@article{PMIHES_1999__90__5_0, author = {Benjamini, Itai and Kalai, Gil and Schramm, Oded}, title = {Noise sensitivity of boolean functions and applications to percolation}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {5--43}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {90}, year = {1999}, mrnumber = {1813223}, zbl = {0986.60002}, language = {en}, url = {http://archive.numdam.org/item/PMIHES_1999__90__5_0/} }
TY - JOUR AU - Benjamini, Itai AU - Kalai, Gil AU - Schramm, Oded TI - Noise sensitivity of boolean functions and applications to percolation JO - Publications Mathématiques de l'IHÉS PY - 1999 SP - 5 EP - 43 VL - 90 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/item/PMIHES_1999__90__5_0/ LA - en ID - PMIHES_1999__90__5_0 ER -
%0 Journal Article %A Benjamini, Itai %A Kalai, Gil %A Schramm, Oded %T Noise sensitivity of boolean functions and applications to percolation %J Publications Mathématiques de l'IHÉS %D 1999 %P 5-43 %V 90 %I Institut des Hautes Études Scientifiques %U http://archive.numdam.org/item/PMIHES_1999__90__5_0/ %G en %F PMIHES_1999__90__5_0
Benjamini, Itai; Kalai, Gil; Schramm, Oded. Noise sensitivity of boolean functions and applications to percolation. Publications Mathématiques de l'IHÉS, Volume 90 (1999), pp. 5-43. http://archive.numdam.org/item/PMIHES_1999__90__5_0/
[1] Quantum Geometry, Cambridge University Press, Cambridge, 1997. | MR | Zbl
, and ,[2] The Probabilistic Method, Wiley, New York (1992). | MR | Zbl
and ,[3] Inequalities in Fourier analysis, Annals of Math. 102 (1975), 159-182. | MR | Zbl
,[4] Collective coin flipping, in Randomness and Computation (S. Micali, ed.), Academic Press, New York (1990), pp. 91-115. Earlier version : Collective coin flipping, robust voting games, and minima of Banzhaf value, Proc. 26th IEEE Symp. on the Foundation of Computer Science (1985), 408-416.
and ,[5] Conformal invariance of Voronoi percolation, Commun. Math. Phys., 197 (1998), 75-107. | MR | Zbl
and ,[6] Noise sensitivity, concentration of measure and first passage percolation, in preparation.
, and ,[7] Etude des coefficients Fourier des fonctions de Lp(G), Ann. Inst. Fourier, 20 (1970), 335-402. | Numdam | MR | Zbl
,[8] Threshold functions and bounded depth monotone circuits, Proceedings of 16th Annual ACM Symposium on Theory of Computing (1984), 475-479.
,[9] The average sensitivity of bounded depth circuits, Inform. Process. Lett. 63 (1997) 257-261. | MR
,[10] The influence of variables in product spaces, Isr. J. Math. 77 (1992), 55-64. | MR | Zbl
, , , and ,[11] Influences of variables and threshold intervals under group symmetries, Geom. Funct. Anal., 7 (1997), 438-461. | MR | Zbl
and ,[12] Harmonic analysis of polynomial threshold functions. SIAM J. Discrete Math. 3 (1990), 168-177. | MR | Zbl
,[13] Polynomial threshold functions, AC0 functions, and spectral norms. SIAM J. Comput. 21 (1992), 33-42. | MR | Zbl
and ,[14] Fractals and Disordered Systems, Springer 1991. | MR | Zbl
and (ed.s'),[15] Finite-size scaling and correlation length for disordered systems, Phys. Rev. Lett. 57 (1986), 2999-3002. | MR
, , and ,[16] Boolean functions with low average sensitivity, Combinatorica 18 (1998), 27-36. | MR | Zbl
,[17] Necessary and sufficient conditions for sharp thresholds of graphs properties and the k-sat problem, Jour. Amer. Math. Soc. 12 (1999), 1017-1054. | MR | Zbl
,[18] Every monotone graph property has a sharp threshold, Proc. Amer. Math. Soc. 124 (1996), 2993-3002. | MR | Zbl
and ,[19] Percolation, Springer-Verlag, Berlin (1989). | MR | Zbl
,[20] Dynamical percolation, Ann. IHP 33 (1997), 497-528. | Numdam | MR | Zbl
, and ,[21] Almost optimal lower bounds for small depth circuits, in Randomness and Computation, 5, ed. S. Micali, (1989), 143-170.
,[22] On the power of small-depth threshold circuits, Computational Complexity, 1 (1991), 113-129. | MR | Zbl
and ,[23] The influence of variables on boolean functions, Proc. 29-th Ann. Symp. on Foundations of Comp. Sci., (1988), 68-80.
, and ,[24] Scaling relations for 2D-percolation, Comm. Math. Phys. 109 (1987), 109-156. | MR | Zbl
,[25] Strict inequalites for some critical exponents in 2D-percolation. J. Statist. Phys. 46 (1987), 1031-1055. | MR | Zbl
and ,[26] Conformal invariance in two-dimensional percolation, Bull. Amer. Math. Soc. (N.S.) 30 (1994), 1-61. | MR | Zbl
, and ,[27] Constant depth circuits, Fourier transform, and learnability, J. Assoc. Comput. Mach. 40 (1993), 607-620. | MR | Zbl
, and ,[28] Limit theorems of probability theory, Oxford University Press, (1995). | MR | Zbl
,[29] A note on percolation, ZW. 43 (1978), 39-48. | MR | Zbl
,[30] Percolation probabilities on the square lattice. Advances in Graph Theory. Ann. Discrete Math. 3 (1978), 227-245. | MR | Zbl
and ,[31] On Russo's approximate zero-one law, Ann. of Prob. 22 (1994), 1576-1587. | MR | Zbl
,[32] Concentration of measure and isoperimetric inequalities in product spaces, Publ. I.H.E.S., 81 (1995), 73-205. | Numdam | MR | Zbl
,[33] How much are increasing sets positively correlated? Combinatorica 16 (1996), 243-258. | MR | Zbl
,[34] Fourier-Walsh coefficients for a coalescing flow (discrete time), preprint, math.PR/9903068.
,[35] The Five noises, preprint.
,[36] Circuits and local computation, Proceedings of 21st Annual ACM Symposium on Theory of Computing, (1989), 186-196.
,