN-^'.

Here fa(x) + sgn(x)a ^ {xf' means fa(x) + sgn(x)a = ^(1^1^). We shall use this
notation in the remainder of the paper.

In the proofs of the two first propositions below, we will use the following, slightly
modified version of Lemma 2.3 from [LVOO]:

Lemma 3.1. — Let p € (0^ 1). There exists CQ,'k > 0 such that/or any a (E [^+pe^ ^+£]^»
where £ e (0, Co), and/or any x G \—a, a] we have the following:

1. ifx = ̂  .... ̂ -i ̂  then W(x)\ ̂  min{̂  \fM}^n~{} ;

2. if, in addition, Xn C A^ then |(/^(^)| ^ A

The two following propositions improve Lemma 3.1 by allowing much closer
returns. Our first proposition states that we have expansion along pieces of orbits that
stay outside the critical region A9 for a while, and then fall into it.

Proposition 3.2. — Let a = c + £ + r\, where £ and T| are taken sufficiently small. Then, for
any x € [—a, a], we have the following:

ifx = XQ, .... ^_i ^A9', but Xn € A8', we have |CO'( |̂ > e^.for some X > 0.

Proof — Case 1: Suppose that xj ^A8 for all 0 ̂ j ^ n— 1. Then the second part
of Lemma 3.1 directly gives the result by taking £ + r| G (0, Co) and r) <^ £.
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Case 2: Suppose that there exists k C [0, n - 1] such that xj, G A8 \ A97. Then
Lemma 3.1 is not applicable, but by using the property f^c) = 0, we can compensate
for the small derivative at x/,. This is how it works: by our choice of A8 and A9', we
have that ri9' ^ \Xk-c\ ̂  ̂ . As \{f^'(xk)\ ̂  C,\Xk-c\^-\\Xk- c\^ +T^-1, we have two
cases:

(1) If \Xk — c^ ^ T|, we have

k - ̂ (k - ̂  + il/--1 ^ \Xk - c\^-\2\Xk - cf^^

^C^-cf^^-^=C^-c\^-1

^ Gse^-1).

This can be made arbitrarily large by taking £ small, since £^s — 1 < 0.
(2) If \x/, — cf6 ^ T|, we have

k - C\^-\\Xk - C\^ + T1)^-1 > \Xk - ̂ -W1 ^ C3^^e/(^-V--l

^GsTi9^--1^-1.

Using the fact that O^ - 1) + t, - 1 < 0, this can be made arbitrarily large by taking
T| small.

Furthermore, if ^ C A8 \A9 7 , the next two iterates will stay outside A97 if £ is
taken small enough. Thus the small derivative at Xk will be compensated before any
further iterate of ^ can re-enter the critical region. Combining this with case 1, we
get the desired result. D

The next proposition deals with points that have just left the critical region.

Proposition 3.3. — Let a= c + £ + r|, where £ and T| are taken sufficiently small. Then, for
any x G [—a, a], the following holds:

ifx = XQ, ...,^_i ^Af, but ^_i G A97, we have |(/^(^| ^ e^.for some i > 0.

Proof. — Case 1: Suppose that ^ ^A8 for all 0 <^j ^ n- 1. Then, i f £ + r i G ( 0 , £ o )
and T| ̂  £, the first part of Lemma 3.1 gives

|(/:)^)|^min{^,)/^)|}^-1).

This directly gives the result by noting that x_^ G A97 => \f^(xo)\ > ̂ /2.
Case 2: If .̂ € A8 \ A97, 1 < |Lli < ... < |LI, < n, then C,^^^ ^ |/̂ .)| ^

C^K(^-I) ^^ ^ ^^^ ^ ^ ^^ proof of Proposition 3.2, the small derivatives
at x^ are compensated by the large derivatives at ^+2. The worst thing that can
happen is that the final return to A8 \A9 ' , ^, is not compensated. This happens if
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^ ^ {v^k + I ? V^k + 2}. However, we will have compensated for this loss of expansion
already at ;q, since x^ C A97 =^ [f^)\ > C^^. As j/^)| > GiTl9^-^, we have

K/^1)^)! ^ C4T^-1^-V/^-1) = G4^-1)T^9/^-1)-(1-^ ^ ̂ +1),

since G^, -!)<(!- Q. Finally, if TZ = |̂  + 2, we observe that l/^n-i)| > y/2. D
Hence, given a member y of our family of maps, we know that Propositions 3.2

and 3.3 hold for all^, where a is sufficiently close to the bifurcation parameter c+e.
The next proposition tells us that if a € ̂  satisfies (BR)^ for all n ^ 1, then its

associated critical orbit has positive Lyapunov exponent.

Proposition 3.4. — If a G ̂  ̂ ^ (BR),, ̂  K/^i)! ^ e^, for some \ € (0, X).

In the proof we will need the following simple lemma:

Lemma 3.5. — If a G Q^ satisfies (BR)̂  (TO/ s is the number of returns of the critical orbit
to A0' before time n, then s ^ —an/logri9'"9.

Proof. — If c^ G A9 , we have 2)(^v) ^ 'H6 and therefore, from the second part of
(BR)^, we have

ri97 _ 2)(^v.)
-s ^S^^-l^^S-^-^^.

' Vi^n *

which directly gives the result. D
This implies that s can be made small compared to n by taking T| or a small.

Proof of Proposition 3.4. — Let 0 < Vi < ... < v^ n be the times at which Cy. G A9'.
Then, by the chain rule, we have

i(/:y^)i= K/I'y^/^v.x/?"""1/^!) ...f^w^5-1}'^.
By Proposition 3.2 and Proposition 3.3, we have

IC/I')^)! > ̂ \
K/^"1"1)^,.,^)! ^ ̂ -v--1) for i=2,...,s,

IC/r^1)^.)! ^ ̂ (n-v--l)•
This means that we have expansion between returns to the neighbourhood A9 . However,
we must also take into account the small derivatives from the returns to the critical
regions, A^. Since the critical point is of order £^ there exists a constant G G (0, 1)
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such that [f^(x)\ ^ C\\x\ - ̂ -1 ^ C\\x\ - c\ for all x G A^,. Therefore, assuming the
worst case, i.e., that all returns to A0' in fact are returns to A9^, we get the following:

|/̂ .)| ^ G2)(^.) fo rz=l , . . . , . ,

which gives

K/^i^^ni.wi.
z=l

Taking logarithms, we get

j-

log |(/:)̂ i)| > Un - s) + ̂  log |/̂ v,)|
2=1

J

^^-.)+^log(GS)(^.))
i=\

s

=Un-s)+s logC + ^logD(cv,)

= t(n - s) + s logC + ^(log2)(cv,) - logn9 + logTi9)

^\(n-s)+s log(Cr\6} + ̂  log ̂
z=l '

^Un-s)+s log(Cri9) - an

^ (X - a)n + (log(Cri9) - ̂ )s.

Using Lemma 3.5, we get

. -(logtCll9)-^——0^-
(A,-a)B loeTl" -

l(/:) l̂)l > ̂ -a)^ logT

(^a-a1^^)^ ,
=/ l°gn9-8 7 >^»,

if we take 0 < X < X - a(l + og ^J" ). This completes the proof. D
logr|9 e r

Observe that by taking T| small, we can get ^ arbitrarily close to ^—a(l+———),
9' — 9

and by taking both T| and a small, we can get X arbitrarily close to ^.
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In fact, we will use the following proposition, which enables us to bound the
growth of iterated intervals from both above and below:

Proposition 3.6. — If a C ̂  satisfies (BR),, then ^ ^ |(/;)^i)| ^ e^ for some
0 < A. < A < oo, where A = A(r|) and lim^^ A(r|) = oo.

Proof. — Since we already have the lower bound, we only need to prove the
upper bound, [(/^i)] ^ (An. As in the proof of proposition 3.4, we split the orbit
into returns, ^, and non-returns to A97. We will also assume the worst case, which
this time means that all returns to A87 in fact are returns to A67.

When just considering returns, the accumulated derivative is therefore bounded
as follows:

n i/x-)i ̂ n^w^.
Taking logarithms, we get

' , ' s

Elogl/;M ^ ^logCiD(^-1 = s logCi + (i, - l)^log®(^.)
?=i ?=i ^=i

j
= s logCi + (^ - 1) ^(log2>(cv.) - logll0 + logn9)

t=i

= .(logC, + (^ - l)logil9) + (^ - l^log^
1=1 ^

< ^(logCi + (^ - l)logTi9) + (^ - l)aH

< log^^g0! + (^ - ̂ g^0) + (^ - I)""

_ , logCi logri^--"— Vi——fl"^ + "i——a a, + ̂  — l)ara = Ai(T|)w.logri9"" logTi"-6 • ' '
p rt/i _ /? \

Observe that lin^^Ai^) = 5 [ "a.
\J — \J

Outside A0', we have \Cj\ > i[\6', so |/^(c,)| < Gz'ri9'^-1' for some €3 > 1. This
gives

n i/^)i <^c2^-l)<^c2^-l)
cft^' J=l J=l

= C^9^"1^ = ^^^(^-^logTDn ^ ^(TDn
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Observe that lim 2̂(11) = oo.
Now, by defining A(r|) = Ai(r|) +A2(r|), we clearly have proved the proposition. D

4. PARTITIONS AND LARGE DEVIATIONS

We give here the complete proof of the Theorem modulo two technical results
(Theorems 4.1 and 4.3) which will be proved later. We begin section 4.1 by defining
a sort of Whitney partition of A9 with the property that an element of the partition is
small compared to its distance to the critical point or the singularity. Then we give the
inductive definition of sets and partitions in parameter space essentially based on the
principle that two parameters a and a belong to the same element of S^^ if the orbits
of their respective critical points are close up to time n in the sense that they have
the same history of returns to the critical and singular regions and whenever such a
return occurs they fall in the same element of the fixed partition of A0. This simple
principle implies all sorts of strong properties such as uniformly bounded distortion.

In section 4.2 we give the main statistical part of the argument leading to the
proof of the fact that Q* has positive measure. This relies first of all on a subtle
reinterpretation of the combinatorial structure defined in 4.1. The same objects appear
in both cases but now rather than defining a family of partitions based on the dynamics
up to some fixed time we begin by constructing a kind of induced map in parameter
space, i.e., a partition (^^ with a first stopping time r|i < n associated with each
element co of Q^ having the property that either T|i = n or the images of the critical
points of all parameters in co at time T|i is larger than some fixed length, i.e., large
scale has been reached. This large scale is sufficient to give the required randomness
in the distribution that was mentioned in the outline above. Moreover, our main
technical result says essentially that the stopping times decay exponentially fast: the
set of points which does not belong to a component which has achieved large scale
by time n is exponentially small in n. The details of the construction also require the
definition of ^(2), ..., (^(n} but in essence these are just refinements in the sense that
once an element of (^^ has reached large scale its future dynamics and therefore its
combinatorial structure is essentially a scaled copy of the structure of the whole.

4.1. The combinatorial structure

Partitions in dynamical space. — Suppose, without loss of generality, that T|, 9 and 9'
are chosen such that

^ ^e'-^logTi^+l

is an integer. Then we can write

A6 = (-n9, n6) = {0}U (J I; and A6' = (-^ ̂  = {0}U \J I,
M^l M^e'
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where

iM^r'^-'^) and I^=-I;

for all r ^ 1. Subdividing each 1^ into r2 subintervals of equal lengths, we get partitions
S^s and ^ of A9 and A9', respectively. A generic element in either one of these
partitions is of the form 1 ,̂ with m C [1, r2]. We let 1^ and 1^ denote the elements

ofj^ adjacent to I^, and define I;^ = I^UI^UI^. Ifl;^ happens to be one of the

extreme subintervals ofj^ we just let 1^ or 1 ,̂ depending on whether 1^ is a left or
a right extreme, denote the interval (-2r|9, -r|9] or [r|9, 2r|9), respectively. Analogously,
we define partitions of A^ and A^, by translation, and set S7 = S7_, U J^ U J^.

Partitions in parameter space. — In this section we define inductively a sequence of
subsets o fQ=t^ and their corresponding partitions. First let Q^ = Q. and ^(0) = {Q}.
Then fix 72 > 1 and suppose that a nested sequence

^(.-1) ^ ^(.-2) ^ ^ ^ ^(1) ^ ^(0) ^ ̂

has been defined as well as a corresponding family of partitions

^9(^-1) ^?("-2) ^9(1) ^o(O)

satisfying the following properties for each 0 ^ k ^ n — 1:

1. Each a G i^ satisfies (BR)^.

2. ^w is a partition of Q^ into a finite number of intervals, and for each (0 € ^w,
the map

Ck+\ : co —> co^+i := {^+i(<z) : a € co}

is a diffeomorphism (i.e., {—c, 0, ^} H {o);}f=i = 0).

3. Each 0) G ^(A:) has an associated itinerary constituted by the following information.
A sequence

0 = T|o < T|i < ... < T|,^ A;, s = J(co) > 0

of escape times. Between any two escape times r|,_i and T|, (and between T|, and k)
there is a sequence

r|,_i < vi < ... < v, < T|,, t = ^co, i) ̂  0,

of essential return times (or essential returns), and between any two essential returns
Vy_i and Vj (and between Vf and r|^) there is a sequence

v^_i < Hi < ... < ̂  < vj, u = ^(o), z,j) ^ 0,
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of inessential return times (or inessential returns). Following every essential (resp.
inessential) return there is a time interval

[v, + 1, Vy +A-] (resp. [̂  + 1, U, +A])

with pj > 0 called the binding period associated to the return time Vy (resp. JLL-).
By definition a binding period cannot contain any essential or inessential return
times although it may contain a sequence of bound return times (or bound returns).
Associated to each essential, inessential and bound return time is a positive
integer r called the return depth which is roughly the logarithm of the distance
from the singular or critical points. We define the integer-valued functions

J%^: ̂ ) -^ N and ^): Q^ -^ N,

both constant on elements of ^(A;), which assign to each a C co € S^^ the
total sum of all return depths, and the total sum of all essential return depths
associated to the orbit of co up to time k, respectively.

4. The distortion is uniformly bounded in the following sense: there exists a constant
D > 0 independent of k or of co G ^){k) such that

MT—T^ v^eco, v / ^v+^+ l ,

where v is the last essential or inessential return of (0 before time k. Moreover,
if v +j& + 1 < k, the same statement holds for all v +j& + 1 <j ̂  A:+ 1 replacing co
by any subinterval co' C co which satisfies co' C A9.

Definition ofQ^. —We first define a partition ̂ ^ of^"-0 which refines ̂ -1).
Recall that induction assumption 2 implies the following: For every co C ^9("~l\ the
map Cn. co —^ co^ is a diffeomorphism, and in particular a bijection.

1. Non-chopping times. — We say that n is a non-chopping time for co (E ^^""^ if one
of the following situations occurs:

a) co, n A9 = 0;
A) TZ belongs to a binding period associated to some return time v < n of co;
c) co^ n A6 =|= 0 but co^ does not intersect more than two elements of the

partition ^7.

In all three cases we let co G S^ (n}. If co^DA9' =^ 0 in cases b) or ^, we say that n
is a bound return time or an inessential return time, respectively, for co € ̂  (n)

and we define the corresponding return depth by

r=max{|p| :co,nlp ^ 0}.
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2. Chopping times. — In all remaining cases, i.e., if co^ n A9 •[ 0 and 0)^ intersects at
least three elements of ^7, we say that n is a chopping time for co 6 ̂ ("-l\ We
define the natural subdivision

co=o/ uJo^Uco^
(r,m)

so that each O)^' fully contains a unique element of ̂  (though possibly extending
to intersect adjacent elements) and 0)̂  and co^ are components of co^ \ (A9 D co^)
with |co^| ^ r|9 and |co^| ^ r|0.

Remark. — If the connected components of 0)^ \ (A9 n (0^) fail to satisfy the above
condition on their length, we just glue them to the adjacent interval of the form

(r,w)[r,ni)
0)

By definition we let each of the resulting subintervals of 0) be elements of ̂ n.
The intervals o/, c^ and (O^ with \r\ < r^ are called escape components and are
said to have an escape at time n. All other intervals are said to have an essential
return at time n and the corresponding values of \r\ are the associated essential
return depths.

This defines the refining partition S^ {ri) of^"^. Now let

^ = |j{o) e ^~(7Z): a^(co) ^ an/(2€)} and ^) = ̂  ̂ [a^.

Here £ = £(a, ^, ^^) is a constant which will be defined in a later section.

(n-l)p(11-

pW

M P (n)

FIG. 3. - Creating ^(n) from ^n-l)

Theorem 4.1. — ^4// ̂  inductive assumptions are satisfied/or Qf^ and S^^.

Assumptions 2 and 3 follow immediately from the definition of Q^ and S^^
given above. The bounded distortion property and the fact that all a G Q^ satisfy
(BR)^ will be proved in subsequent sections.
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4.2. The probabilistic argument

With Theorem 4.1 and Proposition 3.4 in mind, we define the set of "good55

parameters

a* =F|a('),
n^\

the point being that all parameters in t2* satisfy (BR)oo, and hence give rise to a
positive Lyapunov exponent. In this section, we will prove the following theorem:

Theorem 4.2. — Then set t2* has positive Lebesgue measure, and the parameter value
a = c + £ is a two-sided Lebesgue density point of ̂ 2*.

Escape times will play a crucial role in this argument.
From the above construction, each co G S^^ has an associated sequence

0 = T|o < T|i < ... < T|̂  ^ 72, s = J((o) ^ O? °f escape times and a corresponding
sequence of escaping components

co C co^ C ... C co^ with co^ C Q^.

Setting

co^) =oo for all s + 1 ^ i < 72

gives a well-defined parameter interval co^ associated with co G ̂  ̂  for each 0 < i ^ n.
Notice that for two intervals co, % € S^^ and any 0 ^ i < 72, the corresponding intervals
co^ and 65^ are either disjoint or coincide. Next, we define

^= u co^
coe^ (")

where the natural partition into intervals of the form co^ is preserved. Notice that
Q\is a set of the i:th escaping components, and thus differs tremendously from ^)(n)

since time no longer is preserved. Furthermore, ^-1^ = (^ \C ... C (^^ = Sl^ since
the number s of escape times is always strictly less than n, and therefore in particular
co^ = co for all co C ^[n) and so ̂  = ̂ <

For a given co G ^-1), 1 ^ i ^ 72, we let (^(co) denote the set of all elements
of Q^ which are contained in (0. We also define

A^: ̂ (co) ̂  N by A^^) = ^(T1!)^) - ̂ (T1^-l)(a).
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This gives the total sum of all essential return depths associated to the itinerary of the
element % G ^(co) containing a, between the escape at time T|,_i and the escape at
time T|,. Finally, we let

^(co, R) = {co G ^(co):A^(co) = R}.

We now state a theorem, whose proof will be postponed. It contains all we need
to prove Theorem 4.2.

Theorem 4.3. — Given any CO G (3^\ 1 < i ̂  n, and any R G N, ̂  have

1. (Combinatorial estimate)

#^(co, R) ^ ̂ /V^.

2. fAfe^ estimate). There exists a\ > 0 (independent of w) such that, given any
a e ^(co, R),

|a| ^ Icol̂ ^.
In particular, for T| sufficiently small,

(—=-^i)R al
|^^(co, R)| ^ |co|. V^ ^ Icol."^1'.

As a direct consequence, we have

Corollary 4.4. — G&^z any co G ^^-1^ 1 ^ i ̂  ^

E 18)1^^ < lol̂ -e').
©G^ ^(CO)

Proof. — Using the fact that A^^ is constant on elements of ^^(co), we can
write

E lal̂ ^ = l^^co, o)| + E 1^^(». R)!̂ '
c5e^ ^(co) ^^e'

ai aii i , v-^ i i -—R -—R
^ I00! + 2^ \^\e e

R^re/

^ |0)|(1 + ̂  .-^R) ^ |CO| (\ +2.-^9/) .
R^re/ \ /

Using the fact that 1 + 2e~x ^ e1^ for large x gives the result. D



NON-UNIFORMLY EXPANDING DYNAMICS 199

Next, we show that we remove only exponentially small sets of parameters when
going from Q^"^ to Q^.

Lemma 4.5. — For T| sufficiently small, there exists a^ > 0 such that

Q(^-I)\^) ^ ^(0) e~^\

Proof. — By the definition of Q^, we have

^(.-D ^ ̂  „ ̂  Q(-i); ̂ (.)(^ > an/(2€)}\

={ae^:e^a)>e^an}

^-^1 ^./a(»-1) da

=^a" E l̂ l̂ '̂̂ .
(oe^

^

Now we use the fact that ^(co) = ^A^(co):
2=1

^-^ ^^(co) v-^ , i ^y" ,A^)(co) v^ l̂ teo'̂ )^ |co|^4 - ^ |co|^4 z-^=l - ^
.̂ ^^ /.̂ -̂(") r.^/^ <coe^^coe^ coe^

E E |a|^(A^)((&)+E^lA^(a))^^^-i)^^^)
^ .te/A^co) ^ lai^^^^)

(OG^^-^ %€^^(CO)

^ ^ ^^^^Icol^i-e/)

coe^^-^

.̂ .) ^ Icol^^^^

^
^

coe^^-^

^/(aire/)iQ(0)i
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Hence, for T| sufficiendy small, we arrive at

^-1)\0^) ^ ^(0) ^(4/(aire,)-^a) ^ ^(o) ^_a2^

for some 03 > 0. D

It remains to prove that a = c + £ is a Lebesgue density point for Q^ (we
now indicate the dependence on T|). This will immediately imply that Q.^ has positive

9' - 9 _, .
measure. Up to time N = ———logT| we will exclude all parameters in Qri giving

rise to returns closer than T|9, i.e., returns to A9. Furthermore, if after an exclusion,
we are left with components having size less than r|°, we exclude those pieces as well.
This gives at most an extra factor two of the size of the excluded parameters. Another
factor three comes from the fact that A9 is made up of three components. Assuming a
"worse than possible55 scenario, that the expansion between returns is identically one,
and that each interval is split in two at every iteration, we get a very blunt estimate
of the size of set of excluded parameters, E(r|, N), at time N:

|E(TI, N)| ^ of; 2^ < 12 • 2V = 12^^ = ^ii9^10^"^
i=0

log 2 . , log2^ log2/v
= ̂ V"^ = l2n(l+-%-)9--%-9'.

e'-e
log 2, we get |E(r), N)| ^ T)1'1'7, for some y > 0.By imposing the restriction a > e- i

^(N)| ^(°)|This means that the set of non-excluded parameters satisfies |Q^ | > (1 — TI^I^TI \, and
since we have

n oo

W > (i - E^Wl and 1^1 ^ (1 - E^Wl'
z=N z=N

it follows that

1^1 ̂ (i-E^0'2^1-1^!
i=N

"a,^
> (1 - G.-ct2N)(l - 11̂ | ^ (1 - C^'-^(l - Tf)[^|.

It is now plain to see that

l"nl
l lmTn(^= 1?
n-o \Q^'\

which concludes the proof of Theorem 4.2.
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5. FUNDAMENTAL RESULTS

5.1. Parameter dependence

In this section we will consider the family of maps

(p^: ̂  -> 1̂  defined by (p^) =/:(^),

where c\ is the image of the critical point under fa. Observe that (p^a) is just the n:th
iterate of the critical image under the map fa. We will prove that if the derivative
along the critical orbit CO'^i) is growing exponentially, then the derivative is growing
exponentially along almost every orbit in \. In particular this means that the map^
has positive Lyapunov exponent.

By the definition of Q^, we know that fa satisfies some uniform expansion
estimates outside the critical regions whenever a G t2^. By considering ^(Qm), we
are taking care of all of these maps simultaneously. However, the orbits of the critical
point must also satisfy some bounded recurrence (condition (BR)) to ensure that the
maps fa have positive Lyapunov exponents. This means that whenever (p"(t2ri) comes
too close to the singular or critical points, we must discard some parameters. To make
sure that we do not throw away all parameters, we need (to start with) to show that the
images (p"(co) of small intervals co C Q^ in parameter space are growing exponentially
as long as the derivatives along the corresponding critical orbits are.

The first result tells us that the growth rate in parameter space is comparable to
that in dynamical space under certain conditions.

Proposition 5.1. — There exists a constant P > 1 such that if |(/^i)| > e^ for all
1 ^ k ^ n and T| is sufficiently small, then, for a € ^rp

y^MML^
\(f.m\

for all 1 ^ k ^ n.

Proof — By explicit calculation we have

M(i=_i+y-^M
cn^o ^(/ly^i)

(notice that we do not include modulus signs in the expression). Thus we need to
show that the sum on the right hand side is bounded away from 1. By definition, the
partial derivatives Qafa(c!) only take on values ±1, and therefore by the assumption on
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the growth of the derivative, and by the fact that X can be chosen close to log -\/2, we
have

9aW 1E € —.
4(/:)^>)| 2

Hence we just need to consider the first three terms, and show that

y^ 9afa(Ci)

-" C/l) l̂)

is bounded away from 1/2. This follows easily from the definition offa since for the
first term we have Qafa(c\)/f'^) < 0 and for the second two terms we have |(/^i)|
large. D

In particular, this means that as long as the space derivatives [CO'^i)! are grow-
ing exponentially for all a € CO C Qri? the maps (p": CO i—> (p^co) are diffeomorphisms,
since K^)'^)! ^ ^ICO'^i)! f 0. As an important consequence we have the following
Parameter Mean Value Theorem:

Corollary 5.2. — Let co C Q^ and suppose that |(/̂ i)| > e^ for all 1 < k < n and for
all a C co. Then for every pair of integers 1 ^ i ̂ j ^ n there exists some ^ C co such that

P^/OW)! ^ ̂  ^ P-'K/^W)!.

w^r^ co,- = ((̂ (co) a/zfl? co, = (p'(co).

Proo^ — Consider the map (p:co, ^- co^ given by (p((p'(^)) = (^(a) = ^(^"'((p^))).
By the Mean Value Theorem there exists ^ C co such that |co^| = ^'((p^))!!^!. Then,
by the chain rule and Proposition 5.1, we have

l9/((p^(9)|=|((p/)/®((p-^y((p^(Q)|
^ P-1!^)^)!?"1!^)^^ = F'^/fW®)!-

The lower bound is obtained in the same way. D

5.2. Binding

In this section we will show that if o^ = (p^co) C A6, and if all parameters in co
satisfy (BR)^, then a large expansion can be guaranteed after a certain time p. The
point is that the parameter intervals grow sufficiently large, so that when they intersect
A9, only a very small proportion of the intervals are excluded due to deep returns.
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Definition 5.3. — Given x 6 A9^ we define the binding period of x as

p = p(x) = max{yz G N: |̂  - ̂ | ^ riV2^' for 0 ̂ j ^ n}.

In particular, this means that |^,+i-^+i| > r)9^-201^1). For notational convenience,
we will define the binding period to be zero for returns to A9. We will now list some
consequences of this definition.

The first consequence is that we have bounded distortion during binding periods.
Given a small interval, co = \x,y\ C A9 we define co* to be the convex hull of co and
c: if j < c, we have co* = co^ = [x, c] and ooj = /^(co*) = [xj, c^\. Hence we have
|co;| ^ TiV2^ for 0 ̂ '^ and |co; |̂ ^V20^).

Proposition 5.4. — T%^ ^^^ ^ constant D = D(a) ^^ ^^

(/J(^i)Dist(/,,cor)= sup ^D, v^e[ i , j&].
^,,^|(/Xi)|

Before we prove this proposition, we will prove two simple lemmas:

Lemma 5.5. — Given an interval co^ such thatf\\^. is a diffeomorphism for 0 <^j ^ k— \,
we have

y^-i^
Dist(/^, co) ^ ^z^=o •7' where D-

%•)
sup \f'tr\^,^e(o,|J aW

Proof. Using the chain rule, we write

{f"a)'(S)

(/^®

TT/^^)

j=0 J a^j)

A-l /n i^
J=0 \

f'a^-f'^A

f'a^ 1

k-\<n(
J=0

f 1/^-)-/^-)1
I m\

By the Mean Value Theorem we have |/̂ ) -/;(€,•)! = \f'^Mj - ̂  ̂  \f'^M for
some ^ G [̂ p ^]. Therefore

^-1 / I rniv. \ I \
^;©Dist(/^co)< sup II 1+

^,^€0),j=o \

^-1

^ sup e
^j^j

E-o^ 1+ l/;̂ )
•̂=0 |0),|

^ sup ^
^^•eo),

^-i|W
2 ,̂=o^0 ̂ ;̂

1^-1
= ̂ =0^-ID<;=o ^

where we used log(l + x) ^ x in the final inequality. D
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Lemma 5.6. — Given an interval co such that |co| < 2)(co)^ ^r^ m^ C such that

sup
^€0) |/^(9

^ Gsup
C

^ 2)(z) S)(co)

Proo^ — We may assume that co D A8 =|= 0, otherwise the lemma is trivial.
So suppose first that co H A8 =(= 0. Then co C 2A8, and by Ml, we have

|/:©| ^ C2D(co/--2 for all ^ € co,

and

|/^)| ^ G3(S)(co) + [col/--1 ^ G4®(co)^-1 for all ^ € co.

Hence, by taking quotients and supremum, the result follows. In the remaining case,
co DA8 =[= 0, the bound on the second derivative is just like the previous case, using M2
instead of Ml. To bound the first derivative from below, we just observe that

1/KQI ̂ G^ for all ^ G co,

which gives the desired result. D
We are now ready to prove Proposition 5.4.

^k-\Proof of Proposition 5.4. — By Lemma 5.5 we only need to estimate i - = o Dp
V k e [1,^]. Due to binding, we have [coj| < r^e-2^, V/' G [l,j&], and due to (BR),,
we have S{cj) ̂  r^e'^. Combining these two inequalities gives 33(cop ^ ri9^"^ — ^-2(x/).
Thus

S)(con ^ TiV^ - e-2^ > ̂ e-^ ̂  |co.*|,

so, by Lemma 5.6,

W < C, sup —— < C^-^' - e-^r1 < C^-6^,w ^ S(Zj)

which means that

D, ^ G2r|-e^T^e,-2a/' = C.e-^.

Hence, for A: € [1,^], we finally have

k—\ oo

^D,< C2 Y^e-^ < €4 = C4(a),
j=0 j=0

which completes the proof. D
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The next consequence is that we can get an idea of how long a binding period is.

Lemma 5.7. — Let x G A9 with S{x) ̂  ̂ e-^. Then, ifr\ is sufficiently small, we have

tc , S{x) ^ £. S(x)
-^^^^^^-I10^'

Furthermore, we also have p(x) < n.

Proof. — As usual, let co* = [x, c\ and set p = min{p, n}. By the binding
condition, we have \^\ <^ ri9^"20^. Combining this with the distortion estimates from
Proposition 5.4, the estimates of the growth of the derivative from Proposition 3.4, and
the PMVT, give

TiV20^ ^ |co^| ^ Gi|co^-1) ^ G22)(^c^(p-l),

which gives

A ^logS^+eiogii+iogCs t. W
p ^ ——————^T2a—————— ^ -I^^5

as long as 3)(x) ^ T|9 is small enough (which can be achieved by taking T| small). By
(BR)^, log®^)"1 + 91ogr| ^ an, and since logS)^)"1 < logS)^)"^, we also get

A i,an
P-i-^<n

1\

as long as a is sufficiently small (a < — works). Hence we always have p = p, i.e., the
^ c

binding finishes before time n.

To get a lower bound on p, we use the estimates on |co*+J (|co^ | ^ ri9^"201^)
and, once again, the distortion estimates from Proposition 5.4, the estimates of the
growth of the derivative from Proposition 3.6, and the PMVT:

TlV20^ ^ |CO;J ^ C4|0)^ < G5S)( ,̂

which gives

, ic logg^-1 +eiogTi+iogG6 ^ , w
P ^ ——————1T20—————— ^ -2Alog^5

as long as S(x) ^ T|9 is small enough. This completes the proof. D
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We also want to know how much a small interval has grown during the binding
period. If co C 2A6 is an interval, we define the length of the binding period associated
to co as

p = p{oS) = min{p{x): x € co}.

Lemma 5.8. — Suppose that 1̂  C co C 1̂  for some \r\ < an, and * G {—c, s, c}.
Then

1+^1,
[co^i[ ^Cr^e 2 rl > |co|

for a sufficiently small. Furthermore^ for all x G co, we have

K/r'r^i > ̂ r-
Proof. — We split the proof in two parts:
* = s: Here we use the fact that, by definition, p = 0, and so

|co^i| = [coi | ̂  Gi|<- ^ C^Ti^-^-l/lf^.

Now we have to be a bit careful: since r^ ^ \r\ ^ an, we do not have an upper bound
(depending on T|) for |r|. Continuing the estimate, and recalling that is < I? we get

1+^ \-£, 1+^
|co^i| = [coi[ ^ Gs^V-^'^.-^'^/lrl^) ^ C4T^V^-lrl

for r| sufficiently small (i.e. |r| sufficiendy large), and a sufficiently small.

* = c: First, observe that co C I ̂  =^ S)(co) ^ ri^"^^. Hence, by Lemma 5.7,

^(co) ^ -^g^p ^ ^(1^1 + 1) ^ ^^IA-

so, by Definition 5.3,

|co;J ^ Ti9,-201^0 ^ n9.-2^-8011^^ ^ riV1201!^.

By M2 there exists a constant Gi such that

|(0i| ^^C,
l^^-'-^^-^^-

Thus we can use the distortion estimate from Proposition 5.4 to get

|^&+l| ^2

KiF ^ ? ^+1
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which gives us

i+^
|co^i| ^ G2|co;Jr-2 > C^V120^^-2 » CW.--^ » [co|

by taking a small enough, and recalling that |co| ~ r ^ e ' ^ / r 2 .
The second estimate follows immediately using the bounded distortion and

Corollary 5.2. D

6. PROOF OF THEOREM 4.3

6.1. Combinatorial estimates

The following lemma is one of the main motivations behind the method of
construction of the partitions ^^.

Lemma 6.1. — Given co G ^-1) and an arbitrary sequence (r^, mi), ...,(r^ m^ with
\rj\ ̂  re/ and mj G [1, rj], there exists at most 7r^ elements 65 G ^^ 65 C co with essential
return times Vj C (r|,_i, T|,) such that c O v F l I ^ . ^ 0 for j = 1,.... t.

Proof. — We simply have to calculate how many ways a set co^ can become
an escape as in case (3a). This number is clearly bounded above by the number of
elements of the partition S^\^\^ plus two elements for each ^* which can escape by
falling outside A9. The number of such elements is at most 3(2^, + 2) ^ 7^,. D

We now define a family of integer-valued functions ^^:Q.^ —> N, constant on
elements of ̂ , which assign to each a G co G ̂ f the total sum of the absolute values
of all essential return depths associated to the orbit of co up to time i. For i G [1, n\,
take co e ̂ -1), and consider the partition ̂  restricted to co. For each £5 6 ^|co
there are escape times T|,_i(co) and r|^(£5). Let

A c^{i) _ yW cr^-l)
Ae>n - G n - ̂  n

Then Ag^S) simply adds the essential return depths of 65 occurring between the
escape times r|,_i(co) and T|,(co). We have the following proposition:

Proposition 6.2. — For all T| sufficiently small, co G ̂ ), and R > r^, we have

#{a e ^^|co:A^^(a) = R} ^ .5R/^.
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Proof. — The proof is purely combinatorial. By Lemma 6.1, it is sufficient
to estimate the number of possible sequences (ri, m\), ...,(^, m^ for any t > 1 with
[n | + ... + |^[ = R. We begin by estimating the number of integer solutions to

A^(cS) = H + ... + H = R

for a fixed choice of t^ 1. The number of such solutions corresponds to the number
of ways one can partition R objects into t disjoint subsets, which is bounded above by
the number of ways one can pick t balls out of a row of R + t balls. This is seen by
observing that any choice of t balls out of this row will uniquely determine a partition
of the remaining R balls into at most t disjoint subsets. Using Stirling's approximation

formula for factorials, ^/<!iSk^e~k ̂  k\ ^ (1 + —^^^h^e-^ we get
~r/C

/ R + A ( R + ^ (R^ [R+tY
[ t )~~RU^^Cl~R^~cl[~~B~)

Now, by repeatedly using the fact that t ^ R/re', it follows that

R + r

' R + ^
R $

,R(1 + — k R
____re' \

R /
^i^^^^e'

re' )

We also have

'R+t^ (R+ty
\ f )

r/R(i+1)I re'
[\ f

R

)•]"•
VR^/ 1^1l^) ("J j

R
Now, by taking r| sufficiendy small (this makes re/ large), and recalling that — ^ r^,

t , R 1 , 1
we see that _ l o g — ^ —logre/ ^ —=.

K t re/ ^/re/
Hence

^log^+l/re/log(l+l/r9,)
< R + ^

< \e < \e
t , R - , 2

.R10^1/^

^ Lv^+lAe/l ^ ^2R/^
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Concluding these estimates, we obtain

/R+ A O R / /———

—— < ̂ R/V^ ^
\ ^ 7

if we take r| sufficiently small. Finally, we must take into account that the rfs may
9 . .be negative, and that there can be 3^ distinct sets sharing the same depth ^ (this is

because A9 = A9, U A9 U A9).
Q

Furthermore, by Lemma 6.1, there are at most 7r^ sets sharing the same
sequence (ri, m\\ ...,(^, m^). Therefore, summing over all possible values of t, and
keeping in mind that t ^ R/re/ and R ^ re/, we get

#{Q^^^^)=R}^7^ ^ 2^3^^
^R/re/ j=\

< 7ri, ^ ^/v^
^R/re/

^ y^R^7^ ^ ̂ v^,
if r| is chosen sufficiently small. D

6.2. Metric estimates

In Proposition 6.2, we showed that the number of intervals 65 € Q^ such that
65 c co ^ Q^~^ and A^(co) = R > 0 was exponentially bounded with respect to R.
Even more, we proved that the exponential constant could be made arbitrarily small
by taking r| small. In this section, we will turn our attention towards the sizes of the
intervals 65 with respect to their host intervals co.

Proposition 6.3. — There exists (Xi > 0 such that for all a and T| sufficiently small, and
for every interval 65 € Q^|co. co ^ Q^"^ with Ag^((o) = R > 0, we have

|6)| ^ e-^\.

Proof. — By the construction of the partition, there is a nested sequence of
intervals, 65 C co^ C ... C co^ C co^ = 00, as a result of their essential returns at times
Vi,...,v,. Write

|o)|^^ |o)^| |5)|
[co| ~ Ico^r'lo^-1)! [(o^l'

Clearly 1651/lco^l ^ 1, since 65 C co^. The remaining factors can be estimated as below:
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Lemma 6.4. — With the same notation as above, we have

i^D^'^l ,-1 .-1|(o0)[ <L" ' J ^-^ i -

Proof. — By the construction (0^ has an essential return at time Vj. In particular
I^n, c Kty^ C 1^ for some |?)| > re/, so [cOv^l > r^ e'^ / rj. This scenario splits into two
different cases: * = ±c and * = s.

i+^,
* = ±c: By Lemma 5.8, we have | ( 0 v " + i | ^ Ci^e 2 - , and by Proposition 3.2

we have \a^\ > ̂ ^'-^-^(O^J, so

|(B^i| ^ .-^'-^-^-^(o^;)! ^ |co^| <^-1^1.

Since the bounded distortion holds up to time Vj + pj• + 1, we get

,0'+i)
\W^\ ItOy^ll nVI^'l

< D i — — — — — — < D
I ^T ' 1 ! ^—| ' 1 ———^' ' l^v^+il ci-nV^"'5'

1+^, i i.^^i
^D^'^^^^^D^I^^-'' < n^ '•'+1' 2 v ] '

for a sufficiently small.
* = s: Here we use the fact that, by definition, pj = 0, and so

|(0^ll>C2|(0^|^>C3n^-^l/|^.

Now we have to be a bit careful: since \rj\ ^ re/, we do not have an upper bound
(depending on T|) for |^|. Continuing the estimate, and recalling that is < ̂  we get

i+^ i--^ i+^
Iro^ I - ICT^ I > C^^'^^f^^^/lr-l2^ > C/iTiV^"1'7'1la)v,•+J&•4-ll ~ i^v^+i l ^ ^sn e ^ / \'j\ ) ^ ^4^l ^ 5

for 'n sufficiently small (i.e. rj sufficiently large). Treating l o ^ + ^ l as in the first case,
we get

1^^ ^v^_ ^ .̂,
i i+^ ^ LJ€ • l-j

|<o^| C4'^9(^^l'/l

Lemma 6.5. — M^ ̂  ^am^ notation as above, we have

W , ̂ -r.̂ »
|ol»i| s
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Proof. — Recall that co^ = co C ̂ -1), which means that co^ has an escape time
at time |^_i = VQ.

First, suppose that co^ C A6. Then, by Proposition 7.1 (notice that the proof
of Proposition 7.1 is independent of the results of this section), we have bounded
distortion up to time Vi, and we thus have

^<Dl^<D,VH|co(0)|-
l̂ l Ico^l ^ ' v 1 1 •

i+^
Hence, we just have to show that |co^| ^ Cr|9^ "T"^ \yg ^yg ^^ cases:

(1) 0)% HA9 ^ 0: Then 1̂  C 0)% C t^ for some |r| G [1, re/], and we have a
binding period of length po following Vo. If * = ±c, Lemma 5.8 and Proposition 3.2
give

i+^
W^^W^C^e-^,

for a sufficiently small.
If * = s, we have defined the binding period as po = 0, so Proposition 3.2 gives

W ^ KJ ̂  G,|O)%|^ ^ C^V^/ld2^ ^ C^-^'/lrl2

i+^, \-e, i+£,
= C^-^l^^^l/lrl2 ^ C^e-^,

for T| sufficiendy small (i.e., for re/ sufficiently large).

(2) 0)^ HA 9 = 0: Then, by construction, |o)v°o| ^ r|9 and if * = =L c, using
Proposition 3.2 gives

Ico^l > Ico^ I > G^9^"1 = C.n^^^"1^^-1
l—v j ^ I^Vo+Sl ^ ^411 v-^411 'I

1+^

»G4T^V^^G4^^V^re/,

for r| sufficiendy small, since (ic — 1 ) 6 + ^ ^ — 1 < 0. If * = s, we immediately have

l+^
K;! ^ Ico^il ^ C5^9 = c^V--1)9» c^Ti9^^ ^ c^V-^9',

since ^^ — 1 < 0.
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Finally; if (Ov^ ^ A9, we cannot apply Proposition 7.1 to the whole of co^ up
to time Vp Note that by restricting ourselves to a maximal subinterval co^ C co^ such
that o^ C A9, we have

.Wl

^,K!i^i^<Dn9^•|^)|-
|co(°)| ^ |co^ Ico^l • ' v 1 ' '

i+^
Hence it suffices to show that [cOyj ^ Cr|9^ 2 re/. As cOvi intersects A9 (remember
that cOv0;* 3 ^v^ and cOy1^ ^ A9') and extends all the way to the boundary of A9 (we
assumed that co^ ^ A9), we have

i+^
IT^WI ^ r1 'n9 ^ r1 'n6^""^"^l^vil ^ ^6^ > ^e^ ^ ?

by the same argument as above. D

Returning to the proof of Proposition 6.3 5 the above two lemmas give

E s i i 1 ' * - s , , v^-y— 1 i iv / l Jt" s , v V^^1~1 \-^ ^^-s v-^^-1 1+^^ ^-^^ 1+^1^1 ^ n^^=i I'̂ -^^^E î l^-l) = n^-T—^E^i l^^-r-^-l^c< D -̂ •=• l^-z-^'^i M) = D^^-1^-
CO

1+^- 1+^,
-n^^"1^"^^'"1^0
'— \J €1 •

Since each |^| ^ re/, we have that jre/ ^ |ri| + ... + |^| = R, and so s ^ R/y'9'. Hence,
RIogD

Y)s = ^logD ^ ^ re/ = ^PR Taking T| small, i.e., re/ large, we can make P arbitrarily
\+£, i , /?

small. Moreover, e 2 re/ r" < 1, and we have the desired result with (Xi = 1—————P.

Inserting the expression for P, and taking a small gives

1+^ 1+^ logD / I +^
— — ^ + B = — — - - ^ — — < \ — — .2 • 2 re/ V 2 5

where the inequality is valid for small T|. This gives

7. PROOF OF THEOREM 4.1

7.1. Bounded distortion

Fix k ^ 1 and let 65 C Q be an interval from the construction of the parti-
tion. More precisely, there exists i € [1, n] such that 65 C co^-0 G ^(z-l)", where |Ll,_i
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is an escape time for CD, and |Ll,_i ^ k. Associated to % is a nested sequence,
% = co^ C o)^-1) C ... C co^ C o)^-0, where 0)^ has an essential return (chopping
occurs) at time Vy with depth yy. In particular, v, is the last essential return of co up
to time k. Let v^,, ...,v^/ be the inessential returns (no chopping occurs) of 6) = co^
between time v, and time k - 1, and let ^ be the length of the binding period
associated to the return at v^,.

Proposition 7.1. — Ifw € ̂ ), ̂

SISj— - ^—.'>
for all a,b € 0) aW ^// A; ^ Vy +j^ + 1^ wA^ v^ is the last essential or inessential return of ̂
before time n, and pq is the length of the corresponding binding period. If n >\q + pq + \, then the
same statement holds for all k^n restricted to any subinterval co C oo such that co^ C A9.

Proof — By Lemma 5.5, we can write

l(/^l)l ^ n . , _ , , [f^d
——-—— ^ ̂ =1 J where D, = co, sup r '\( yv^-M J \ J\ y \ rn.ii\r. ^ i/ " VVJ-A^I^ -*-"i \V^i\ OU.U ————————

K/^^l)! ' ' "^a)!/'^))

Suppose first that k ^ Vq +^. We will show that ^=1 D; ^ G/^,, which immediately
gives ;iip̂ ,̂/,,,
Let 0 < Vi < ... < \q < k be all the times for which co^ C A°, and which do not belong
to any binding periods. By our construction of ^, there is a unique element Ir-m- in
^7 associated to each v,. For notational convenience, we define Vo and RQ such that
VQ ~^~ po = 0. Then we can write

vq+Pq q-1 Vrh 1 +A-+1 q-1 / V,+1 -1 V,+1 +p,+1 ^

ED-E E D^E E D,+Dv,,+ E D,
j={ ,=Oj=V^+l i=0 \;=V^-+1 7=V,+l+l ^

i.e., we split the orbit into free times, non-bound return times, and bound times,
respectively The point of this splitting is that each of the three terms on the right-
hand side can be bounded above by some multiple of |o)v^, Iri"8^1. We will prove
this in three consecutive lemmas.

(1) Recall that Cj(a) = q^"1^).
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We start with the free times:

Lemma 7.2. — We have

v,+i-l
^ D,^ G(e)|(OvjTr0.

J=v,+A+1

A

-= ^'+1 ? ^'+1Proof. — Since (Ov,+i c I ^ ^ C A°, Proposition 3.2 immediately gives

l^^'W^I^Gi^^^-^

which means that, by the PMVT, we have

H^c^p-^-^'-^vj.
Moreover, for j € [v^ +^ + 1, v^'+i — I], o^ stays out of A°, which implies

[fW

Sl/'teW)
^ CsTI-9.

This gives

v;+i-l v,+i-l
^ D.^^lovjn-0 ^ .-^--^

J=v,-+A+l 7=v^A+l
00

^ G5(£)|CO^,, |l1-9 E 0-^ ̂  C6(£)|CO^,, |T1-0 D
^0

Next, we deal with the non-bound return times:

Lemma 7.3. — The following inequality holds:

Dv^cio^jTrV^

Proof. ' ^A- Since 0)v , C I* c A , we havet+l ^-+1 ? ^+1

S)(o)v.J > TlV^^^ > 3TiV^i)/r^ ^ 1(0^., J.

Hence

Dv,^ < |co .̂J sup
fl,^eco

"•^^^cdov.Jn-9^. Dr^i^))
/̂ v,,,̂ )) 2)((0v,v ^+l>
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Finally, we take care of the bound times:

Lemma 7.4. — We have

VH-I+A+I
^ D^C(e)|cOvJil-Y-1.

J'^+l+1

215

Proof. — If C0v;+i 1s a return to A9, the binding period is empty, and there is
A A^nothing to prove. Hence, we may assume that cOy^i ^ I ^ ^ C A-. By the PMVT

and bounded distortion during binding periods, we know that, for j € [l,j^+i], we
have

|(o,|<Gl|cOv,,Jsup|(/^l+^,,(^))|.v;+i l "—j- \\j a / \ '^i+l'
flCCO

By the chain rule, we have

K/^1^^,,^))! = ̂ (^^i^X/^1^1/^,^!^)!.
Without loss of generality, we may assume that c^^(a) < c. Then we let co* = [cv^(d), c],
and 0)* = [c^^^+j{d), Cj(a)\. Since we are in a binding period, we know that |co*| ^ ri6^"20^

and by the order of the critical point, we also have |co^| ^ C^^e'^1) c. Once again,
using the PMVT and bounded distortion during binding periods, we know that, for
j'e [l,A+iL we have

K/:'1^1/^,^!^)! ^ Gs^l ^ G4^^V2a^9^)-\
I10! I

and since S{c^^{a)) ^ C^e''1^, we have

\f'a^M ̂ Ge^-^)^.

Combining these estimates gives

|co,| < C^^e-^^^e-^^e-^Y'1 = C^^ \e-^e^.

Now, by (BR)a, S)(c,(a)) ^ Ca'n9^"', and combining this with |(0,*| < ri9^"2"', gives

s)(co;) > 'n^-^i - ̂ -«7) > Ti^-2^' > |(»;|.
By Lemma 5.6,

sup rw ^ c- ^ Csn-9^! - .-»')-1 < W^.
a,l,eafW £»((0;)
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Therefore, D, ^ C^^e-^e^C^e^ = C^^e-^e^-^ and summing gives
the result. D

Returning to the proof of the proposition, we have

V-A? q-tV^+p^ ^_i

EO-E E D^C^-0^^.
7=0 ^=0j=v^+l i=o

The right-most sum can be split up into partial sums corresponding to return times
with the same return depth:

I>v.|̂  = E ̂  E Kl.
i=0 R^re' ^=R

Lemma 7.5. — For any R ̂  r^y we have

^ |G)vJ ^ CllV/R2.
!':r,=R

This lemma immediately gives

v,+/>,
E D, < G(e)T^-e ̂  ̂  ̂  |o)vJ
J=0 R^re' ^^=R

^ c^n-0 ̂  ̂ Cn^-^R2 ^ c,(e) ̂  - ̂  c^e)/^,,
R^^ R^re/ K

which is exactly what we wanted to show.

Proof of Lemma 7.5. — Let ^ = v^., 7 = 1, ..., m be the subsequence of returns
with return depth R. By construction, we know that |(0^| < CiriV^R2. Using the
binding period estimates and uniform expansion, we have, for all parameters a C co
and allj= 1, ..., m — 1,

\(f^)W\ ̂  \{fT^w\
^S^^c^9'-9^.

/Q/ __C)\_____S_

The PMVT gives [co^.| ^ Csri' 2 |(O^J, so

m m-\ \-P
ffi'- " s

E K.I = El00^! ^ CsE^^ 2 ̂ J ̂  C4|co,J ^ G5^^VR/R2.
i:r,=R j=\ j=o

D
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This takes care of the first part of the proposition. However, if k > \q +j^ + 1,
we need to consider the additional terms

k-\

E D.
J=^q+Pq+^

restricting ourselves to a subinterval co C (0 with co^ C A°. It is clear that the previous
estimates are unaffected (actually they are improved) by this restriction. Using the
uniform expansion estimates, we have

10),| < e-^-^ < 2^-V.

Therefore, using the fact that \f\Cj(a)}\ ̂  C^^ since c^DA9 = 0, we get

.kk-J)
-j ^ v-^ ^ f'^ D,^G2 E ^-^Gs.

J^q+Pq^ J'^q+Pq+^

This completes the proof in this case also.

7.2. Condition (BR),

In this section, we will prove the following theorem, as promised:

Theorem 7.6. — All parameters in Q.^ satisfy (BR)^.

The proof relies heavily on the fact that the sum of all return depths
is proportional to the sum of all essential return depths. Consider the partition
^ ^ -^{n) ^f Q^-1). By our construction, each element of ̂  has associated
sequences of escape and return times, and corresponding return depths. Recall the
integer-valued functions

^: a^ -̂  N and ^{n): 0.^ -> N,

both constant on elements of S^ , which assign to each a C co G S^ the total sum
of all return depths, and the total sum of all essential return depths associated to the
orbit of co up to time n, respectively. Recall also that, by definition, ^(n) is formed by
all components co C ^(w) satisfying ^(co) ^ an/{2€).

Although one could expect ̂  to be much larger than 3T, this is simply not the
case.

Proposition 7.7. — For any CD € ^?^\

^(co) ^ (S^o),
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^(i^)-4
^l-^/

Before proving the proposition, we show how it implies the statement in
Theorem 7.6.

Proof of Theorem 7.6. — Take a parameter a € co C Q^' Then, by construction,
we have ^^(d) ^ an/{2€). By Proposition 7.7, it immediately follows that

^\d) ̂  €an/{2€) ^ an/2.

Now, if Vi is a return for o, and its associated return depth is r^ then all parameters
in co satisfy 2)(^)) ^ ̂ -2r; (in fact, we have 2)(^)) ^ TlV^). Hence, taking all
returns up to time n into account, we have

n ̂  n ̂ ? = n ' - - ̂ -" = ̂  ̂  >. <-«•,
Vi^n ' V^n 1 V^n

n/ _ n

and this is exactly condition (BR)^ for n ^ N = ———logr|~1. As we excluded all

parameters giving rise to returns to A9 before time N, it is clear that all parameters in
Q^ satisfy (BR),. D

Let us now return to the proof of Proposition 7.7:

Proof of Proposition 7.7. — The idea of the proof is the following. Suppose v = Ho
is an essential return for some CD G ^w, and its corresponding return depth is 7-0.
There follows a binding period during which bound returns can occur, and a sequence
of inessential returns each one followed by its own binding period. To each inessential
return |i, and bound return ^, we associate the return depth r, and p^, respectively:

Ho < ^0,1 < ... < ̂  < Ho +A) < Hi < ... < ̂  < ,̂1 < ... < ̂  < Vik +^.

We want to show that the total sum of all these inessential and bound return depths is
bounded from above by £7-0. We start by showing that the sum of all inessential return
depths is proportional to ro:

Lemma 7.8. — Let co G ̂ \ v G [1, n] and suppose that v is an essential return for
A

tt> '' I^,w c ̂  c ^Q,m' Set v = po and let \JL\ < ... < ̂  be a maximal sequence of inessential
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returns occurring after time v and before any subsequent chopping time, all with the corresponding
inessential return depths TQ, .... r^ Then

k 4
E^T—^o.
z=0 1 ^

.Proof. — To each return, we associate binding periods po, ...,?/,. By Proposition
5.8, we have

\{f^\^W)\^}-^\

for all a € co, and by our expansion estimates, valid outside A97, we know that no loss
of expansion occurs between the end of a binding period and the following return,
i.e.,

I , ^+i-(^+A+l)v/ ,^ | ,\Ua K^A+I^))! ^ L

Combining these two estimates gives
i-^ s \~^k^r^w^e-^^1.

Since no interval can grow larger than the whole dynamical space 1 ,̂ we can use the
Parameter Mean Value Theorem to get

1-^ v^ p-2 1-<^
3c > |IJ ^ |o)^^i| ^ P'^^e 2 z-^=orl ^ -^ e-^e^^1^1.

^
A litde rearranging gives

k
rl ^ TTT^0 + ̂ S31^) ^ i—7^0,

i=0 i ^s / i — ts

for r| sufficiently small, i.e., for ro sufficiently large. D

Next, we take care of the sum of all bound return depths:

Lemma 7.9. — Let 0) C ̂ \ |Ll € [\,n] and suppose that |l is an inessential
return for co : co^ C 1̂ . Let p be the length of the binding period following time \JL, and let
\^<^\ < ' " <^t<V^+ p be the bound returns ofw, (i.e., those times for which cor. H A9' =|= 0J,
all with the corresponding bound return depths pi,..., p^. Then

E 4a
P. ^ -^r.

Ki=l



220 STEFANO LUZZATTO, WARWICK TUCKER

Proof. — During the binding periods, the intervals co? j' € [|Ll + 1, (l +j&] are very
close to the intervals co^, i.e., co is almost retracing part of its initial itinerary. Since
none of the bound returns are chopping times, we have

ri9^ ^ inf2)(^.(fl)) ^ supS)(^)) ^ ̂ e~^\
<zGCO l a€CO

By the definition of binding, and since a satisfies (BR)^, we have

k(^) - ̂ -M ^ nV20^ and S)(%-^(a)) ^ ̂ e-^-^\

respectively. Therefore

/ 1 _ n^-2"&-H) \
S)(^,(a)) > S)(^_,^)) - v^e-2^ = S)(̂ -,(.)) ^ ^_^ )

^ ®(%.-n(a))(l -n^-^-^) > S)(^.^(a))(l -TI^-«).

This immediately gives

TiVP^^^Ki-^-01),
and after a little rearranging, we have

S)(q-_u(^))
e-^^e-\\-^e-a)——^——.

Taking all bound returns into account gives

n^ > e-^-^i[^^^ {e-\\ -nV«))^,
Z=l Z=l Tl

since, by (BR)^, the right-most product is bounded below by e~^ (yes, p < |l). By
Lemma 3.5, we have t ^ ap/r^ so by taking logarithms, we arrive at

^ p, < t(l - log(l - n6.-01)) + ap ^ f1"10^1"110'"^ + l)aj& ^ 2aj&,
^ v ^ /

for T| sufficiently small. Now, by our binding period estimates, we have

e ® M ^ ) ^^^-i^'^-^r'
which finally gives

^ 2aic 4a
2^ P' ^ ^—?' ̂  ^-r- D
,-=i A- A-
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Returning to the proof of Proposition 7.7, we just have to sum over all return
depths:

k tz k A

E^+EP^E^^)
i=0 j=\ i=0 /v

/i 4a^ \^ /i 40^ 4=(l+^)E^(l+y)^7.,

which completes the proof. D

8. APPENDIX

We will now state some necessary estimates for the forward and backward iterates
of our previously defined neighbourhoods. Since the functions we are studying are odd,
we will only state results for the positive critical point, c.

Proposition 8.1. — For all £, T| > 0 sufficiently small, we have

i
f^(c) ~ -e^ and |/^(A9)! ~ n9 « r\ « e^,

f^(c) ~ -n and ^Q « 1/^(^)1 ~ ̂ ece « ̂
y^^-.+e and ^9 « I/^A6)! ~ ̂ e+^-1 « e.

This proposition, although simple in its statement and proof, is crucial in order
to obtain the expansion estimates valid outside A9 .

We will often refer to another, similar proposition:

Proposition 8.2. — For all e, T) > 0 sufficiently small, we have

^(A6)! ~ e^"' « Js

^(A6)!-^;^-^

^.(A9)!-^9^-^

1^(^)1-e^^e^-lA6!.

The essence of Propositions 8.1 and 8.2 is illustrated in the following figure:
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fX) f^c)

fX)
f^c)

As
A9

AS

FIG. 4. - The forward and backward iterates of the neighbourhoods

We will prove Proposition 8.1 and Proposition 8.2 by a sequence of simple
lemmas.

Lemma 8.3. — There exist constants 0 < Cq < €3 such that for all E, r\, r > 0 sufficiently
small, we have

/£+T l+r \ ^ - i /£+r i - r \^-
- [—^——) s ^fc^[[c - r , c + r]) ^ - [——^——) ̂  ^)^^^(^-^^])^-(-^-r)l;.

Proof. — By the first line in Ml, there exist constants 0 < Cq < Cz such that

-C2l/74^ - ̂ s ̂ fc^{f^{c - r)) - (c + e + n)

= -(r+ e +11) ^ -Cil/7^ - r)[^.

Rearranging this gives

-(^).^-^-(-^,

which gives the lower bound onf~^.^([c — r, c + r]). By considering c 4- r, we get the
upper bound analogously.

i i
Lemma 8.4. — 14^ havef^[^{c) - -e^ W l/^e+^A9)! ~ r|9 < rK e^.

Pw<9/^ — The first part follows immediately from Lemma 8.3 by taking r = 0
and noting that T| <$; e.
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To prove the second part, we take r = T|6, which gives

1/7^(^)1 = \f^([c -^,c+ ii9])!
^ /E+TI+TI^ _ /E+II-TI0^

V Ci ^ V €2 ^
1 1

~ (e + T| + ii9)^ - (e + ri - r|9)^

= (e +11)^ ((1 + -ne-)^ - (1 - ̂ 1e-)^)v ' v e+Ti ' ' E + T I ' I

~ (£ + n)^ ((1 + ̂ ) - (1 - ̂ )) = ^^-lne ~ ̂ -

Since 6 > 1 and T| <^ e, the proof is complete. D

The remaining parts of Proposition 8.1 are even simpler to prove:

Lemma 8.5. — We have f^(c) - -^ and r|26 < I/^A6)! - r|^9 < r|.

n

Proo/^ — For the first part notice that 0 ==/^+e(^) = fc+e(f^c+e^)) =:^+e(^l)• We thus
have

/^E+TI^) =^+e+^^(^+e+^^(^)) =::^+£+r|(^l - Tl)

-^+e+Ti(^l) - V^+^l) = 0 - CiT| - -T1.

The second part now follows since

I/^A0)! - lA^/^y^) = C^9^^-1) - ̂ \

and by the fact that 1 < i, < 2. D

Lemma 8.6. — The following relations hold:

f^(c) ~ <- + e and Tl9 « 1/^(^)1 ~ 1^'te+^-l « E-

Proof. — The first part follows from the fact that

/^(c) ~^+e+n(-'n) ~/.+e+n(0+) = C + £ + T I ~ C + £ .

1
Since f^^c) ~ -T| and/^(-r|) ~ 'n77, it foUows that

I/^A6)! ~ I/^.^A6)!/^^-^ ~ ̂ ^n^-' = ̂ ^9+^-1.
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By definition,

e < 1^- 4=^ e(^ - i) < i - ̂  4=^ ^e + ̂  - i < e,
^ c l

which completes the proof. D

Thus Proposition 8.1 is proved. We now proceed to the proof of Proposition 8.2:
We will prove this proposition in a sequence of lemmas:

K+ { -1 [

Lemma 8.7. — The/allowing relations hold: \f^^{^)\ ~ £ Ts < £^.

Proof. — Using Lemma 8.3, we take r = e^ which gives

I/^A6)! = \f^{\c -eK,c+ e^l

^ /e+Ti+eS^ _ .e+ri-eS^
'< Ci ) v Cz >

i i
~ (e + e^ - (e - e1')77

=^((1^)^-(1-^)^)
1 , pK-1 pK-1 .

~e^ (1+^)-(1-^-)
•C,^ ^,j.

2 r-1 K-I ^r-1
= —e^ e1' 1 ~ e ts .-ij.

Since K > 1, we have K + — — 1 > —, which completes the proof. D
^ s fc s

Lemma 8.8. — We have [/^(A6)] - e^ > e^ - [A8].

Proof. — The left-most ~ follows since

I/^A6)! ~ lA6!^2^)'^ + e') = Ze^ie^-') ~ ̂ K.

The » follows since i, < 2. D
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Lemma 8.9. — We have

I/^A9)!-^^6-^

IV^A6)) ~ ̂  » e^ ~ lA6!.

Proof. — The first statement follows since

l̂ e^A9)! ~ |A?|/^(n9) ~ nV^-1) ~ ̂ e,
and from the fact that £s < 1-

The second statement follows since

\f^^)\ ~ lA6!/^^) ~ e2'̂ -1' ~ e2^,

and again from the fact that is < 1- D

This completes the proof of Proposition 8.2.
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