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BOUNDED GENERATION AND KAZHDAN'S PROPERTY (T)
by YEHUDA SHALOM

1. INTRODUCTION AND DISCUSSION OF THE MAIN RESULTS

I. Introduction

The fascinating subject of arithmetic groups, in its various aspects, has attracted
much attention in contemporary mathematics. Its influence on group, representation,
and number theory, and its baring on many other fields of research, are by now well
recognized. (Recall that a subgroup of a (semisimple) linear algebraic group G defined
over Q, is called arithmetic if it is commensurable with G(Z).) A fundamental question
is to understand the finite dimensional linear representation theory of arithmetic groups,
a theme which splits naturally into two: representations with finite, and those with
infinite image. The latter may be viewed as a part of the rigidity theory, while
the former is known essentially as the congruence subgroup problem (or "property55),
abbreviated GSP. Another important feature of arithmetic groups is concerned with
their infinite dimensional representation theory, pertaining to property (T) of Kazhdan.

The connection between the above three themes is only partially understood,
although there is a strong circumstantial evidence that such in fact exists (for simplicity,
we confine the discussion here to Q-simple, simply-connected algebraic groups, and
leave aside also the S-arithmetic case). Indeed, both superrigidity and property (T)
are known to hold for exactly the same family of groups, including the real rank
one groups Sp(72, 1), F^O), whose treatment was traditionally different from that of
the higher rank groups. This "empirical fact55 is partially explained in [Mok] and
[Pa], where the same Bochner-type formulae developed in [MSY] for superrigidity,
are used to establish Kazhdan^ property. The two phenomena are further unified in
[Sh2], where they are derived simultaneously from the rigidity theory of harmonic
maps. On the other hand, the CSP is known to hold for "most55 families of higher
rank arithmetic groups, where the first two properties are present as well. Moreover,
CSP implies superrigidity (see [BMS, §16] and [Rag, §7]). In a different direction,
Lubotzky [Lub2] proved that the CSP is characterized by having a "slow growth55 of
the number of subgroups of finite index, and it is known that Kazhdan groups share a
closely related property [HRV, Prop. IV]. Unfortunately, the current known results on
property (T) are not yet sharp enough to be used for the question of GSP (compare
also with [Lubl, 10.4.1]).

In the last decade or so, a new notion has been introduced into this circle of
ideas: A group G is said to be boundedly generated if it admits a finite subset
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S, and some number v depending only on G and S, such that every g G G may
be written as a product: g=g^g^ ... g^, with g, G S and k, integers. This notion
originates in the work of Garter and Keller [GK], establishing bounded generation for
the groups SL^) (n ̂  3), where ^ is the ring of integers of a number field, relying
on class field theory (primarily on Dirichlet's theorem regarding primes in arithmetic
progressions). Rapinchuk has established a fairly direct relation between bounded
generation and rigidity (see [Rap3] and the references therein). He conjectured [Rapl]
that bounded generation and CSP are equivalent, thereby suggesting a clean group
theoretic characterization of the latter. (As observed in [Lub2, (5.5)], a conjecture in
this general form would be inconsistent with GSP for the word hyperbolic lattices
with property (T) - a problem which is fascinating in its own right.) In fact, in [PR]
Rapinchuk and Platonov showed that bounded generation implies CSP (and hence also
superrigidity), a result which was also established independently by Lubotzky [Lub2].
We remark, however, that bounded generation has not yet provided any new examples
of groups with CSP. Moreover, there is no uniform lattice of a semisimple algebraic
group which is known to posses this property.

In this paper we relate intimately another two of the above notions. More
precisely we make a strong use of bounded generation in the study of property (T) of
Kazhdan, motivated by a problem raised by Serre, and by de La Harpe and Valette.
Let us first recall the notions involved.

Definition 1.1. — Let G be a topological group, K C G a subset, £ > 0, and
(TC,J^) a continuous unitary G-representation. A vector v C J^ is called (K, ^-invariant, if
\\n(g)v - u\\ < e|H| \/g G K. The group G is said to have property (T) (of Kazhdan) if
there exist a compact K C G and £ > 0, such that every continuous unitary G-representation with
a (K, ^-invariant vector, contains a non-^ero G-invariant vector. In that case, (K, e) (or sometimes
just £, when the set K is clear from the context), are called Kazhdan constants for G.

The fundamental work of Kazhdan [Kaz] showed that higher rank simple
algebraic groups over local fields, as well as their lattices, have property (T), but without
supplying explicitly any Kazhdan constants. Over the years, property (T) turned out
to be an extremely interesting and powerful tool, and such constants make many of
the numerous applications of it, quantitative (cf. [HV] for details). While there is no
natural choice of a subset K C G when G is an algebraic group, for many lattices,
e.g., SL^(Z) n ^ 3, it is natural to seek a bound on £ for certain generating sets (such
as the unit elementary matrices in the preceding example), as was posed by Serre and
by de la Harpe-Valette (cf. [Bur] and [Hy p. 133]).

The question of Kazhdan constants for semisimple groups and their lattices was
solved in general in [Shi] (see there for more related literature). However, while the
solution for the continuous groups is in a certain sense optimal, producing a Kazhdan
set K of two elements, with the largest possible £, the results for the lattices are
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much less satisfactory, being dependent on a fundamental domain, and giving e for a
"large95 Kazhdan set, of a geometric, rather than algebraic type [Shi, Theorem B].
Although it might be possible to work out individual cases, the results of [Shi] seem
hopeless in studying fundamental questions such as the behaviour of the constant over
SL^(^), when the dimension n, or the ring ̂ , are varied. A partial result on Kazhdan
constants for the group SLs(Z) was obtained by Burger in [Bur]. Here we shall establish
a complete result, presenting a general, quite unexpected phenomenon of uniformity
of the constant for any dimension n ^ 3, over various families of finite, infinite, locally
compact and even infinite dimensional rings, and an explicit lower bound 0(n~2)
over n. In particular, we present for some arithmetic groups (such as SLs(Z)) the first
treatment of property (T), which is based only on their internal structure.

II. Statement and discussion of the main results

In the case of G = SL^(Z), the bounded generation property is known to hold with
respect to the set S of the unit elementary matrices (see Definition 1.2 and the Main
Theorem below). It seems important to remark, however, that the bounded generation
property may depend in general on the choice of S (for instance, a somewhat surprising

fact which does not seem to appear in the literature is that the group SL^(Z[^]) is
not boundedly generated by any finite set of unipotent matrices. As shown by Tavgen
[Tav], by using appropriate semisimple elements one can make this group boundedly
generated). Since we shall be interested also in rings which are not finitely generated
as Z-modules, we consider a more general bounded generation property. Here is the
precise notion we shall use.

Definition 1.2. — Let R be a commutative ring with unit, and SL^(R) the group of
determinant one n X n matrices over R. An elementary matrix E,j(^) 6 SL^(R), 1 ^ i ̂ j ^ n,
t G R^ is the matrix having 1 in its diagonal, t in the entry {i,j), and 0 elsewhere. The group
SL^(R) is said to be boundedly elementary generated if there is some v =v^(R) < oo
such that every matrix in SL^(R) may be written as a product of at most v elementary matrices.
When this property is satisfied, we shall sometimes denote it simply by writing v^(R) < oo.

In the case where R = ̂  is the ring of integers of a number field, bounded
elementary generation is precisely the property established in [CK] (for n ^ 3), and is
easily seen to imply the previous group theoretic bounded generation property, for an
appropriate finite subset S. Trivial examples of rings with v^(R) < oo are fields, and
even these will be of interest to us in the sequel. The knowledgeable reader will notice
the connection between this notion (and some of our discussion in the sequel), and
K-theory, although we will avoid using K-theoretic terminology.
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The main result of the paper is the following:

Main Theorem. — Fix an integer n > 3, let R be a commutative topological ring with unit,
and suppose v^(R) < oo. Assume that for some 1 ^ m < oo there exist elements a\, ....a^ € R
generating a dense subring. Let Fi C SL (̂R) be the set of unit elementary matrices (i.e., having
1 off the diagonal), and V^ be the set of elementary matrices {E^j(^)} with \i—j\ = 1 and t=0k
(1 ^ k ^ m). Then SL (̂R) has property (T), with £ =Vn(K)~l22~m~^ as a Ka^hdan constant for
the set Fi U F2. Moreover, if for some fixed m, a^s as above can be found in every neighborhood of
0 € R ,̂ then Fi alone is a Ka^hdan set for SL (̂R), with the same Ka^hdan constant.

For instance, if R is any locally compact, non discrete field, the assumptions of
the theorem are trivially verified (m = 2 suffices, when R is connected the last assertion
applies). We remark that the proof will show that the formulation of the Main Theorem
can be made more general: R need not be a topological ring, but merely a ring with
some topology. Then the above Kazhdan constants apply, for the family of unitary
representations which are strongly continuous with respect to this topology (i.e., for
every vector v the map g —> gv is continuous from SL^(R) with the topology induced^
by its natural inclusion in R" , to the Hilbert space). Thus, the conclusion of the Main
Theorem holds, for instance, for the set of all continuous unitary representations of
SL^(K), if K is any field equipped with a topology for which some finitely generated
subring is dense.

Before stating some consequences of the Main Theorem, which are discussed in
Section 4, we remark that in the theorem and its corollaries below one may replace,
with similar proofs, the group ("scheme55) SL^, by any Ghevalley group of rank > 1.
Elementary matrices should then be replaced by "root subgroups55, and the notion of
bounded elementary generation modified accordingly.

Throughout the rest of this section n denotes an integer ^ 3.

Corollary 1. — The value £=(33yz2 — 1 1 n + 1122)"1 is a Kazhdan constant for the
group SL (̂Z), for the set of all elementary matrices with 1 off the diagonal. If ̂  is the
ring of integers of a number field K^ and it is generated as a ring by \, a\,...,amy then

g ̂ 22-m-i^3^ - 1) + 68A + 2]~1 is a Kazhdan constant for the generating set F C SÎ (̂ )
described in the Main Theorem, where A denotes the number of distinct (rational) primes dividing the
discriminant qfK.. The same estimate holds ifwe replace ^ by any localisation ^§.

Corollary 1 follows from the Main Theorem using the bounds on Vn in [GK].
Corresponding bounds on Vn for all higher rank arithmetic Ghevalley groups can be
obtained from the work of Tavgen [Tav] (who established their bounded generation).
In the case of SL^(Z), a proof of bounded generation appears in [AM], which modulo
Dirichlet^ theorem, is completely elementary. Section 2 below is devoted to the study
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of SL^(Z) in the Main Theorem, both because several ingredients of the proof will
be needed for the general case (discussed in Section 3), and to supply, together with
[AM], a complete and more accessible treatment of this particularly interesting case
(see Theorem 2.6). No induced representations appear in our approach, and the only
tool used from representation theory is the spectral theorem for representations of
discrete abelian groups (recalled in the proof). A remark which was pointed out to us
by A. Zuk, is that the optimal Kazhdan constant for SL^(Z) (with the above generators)
is bounded from above by ^ / 2 / n , and in particular it must depend on 72. This follows
easily by considering the natural representation on ^(Z^ — {0}) , and the action on
the characteristic function of the set of n "standard basis" unit vectors. It therefore
seems of interest to close (even asymptotically) the gap between 0(n~2) and 0(n~1/2),
of the optimal Kazhdan constant, left by this work.

Notice that Corollary 1 yields for families of rings (^ a uniform Kazhdan
constant for SL^(^), with respect to generating sets with fixed cardinality. For instance,
this is the case if we consider all localizations of any given ring of integers, or take
rings of the form Z[^], when p varies over all primes, or Z[co], when co varies over
all prime power roots of unity. We should also add that W. van der Kallen has shown,
relying upon [CW], that assuming a Generalized Riemann Hypothesis, the bound on
Vn(^} does not depend on ^ at all! In this direction Loukanidis and Murty showed
(see [Mu]) that if S is a sufficiently large set of valuations of (^ (depending linearly on
the degree of the field extension, |S| ^ 5 suffices for Z), then v^(^§) depends only on n,
with an explicit quadratic bound, and not on ^ or S. Since the number of generators
of ^ as a ring is typically small, these results, together with the Main Theorem,
suggest a general and quite surprising phenomenon of uniformity of property (T) for
families of arithmetic groups.

Corollary 2. — Suppose that R is compact and m elements of R (including 1) generate
a dense subring. Then £ =(5y^222m)-l is a Kazhdan constant/or the finite set F C SL^(R)^ as
constructed in the Main Theorem,

For the proof see 4.1 and 4.5 below. This corollary is of interest already for
finite rings, as there are few known non trivial estimates for Kazhdan constants even
for finite groups. For instance, any finite field is generated by one element, so for any
fixed n ^ 3, the groups SL^(K) (where K varies over all finite fields) are all generated
by n2 + n — 2 elements, for which (lOOOyz2)"1 is a Kazhdan constant. It would be
interesting to see whether the latter result holds (even qualitatively) when n = 2 as well.
Also notice that Corollary 2 implies that for compact groups of the form SL^(R) {n > 3),
the existence of a finitely generated dense subgroup suffices to ensure that of a finite
Kazhdan set. Moreover, the size of the Kazhdan set and constant depend only on the
cardinality of a topologically generating set. (In particular, these compact groups have
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a positive answer to the "Banach-Ruziewicz problem55, and their finite quotients form
an expander family.)

Corollary 3. — Let R be any finite (commutative) ring. Consider the ring R((^)) of Lament
series over R^ equipped with the usual topology where high powers of t are close to 0. Then
SL^(R( (t))) (which is locally compact) has property (T) ofKa^hdan, with explicit Kazhdan constants
as in Corollary 2.

See 4.1 and 4.6 below for details. The proof of Corollary 3 will show that, as
in Corollary 2, one has \n ^ 5^2 for these rings, independently of R. Taking a family
of cyclic rings, say R^ = Z/j^Z, yields a construction of a sequence of locally compact
Kazhdan groups, each a homomorphic image of its preceding, so that the Kazhdan
constants for the (compatible) Kazhdan sets are all uniformly bounded from below. The
inverse limit of these groups, which is a non locally compact topological group, also
has property (T). Notice that the discrete group SL^(R[r1]), with R as in Corollary 3,
is a lattice in SL^(R((^))), hence has property (T) as well.

Corollary 4. — Let L(SL^(C)) denote the loop group associated with SL^(C)^ namely, the
group of continuous maps from the circle to SL^(C)^ under pointwise multiplication and the topology
of uniform convergence. Then L(SL^(C)) has property (T). Moreover, £ ==(37z2 •224)"1 > lO"6-^"2

is a Kazhdan constant for the set F of n2 — n maps taking constant values on each of the unit
elementary matrices.

These groups are the first examples of infinite dimensional Lie groups (in
particular, non locally compact groups) with property (T). They also seem the first
constructions of Kazhdan groups whose group of outer automorphisms is infinite (see
Paulina question in [HY p. 134]). Indeed, the group of homeomorphisms of the circle
is embedded naturally in their outer automorphism group. There is still no known
example of such locally compact group, excluding trivial constructions coming from
infinite products of one compact group (which may be excluded by considering only
Kazhdan groups with a finite Kazhdan set). We should also mention that Corollary 4
holds if one considers smooth, rather than continuous maps, with the appropriate
smooth topology.

Some of the important facts about unitary representations of loop groups were
first observed by physicists, and the subject was studied in depth by many authors,
with applications in quantum field theory and elementary particle physics, as well as
relativity and gravitation theory - see e.g. [PS], [Is] and the references therein (and
also [VGG] for a detailed treatment of the case SL^R)). Also notice that since any
connected group is a homomorphic image of its loop group, a necessary condition for
the loop group to have property (T) is that the original group has it. This condition
is however not sufficient, as the case of S0(/z, 2) (n ^ 3) will show (see the discussion
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following the proof of Lemma 4.8). It may be interesting to study more generally the
question of property (T) for loop groups of simple Lie groups (the case of Sp{n, 1)
being especially challenging).

If one replaces S1 by higher dimensional spheres, our method of proving property
(T) for the above groups (more precisely the bounded elementary generation over
appropriate rings) fails, so this larger family of so called "current groups55 may also be
interesting to study by different methods. We remark that if G is a j&-adic algebraic
group, there is of course no loop group associated to it, but one can study the current
group obtained by replacing S1 with a Cantor set. Our method will establish property
(T) for groups of this type as well (see Theorem 4.9).

Corollary 5. — Let R =Z[x\,..., x^] denote the ring of polynomials with m variables over Z.
IfVn{R) < oo then SL (̂R) has property (T).

It is an open question, raised by W. van der Kallen [Kal] in the context of
K-theory, whether v^(R) < oo (even in the case m=. 1). It was shown in [Kal] that if Z
is replaced by C the answer is negative, but even the situation with Q seems unknown.
Notice that specializing the variables to non algebraic complex values embeds F as a
linear group which is not a lattice (having elements with non algebraic eigenvalues). It
would be most interesting to see whether SL^(R) has property (T), and we conjecture
that this is indeed the case. An affirmative answer would produce first examples of
linear Kazhdan groups which are not lattices. In addition, varying the specializations
continuously yields non trivial continuous deformations of SL^(R), a phenomenon which
is quite unexpected for Kazhdan groups (compare with [Rap2]). On the other hand,
showing that SL^(R) does not have property (T) would answer negatively van der
Kallen^ question. It was shown in [Su, 6.6] that for any m the group SL^(R) is
indeed generated by the elementary matrices, and is hence finitely generated (an easy
consequence of the Steinberg commutator relations). Finally, notice that SL^(R) surjects
onto lattices as in Corollary 1, but also, by surjecting Z on finite prime fields, onto
lattices in linear groups of positive characteristic. It seems that this "universal lattice55

should receive more attention than it had so far in the literature.
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2. THE CASE OF SL,(Z)

First, a general remark is in order: For the ring R = Z (in this section) and other
rings (in the next ones), we shall consider various homomorphisms and actions of the
group SL2(R), some of them coming through the adjoint automorphism g —> ^-1.
To keep notations simple we will specify this only occasionally. However, as we shall
always arrange the (Kazhdan) sets involved to be invariant under this automorphism,
this abuse of notation will not interfere with our arguments.

We begin with a detailed analysis of the relative property (T) for the semi-direct
product SL2(Z) K Z2, with respect to Z2. The following result was proven by Burger in
[Bur]. However, our proof does not involve any analysis on an "ambient group55, and
in particular no induction operation is applied. This proof will be used, and its idea
generalized, in the discussion of a general finitely generated ring, replacing Z.

Theorem 2.1. — Denote by T^ S± C SI^Z), the elementary matrices with ±1 above and
below the diagonal respectively. Set a± ={±l,0\ ̂  ==(0, ± 1) G Z2. Denote by F the set of these
8 elements, embedded naturally in G=SL2(Z) ix Z2. Let {n, J^) be a unitary G-representation
containing a vector which is (F, 1 /' \G)-invariant (see Definition 1.1). Then ̂  contains a non-^ero
Z2-invariant vector.

Proof. — Consider n\^2 and let P denote the corresponding projection valued

measure. Recall that P assigns to every Borel set B C Z2 ^ T2 an orthogonal projection
P(B) of J^, and satisfies:

(1) For every unit vector y, |Lly(B)= (P(B)y, v) is a probability measure on T2.
(2) P( { 0 }) is the projection on the subspace of Z2-invariant vectors.
(3) f(£K)=n(g)~iP(E)K(g) for all g € SI^Z) and B C T2. (Here the action of SI^Z)

on T2 is through the adjoint.)

Set £=1/10 and let us assume that v G ̂  is a unit vector which is (F, e)-
invariant, but there is no Z^invariant vector. We argue to obtain a contradiction. Let
|Lly denote the corresponding measure on T2, given by (1). By (2) and our assumption,
|ly has no mass at 0, and so may be viewed as a measure on T2 — { 0 }. Our strategy
will now be as follows: First, identify T2 with (-^, |,]2 C R2. We will use the fact that
v is "almost a^ P^-invariant55 to deduce that most of the mass of [iy is contained in

(-^, ^)2. On the other hand, using (3) we will observe that (l, is "almost invariant55

for the action of T^ S^. The fact that T^, S^-^, ^)2 C (-^ \f for the ordinary
linear action on R2, will then imply that there is an "almost invariant55 measure for
the action of these four matrices on R2 — { 0 }, which we finally show to be impossible.
Of course, we will argue with explicit estimates, making the notion "almost invariant55

quantitative.


