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SINGULAR COMPLETE INTEGRABILITY
by LAURENT STOLOVITCH

ABSTRACT

We show that a holomorphic vector field in a neighbourhood of its singular point 0 € C71 is analytically
normalizable if it has a sufficiently large number of commuting holomorphic vector fields, a sufficiently large
number of formal first integrals and that a diophantine small divisors condition related to the linear parts of
its centralizer is satisfied.
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1. Summary

Let 72 > 2 be an integer, and let 3 be a commutative Lie algebra over C. Let
Xi,...,^ be complex linear forms over g such that the Lie morphism S from g to the
Lie algebra of linear vector fields of C" defined by S(^) = ̂  ^ \[g}x,Q/Qx, is injective.
For any Q G N" and 1 ^ i ^ n, we define the weight a^ ,(S) of S to be the linear
form Ej=i %-̂ C?) - ̂ (<?). Let ||.|| be a norm on the C-vector space of linear forms
on fl. Let us define the sequence of positive real numbers:

co,= inf{|[a^|| + 0, 1 < i ̂  72, 2 ^ |Qj ^ 2'}.

We define a diophantine condition relative to S by

(»(S)) -E^+oo.
k^O 2^

Let J^ (resp. ̂ ) be the Lie algebra of germs of holomorphic (resp. formal) vector

fields of order k at 0 e C". Let (^1) (resp. (^)8) be the formal centralizer of
S (resp. the ring of formal first integrals), that is, the set of formal vector fields X
(resp. formal power series/) such that [S(g), X] ==0 (resp. ^^(/)==0) for all g (E fl.
A nonlinear deformation S + e of S is a Lie morphism from g to ̂  such that
£ G Hom^(g, J^2). Let 0 be a formal diffeomorphism of (C^, 0) which is assumed to
be tangent to Id at 0. We define 0*(S + £)(^):=0*(S(^) + e(g)) to be the conjugate of
S + e by 0. We shall define the notion of formal normal form of S + £ relative to S.
One of our main results is the following:

Theorem I.O.I. — Let S be an injective diagonal morphism such that the condition (o)(S))
holds. Let S+£ be a nonlinear holomorphic deformation ofS. Let us assume that it admits an element

( /^^ \ ^ \(^HOmc 8. \^n) ®cS(0)j as a formal normal form. Then there is a formal normalising

diffeomorphism 0 which is holomorphic in a neighbourhood ofO in C".
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In other words, if S is diophantine, then S + e is holomorphically normalizable
/ /^\s \

as soon as the formal normal form of S + £ belongs to Hom^( 0,(^J 0c S(fl)). Such
a morphism will be called "formally completely integrable" and we shall motivate this
definition later on.

We shall give another result which allows us to relax our condition on the formal
normal form. We postpone this result to the "Statement" section since it requires some
technical definitions.

Furthermore, we shall answer the following question:
How can we embed a formally completely integrabk morphism into an higher dimensional

space in order that the new nonlinear morphism is still formally completely integrabk?
The precise answer will require some notation and definitions and we postpone

our result to the "Statement" section.
The author would like to thank the referee for his precious comments and

suggestions and for having pointed out some unclear and sometimes confusing
statements or proofs. Special thanks should be given to B. Malgrange for his
encouragement and optimism and also for having provided a nice proof of proposition
7.1.1.; my original proof of this was a four page computation. The idea ofB. Malgrange
is that it can be done using very classical spectral sequence theory. I also thank
M. Herman, J.-P. Ramis andJ.-C. Yoccoz for their interest and comments.

2. Introduction

This article is concerned with the study of holomorphic vector fields in a
neighbourhood of a singular point in C", that is, a point where they vanish. Let
us start with a very elementary example of a similar problem. In order to study the
iterates of a square complex matrix A of C", that is, the orbits {Akx}k^ for x C C"
near the "singular point" 0, it is very convenient to transform, with the help of a linear
change of coordinates P, the matrix A into a Jordan matrix S + N, with S a diagonal
matrix, N an upper triangular nilpotent matrix commuting with S: PAP^^S+N.
Using the structure of S + N, it is easy to study its iterates. Since A^P'^S + N^P,
we thus obtain all the information needed to study the iterates of A.

One of the great ideas of Poincare was to try to proceed in the same way for
vector fields. Is it possible to transform a given vector field X, vanishing at the origin
of C", into a "simpler" one with the help of a local diffeomorphism 0 of 0 C C72 which
maps 0 to itself? The group of germs of holomorphic (resp. formal) diffeomorphisms
at 0 C C" and tangent to Id^n at the origin, acts on the space of germs of holomorphic
(resp. formal) vector fields at 0 € C" by conjugacy: if X is any representative of a
germ of a vector field X, and (|) is any representative of a germ of diffeomorphism
0, then <D*X is the germ of the vector field defined by (|)*X((|)(^)) = D(|)(^)X(x), where
D([)(^) denotes the derivative of (|) at the point x. One may first attempt to linearize X,
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that is find a formal change of coordinates 0, such that 0*X(j/)=DX(0)j/. Assuming
this to be the case, one would expect to understand all the dynamics of X, since
the flow of the linear vector field DX(0)j^ is easy to study. Nevertheless, this cannot
be the case unless we are able to pullback this information by 0, and this requires
some "regularity" conditions on 0. Since we are working in the analytic category,
this regularity condition should be that 0 is holomorphic in a neighbourhood of
the origin. For the sake of simplicity, let us assume that DX(0)^ = ^^ ^ ^^ Q / Q x i is
a diagonal vector field. If Q^=(yi, ...,^) € N", we shall write (Q^A.)= SLi9^ an<^
|Q| = q^ + ... + ^. In order to have the regularity condition, one has to assume that
the collection of eigenvalues (X,i,...,A^) satisfies a diophantine arithmetical condition:
G.L. Siegel [Sie42, Arn80] showed that if there exist C > 0 and |Li ^ 0 such that for
all Q^ (E N", IQJ ^ 2, and all indices 1 ^ i ^ n, |(Q, K) - ̂ | > C|Qj-4, then X is
holomorphically linearizable, that is, the formal diffeomorphism 0 (which is unique in
this case) is in fact holomorphic in a neighbourhood of the origin. This arithmetical
condition was improved by A. Bruno [Bru72] by a weaker sufficient condition (co) which
will be defined later on. The aim of these conditions is to control the speed at which the
small divisors (Q, K) — ^ accumulate at 0 € C. In the case of 1-dimensional germs
of holomorphic diffeomorphisms, J.-C. Yoccoz [Yoc88, Yoc95] showed that Bruno's
condition (co) is also a necessary one.

When we try to linearize the vector field X with a formal change of coordinates,
we see what are the formal obstructions to obtain such a formal diffeomorphism: these
are the numbers (Q, ^)—^ which vanish for some Q^G N" with [Qj > 2 and some index
1 ^ i ^ n. They are called the resonance relations. This kind of relation implies
that the vector field (2x -^-y^Q/Qx +jy9/9y is not C^conjugate in a neighbourhood
of the origin to its linear part 2x9/9x +j/<9/<9^. This means that we cannot find a
twice continuously differentiable local diffeomorphism of a neighbourhood of the origin
which "transforms55 the first vector field into the second one. Nevertheless, one can
show [Arn80, Rou75, CS, Gha86] that there exists a formal diffeomorphism 0 (which
is not unique) such that

0*X=f>^-+^f ^ .̂ U,
z = l Qxi ^ = l \(Q^)=^ / 9xi

where the sum is over the multi-integers Q G N", |QJ ^ 2, and the indices i which
satisfy (Q, X) = ̂ , and where the a^ Q^S are complex numbers. As usual, if Q^= (q\,..., ̂ ),
then ^Q'=^1...^". This kind of formal vector field will be called a (Poincare-Dulac)
normal form of X. It plays the same role as the Jordan form does for a matrix.
In fact, if we denote by S the linear part of X, then a normal form can written
<t>*X = S + N, where S is a diagonal linear vector field, N is a nilpotent vector field
(that is the sum of a nilpotent linear vector field and a nonlinear one); moreover, the
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Lie bracket of the vector fields [S, N] vanishes. The main drawback of this is that
whenever X is analytic, the normalizing diffeomorphism 0 as well as the associated
normal form <&*X may only be formal objects.

The holomorphy of a normalizing diffeomorphism is related, on the one hand,
to the small divisors problem, and on the other hand to the presence of non-trivial
formal first integrals. Indeed, for instance, the vector field x^ Q / Q x + (x +y) 9 / Q y does
not have any non-trivial formal first integral. It has the vector field x2 Q / Q x - \ - y Q / Q y as
normal form with an associated normalizing diffeomorphism x=x\,y=jy\+^(x\) defined
by ^{x\)= Z^i(A;— l)!^i which is clearly a divergent series. This example has generated
a lot of papers about sectorial normalization and analytic classification [Mal82, MR82,
MR83, Vor81, Eca, Eca92, Sto96]. Nevertheless, having enough formal first integrals
is far from being sufficient for a holomorphic vector field to be holomorphically
normalizable. In fact, J.-P. Franchise proved [Fra80] that a holomorphic volume
preserving vector field X (say div X = 0) with a non-trivial holomorphic first integral
may only be formally normalizable.

One of the striking results of Bruno [Bru72, Mar80] is the following:

Let X be a holomorphic vector field in a neighbourhood of 0 C C". Let us assume that its
linear part Y^i= i ̂  Q/Qxi at the origin satisfies the diophantine arithmetical condition (co). We

assume furthermore that X has a formal normal form of the form: a(x) ̂ L i X^,Q/Qxifor some
formal power series a e C[[^i, ...,^]]. Then the associated normalising diffeomorphism is analytic
in a neighbourhood of the origin,

On the other hand, J. Vey [Vey79] proved the following result:

Let Xi,...,X^_i be holomorphic vector fields in a neighbourhood of a common singular point
0 C C^ and which are volume preserving (that is, the Lie derivative cS?xC° ̂ O for a holomorphic
non singular n-drfferential form w), "independent" and commuting with each other. Then, the vector
fields Xi, ...,X^_i are holomorphically and simultaneously normalizable (in a sense which has to be
defined).

One of the aims of this article is to show that these results are in fact the same
one. We will show that a vector field will be holomorphically normalizable if its linear
part is not too wild and it has enough formal first integrals and symmetries. In the
same spririt Bruno and Walcher proved [BW94] that in dimension 2, a vector field
satisfies the assumptions of Bruno's theorem above if and only if it admits a non-trivial
commuting holomorphic vector field. A much weaker result was given by the author
in [Sto97]: we had assumed that the vector fields have holomorphic first integrals.
We mention a manuscript of D. Gerveau and J. Ecalle in which they study pairs of
holomorphic vector fields in C3. In the C°° case, the linearization problem of 2 vector
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fields was solved by R. Roussarie and F. Dumortier [DR80]. The linearization problem
of distributions was studied by D. Gerveau [Ger79].

This problem is completely solved for semi-simple finite-dimensional Lie algebras
of holomorphic vector fields: they are holomorphically linearizable [GS68, Kus67] (an
elegant proof can be found in [CG97]).

2.1. Statement

We will be concerned not only with a holomorphic vector field in a neighbour-
hood of a singular point but rather with collections (Xi,...,X/) of vector fields which
commute pairwise. This kind of object will be described by a Lie morphism F from
a complex commutative finite-dimensional Lie algebra g to the Lie algebra ^1 of
holomorphic vector fields in a neighbourhood of the singular point 0 € C" by setting
F(&)=X,, where G={^i,...,^} denotes a basis of g. We shall require that their linear
parts are independent and belong to an /-dimensional vector space of linear diagonal
vector fields. This leads us to define a Lie morphism ^ from g to the Lie algebra
^ of linear vector fields of C". Thus, our object F will be thought of as a nonlinear
deformation of (|) which is still a Lie morphism. This very elementary Lie algebra
setting is due to the fact that such a Lie morphism defines two natural representations:
on the one hand, the map g ^—> [(|)(^), .] defines a representation of g into the vector
space of holomorphic (resp. formal) vector fields vanishing at the origin. On the other
hand, the map g ̂  ^^)(.) (the Lie derivative along the vector field ^{g)) defines a
representation of g into the space of holomorphic functions (resp. formal power series)
vanishing at the origin. To these representations one may associate a complex of vector
spaces, namely the Ghevalley-Koszul complex whose cohomology spaces (at least the
0-th and the 1-st) play an important role in our problem. For instance, the 0-th co-
homology space associated to the first (resp. second) representation is nothing but the
common holomorphic centralizer (resp. the common first integrals) of ^(g\), ...,(|)(^/).

The first part of this paper is devoted to the study of these representations of
an arbitrary finite-dimensional Lie algebra g (not necessarily commutative) defined by
a morphism (|) from g to the space of linear vector fields. This study will be followed
by the definition of a formal normal form of a nonlinear deformation (|) + £ of (|),
that is, a normal form relative to the Lie subalgebra (|)(fl). The formal obstructions
for such a deformation to be linearizable are closely related to the first cohomology
space of the associated Ghevalley-Koszul complex. After choosing a supplementary
space V(resp. V) of the 1-cocycles space in the 1-cochains space with values in the
space of formal vector fields (resp. 1-coboundaries space in the 1-cocycles space), there
is a formal diffeomorphism 0 such that 0*((|) + e) - (|) 6 V © V. We shall call this a
formal normal form. The morphism (|) + e is said to be compatible whenever its
normal form belongs to V; in this case, a normal form is given by an element of the
first cohomology space H^(@, J%^2) of the Ghevalley-Koszul complex (3^2 denotes the
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space of formal vector fields of order ^ 2 at 0 G C"). We shall call these elements
the resonant vector fields. After choosing a suitable supplementary space K of
H(()(0? ^n ) m ^n •> a f011111^ normalizing diffeomorphism is uniquely determined if
it belongs to the exponential of K.

In order to describe the space of normal forms, one has to compute the first
cohomology space. This is the goal of section "Fundamental structures". We shall
study the case where g is nilpotent. We shall show that the linear morphism (|), after
a linear change of variable, can be written as S + N where both S and N are linear
morphisms, for all g € fl, S{g) is a linear diagonal vector field and N(^) is a nilpotent
vector field commuting with S(^); that is [S(^), N(^)] =0. Let us set ^^:==H^(fl, 3 )̂

(resp. (^%^ ) :=H(j)(g, J%^ )), the space of formal first integrals of (|) (resp. the space
of formal centralizers of (|) vanishing at the origin). We shall show that

H^^^Hom^fl/^flL (^:l)s);

(——-~~-1\^ --^~S
thus we need some information about Ji^ ) . We shall show that ^ is a

Q

formal algebra of finite type; it can be written as ^ = C[[^i, ...,z^]] for some

(^___^i \ s .--̂ s
homogeneous polynomials u\,...,Up. Furthermore, J%^ ) is an ̂  -module of finite
type. One of the main objects introduced in this section is the notion of weight of
the representation. A weight a for S is a C-linear form on g vanishing on [fl, g] and
such that {X € J%^ [ V^ € Q, [S(.g), X] = a(^)X} does not reduce to zero. The latter
space is called the weight space associated to the weight a. We may think of the
weights as belonging to R2^ (equipped with a suitable norm), /' being the dimension
of fl/[fl50]. For each positive integer A;, we define the real numbers co^(S) to be the
smallest value of the norms of the non-zero weights of S into the space of nonlinear
polynomial vector fields of degree ^ 2k. We shall say that the diagonal morphism S
doesn't have small divisors if the sequence of O)^(S) is bounded away from zero.
If it is not the case, we shall say that S is diophantine if

-^i""^^
^o 2^

and this condition doesn't depend on the chosen norm.
The next section is devoted to the notion of complete integrability. We shall

assume that g is commutative and that S := (|) is a linear diagonal morphism. The
isoresonant hull of S, IsoRes{S), is the largest Lie subalgebra of the Lie algebra
of diagonal vector fields which has the same invariants as S. By this, we mean that
there is a commutative Lie algebra 3 together with an injection j: g ^—> g, an injective
diagonal Lie morphism § : fl —> ̂  which satisfies:
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1. $0j=(|),

i^:)^^:)"^^^.
With this notation, we set IsoRes{S) = §(3). A diophantine hull of S is a Lie

subalgebra of linear diagonal vector fields of C" which contains S(fl), which has the
same invariants and for which all the quotients of the norm of one of its weights by
the norm of the same weight restricted to g is universally bounded (this means: there
is an injection i: g<—^ ~g into a commutative Lie algebra fl, a linear diagonal injective
morphism S with Soz=S, there is c > 0 such that for all weights a of S, ||a|| ^ f[|aoz||).
Any diophantine hull of S is included in the isoresonant hull of S.

Let us first assume that S is injective and has small divisors. We shall say
that a compatible nonlinear deformation S + £ is formally completely integrable if

0

its formal normal form belongs to the ̂  -module generated by one of the diophantine
hulls Dioph{S) of S. We shall prove the following:

Theorem 2.1.1. — Under the above assumptions, if S is diophantine, then any formally
completely integrable nonlinear deformation S + £ of S is holomorphically normali^abk.

In other words, if the nonlinear holomorphic and commuting vector fields
Xi, ...,X/ whose linear parts belong to S(fl) have enough formal common first integrals,
then these are in fact holomorphic first integrals as long as (|)(fl) is not too wild. This
result is very similar, in the case of vector fields, to the Malgrange singular Frobenius
theorems in the case of holomorphic forms [Mal76, Mal77, Ram79] (see also [MM80]
for 1-forms).

The next question that can be asked is the following: under what assumptions
can a formally completely integrable nonlinear deformation S + e of S be extended
in a higher dimensional space into another formally completely integrable nonlinear
deformation S+£ of S, both being morphisms from the same Lie algebra Q as S? We
should point out to the reader that in general, it is completely wrong that the same
number of commuting vector fields would ensure that the extension of a morphism is
holomorphically normalizable; a priori., more vector fields will be needed.

Nevertheless, under certain hypotheses, this kind of statement is true. First of all,
we shall define a good extension of S in C^^ as S := S © S", where S" is a diagonal
linear morphism from g to ̂ . Of course, we want the properties of S to be derived

from those of S; that is, we want S to be diophantine if S is and we require ^n+m = ^n '
One way to achieve this is to assume that S" is a Poincare morphism relative
to S: we require that the weights of S all belong to a real linear hyperplane of R2^
but all but a finite number of weights of S", belong to one and the same side of the
hyperplane. Such an extension will be called proper if the only weight of S" which
belongs to the hyperplane is the zero weight.
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0

A trivial deformation of 0 over \̂ relative to S" is a formal nonlinear
deformation

X=D" +MI" + R" G Hom^ (fl , ̂ s ® (X1)8") ,

( -^~~-s \
where D7' € Hom ;̂ fl, ̂  ®c IsoRes^)) is diagonal, .M7" is nilpotent, R" is nonlinear
(as vector fields of (T) and ̂  .Nil" + R"]=0. Now we can define the notion
of complete integrability for an extended morphism. Let S = S © S" be a proper
Poincare extension of S which is assumed to be diophantine and injective. A nonlinear
deformation of the proper Poincare extension S will be said to be formally
completely integrable if its formal normal form is the sum of an element of
Hom^ [g, ̂  ®cDioph(S)) and a trivial deformation of 0 over ^ relative to S".
Therefore, the restriction of such a completely integrable deformation of S to
Xn+i =...=Xn+m=0 is a completely integrable deformation of S. We shall prove the
following:

Theorem 2.1.2. — Let S be a diophantine^ infective diagonal linear morphism from fl to
^. We assume that S =S © S" is a proper Poincare extension ofS in C^ by S". Then any
nonlinear deformation ofS which is formally completely integrable is holomorphically normali^abk.

We shall be able to give a similar result if the Poincare extension of S by S"
is not proper. Let h be the set a weights of S" which belong to the hyperplane. If
the extension is proper then h reduces to 0; otherwise, let (3^) (S") be the direct
sum of the weight spaces of S" corresponding to the weights of A. Let J^(S") be the
largest Lie algebra of the Lie algebra of diagonal linear vector fields of C^ such that

[^(S"), (^) (S")1 =0. This means that the vector fields of (^) (S") belong
\_ a \ ' ^ h
to the centralizer of .2 (̂8"). In this case, we have to restrict the notion of "trivial
deformation55 to the following notion. A good deformation of 0 relative to (S, S") is
a formal nonlinear deformation

X=D" +?1" + R- € Hom^ (@, (^. ® (X;)^)) n (3^)^")

such that

( , ^ o x / - ^ i xSes^x
D" € Home 0, (^ ®c^(S")) H ( ,̂) J is diagonal,

( c// \

Ml" G Home fl, ̂  ® (^J) ) is nilpotent, and

( /^ /^~^i\ \ /_i \s®s"\
fl, ̂  ® (̂ , \ {S")) n (̂ ,) J is nonlinearR-GHom^ g, K® < .(S"
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(as vector fields of C^). Furthermore, we will have \D",Nil" +R"]=0. A compat-
ible nonlinear deformation of the Poincare extension S will be said formally
completely integrable if its formal normal form is the sum of an element of
Hom^ (fl, ̂  (g)c Dioph(S)\ and a good deformation of 0 relative to (S, S").

Theorem 2.1.3. — Let S be a diophantine, infective diagonal linear morphism from fl to
S^. We assume that S =S©S" is a Poincare extension ofS in C"^ by S". Then, any nonlinear

deformation ofS which is formally completely integrable is holomorphically normali^able.

Both of the above theorems are the most difficult ones. Now, we wonder what can
happen when S doesn^t have small divisors. A compatible nonlinear deformation
of a Poincare extension S of S will be said formally completely integrable if its
formal normal form is the direct sum of a formally completely integrable deformation
of S and a nonlinear deformation of S"; that is, no assumption is required on the
projection onto 9/9xn+\^ .,.^9/Qxn+m of the formal normal form.

Theorem 2.1.4. — Let S be an injective diagonal linear morphism from g to S^. We

assume that S doesn't have small divisors and that S = S © S" is a Poincare extension of S in
Qn+m^ y^ ̂  nonlinear deformation ofS which is formally completely integrable is holomorphically
normali^abk.

We will show that both Bruno's and Vey's theorems are direct corollaries of these
results.

2.2. Geometric interpretation

In order to illustrate our result, let us first recall the Liouville theorem
[Arn76]. Let Hi,...,H^ be smooth functions on a smooth symplectic manifold M2";
let n : M2" —^ R" denotes the map 7c(^)=(Hi(^), ...,H^)). We assume that for any
1 ^ ij ^ 72, the Poisson bracket {H,, Hy} vanishes. Let c G R" be a regular value of n',
we assume that K~\c) is compact and connected. Then there exists a neighbourhood
U of n~\c) and a symplectomorphism 0 from U to 7l(U) x T" such that, in this new
coordinate system, each symplectic vector field XH^ associated to H, is tangent to the
fibre {d} X ̂ n. It is constant on it and the constant depends only on the fibre. Such
a family of hamiltonian vector fields is called a completely integrable system.

Let us come back to our problem and let S be a diophantine injective diagonal
linear morphism from Q to 6^. Let ̂  be its ring of formal first integrals. If ̂  ^ G?
it is a C-algebra of finite type and there are homogeneous polynomials u^...,u?
such that ^s =C[[z/i,...,^]]. Let n : C" -^ Cf be defined by n{x)=(u^x\..., Up(x)\
Let s be the degree of transcendence of the field of fractions of C[z/i,..., Up\\ it is
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the maximal number of algebraically-independent polynomials among MI,...,^. The
algebraic relations among u\,...,Up define an ^-dimensional algebraic variety ^§ in Cf.
Hence, n defines a singular fibration over W^. The linear vector fields S^i),..., S(gi)
({<?!? •••5 gi} denotes a basis of fl) are tangent and independent on each fibre of n.
Note that we must have / ^ n — s. Now we come to the nonlinear deformation. Let
S + £ be a nonlinear deformation of S. Let us assume that it is formally completely
integrable. Then according to our result, there exist a neighbourhood U of 0 in C"
and a holomorphic diffeomorphism 0 on U such that, in the new coordinate system,
the vector fields 0*(S + ^)(g\\ ...,<&* (S + e)(gi) are linear diagonal vector fields on each
fibre restricted to U, they commute to each other and their eigenvalues depend only
on the fibre. Indeed, in these new coordinates, we have <&*(S + £)(^) = Z^i ^,jS(g)
where aij C ^ ; here {S^i),..., S(gi+r)} denotes a linearly-independent set of some
diophantine hull of S (r may be equal to 0). By definition, these vector fields are all
tangent to the fibres of n (therefore, we must have r+ / ^ n — s). As a consequence the
0*(S + £)^)'s are all tangent to the fibres of n. On each fibre, the functions a^j are
constant so that each 0*(S + £)(^) may be written as a linear diagonal vector field.

Let us give the geometric interpretation of a formally completely integrable
deformation of a proper Poincare extension §= S©S" of S in C^. Let % : C^ —^ Cf
be the map defined by %(x,j)=7c(^), where ( x , y ) € C" x C^ Let c e ^§, then

n~\c) =7C-1(^) x C7". Let S+'£ be a nonlinear deformation of S. Let us assume that it is
formally completely integrable. Then there exists a neighbourhood D of 0 in C^"1 and
a holomorphic diffeomorphism $ on U such that, in the new coordinate system, the
vector fields 3>*(S + 'S)(g\),..., 3>* (S +£)(?/) are commuting vector fields tangent to each
fibre of% restricted to 0. On such a fibre n~\c) n tJ, each of the $*(§ +'8)^)^ is the
sum of a vector field V^ tangent K~\c) and a local vector field V^ of 0'". As above,
\\ is a linear diagonal vector field whose eigenvalues depend only on c. Moreover, V^
is a Poincare normal form (polynomial vector field) whose coefficients depend only on
the fiber and are holomorphic; that is, V^ may be written as S" + N" + R" where

S" is a linear diagonal vector field of C772, N^' is a linear nilpotent vector field of C^

and R^ is a nonlinear polynomial vector field of C^ such that [§ ,̂ 5^ + fi^'] =0 and
[S", 5^+6^|=0.

2.3. Sketch of the proof

Let us give a sketch of the proof. In order to normalize the nonlinear deformation
S + £ of S, we shall proceed using a classical Newton method, that is a Nash-Moser
induction type.
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Let 1 < k ̂ p be integers, and let ̂  ' p be the space of polynomial vector fields
of C" of degree ^ p and of order ^ k. Let g be a complex commutative Lie algebra of
dimension /, and let S be a Lie morphism from g to S^? { such that S{g) is a diagonal
linear vector field. Let us consider the map p : Q —> Hom^(^f5^, ̂ f ; defined by
p(^)(X)=[S(^),X], where g G fl, X C ^^([., .] denotes the Lie bracket of vector
fields of C"). It is well defined and it is a representation of S into ^ ' p . If a is a
complex linear form on fl, we define ^^={X C ^^|Vg G 0, [S(^), X] =a(^)X}.
If ̂  '̂  =|= 0 then a is called a weight of S and S^'^ is called the associated weight

space, and we have the Fitting decomposition ̂  ' p = [ S ^ n ' ) ®^,o^ where [ S ^ i ' f
is the sum of the weight spaces associated to the nonzero weights of S.

Let us assume that the nonlinear deformation S + e is normalized up to order
m; we will build a diffeomorphism 0^ which normalizes the deformation up to order
2m', it is tangent to Id up to order w. Let us show how this works. First of all, we
can write the deformation S + £=NFm + B + R E Hom^ (fl, ̂ \ where NF^ is a
normal form of degree m, B is a polynomial of degree ^ 2m and of order > m + 1,
and R is of order > 2m + 1 (we mean that B and R are linear maps from fl to the
corresponding spaces). Let us denote by B* (resp. Bo) the projection of B onto the
sum of the weight spaces associated to a nonzero weight (resp. zero weight) of S into
^m+i,2m rj.^ compatibility condition (i.e S + e a Lie morphism) shows that, for all
(?i,&) G0 2 , the 2m-jet

(2.3.1) J2- ( [NF^Q, B*fe)] - [NF-fe), B*(?Q] ) = 0.

On the other hand, if we conjugate S+e by a diffeomorphism of the form exp(U) for
some polynomial vector field U C ^w+l'2m and write exp(U)*(S + e) = N1̂  + B' + R' as
above, we find that •

jWB'-B+INF^.U]) =0.

The algebraic properties of the weight spaces of S show that we have

j2m ̂ * _ y + p^ u*] ) = 0.

If we assume that the diffeomorphism exp(U) normalizes S + e up to order 2m then we
must have (B')* = 0 (this is a consequence of the description of the Chevalley-Koszul
cohomology associated to S); hence, we have

(2.3.2) J2" (-B* + [NF", U*]) = 0.
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Let us denote by ^w+l'2my the projection of ^m+l?2w onto the direct sum of weight
spaces associated to a nonzero weight of p. Let us define the linear map

^S-.Hom^^1'2-)*,^1'2-)*)

by P^X^^^pNF^X]). It is well defined and it is a representation of fl into
(^T ' 1 .To this representation one may associate a complex of finite-dimensional
complex vector spaces; it is the Ghevalley-Kozsul complex of this representation. Let us
write d^ for the z-th differential of this complex. Then equation (2.3.1) reads <4(B*)=05
that is B* is a 1-cocycle for this complex; equation (2.3.2) reads ^(U)=B*, that is B*
is the 0-coboundary of U: it is a cohomological equation.

Hence, the Ghevalley-Koszul complex of the representation p plays an important
role in our problem. We shall call it the Newton complex of order m. Its study
is a large part of our work. According to the discussion above, the first important
problem to study is its cohomology We shall show that the 0-th cohomology as well
as the 1-st cohomology spaces are zero. This is a general fact which holds even for
nilpotent Lie algebras and nondiagonal linear morphisms. It is not very difficult, but
rather technical. It leads to the important consequence that if B* is given as above,
there exists a unique U G (^w+l'2m) * such that, for all g G fl, J2^ [TMP^), U] ) = B*(^);
hence, conjugating S + £ by exp(U) normalizes S + £ up to order 2m.

We find that the formal diffeomorphism defined by 0:= lim^.^0^ o ... o 0^
normalizes S + £, where the O^s are built as above. In order to prove that 0 is
holomorphic in a neighbourhood of 0 e C", one has to estimate the behaviour of each
0^. Here comes the analysis and the major part of this article. To get an estimate
for 0^=exp(U), we have to estimate U. Hence, we are led naturally to give bounds
of the cohomology of the Newton complex: let r > 0, the spaces of the Newton
complex are equipped with norms (depending on a real positive number r) which turn
it into a topological complex of vector spaces. By the above algebraic properties, the
0-differential has a right inverse s on the space of 1-cocycles; if Z is a 1-cocycle of the
Newton complex, then s{Z) is the unique element of (^m+152w)* such that d^(s(Z))=Z.
The main assumptions are as follows: if S + £ is completely integrable then we shall
show that the map s is continuous and we shall give bounds for its norm. More
precisely, we shall show that there exist constants rf,r |i, ^(r|i), such that if m=2k and
if the r-norms of NFm - S and D(NP1 - S) are sufficiently small, say < T|i (for some
1/2 <r<^ 1) then

(2.3.3) |.(Z)|̂  -^-IZI,
^k+\,G
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the constant d doesn't depend on r|i (we recall that CO^G is the smallest norm of the
nonzero weights of S into ^f92 ).

Let us describe the way in which we obtain this estimate. Let {g\, ...,gi} be a fixed
basis offl. In order to solve the cohomological equation associated to the 1-cocycle Z,
it is necessary and sufficient to solve the system of / equations J2^ [NF^-), U] ) = Z(^),
i= 1,...,/. Here Z is assumed to belong to a weight space of S for some nonzero weight
a. This set of equations can be written in the following matrix form

/^i)U\ /Di(U)\ / Z i + 3 i

A(J ; L ; J ;
\a(^)u7 \D,(U)/ \Z ,+3 /

where A is a square / x / matrix with coefficients in the C-algebra ^s of holomorphic
first integrals of the linear part S (in fact, they are polynomials); A(0) = Id; the operators
Di, . . . ,D/ are ^-linear; 3i,...,3/ have order > 2m + 1 and Z, stands for Z(^). After

inverting the matrix A, we obtain / equations {a(gi)Id + Oz)(U) = Z, + 3,, i=l,..., /. The
D,'s (resp. Z,, 3z) are still ^-linear operators and they are linear combinations of the
D.'s (resp. Z,, 3^) with coefficients in ^s. Let us set ||a|| = max^.^ |a(^-)|, and let i
be such that |a(^)| = ||a|| =|= 0. Let us look at the z'-th equation; we find that, at least
formally, its solution U is given by

u^-^-Ef—y^z^^.
a(gi) w ^W

This expression is not too helpful since it involves a priori infinitely large powers of
a{gz) which can be very small. Thus, instead of using this expression, we shall split
the z'-th equation in an appropriate way. First of all, we shall split the linear diagonal
morphism S into two parts S' and S" corresponding to the splitting ofC" as C^ xC^7;
that is, for all g € fl,

s(^) = E ug)^ + E Wx9 .
k=\ axk k=n^l axk

S'(^) ^{g)

The integer n' is chosen such that the linear forms {^}i^^ all belong to a real
hyperplane H of Hom^(g, C) whereas all the linear forms {^]v+i^^ all belong
(strictly) to one and the same side of H. The integer n1 is taken to be the smallest
possible; it may be equal to 0 as well as equal to n. We shall call this splitting the
analytic splitting of S. It has been chosen in such a way that the small divisors
as well as the first integrals only depend on S'. We show that there is a separating
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constant Sep(S) > 0 such that if a is a weight of S whose norm is smaller than Sep(S)
then it must belong to H (if n' = n we shall set Sep{S) = + oo in order to have a single
proof for the theorems). Let X be a vector field of C1, we shall denote by X' (resp.
X") its projection onto Q/9x^ ...,c?/<9^/ (resp. <9/<9^+i, ...,<9/<9^). This being said, let
us go back to the study of our equation {a(gi)Id + G,)(U) = Z, + 3z. Using the analytic
splitting of S as well as the structure of the operator D,, we show that this equation
can be written in the following form:

^A) u/ ~ ̂ w})/ = 0^)^ + ̂  + (Q((U/) }1}

(2.3.5) U" - ̂ (QW)" = ̂ (Z^ + ̂  + (P,(UQ)" + (Q,^)U;

both P, and Q, are ̂  -linear operators. Let us assume that the weight a is of small
norm, that is smaller than Sep(S). Then, we show that (Q,(U'))' = 0 and that, according
to complete integrability, P^ o P^ = 0. Therefore the solution of equation (2.3.4) is given
by

v'--(Id+^t:)(^t+^•-

since U' is a polynomial of order ^ 2m, then in fact we have

'̂(^K^)'--
An estimate of the operator P^ will provide the desired estimate of U'. Now let us

study equation (2.3.5); if we denote by ——.t^ the left-hand side of this equation, then,
^gi)

at least formally, we have
k

u"-T( ' I o'l "'• I&teJQ•te)^
By assumption, NF7" is the m-jet of a completely integrable normal form. Therefore, its
projection (NF^)" is the m-jet of a good deformation of S". The point is that there

exists an integer Ao which does not depend on m and such that J27" ( O^, [ —l— \ } = 0
V \^gi)jj

for all k > Ao. The important consequence for the estimates is that the above sum which
gives U" is finite. Using the estimate of U' which were found above, we can give an
estimate for tt^; then using the estimate of Q^, we obtain an estimate of U". The last
case deals with weight a such that ||a|| ^ Sep(S), it is the easiest case.
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Now let us give an idea of the induction argument. Let 1/2 < r ^ 1, and let
us assume the the nonlinear morphism S + £=NP2 + R^+i is normalized up to order
m= 2k. Let us assume that the norms INF^—S]^ and |D(NFW—S)[^ are small enough, say
smaller than r|i, and that [R[^ < 1. The solution of the cohomological equation allows
us to normalize the nonlinear morphism up to order 2m: 0^(S + £)=NF2W + R2m+i-
Using the estimate of this solution, we show that [NF2772 - Sjp and ^(NF^ - S)|R are
still less than T|i, where

-l/w( r('n.}\ ~ i l m

R= ^) m-2/mr<r,
^i7

^(Th)'

and that [Rzw+ilp < 1- After a preliminary renormalization, we show that, at each
stage, our new objets still satisfy the required assumptions in order to have again the
estimate for the solution of the new cohomological equation. Thus, we may repeat
the process... Now, because of the diophantine condition, the product of these R is
bounded below by some positive constant Rod. Therefore, in the limit, we have a
holomorphic diffeomorphism in the polydisc of radius Rod centred at 0 € C77 which
normalizes our nonlinear deformation S + £.

As the reader will see, this work is inspired by the work of Bruno [Bru72]. For
one vector field with a diophantine linear part, the "complete integrability condition55

of Bruno is not only sufficient but necessary for holomorphic normalization. Our
conditions are not in general necessary as can be seen in my recent work [StoOOa,
StoOOb]. From the algebraic point of view, we point out the article ofWalcher [Wal91]
which has been of some help for this work. This work is partially contained in [Sto98a,
Sto98b].

3. Notation

Let R=(ri,...,^) G (R^)" and a € C\ The open polydisc centered at a and of
polyradius R will be denoted by Dp (a) = {^ G C^ | |̂ • — <^| < r,}. When a= 0, it will be
denoted by Dp. If r > 0 then D^(fl) denotes the polydisc D/ .(a). We shall denote ̂
the distinguished boundary of the polydisc Dp, that is the set ^ = {^ € C" | V 1 ̂  i^ n,
k-|= Rz}. _

Let f be a holomorphic function in a neighbourhood of the closed polydisc Dp,
then we define the norm | | /HR= sup^- \f(x)\.

3.1. Norms

Let/E C[[^i,...,^]] be a formal power series :/= Y^o^nfo^' We define/
to be the formal power series f= SoeN" 1^1 -̂ ^e ^H ^Y ^at a formal power
series g dominates a formal power series/ ifVQ^G N^, \f(^\ ^ I^QJ. In that case, we
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shall write f-< g. More generally, let q > 1 be an integer and let F=(yj,...^) and
G={g\,...,gq) be elements of (C[[^i, ...,^]] )^; we shall say that G dominates F, and
we shall write F ̂  G, iffi ^ g, for all 1 ̂  i <; q. We shall write F= (Ji, ...J^). We shall
say that F is of order ^ m (resp. polynomial of degree ^ m), if each of its components
is of order ^ m (resp. polynomial of degree ^ m).

Let r be a positive number and (/, F, G) € C[[^i, ...,A:J] x (C[[^i, ...5^]])^ x
(C[[^i,..,^]])^ we define |/|,= E^N" W^ =f{r,...,r) and |G|,= maxj&|, these
may not be finite. We have the following properties:

TG -< JG,
i f F ^ G then |F|,^ |G|,,

~9}[ _ BF
Qxk Qxk

Let us define ^^(f) = {F G (C[ [x^..., ̂ ] ] )q \ |F|, < +00}; |.|, is a norm on this
space. Equipped with this norm |.[^ this space is a Banach space (see [GR71]). Let
F = EQCN" ̂ Q^ an element of ^^(r), then we have the following inequalities

(3.1.1) ||F||^|F|,,

/^\m
(3.1.2) |F|R < - |F|, if ord(F) ^ m, R ^ r,

(3.1.3) |DF|^ ^ -|F|^ if F is a polynomial of degree ^ d.

We shaU often use the estimate |(DG). F|, ^ 7z|DG|,|F|, whenever (F, G) G ^C(r).

Lmima 3.1.1. — Let r > 0, a G C* and g G ^^y-). 14̂  ^^m^ ^^ |^|, < \a\. Then

Proof.

<
^8\r

We have

-1^

i i
a+ g a 1 + ̂ /a a Et-i/d)',

^o v"/

thus,

1 1 1 1 \^—^ I I k~k 1 1 — 1 l

——-<: \a\ 'Y \a\ g =\a\ l——7——='
^g u ^ i-H-^k^Q
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So,
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a+g ^—— D

H - \g\r

3.2. Spaces of vector fields and spaces of Junctions

Let us set some notation which will be used all along this article. Let k > 1 be
integers:

• ̂  denotes the C-space of homogeneous polynomial vector fields on C" and of
degree A,

• ^m' denotes the C-space of polynomial vector fields on C", of order ^ m and
of degree ^ k (m ̂  A:),

• J%^ denotes the C-space of formal vector fields on C" and of order ^ k at 0,
• jy^ denotes the C-space of germs of holomorphic vector fields on (C", 0) and

of order ^ k at 0,
• p^ denotes the C-space of homogeneous polynomials on C" and of degree k,

• J^ denotes the C-space of formal power series on C^ and of order > k at 0,
• ^&^ denotes the C-space of germs of holomorphic functions on (C", 0) and of

order ^ k at 0,
• ̂  denotes the ring of formal power series in C",
• ^ denotes the ring of germs at 0 of holomorphic functions in C".

4. Normal forms relatively to a Lie algebra of linear vector fields

Let 5 a finite-dimensional Lie algebra over C and let / be its dimension. Let
(() : g —^ ^ be a Lie morphism from Q to ^ , the Lie algebra of linear vector
fields on C". It is a C-linear mapping which satisfies (|)( [g\,g\])= [^(g\) ?^{g2)] ^
all { g [ , g 2 ) e fl2. If (() is injective, then the family of vector fields {^{g\),"^^{gi)}
(G= {g\, ...,<?/} denotes a basis offl) are linearly independent. If we assume furthermore
that the vector fields ^{gz) are diagonal linear vector fields, then (|)(fl) is a commutative
Lie algebra and by injectivity of (|), g is commutative too. In that case, (|) is just a
C-linear map.

4.1. Lie algebras of linear vector fields and their associated representations and Chevalky-Kos^ul complex

Let M^; denotes one of the spaces of vector fields or functions introduced in the
notation section (k denotes a positive integer). Let (|) : g —> ̂  be a Lie morphism
from g to the Lie algebra ̂  of linear vector fields of C". This morphism induces on
M a structure of fl-module in the following way:
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• if Mk is a function space then, the C-linear map

g -^ Home (Mk, Mk)

^i-^cS^O, ^^g) is the Lie derivative along ^(g))

defines a representation of fl into M/;,
• if Mk is a vector field space then, the C-linear map

3 -^ Home (Mk, Mk)

g^Wg)^]
defines a representation of Q into Mk.

These representations will be denoted by p^;. It should be clear from the context
what its target is. We will omit the index k as soon as the context will permit it.
It satisfies p^( L?i,&] )X= p^i)(p^)X) - Pk{g2)(Pk{g\W for all (^1,^2) ^ fl2 and all
XCM^.

To each representation is associated a complex of C-vector spaces, namely the
Chevalley-Koszul complex:

(4.1.1) 0 -. Mk^ Hom^ (fl, M,) ^ Home (A^, M,) ̂  ... ̂  Home (A^, M,) -> 0,

where the differentials d[ are defined in the following way: if co € Home (A^fl, Mk) and
(^b-^+O^fl^ then

^+1
(4.1.2) ^(co)(^,...,^i)= E^1)^1^-) (^i—.^".^i))

+ S (- ̂ ^ [gi. &}. ^1. -.̂  -J^ -.^+l).
l^z<j^+l

As usual, we write (^i, ...,̂ ., ...,^+i) e ^ for the vector (^i, ...,&-i,&+i, ...,^+i). The
differentials fl?o and d\ will be particularly useful:

if U € ̂ , then V^ G 0, do(U){g) = [(|)(̂ ), U];

if u G ̂ , then V^ G fl, rfoW = ̂  ̂ {u);

if F G Home (fl, ̂ f), then V(^i, g^) G fl2,

^1(^(^1. &) = [<|)(5i), F(&)] - te), F(^i)] - F( [g,, ̂ 2]);

if/C Homc(0^), then V(^i,^) ^ fl2,

^1 (/)(^i, &) = ̂ )(/(&)) - ̂ (,,)(/( î)) -/([gt. &] )•

We shall denote by HA (fl, M^) the i-th cohomology space of this complex, that
is H^, (fl, M^) =Z^(fl, M,)/B;(fl, M,) where Z^(fl, M^)=Ker 4 B^(fl, M,)=Im rf._i. We
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define also the "noncocycle space55 to be H^ (g, Mk) :=Hom^ (A'fl, M^) /Z^(0, M^). We
shall denote by MJ the space of invariants of g-module M ;̂, that is M^ = H(() (g, My^).
The following lemma will give a link between the cohomology spaces of the various
3-modules defined above.

Lemma 4.1.1. — If Mk stands/or ^6^ (resp. -%^ Mk for J^ (resp. J^^) and,
for any positive integer i, mi stands for p\ (resp. S^1^) then, for any integer 1 ^ p < / we have
H^ (fl, M,) ^ n,>^ (Q, m.) as well as H^ (fl, M,) ^ n,^H^ (9, m,).

Proof — Let ^ C Hom^ (A^fl,M/;). It can be written ^= ^^^ with ^ e
Home (A^g, w^). Let us consider the following C-map:

p : Home (A^fl, M^) ̂  n^^c (A^fl, m,)
^^

^^(^•)^-

If ^4^ == 0 then, since the m^s are fl-modules, d^i = 0 for all i. In the other hand,
if ^=dk-\u with M 6 Homc^'^Q, Myfc) then, by writing M = S^^ with ^ C
^fowc (A^"^, m^), we obtain ^=^_i^. Thus, the map j& can be quotiented and pro-
vides two C-linear maps:

^^(fl.M^n^fl^)
i^k

M^(fc]).eN;

^:H^(0,M,)-.^H '(^^)
z>A:

^-(^L-
These maps are one-to-one. In fact, let ^ € T^WC (A^g, M^) such that j^i([<])=0.
Then,^)=(^=<4_i^)^ for some ^ G Home (A^g, m,), it follows that ^=^-i(E^^)
so that [̂ ] = 0. Now, let us assume that p^( [^]) = 0, then dp^i = 0 for all i > A;,
thus, dp{Y,^^i)=0 so that ^^^ =[^]=0. These maps are onto. In fact, let

(fc] )^ ^ n^^H^ (fl, m^) (resp. ([^] ),>^ G n^H^ (g, m^if ^ denotes a representative
of [̂ ] (resp. fc]) in Tifowc (A^fl, m,), then ̂ i(E^) = ( fc] )^ and p^^k^ = ( fe] ).>^
D

4.2. Normal form of a nonlinear deformation of a linear morphism

We will consider non-linear deformations of order m > 1 of a linear morphism
(|) from 0 to ^1, that is, a Lie morphism (|) + e : g —> J^ where e € Hom^ (fl, ̂ ^ ].



SINGULAR COMPLETE INTEGRABIUTY 153

Thus, for all {gi, g^) G fl2, we have

(<1> + e)( [gi ,§2]) = Wgi) + e(^i), <t>(^) + e(^)]
= ?(^1), <K&)] + ?(^1), £(&)] - Hte e(?i)] + [£(^1), e(&)].

Since (|) is a Lie morphism, we obtain the following equality in Hom^ (A2^, 3^'):

(4.2.1) V(^i, &) € fl2 </ie(^i. g2) = - [e(gi), e(&)].

Let us denote £' the homogeneous component of degree i of £. Since, for all
{i,j) € (N*)2, we have [^,^\ C ^f7"1, then we can consider, for all positive
integer k, the non-linear map

C,: Home (fl, y) ̂  7fo^ (A^, ̂ )

e^- E [^l-
^•-1=^

It is clear that G^^GAO^''1^)) and that C^(£)=0 for aU integer A; ^ 2m- 1. The
fundamental equation (4.2.1) can thus be written

<W = G^J^-^1^)) for all k G N*.

We will denote Def^^JSrJj the set of such deformations. Let us denote
Diff^C", 0) the group of formal diffeomorphisms which leave 0 € C" invariant
and which are tangent to the identity up to order m at the origin. Let us denote

(Diff^(C"5 0)) the subgroup whose elements leave invariant the morphism (|), that

is 0*(|)=(|) whenever 0 € (DiffJC", 0)) . Let us denote by Diff^ ^(C", 0) the quo-

tient group DiHC", O)/ (DifI(C72, 0)) . These definitions come from the commutative
diagram of exact sequences:

0 0i i
n __, (^^ __. ^m __, ^m i (^^ __. nU ——> ^6^ J ——> ^6^ ——> ^6^ I ^36^ J ——> 0

-1 -1 -1
1 -^ (DiffJC", 0))* —. Diff.(C",0) -^ Diff.,(C",0) -^ 1

1 1 '1
1 1 1

where the vertical map is the exponential.
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The group DiffJC", 0) acts on Def(fl, ((), ̂ w) by conjugacy: if 0 € DiffJCT, 0)

and X G Def(fl,^, ̂ f) then

v^ e a, (o*X)(^) o o = o*(X(^)) o o = D(O)X(̂ )
where D(0) denotes the derivative ofO; Def(fl, (|), -%^J is invariant under the action
ofDiffJC", 0). Indeed, we have

^*x(bi,&])=o*(X(ki,&]))=o*P^(^i),x(^)]=[o*x^
Let m ^ 2 be an integer. For any integer k ^ m, we have the following short

exact sequences of finite-dimensional C-vector spaces:
k

0-^ZJ,(fl,^)^ Hom^,^) -^H;(0,^)-.0

0-.B;(fl,^)^ Z;(fl,^) ^H;(fl,^)-.0

0 - (<)' - ^ i ̂ 1 W - 0.
These sequences are split : we may choose C-linear maps

^ : H;(fl, ̂ ) -. Homc(fl, ̂ ), ^ : H;(fl, ̂ ) ̂  Z;(fl, ̂ )

and 4: ̂ 1 (^ -^ ̂

such that /», o s, = /</. This choice is equivalent to the choice of a supplementary

subspace Vk (resp. %, resp. ^) of Z\ ̂ Q, S^ (resp. of B^ ^g, ̂ ), resp. of (^) ) in

Home (0, ̂ ) (resp. in Z; (fl, ̂ ), resp. ̂ ):

Homc(fl,^)=^©Z;(5,^),

Z;(0,^) =^©B;(fl ,^),

^=^©(^)\

Let us define, for i= 1, 2, 3,

^, m ̂  ®^m ̂ , V^ := ©^^ ̂  = Range s^rn,
V^= ®^m^= Range j2,m and P^:= 9^mpk= Range .53^.

Let us write D5f^(C^ 0)(J3,m) for the subgroup ofD5f^(C^ 0) defined by exp P^.

According to lemma (4.1.1), we have \rn ^ H^ (fl, 3^J as well as \rn ^ H^g, ̂ m).

Proposition 4.2.1 (Formal normal form). — Let m > 2 ^ ^TZ m r̂ aW /^ {^,m}z=i ,2,3

be fixed sections as above. Let (|) + £ € Def{fl_, (|)̂  ̂ ^ ) 6^ a nonlinear deformation of ̂  of order m.
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Then there exists a unique formal dzffeomorphism 0 G Diff^(C^ 0)(Js^) ^A that

o*((|)+e)-^eV,©V,.

M^ z^7/ ̂  that <&*((|)+£) zj- ̂  norinal form relative to ^ and to the sections {^ ̂ }i= 1 , 2 , 3 -
We will say that 0 is the formal normalizing diffeomorphism.

V V Lychagin has developped a more general definition of normal forms [Lyc88]
but we shall not use his result.

Proof. — We shall prove by induction on k ^ m, that there exists V/, G S^p^rnPk^
R^ C Qp^^Vp and R^ € @>p^^Vp uniquely determined, such that

J^(expU^+e))=(|)+R,+R,.

Let us recall that, if U € 3^ then

_ adu(<|) + e)
expU*(^e)=^-^——-

z>0 L

_ adu(̂  + £)
=^+£+[U, ( t )+£]+^-^———-,

z>2 z'

where a^u denotes the linear mapping [U, .] and ad^j its z'-th iterate. For k=m and
since we have the decomposition

Hom^ (fl, ̂ T) = Vm © Vm © B; (fl, ̂ w) ,

and the isomorphism B^(0, ̂ f) ^ ̂ w/ (^m)4), we can write ^ =7^ + ̂  + doV^ with

^w ^ ^5 ^m ^ ^m ^d U^ C j&^ uniquely determined. Thus, we have

expU^+e)=( |)+7,+^+ei

where, since U^ € ^w,

ad'j ((|) + e)
£1 = e -r(e) + [U,, e] + ̂  ̂ —— C Hom^fl, ̂ ; ).

?>2 z'

Let us assume that the result holds for any integer p ^ k — 1. Thus there exists
unique U^-i C CJ^ j^, RA-I € ©^L^, R^-i € ©^l^ and £' € Hom^ (fl, ̂ )
such that expU^_i((|) +£ )=( ( )+ R^_i + R^_i + e'. We may decompose J^e') as follows:
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J^(£') == ̂  + ̂  + ̂ ^ where ^ € y/;, r^ € ^ and ^ C pk are uniquely determined. It follows
that

exp(^ + U^-i)*((|) +£)=() )+ Rk-i + R^-i + n + ^ + £2,

where

e2 =e/-JV)+[U, R^+R^+e^ ̂ P^-1^-^ ^ Hom^ (fl, .T^1) .
z>2 l '

We just have to set U^ == ̂  + U^-i, R^ = r^ + R^_i and Ry^ = ̂  + R^_i to conclude the
proof. D

Remark 4.2.2. — Under the assumptions of the above proposition, let U € Pm be such that

exp U*((|) +£)=())+ R + R is a normal form. If r^ denotes the homogeneous polynomial of degree

k ofR, then d^) =G,(JA-m+l(exp(J^-m+l(U)) *(([)+£)- (|))) if k ̂  2m - 1 W ^(7,) =0 if
m^k<2m- 1.

Let us give some examples.

1. Let us first consider the case where dim^ fl = 1. A non-trivial semi-simple
morphism (|) is determined by a nontrivial semisimple linear vector field S. Let
m ^ 2 be an integer, then we have Def(fl,(|),J%^ ) =S + J%^ . Indeed, since

Hom^ ( ^ g , ̂ w) = {0}, then d^ = 0 so that d^ = - [e, e] for all e € Hom^ (fl, ̂ w).

Let V = Ker ad —-^m be a subspace of J%^ . Since S is semi-simple, so is ads and we
S|J&^

have Hom^ (fl, ̂ ^ ) ^ <^^ =V © ads (^^ ). According the above proposition, for

any formal vector field £ € <^ , there exists a formal diffeomorphism 0 such that
0*((|)+£)-(|) € Ker ad —^, that is [S, O* ((()+£)] =0. This is the formal Poincare-Dulac

S|̂

theorem [Arn80].
2. Let 3 be a semi-simple Lie algebra. We will only use the following result,

known as the first Whitehead lemma, which states that if M is any finite-dimensional
fl-module then H^g, M)=0. It follows that if (() is a Lie morphism from g to ^ ,
then for any integer i^ 1, VL^ (fl, S ^ ~ \ = 0. Let (|) + £ be a nonlinear deformation of (|)
of order m > 2. According to the Whitehead lemma and to remark (4.2.2), we can
show by induction on k ^ w, that there exists a polynomial diffeomorphism 0^ such
thatJ^O^+e)):^. In fact, with the above notations, we have ^=0 for all integer
k^ 1. Moreover, if the result holds forj& ^ k— 1, then J^(0^_i ((()+£))—(|) is a 1-cocycle

according to (4.2.2). It follows that ^ = ̂  = 0.
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It follows that any nonlinear deformation of (|) is formally lineari^able. This is a
result of Hermann [Her68].

4.3. Compatible nonlinear deformations

Definition 4.3.1. — Let ())+£ be a nonlinear deformation of order m. We shall say that (|)+£
is compatible if there exists sections {^-,mh=i,2,3 ^ above, such that its normal form relative

to these sections is a \-cocyck relative to ^ : rfi^ (<&*(()) + e) — ())) =0 where 0 is the normalising
diffeomorphism.

Lemma 4.3.2. — The compatibility condition of a nonlinear deformation ^ + £ of order m
does not depend on the choice of the sections {^, m}z= 1 , 2 , 3 •

Proof. — Let us assume that (|) + e is compatible relative to a given set of
sections { ^ - , m h = i , 2 , 3 - Let 0 be its normalizing diffeomorphism. Then, according to
the definition, R=0* (())+£) is a 1-cocycle relative to (|). This property does not depend
on the choice of the section s\^rn nor on ^2,m- Let us show that this property does
not depend on ^3^. Let 0 be a formal normalizing diffeomorphism. It is sufficient
to prove that ^(QF o 0)*(<|) + e))^^?* (o*((|)+e)) =d^^ for all ^ belonging to

(DiffJC", 0)) . Let us write X for 0*((|) + e); then, for all (?i, &) e fl2, we have

^i, ̂ i, &) = <K [ î ,&])== ̂ (K ki, &])
=y*rfl,^l,&)=lP*?,^X(^,&))

=y*([(t)(^i),X(&)] - [(|>(&),X(^)] -X([^i,^]))
= DP*^), ̂ *x(&)] - PP*^(&), ̂ *x(^i)] - y*x( [^i, &])
== ^(^), y*^^)] - ?(^2), ̂ ^^i)] - ̂ ^ [^i, &])

(T leaves invariant (|)),

=^^CF*X)^,&).

This proves the lemma. D

Remark 4.3.3. — IfQ is 1 -dimensional then any non-linear deformation is compatible.

Let us define Gompat(fl, (|), ^^w) the set of compatible formal deformations of (|)
of order m.

Corollary 4.3.4. — For each choice of the sections ^2,m^3,m^ ^^ ^ ^ ̂ ^ rf^^rf mq&

NF^^^^ : Compat (s, ̂  ̂ :) /DiffJC^ 0)(.3,.) - H; (fl, ST;)
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defined by NF^ ^ (DiffJC^ 0)(J3^)*((|) + e)) = [0*((|) + e) - (|)] AA ^ ^ cohomology

class of^(^ + e) — ^ where 0 ^ any normalising diffeomorphism relative to ^2,m^3,m-

Proof. — Let (|)+e be a compatible formal deformation of(|) of order w. As we have
seen, for any choice of the section {^^}z= 1 , 2 , 3 ? its relative normal form is a 1-cocycle
relative to (|); this define a cohomology class. We will prove that, the sections ^ 2 , w 5 ^,m
beeing chosen, this class is constant along the orbit Diff^C", 0)(J3^)*((|) + e). Its value

does not depend on s^rn and will be denoted by NF^ (DiffJC", 0)(J3^)*((|) + e)).
3 , M \ /

Let (|)+T| be a formal deformation of(|) of order m such that V'^+ri) =(()+£ with
A -—- A
y € Diff^(C", 0)(J3^). If 0 denotes the normalizing diffeomorphism of (|) + e relative

to { ^ , m } z = i , 2 , 3 then, (0 o ^P)*^ + T|)=O*(([) + e) is the normal form of (|) + T|; thus it
defines the same cohomology class. Moreover, this cohomology class does not depend
on s\ ̂  since (|) + £ is compatible. D

5. The fundamental structures

As we have seen, the first cohomology space has an important role in the study
of normal forms of compatible nonlinear deformations. In this section, we shall give a
more precise description of this space under some additionnal hypothesis on the Lie
algebra Q. We shall also define "natural55 sections for the normalization. The contain
of this section is purely linear algebra. Our main source is [Bou90].

5.1. Nilpotent Lie algebra of linear vector fields

Let us first recall some useful basic facts on linear algebra. Let V be a finite-
dimensional C-vector space and let u be an endomorphism of V We have the
decomposition V= ©aec^^) where V^):^ G V\3n (u - aIdfv^O} denotes the
characteristic space relative to the complex number a. Of course, V^M) =^ 0 if and only
if a belongs to the set of eigenvalues of u. The associated eigenspace will be denoted
by V^).

Let Mat be the Lie isomorphism:

Maf.^^QW
Xi-^Ma<X)=DX(0)

I f P e g4(C) is invertible, then Mat (Mar'(P),X) =P,Ma<X)=PMa((X)P-1. Since (|) is
a Lie morphism from g to ̂  , then Mat o ̂  defines a representation of g in C".

Let assume that @ is a solvable Lie algebra over C of dimension /. Let us recall
the definition of the derived series: it is the decreasing sequence of ideals {S!'kg)^l
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defined by ^0=0, ^+lfl= [̂ 0:̂ 0]. By definition, the Lie algebra g is solvable
if there exists an integer n > 1 such that ^"0=0.

By a theorem of Lie [Ser92] [p. 36], since C is an algebraic closed field of
characteristic 0, there exists a basis in C" in which each matrix of Mat(^(g)) is upper
triangular; it follows that there exists an invertible matrix P G 0^(C) such that, for all
g € 0, M^fer^P^^^D^) + SU7\g) where D{g) is a diagonal matrix and SU7[g)
a strictly upper triangular matrix. Despite the fact that, in general, D{g) and SU7{g)
do not commute with each other, it remains that the eigenvalues of Ma^Mar^fP)^ ̂ {g))
are those of D(^). We shall denote by ^(<?)=(^i(,§)5 '"^n{g)) the vector of eigenvalues
of Maf(^{g)), It is a C-linear map on 0. Let us set V=C".

In order to have more informations, we shall make the following natural
assumption: for all {g\,g2) ^ 02 and for all a € C, V^Afe^^i))) is invariant under
Maf(^{g^)). According to Bourbaki [Bou90] [chap. 7, 1,1, lemma I], this implies that
for all {g\,gz) ^ 92, there exists an integer n such that ad^^^Maf(^{g^))=0. In
other words, the Lie algebra Mat(^{g)) is a nilpotent Lie algebra (and so ^{g) is). If
the morphism (|) is injective, then 0 is also nilpotent (this means that, for all g € 0,
adg:= \g, .] € Hom^(0, 0) is a nilpotent linear map). Thus, let us assume that 0 is a
nilpotent Lie algebra. Let us set V = C", then we have the following decomposition
into Ma1(^{o) )-stable subspaces

V=(DV°W
aeK

where V°W= {z /€ V |V^ € 0, ^k € N, (p^C?)) - a(^^=0};

here K denotes the space of C-linear forms on 0. Let a G K such that V^) =|= 0; it
vanishes on [0,0] which denotes the linear span of {[g\ , g^], {gi, g^) € 02}. The
restriction Maf(^{g))\^a of Ma1(^{g)) to V"^) is still a nilpotent Lie subalgebra of
0/(Va((|))), thus it is solvable. It follows that, according to the Lie theorem quoted
above, there exists a basis of V"^) in which each element of Maf(^{g))\^a is an upper
triangular matrix. Such an element can be written as a(,g)/(/v"+T(^) with T(^) a strictly
upper triangular matrix, which obviously commutes with a{g)Idya.

As a summary, we can say that there exists an invertible matrix P € 0/(V) such
that, for all g C 0, Ma1(Mat~\P)^{g))= S{g) + N(^) where S{g) is a diagonal matrix,
N(^) a strictly upper triangular matrix commuting with S{g). Moreover for any couple
(<?i 5 §2) ^ fl2? [S^i)) N(^2)] = 0. It is to be noticed that both S and N are Lie morphisms
from 0 to the Lie algebras of diagonal matrices and of strictly upper triangular matrices
respectively. We shall say that the morphism (|) is nilpotent if S = 0.

In the sequel, we shall write S{g) = ̂ ^ i ^i(g)Xi8/8xi where the Vs are linear
forms on 0. We shall call them the "eigenvalues" of S.
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5.2. Weight spaces and computations of the cohomology spaces of the Chevalley-Kos^ul complex

From now on, we shall assume that Mat(^{g)) has the form just described. We
recall that ̂  and p^ (k > 1) are both g-modules relative to ((); we will denote m^ one of
them. The associated linear space of representations p^((|)(fl)) is a nilpotent subalgebra
ofHom^^, mk) (iffl is commutative then, byjacobi identity, p^((|)(fl)) is commutative).
Therefore, if K denotes the space of C-linear forms on g, we have the decomposition
into weight spaces:

^=®<w
aeK

where <((|)) = [x € m, [ V^ G fl, 3p C N, (p^(^)) - a(^ ̂  = 0}.

The weights are those linear forms a for which the vector space m^ does not reduce
to 0. They vanish on [g, g] which denotes the linear span of { [^15^2]? (,?i?&) ^ 02}-
We will also denote by

mk, aW = {x C mk | V,? C 0, pk^g) )x = a{g)x} C <(̂ )),

the a-eigenspace. We can also write the Fitting decomposition relative to (|):
mk=m^(^) © ^((t>) where m^ = ©aeK afo^W- Both m^(^) and ^((|)) are left invariant
by p^((()) and thus are fl-modules relative to the restriction of the representation. When
mk = ̂ , this decomposition defines a section ^3 : ̂  /(^ )(1) —> ̂  •

Moreover, there exists a ^o G fl, such that m^ ((())= w^ (^(go)) and ^A;((l))=mA:((l)(<?o))5
the spaces of the Fitting decomposition of the endomorphism ^{go) ([Bou90] [VII, 1, 2,
prop. 7]). We will say that go realizes the Fitting decomposition.

Lemma 5.2.1. — Let g be a nilpotent Lie algebra over C of finite dimension and ^ a
morphism from g to ̂  . Then for any positive integer k, we have

1. H^(s,mk) =H^ (fl,mf);

2. H§ (fl, m^) ^ Hom^ [Q/[Qy Q]) m^); this isomorphism defines a section

4 : H^ (fl, mk) -^ {/G Hom^ (fl, m^) \f\^,^ = 0}.

Proof. — The first point follows readily from [Bou90] [VII, 1, 3, cor.] which
states that, since m^ is a 0-module with \m^\ =0, then for any^E Hom^ (fl, w^ )

such that V(^i, ^2) € fl2, [^i),/(&)] - ̂ (&),/(^i)] =/( [gi, &]), there exists an e € ̂
such that V^ € Q,f(g) = [<K<?)5 ^]- I11 other words, H^ [g, m^) =0 and the results follows.

Since S is morphism from Q to the space of diagonal vector fields, we
have m°k = m^ o = m^ as well as 0 = [S(^i), S(^)] = S( [^i, g^]). Since rfo, s|m^S = 0, we
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have H^(0,m^) =Zs(0,mf) = { / G Homjg,^)! ^^==0}. Thus, H^(fl,m^) ^

Home (fl/te,0L^f). D

A^rA; 5.2.2.
• Since m^} =m^, then whatever the section s^ is, we have H^ (g, nik) ^ H((» (fl,, m^);

fc means that the normal form of a compatible nonlinear deformation of ^ belongs to

Hom^ (fl. (^1)8);

• if0 is abelian, then H§ (g^ mk) ^ Home (0, mk)'

Lemma 5.2.3. — With the hypothesis of the previous lemma,

• the set of weights of Q into p^ is

^(<^)={P^):=(Q.^)). Q^N^ |Q|=A}
((Wr stands for Weights on Functions);

• the set of weights of Q into ̂  is

^^)={^^):=(a^))-^(^Q.eN^ |Q|=^ \^j^n}
((W^ stands for Weights on Vector fields).

Proof — As we have seen, for all g C g, ^{g) = S(.§^)+N(^) where S{g) is a diagonal
vector field, N(^) a stricdy upper triangular vector field commuting with S(g). Let us
write S(^)= ^L i ^•(,§^)A:^9/9xi. An easy computation shows that, for all Q^€ N" with
|QJ = k and all 1 ̂  i^ n, we have

[S(^), ̂ ] = ((Q, X(^)) - ̂ )) ̂ .

It follows that the eigenvalues of p/t(S(,g)) are Ae (XQ,,(^)'S. But, for any a € C, we have

(^'W^ (^(S^^ (^)/S(^)). Moreover, for a € Hom^fl, C), we have

(0°w= n (^)a(^)^))= n (<L ,TO).
^Cfl ^€0

This space is zero unless it contains x^Q/Qxi, so that a(^)= ((Q, ^(g)) — ^i{g)) for all
g e 0. The same proof holds for the representation on functions using the fact that
X,(^)=(Q,̂ )) .̂ n

Let p ^ k be positive integers, we shall denote by <^^^ (())) the set of weights of
(() into ^>>A;. We shall denote by 'W/^^} the set of weights of (|) into ̂  © • • • ©^.
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From now on, we choose the sections ^ and s\ for the normalization as defined above
in fnic «<=*r"tir»rtin this section.

Remark 5.2.4. — The set of weights © %^((|>) has the semi-group property; indeed, let
j^2

PQ and PQ/ be two weights, then PQ + R^, == PQ+^, ^ ^ weight. Moreover, if a G © %^ (()))
^2

^ it can be written as a = P - ̂  for some P e © ^r^nW and some index 1 <^j ^ n.
p^'2

5.3. Fundamental structures of the weight spaces

0

Lemma 5.3.1. — 7%^ C-vector space ̂  is a C-algebra. Let M denotes one of the two
spaces ̂  or ^. Z^ a be any weight of^ into M; then its associated weight space (M)01 ((|>) A&y
fl canonical strucure of ̂  -module.

Proof. — We assume that (|) is not nilpotent otherwise the result is trivial. Let
us prove the first point. For any g e fl and any weight a of (|) into ^, we set

N^a=-S^) - a(^ff. We have to prove that if a G (^) ((|)) and if/€ (^^"((l)), then
/^\a

^e (^zj W- Let us pfove by induction on a positive integer A:, that N^a(^) is a
linear combination of N^o(^N^(/), 0 <^ p ^ k. Since ̂ ^ is a derivation of ̂
we have Ng^{af)=dN^a{f) + N^o(^)^ so the results holds for k = 1. Let us assume It
is so for k- 1, so that N^(^)= E^'oC^'N^^^N^^). Thus we have

A-l
jk / \ _ V^ ^i^— 1

, aW - Z^ ̂  1^. a \^g, 0 W1^1^, a
^=0

N;,a(^)= E^"1^^ (Ni-o1-^)^^/))
^=0

= E^~1 (N^-^^N^^+N^^^^ .
^ n /
p=0

Since N^ ol-^(^)=N^+l)(^), the result follows. Since both operators N^a and N^o are
/^^\a /—\°

nilpotent on (^J ((|>) and (^J (())) respectively, then for all g G fl there exists an

integer m such that Nja(^)=0. By definition, this means that ^belongs to (^"((l)).

This shows that (^\ ((()) is a C-algebra (if we take a=0) and (^"((l)) an (^) (<|))-
module.

In the case where M = ̂  ; for any ^ € 5 and any weight a of (|) into M, we

set M^a=P((K.?)) - a(^W and N^O=^^). Let a be an element of f^)°((|)) and let
/—^-IN01

y be an element of \^^ ) (())); according to the basic property of the Lie bracket, we
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have M^ ^(av) = aMg^ a(^) — N^ o(^- As above, we claim that, for any positive integer k,
M^a(fly) is a linear combination of N^^M^50^), 0 ^ p ̂  k. The proof is the same as
above and we leave it to the reader. Since both operators M^ a and N^ o are nilpotent

/^^l\cx / _ \0
on [J%^ j (())) and [^J ((|)) respectively, then for all g € fl there exists an integer m

(^-^i\ a
such that M^ ^(a^) = 0. By definition, this means that av G JS^ ) ((|)). D

The next statement is due to Walcher [Wal91] [prop. 1.6] in the case of a single
linear vector field; but we shall give a different proof.

0

Proposition 5.3.2. — With the notation above, ̂  is a formal C-algebra of finite type;
^—-~~s .̂ -^s
J%^ is a ̂  -module of finite type.

Q

Proof. — The result on the finiteness of ̂  is almost classical in Invariant Theory
[Bri96] [p. 42].

0

We shall show that ^ =C[[MI, ...,z^]] where each ^ is a monomial. It
—-^s -——-^-s

follows that d^ ® Xi 9 / Q x i '—> J%^ . Therefore, it remains to show that there is a
finite number of vector fields Y^, not belonging to ^ ̂  ® ^ Q/9x^ such that
^_^§ —-^-s -^-s
^n = S^ ̂  ® ^ Q / Q x i © S ̂  ® YT I11 order to prove the finiteness property in
both cases, we shall construct a noetherian ring with an action of Q and use the
noetherian property of an ideal.

Let us recall some basic facts about derivations of algebras over a commutative
ring. Let A be a commutative ring and B be a commutative A-algebra that is B is a
commutative ring together with a ring morphism (|) : A —> B. This morphism induces a
A-module structure over B. A A-derivation of B is a morphism ofA-modules D : B —> B
such that D(^') = bD(b') + A'D(6). Let ^ be an ideal of B; it is a A-submodule of B.
Let p : B —> B/^ be the quotient map; it is a ring morphism and the ring morphism
po<^ provides B/^ with an A-algebra structure. If the derivation D leaves S^ invariant,
then it induces an A-derivation D ofB/^7 such that Doj&=j&oD. In fact, it is A-linear
since, for a € A and b € B,

DW{a)b)) =j&(D(W)) =/<<1>(W)) =PW )DW);

on the other hand,

D(/W)) = D(p(bb')) =p(D{bb')) =p{bD{b'} + b'D(b) )

=p{b)W)}+p(b')D(f{b)).

Let us set P=C[^i, ...,^] and ̂  =P[^i,...,^] where the ^'s are indeterminates
over P. These are commutative C-algebras. Since P is a noetherian ring, so is ̂  .
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For any integer 1 ^ i < TZ, let us define cS -̂ := K{ Q / Q x i as a derivation of P. We have
J2?^) = 0 and cSf^) = 8^ y^-, where c € C , l ^ A : ^ 7 z and §^ ^ is zero if k ^ i and 1
otherwise. We extend this derivation into a derivation of ̂  by setting

X<^)=-8^.
Let us show that, for any pair of indices 1 ̂  i,j ^ n, S^^ o J3?. = J3f. o ,2?..

In fact, we have

.̂ o ̂ .(̂ p) = ̂ . (̂ .(̂  + ̂ .(̂ ))

^•-A^W)
=(%--J^-AW
^--A^^)
.̂o .̂̂ ).

Let ^ be the ideal of ̂  generated by ̂  and ^^, 1 ^ i,j ^ TZ. Let ^
be the C-subspace of ̂  whose basis is the set of monomials ^p, P € N", and for
1 ^ i < TZ, A:̂ , Q^ € N" with ^ = 0. Then, we have the decomposition into direct sum
^ =^ ©^. Let p : ̂  —> A:=^ /^ be the quotient map onto the quotient ring
^ 1^7. The latter is a noetherian commutative ring as well as a C-algebra. If we set
X,-=p{xi), Zi=p{Q, 1 ̂  i < TZ, then the set

{X?, P € 1ST} U^i {X^Z,, Q,e N" with ^=0}

is a basis of A over C. Each derivation .2?̂  leaves ̂  invariant. In fact, if^G ̂  , then

WW = ̂ ^ .̂(/) +/̂ ,W)
=^/^,(/)-^/(8,,,+§/,.)

^•(/̂ y = ̂ e ,̂(/) +f^w
=x^{f).

It follows that each derivation 3§^ defines a derivation L^ of A which satisfies
L, op=p o ̂  and we have

L, o Lj op == L, oj& o ̂ . =j& o ̂ . o ̂ .
=j&o^.o^.=L,-o^o^.
=L^-oL,oj&.

Let S be a diagonal Lie morphism from fl, a nilpotent Lie algebra of finite
dimension over C, to ̂ ; i.e. for all g € fl, S(^)= ^= i ̂ {g)^9/9xi, For all g € fl,
S(,g) can be regarded as a derivation of P that can be extended to a derivation of ̂
by setting S{g) = ^^ i A^)^; therefore, it induces a derivation S(,g) = ^^ i ^(,?)Lz of

A. We claim that § is a Lie morphism from Q to Der^(A), the associative algebra of
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C-derivations of A. We just have to show that §( [?i 5 &] )=§(<?! )0§(<§^2)~§(&) °§(<?i)- I11

fact, on the one hand, we have §C?i)o§(^)= ELi W^z (Ej= i ̂ (&)L,) =§(&)o§(^i);
on the other hand, we just have to recall the fact that the Vs are linear forms on g
which vanish on [g, g] and we are done. Thus, § is a representation of fl in A. With
the notations of lemma 5.2.3, an easy computation shows that, for any g G fl,

SW^) = (0 Hg))^= W^ if Q^ N";
§(^)(X^)=((a ̂ )) - ̂ ))X^=a^^)X^Z,, if Qe N-, ^=0.

Let us define A^ ^ to be the finite-dimensional C-subspace of A whose basis is
the set {X^Z^, |QJ =A;, ^=0} and Ay^o to be the C-subspace of A whose basis is the
{X^, |QJ ==A:}; their elements will be called homogeneous of degree (A, i). An element
of Ak:= ©^o^,z will be called homogeneous of degree k. An easy computation shows
that Ay^A/ C A^+/ for any couple of nonnegative integers A:, /. This is due to the fact
that, for all (P, R) C N", and all Qe N" with ^=0, X^^X^, (X^XX^Z,) = 0,
X^^Z^O ifA + 0 and X^^Z,) = X^Z, if^=0. It foUows that the ring A is a
graded ring: A = ®^o Afc- Each of the spaces A^ are invariant with respect to §.

Let us define Inv(§) = {/€ A| V^ e fl, §(<?)(/) =0}; this is the 0-th cohomology
space of the Ghevalley-Koszul complex associated to the representation S in A. Let
^ be the ideal of A generated by the nonconstant homogeneous elements oflnv(§).
If Inv(S) =C then J^=(0). Let us assume this is not the case; then, since A is
noetherian, ^ is generated by a finite number of elements. We may require these
generators to belong to Inv(S) and to be homogeneous. We shall denote them by
Ui,...,U^. In fact, let us start with the nonconstant homogeneous elements ofInv(S)
of degree 0. These are the Z^ for which \ = 0. Let J^o be the ideal of A they

generate. Now, let us consider the homogeneous elements of Inv(S) of degree 1. If
they don't belong to J^o, then let us define ̂  to be the ideal generated by j^o
and the homogeneous elements of degree 1. In this way, we define an increasing
sequence (which may be finite) of ideals {^^}^eK ^d let us set ^ = UyieK ^k- ^ ^<^
is finite then ^ is generated by homogeneous elements of Inv(S). Otherwise, since
A is noetherian, the ascending chain of ideals ^^ must be stationary. Therefore, ^ is

generated by homogeneous elements ofInv(S). By definition of the action of§ on A,
Inv(§) is the C-vector space generated by the monomials X^ with (Q, X,) = 0 and
X^Z, with (Q ,̂ A,) — X, = 0 and q, = 0. Therefore, we may replace the generators of ^
by the monomials they are sums of. Thus, we may assume that U^ is a monomial of
degree (^, 0), m,• > 0, if 1 ^ i ̂  j&, and U^ is a monomial of degree (^,jz), mi ^ 0, if
p + 1 ̂  i ̂  r with 1 ̂ ji ^ n.
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We claim that Inv(§) =C[Ui, ...,U^] © (E^+i t^h ...,U^]U,). We shaU prove

it by induction on the degree A: of homogeneous elements of Inv(§). If/€ Inv(§) is
of degree A:=0, then/G C ©^-=0 CZ,. Thus, by definition of the U^s, it belongs to

the space. Let us assume that the result holds of all homogeneous elements ofInv(S)
of degree q < k. Let ye Inv(S) be homogeneous of degree k, by definition, it belongs
to ^>'. So, there exists fli,...,^, € A such that/= Z^i^U^. Let a be the maximum

of the degrees of the a^s. We can decompose each ^ along the weight spaces of S on
the subspace ©^0^5 so t^l2it ^= a? "^Sa^o^a where ^ belongs to 0-weight space

of § and a^ a belongs to the a-weight space of §. For any weight a and any g G 0,
§(<?)(^-, aU,) = U,S(^)(^ a) = ^(<?)^, aU,; thus, ̂  aU, belongs to the a-weight space of §. It
follows that, since !§(<?)(/) = 0, then/= ^^ i ^U^. On the other hand,/is homogeneous

of degree k and U^ of degree m^; thus f= Y^^ i ^ U^ where ^ is the homogeneous part
of degree k — mi of ^ if k — mi > 0, and 0 otherwise. For each i such that m^ > 0, we
may apply the induction argument to a,: a, =P,(Ui, ...,U^) + Z^+i Pzj(Ui, ...,U^)U^.
Since, U^Uj = 0 in the ring A, for all p + 1 ̂  i '̂ ̂  r, we have:

/- ^o°U,= ^ P.(Ui,...,U^)U,
!'|w;=0 z = l , w ; > 0

r ( P \

-^E E P^(Ui,...,U^+P,(Ui,...,U^) U,.j'=^+i \j '=i,w,>o y
Let TC be the projection of A onto its subspace C[Xi,...,XJ. The projection 7c(/),
which is homogeneous of degree A;, belongs to C[Ui,...,U^] since it is equal to
ELi,^>oP.(Ui,...,U^)U, Thus, any/€ C[Xi, ...,X,] n Inv(§) of degree < k belongs

to C[Ui, ...,U^]. Moreover, for any i such that ^=0, the element ^ such that

a^Vi =|= 0, is homogeneous of degree k and belongs to C[Xi,...,XJ nlnv(S) (Z^Zy==0
in A). Therefore, by the result just proved, ^ € C[Ui, ...,U^,]. Hence, we have
fe C[Ui,...,U^] © (ELj&+i C[Ui,...,U^|U,) and this concludes the induction.

Let (|) : A —> C[^i,...,^J ®^i C[^i, ...,^] Q / Q x i be the C-linear map defined by
(|)(X )̂ = .y ,̂ (|)(X^Z,)=^9/^; let us set ^=(|)(U,) for any 1 ^ i ^ p. Let us show

0 0

that ^ =C[[MI,...,^]]. In fact, let f= Y^^fk e ̂  where/ is the homogeneous

component of degree k. We have ^~\fk) C Inv(§) so that ^~\fk) e C[Ui,...,U^,]
and thus/ € C[^i, ...,^]. Since each U[ is a monomial, there can only be a finite
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number of^'s with a nonzero component on every monomial ift- where Q, € N^.
Thus,/€C[K..,^:|].

For any p + 1 < i < r, we have U^X^Z^ where Q G N" and 1 <^j, ^ 72. Let

us show that ̂  is the C[D/i, ...,^,]]-module generated by Xi9/9xi, 1 ^ z ^ n, and
x^Q/Qx^ p + 1 < z ^ r. In fact, let x^Q/Qxj € J^f, so that the weight a^j = 0. If
% + 0, then Q^Q,- E, € N" and PQ/ EE 0. It foUows that x^ (E C[[MI, ...,^]]
and x^Q/Qx^x^XjQ/Qxj. If %=0, then ^(^/Q^X^Z, e Inv(§) so that
X^Z, C EL^i C[Ui,.., U^]U, and x^9/9x, G EL^i C^i,.., Up\x^ Q / Q x ^ . D

Remark 5.3.3. — The previous result may be thought as surprising as far as we have the
"naive geometry^ in mind, that is the geometry of the set of eigenvalues of a diagonal linear vector

field in the complex plane. For instance, this is the way to define the classical Poincare domain: the
diagonal vector field s belongs to that domain if there is a line L passing through the origin such
that the set of eigenvalues of s belongs to one of the (strict) half-spaces defined by L. In that case,
we can show, with elementary geometry in the complex plane, that there are only a finite number of
resonances (see [Arn80, p. 181?.

The previous result shows that, in fact, as soon as s has only trivial polynomial first integrals,
that is, constants, then it has only a finite number of resonances.

Corollary 5.3.4. — There exist monomials u\,...,Up G C!|)q, ...,̂ ] and homogeneous vector
Q

fields «/;,.., < € ̂  such that ̂  =C[[ui,..., Up\ ] and («^1) = Ej= i C[ [u,,..., Up} ]nf,

(with the convention that ̂  = C whenever p =0).

5.4. The canonical singular fibration over an algebraic variety

Together with Walcher and with the notation of the previous proposition, if
p =)= 0, we may assume that {u\,...,Us} (1 ^ s < p) is a maximal algebraically
independent (over C) family of {u\,...,Up}. Thus, the integer s is the degree of
transcendence of the field of fractions of C[ut,...,Up] over C. Although p may be
greater than n, s must be smaller than n. Let ̂  be the kernel of the ring morphism
CpCi,...,X^,] —> C[u\,...,Up\ which maps X^ to ui. This ideal defines an affine
algebraic variety W. of Cf. Therefore, to (|) is associated, in a canonical way, a
singular fibration n^ : (C^, 0) —> ^ H (<y, 0) which maps x to {u^(x), ...,Up(x)). The
algebraic variety W. has dimension s. Moreover, the vector space ^ of diagonal vector
fields D of C" such that ^^(^s) = 0 has complex dimension n-s. In fact, let R, € N"
be such that Ui=x^1; since u\,...,Us are algebraically independent monomials, Ri,...,Ry
are independent over Q. Hence the matrix B whose rows are Ri,...,Ry has rank s.
Therefore, as a linear mapping from C" to C^, B has rank s, so that its kernel has
dimension n—s. But, D = ^^ ^ \\.iX,Q/Qxi belongs to ̂  if and only if (p,i,..., ̂ ) belongs
to the kernel of B.
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Ifj&=0, then ̂  = C. In this case, we set ̂  = {*}, that is the variety is reduced
to a point and we set n^ : C" —» {*}.

6. Formal complete integrability

6.1. Extensions of linear morphisms

Let (|)' : g —> S^ and (|)" : g —> S^ be linear morphisms. We shall use the
following canonical injections and projections:

1 : C" —> C^ V : CT -> C"^

x ^ { x , 0 ) ^'-^(0,^)
^ : C^ -> CT j&" : C^ —> C^

(̂ ) ̂  ̂  { x , j y ) ̂ y

We will call the linear morphism (|) := i^) + ^((|)") : g —> S^^ the extension of (|/ by
(|)". It is clear that S^S' + '̂S" is a diagonal morphism, N:=^N' + ^'N" is stricdy
upper triangular and, for any g G fl,

[S(^), N(^)] = as'^), N'^)] + CES'^), N"^)]
+ KSU CN'^)] + [CS"(^, z:N^)] =0.

Let us write the weights of the extension as a function of the weights of (j)' and
(|)". Let Q.G N^ and 1 <^j ^n+m. By an easy computation, we have:

M>)=P^O+W^
aa^) = ̂ (Q),/ '̂) + P^^Q)^") ifj ̂  n,

^M = P^^Q) '̂) + 0 (̂0) J )̂ ^J > ^•

Definition 6.1.1. — Let g be a finite dimensional nilpotent Lie algebra over C. Let
^ : g —> ̂  ^ a Zm r̂ morphism. As usual, we shall write ^ = S + N where S is a diagonal
morphism, N a strictly upper triangular morphism such that, for all g € g, [S{g), N(^)] =0. We
assume that S =(= 0.

0

1. The linear morphism ^ will be called flat if ̂  = C;
2. an extension of a linear morphism ^ by ())" will be called a flat extension of ̂  when

(T is flat;

3. ^ nonflat linear morphism ^ will be called complete if for any linear injection

i : Ck —^ C", 0 < k < n, whose image is left invariant by S, then ^ (^ s) ^ ̂ s. In
other words, S is complete if its ring of formal first integral depends on all the coordinates.
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Definition 6.1.2. — Let ^ : g —> S^ be a nonnilpotent linear morphism. Let 0 < n' ^ n be
an integer. A pair of linear morphisms (<^', (|)") from ^' : g —> ̂ , (resp. ^ff : g —^ ^n-n') ̂ ^
(|)" is flat, will be called a splitting of ̂  if ̂  is the flat extension of ̂  by (j)".

51
n—n',

Lemma 6.1.3. — Let g be a finite dimensional nilpotent complex Lie algebra. Let
^ '. 0 —> ̂  be a nonnilpotent linear morphism. If ̂  is not flat nor complete, then there exists
1 < m < n such that, after a renumbering of the coordinates, ^ can be regarded as a flat extension

of a complete linear morphism (J)' : g —> S^ by aflat linear morphism (J)" : Q —> S^_^. This will
be called the natural algebraic splitting of ̂ .

Proof. — Since (|) is not flat, S has a nontrivial formal first integral; according
0

to proposition 5.3.2, ̂  =C[[MI, ...,Up]] for some integer p ^ 1 and some monomials
u\, ...,Up. Moreover, we may reorder the coordinates in such a way that there exists an
integer 1 ̂  m < n such that for all 1 ̂  i^ m, there is 1 ̂ j^ p with Quj/Qxi ~^- 0 and, for
all 1 ̂ j ^ p, Quj/Qxi = 0 for all i > m, this means that the set of monomials {u\,.... Up}
depends only on the first m coordinates and it depends on all these coordinates. Note

0

that m < n since (|) is not complete. Thus, there is a monomial u wich belongs to ̂
and which depends on all the m first coordinates; let us write u = ̂  with R G N". Let
us define

7': C"1 —> c" 7": c^ —> cr
x^->(x,0) y^{Q,y)

J :c1 —^ cm J ' : c" -»c^
(x,y) \-> x (x,y) ̂ y

and let us set (j)7 = (? Q*^ and (j)" = (? ")*(|); then (J)7 is complete, ^" is flat and we have

^^J withers, a
6.2. Diophantine and Poincare linear morphisms

Let (|) be a linear morphism from a nilpotent complex / dimensional Lie algebra
g to S^. The weights of (|) in ^^ are linear forms on g which vanish on [fl,fl].
Let Ab{o)=Q/[Q, g] be the abelianization of g and /' its dimension. Thus, the weights
belong to Hom^(4A(g), C).

The C-vector space Hom^ {Ab{g), C) has complex dimension /'; it can be turned
into an R-vector space V{Ab(g)) of dimension 2/' in a canonical way. On this space, we
use the following norm : if G= {g\, ...,^} denotes a basis of Ab(g) and if a G V(A^(g)),
then we set ||a||G= max^^, |a(^)|. Let ^^((j)) be the closed convex hull of the linear
forms X.i,...,^ in V(4&(fl)). They will be called the eigenvalues of (|).
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Definition 6.2.1. — A linear morphism ^ whose convex hull ̂  (^) does not contain 0 will
be called a Poincare morphism.

Lemma 6.2.2. — Let ^ be a Poincare morphism. Then there exists a real hyperplane H
ofV{Ab{Q)\ a real line D such that if p denotes the projection onto D relative to H, we have
0 < j&(^i) ^ ... ^ p{^n) up to a reordering of the coordinates. There are positive constants c, c '
such that, for any nonzero weight (XQ^ of^ in ̂ , we have ( J ^ ||a^,[| and |Qj ^ ^||aQ^||.
Moreover, ifp(a^,) ̂  0 then d ^p{a^i) and [Q| < cp(a^,). Therefore, a Poincare morphism is
flat.

Proof. — For any nonzero Q€ N" and 1 ̂  i<^ n, \Q\p(^) -p(^i) ̂ ((Q, ^) - A,).
If IQJ > (1 +^))/^i) then, 1 < ̂ (a^,^)). Since p is linear, there exists 7 > 0 such
that \p{^i){^)\ <7||a^^)||. On the contrary, if |Qj < (1 +^-))/j^i), the Ha^^H's
and the \p(^iW)\'s assume only a finite number of nonnegative real values. Hence,
there exists a positive constant c' such that ||a^,|| > c' for all nonzero weights of (|) in
^ andj^)^ ifj&(a)^0.

On the other hand, we have

(IQI - i)j^) -p^n) < 101̂ 0 -p{n ^P({(^ x) - ̂ );
hence, if 1/2|Q| > 1 +j^)/j^i), then |Q| ^ 2j&(a^)||) ^ 2c\\a^^)\\. If |Q| <
1 ^p(^n)/P{^\\ then, by the first part of the lemma, we have c' ^ ||a^,|| if a^, ^ 0

and ./ ^ p(a) if p{a) + 0; hence |QJ < 1 ^ p^n}/p(:ki)\\^\\ and the same holds for
p{a). D

Corollary 6.2.3. — Let ^ be a Poincare morphism and let H be the real hyperplane as
above. Let a be a weight of ̂  which belongs to H. Then, the associated weight space is a complex
finite-dimensional vector space.

Definition 6.2.4. — Let ^ ' : g —^ S^, and ̂  : g -^ S^_^ be linear morphisms such that
(j)" is a Poincare morphism. The extension o f ^ ' b y ^ft will be called a Poincare extension if
there is a real hyperplane H ofV{Ab(g)) which contains the eigenvalues of^' whereas the eigenvalues
of ^tf remain on the same side of H. A Poincare extension will be called proper if H can be
chosen such that (j)" has no nonzero weight in H.

Lemma 6.2.5. — Let ^ be a linear morphism from g to ̂ . Then ^ is the Poincare
extension of ^' : g —> ̂  which is aflat extension of^' (the natural algebraic splitting of ^) by
a Poincare morphism ^" : g —> ^_^. The integer n' satisfies 0 < n' ^ n. The splitting (^, (()")
will be called the analytic splitting of ^ whenever n' is minimal. If n' =)= n, then there exists
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a real hyperplane H ofV(Ab{g)) such that H contains the K'^s while the ^"s all lie on one side
of VI fH not included).

Remark 6.2.6. — The algebraic splitting (^f\ (|)") of ̂  is a priori different from its analytic

splitting (^f\ (|)") in the sense that there is no reason why ^// should be a Poincare morphism. We
only know that a Poincare morphism is flat but not the converse.

Proof. — There are three cases to be considered:

• O^^(S),
• 0€/<^(S)),
• oe9(J^(S)).
In the first case, we may set ri = 0. In the second case, we may set n' = n.

In the last case, up to a reordering of the coordinates, there is an hyperplane in
V(Ab(g)) which contains ^i,...,^, whereas ^/-n,...,^ all belong to the same side of
the hyperplane. Let us set

{ : C^ -^ C" f : C1-11' -^ C1

x ^ ( x , G ) y ^ { Q . y )
p ' : C' -^ <y p " : C" -^ C"-"7

( x , y ) ̂  x (x,y) ̂ y

as well as ^ = (z')*(|) and (Sf" = (z")*(|). Then ^/ is a flat extension of $' and (|)" is a
Poincare morphism. Of course, we have n1 ̂  m. D

Lemma 6.2.7. — Let {^, (|)") with ())' : g -^ ̂  and ^" : Q -> ^L,/ be the analytic
splitting of (|). Let us assume that n' < n and let H be the real hyperplane of V{Ab(g)) with
properties of the previous lemma. Then there exists a constant Sep{^) > 0 such that if a is a weight

of ̂  in 3^ such that ||a[| < Sep(^) then it belongs to H. The constant Sep{^) will be called a
separating constant. Moreover, there exists d > 0 such that ifa=a^i and ||a|[ ^ Sep(^}
then, in fact we have \p'\Q^\ ̂  </||a||.

Remark 6.2.8. If n! = n, we shall set Sep{^i) = + oo and H =V(Ab(Q)) (which is not
an hyperplane!). This will enable us to do only one proof.

Proof. — According to our definitions and our assumptions, there exists a real
hyperplane H of V{Ab(g)) such that the linear forms Xi,...,^/ belong to H whereas
^/+i, ...,^ all belong to the same side of H. As in lemma 6.2.2, let D be a transversal
real 1-dimensional space transverse to H and let p be the projection onto D relative
to H. We may assume that 0 <p{^n/+\) ^ ••• ^p{^n)'
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Since p is continuous, for any weight a of (|) we have \p(a)\ ^ c||a|| for some
positive constant c. Moreover, ^/f is a Poincare morphism and any weight a of (|) is the
sum of a weight a' of (^ and a weight a" of (j)77. In fact, by the formulas of section
6.1, a is the sum of a' and P" or P' and a". But, by definition of the P's and a's, we
have PQ=aQ+E^. Thus, the result holds. According to lemma 6.2.2, ifj^a") ^ 0 then
d i e < [|a|[ since d < \p(a)\ = ^(a")| ^ ,||a|[. Thus if ||a|| < d i e then p{a) = 0. According
to lemma 6.2.2, if p{a) ^ 0, there is a > 0 such that |Q"| < a\p(a")\ =a\p{a)\ ^ ac\\a\\.
D

We recall that |[a[|G = max[a(
w^

Next, we define for k > 2,

^,GW= mf{||a||G, a G %^2^) \ {0} }.

Definition 6.2.9. — We shall say that the linear morphism ^ is diophantine if

(6.2.1) -^!nt^)<^.y
^0

Remark 6.2.10. — TA^ condition does neither depend on the choice of the basis nor on the
chosen norm due to the fact that, infinite dimensional vector spaces, all norms are equivalent.

Remark 6.2.11. — We recall that ifS= ELiU-3/^- belongs to 4<fl), then Bruno's
condition (co) associated to it is defined by:

Inoh:/ \ \~^ 111UJA;
((0) -E-oT^00y

k^O

wh£re ^ = ^{KQ. ̂  - U +0 , 1 ^ i ̂  n, Qe N^ 2 < IQI < 2^}. ^ ̂ o^ ^ ^to</
that such an S m^ not satisfy Bruno's condition while ^ is diophantine.

Definition 6.2.12. — We will say that the morphism doesn't have small denomi-
nators if the sequence {co^ G(<I>)} is bounded from below by a positive constant.

6.3. Formal complete integrability of a nonlinear deformation

Let X 6 Hom^ (fl, ̂  J be a morphism from g to the Lie algebra of
formal vector fields vanishing at the origin. This morphism defines a representation
g 1"̂  P^)? •] of Q in ̂  . This allows us to define the associated Ghevalley-Koszul
complex as well as the cohomology spaces. The proof of the following proposition is
an adaptation of a result ofWalcher ([Wal91] [prop. 1.8]):

Proposition 6.3.1. — Let Q be a nilpotent finite dimensional Lie algebra over C. Let
^ : g —^ S^ be a nonnilpotent Lie morphism. Let ^ + e € Gompat (fl, (|), ̂ 2) be a compatible
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deformation of ̂  of order m ^ 2 and 0 ^j formal normalising transformation. Then, the map
<E>* : ̂  —)- ̂  zAA mapsftofo 0 ̂ ^ ̂  zTy^wz H^g f@, ̂  ̂  H^ (g, f^\ as well

as an injection H^+g (a, ̂  ) ^-> H^ (fl, 3^ ). In other words, each first integral (/0*((|) + e)

is a first integral ofS; each formal vector field commuting with 0*((|) + e) commutes with S.

Proof. — Let us write €>*((|)+e)=:(|)+T| =(|)+ri2+r|3+- • - where T|, € Hom^ (fl, S^\.

Let/be a first integral of 0*((|) + e), that is, for all g C fl, ^^(/)=(). We may
assume that / is not constant and /(O) = 0. Let us write f=fr +/+i + • • • where / G p\
and let us decompose the above equation along the space of homogeneous polynomials
of degree r+ j^ r. This leads to SS^ .(/)==0 and, for^ 1, to

^^W + ̂ .,(,(A-i)+ • • •+ ̂ ^f) = o.
Let us show by induction onj that ^s^)(/+;)=0 for all g G fl. This is true for j=0

( \<(> / \ ^ / \ ^
since/ G j&J C [j^J (([))= [^j . So, we may assume that it is so for k <j. Let us
apply the operator ^s(^) to t^ above equation:

^ S(^)^(^(A') + ̂ s(^n2(^)(A-i) + • • • + ^s{g}^^{g){f) = O-

But, according to remark (5.2.2), for all (^i,^) ^ fl2, [S(<?i), Tl(&)] =0, so that
^g)^2^=^2{g)^g)' B^ induction? we have ^s{g)(fr+k)=0 if k < j. Thus, we
obtain SS ̂ .S§ ̂ Afr+j)= 0. As we have seen, S(g) commutes with (|)(^), so that
J^^J^^(/4-j) = 0. But, ^(j>(.) is invertible on the image ofJ^. (as endomorphism of
p^). If follows that J^/)(/^)=0 and we are done. The same proof holds in the case
of vector fields. D

This motivates the following definition:

Definition 6.3.2. — A compatible nonlinear deformation ^ + e e Compat(fl̂  ^, 3^ )
of a nonnilpotent morphism ^ will be called formally integrable / the injection
H$+e(fl. ̂ )^ H^(fl. ^n) is an isomorphism.

In other words, a compatible nonlinear deformation of ([) is formally integrable
if its normal form has the same formal first integrals as S.

As we have seen, we have <I>*((|) + e) e Hom^ (g , (^^ ) ). This leads us

define the following space:
to

^{xe^)5!^^8)^}.
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Lemma 6.3.3. — (^ ^ is a Lie algebra over C and the ^-submodule ̂  of (3^1)
o v -'

has a Lie algebra structure over ^ (induced by its natural Lie algebra structure) and it is a

maximal Lie subalgebra over ̂  of (3^ ) .

Proof. — By Jacobi identity, we have, for all g G fl,

TO, [X, Y]] = - [X, [Y, S(g)]] - [Y, TO, X]].

Thus, if X, Y G (^) , then TO. X] = TO. Y] = 0 so that TO. [X, Y] ] = 0; that

is[X,Y]€(^:1)8.

The C-space J^ is clearly an ^ -submodule of the ^ -module f3^1) .

Moreover, if (X, Y) € ̂  and/C ̂ s, then

[/X, Y] =/[X, Y]+J^(/)X=/|X, Y] =/PC, Y]-^(/)Y= [X,/Y]

and [X,Y](/)=X(Y(/))-Y(X(/))==(). The Jacobi identity follows from the Lie
0

algebra structure of [j^ ) ; thus J^ has a Lie algebra structure over ̂  .

Let us assume that there exists an ̂  -submodule V of (3^) , which is a Lie
0

algebra over ̂  and which contains strictly ̂ . Then there exists Z C (
that Z ^ J^. For aU X € ̂  and any/€ (^s, we have, in the one hand,

[/Z, X] =/[Z, X] + J^(/)Z =/[Z, X];

on the other hand, we have

[/Z, X] = [Z,/X] =/[Z, X] - ̂ z(/)X;

thus, we have c5^(/) = 0 Aat is, Z G ̂ . This is a contradiction. D

Let (|) be a nonnilpotent linear morphism. Let (([/, (()") be its analytic splitting;
4)' : fl -^ ^;, ^/ : Q -^ ^_^. If X is a formal vector field on C\ we shall write X'
(resp. X") for the projection ofX onto {9/9x^ ...,<9/<9^} (resp. {<9/<9^+i, ...,9/9xn}).
The morphism S' is assumed to be injective. As a consequence, g is commutative
and its dimension / is lower than or equal to n1 — s.

Definition 6.3.4. — Let S be an injective diagonal linear morphism from a commutative Lie
algebra Q to ̂  . The isoresonant hull IsoRes^S) of'S is the largest Lie subalgebra of the Lie
algebra of diagonal linear vector fields of C" which has the same invariants as S. More precisely,
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let g be the largest commutative Lie algebra for which there is an injective diagonal Lie morphism

S : fl —> ̂  as well as an injection i: g '—> g such that

• § o i = S,
-^s -^s

n ~~ ^ n 9

• (%')' = (s?;)5.
T/CT, ̂  set IsoRes(S) =§(@).

Definition 6.3.5. — Let S 6^ ^TZ injective diagonal linear morphism from a commutative
Lie algebra g to ̂  . A diophantine hull of S is a Lie subalgebra of the isoresonant hull

IsoRes(S) of S defined to be the image of an injective diagonal Lie morphism S : 3 —> ̂  from a

(commutative) Lie algebra g as well as injections k: Q^Q, j : fl ̂ -> 0 such that

• i = j o k
• Sok=S

• there is a constant c > 0 such that for any weight a ofS in J%^ , we have \\a\\ ̂  ^||aoA;|[.

As an exemple, let us assume that Si = ]̂ JL i ^ijxj Q/Qxj, 1 ^ i ^ /, is a basis of
S(g). Let us set T^ = ^ - ^ ^ ^jXjQ/Qxj, I ^ i ̂  I where ̂ j denotes the complex conjugate
of 'kij. Let 0 ^ k ^ / such that {Si,..., S/, Ti,..., T^} is a family of linearly independent
vector fields. If k > 0, then the vector space generated by Si,..., S/, Ti, ...,T^ is a
diophantine hull of S. In fact, let us define ( )=f l © C^ and let us set {^i,...,^} the
canonical basis of Ck', let i ' : g —> t) be the injection. Now, let y: I) —> ̂  be the Lie
morphism defined by ^(gi) = S, and ^(^) = T\. An easy computation shows that if a
is a weight of y then a(^) = a( ̂  ) . Thus a is zero if and only if the weight a o i of S
is zero. As a consequence, (̂1)) is a Lie subalgebra of Isores(S) and contains S(g). As
the computation on the weight a shows, we have ||a|| = ||a o z||. Therefore, (̂1)) is a
diophantine hull of S.

Remark 6.3.6. — Actually we don't know whether the diophantine hulls of S contain other
vector fields than those which are linear combinations ofS\, ...,S/, Ti, ...,T/.

Remark 6.3.7. — As we shall see in the definition of the complete integrability, the notion of
a diophantine hull for a Poincare morphism is irrelevant. Therefore, we shall define a diophantine hull
of S as S itself. This will enable us to define the notion of complete integrability without considering
too many cases.

Definition 6.3.8. — Let S be a Poincare extension of S' by S" and let H be a real
hyperplane of Q* which contains the "eigenvalues" qf^ whereas the eigenvalues ofS" remain on one
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side ofH, Let h denotes the set of weights ofS" which belong to H. It is a finite set and

(^^(S'^^Ca-eH^L^^S")

is a finite dimensional C-vector space. Let cS^(S") be the C-subspace of the space of diagonal linear

vector fields ofC^ whose elements commute with f^_^,) (S").
v- / h

Remark 6.3.9. — Since the elements of^(S") are linear diagonal vector fields on C^',AV
^1
n-n' ,^(S") commutes with S", so that it belongs to (X_,,) (S").

Definition 6.3.10. — A good deformation ofO € C^ relative to the analytic splitting
of S = S' © S" is a morphism

D" + Ml" + R" : Q -. (^, ®c C (3r;_^ (S")) n (3T;)8 ,

such that

D" e Home (0, (^s/ ®c C (̂S")) n (Sr;)5)

zj fl diagonal deformation ofO,

Ml" € Home (fl, ̂  0c i: (^L-)'")

^ a nilpotent deformation ofO and

R" € Hom^ (fl, (̂ , ®c C (̂ LQ) n (^1)8) .

In these conditions, we have [D", Nil" + R"] ==0.

Remark 6.3.11. — If S is a proper Poincare extension then -̂ (S") is reduced

tn'f ofS-. This isto the linear vector fields ofC" n' which commute with the centrally (^^_^\ ofS". This is
due to the fact that the only weight of S" which belongs to the hyperplane H is the ^ero weight.
Therefore, if a = a' + a" is a ^ero weight of S then both of and a" must be ^ero so that

^( '̂e^c^sr.'.,)8''.
o/

It follows that, in this case, a good deformation is a trivial deformation over (^, that is,

D" +.M7" + R" : Q -^ ̂  ®c C (XL/)8 where D" C Hom^ (9, ̂  ®c if:IsoRes(S//)\
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Since we have \P", Nil" + R"] =0, we can view D" + Nil" + R" as a normal form (relative to
^ ^ o /

D"J with coefficients in ̂ , .

Definition 6.3.12. — Let Q be a commutative Lie algebra over C of dimension I. Let
S be a semi-simple linear morphism from Q to ̂ . Let (S' : 0 —> S^,, S" : g —^ S^-n1} be its
analytic splitting.

1. When n' = 0 or when n' > 0 and S doesn^t have small divisors, then a compatible nonlinear
deformation S + £ ofS is said to be formally completely integrable if its formal normal

o/

form is the sum of a nonlinear deformation of S in ̂ , ®c Dioph(S), where Dioph^S) denotes a
diophantine hull of S, and a nonlinear deformation of 0 C C""^ relative to the analytic splitting
ofS.

2. When n' > 0 and S is diophantine, then a compatible nonlinear deformation S + £ ofS
is said to be formally completely integrable if its normal form is the sum of a nonlinear

Q/

deformation of S in ̂ , ®c Dioph(S), where Dioph(S) denotes a diophantine hull of S, and a good
deformation ofO € C^ relative to the analytic splitting ofS.

Remark 6.3.13.
/ --^s'

• Ifn' =0, then ̂  =C. Therefore, a nonlinear deformation ofS in ̂  ®cDioph(S) is
reduced to S itself

• When n' =)= 0, the projection on C" of a diophantine hull of S is a diophantine hull of

S'. In fact, l e t S : Q — > S^ be a diophantine hull of S. Let X € (3^) , then we have, for

all g C fl, [S{g), X] = [S\g), X] =0. Therefore, for all g C Q, 0 = [S{g), X] = [{S{g)Y, X].
_ ^^__^^ i

It follows that (S(fl)y belongs to the isoresonant hull ofS^ Moreover, let X G J% /̂ belong to the
a-weight space ofS, Then, for all g € g, [S(^), X] =a(,?)X = [S(^)', X|. 77^ a is a weight

of{S)f. The converse is also true. It follows that for any weight a of^S)', we have ||a|| ^ c||aoz|[.
Thus there is a subalgebra fl ofg such that the restriction of{S)f to fl is a diophantine hull ofS'.

7. Newton cohomology with bounds

Let g be a nilpotent complex Lie algebra of dimension /. Let (|) be a
nonnilpotent morphism from Q to S^. After a linear change of coordinates, we may
assume that (|) = S + N where, for any g C fl, S{g) is a diagonal vector field and N(^) is
a nilpotent one commuting with S(^).

Let m ^ 1 be an integer and let NFm be the w-jet of the formal normal form
NF of a compatible non-linear deformation (|) + £ of (j).

In order to handle the Newtonian normalization process, we have to use a natural
representation of g into ^m+l?2m associated to the m-jet of the normal form. We shall
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show, in this section, that the linear map g}—>J2m(^NFm(g), .]) defines a representation
of 5 into S^ ' m which leaves invariant the weight subspaces of (|). We shall call it
a Newtonian representation of order m. Let a be a nonzero weight of (|) into ^w+l'2^
then the 0-th and the 1-st cohomology spaces of the associated the Ghevalley-Koszul
complex of the fl-module S^\' m vanish. We shall provide the spaces of this complex
with norms which make it a continuous complex of normed spaces.

If a ^ 0, then for any 1-cocycle ^a? there exists a unique Ua such that d°Ua=^a-
This defines a map s^ inverse of d°. We shall show that s^ is continuous, and we shall
provide a bound for its norm.

7.1. The Newton complex

Let us make a few remarks which will be of constant use:

1. For all (gi,^) ^ fl2, we have [S(^i), NF^)] =0; this follows from (5.2.2).
2. Since NF is a Lie morphism, we have [NF(^i), NF(^)] = NF( [g^, g^]). Taking

its m-jet at 0 leads to J^ [NF^Q, NF^) ]) = NF^ [g,, g,]). ,

Let us define the C-linear map pN,m '" Q —> £Wc (^m+ ' m) by

pN.^W^dNF"^),^)

for all g C fl and X C ^m ' w. This map is a representation : for all {g\, g^) E fl2,
PN,m([<?l^2])=PN,m(<§^ l)pN,m(&) - PN,m(^2)pN,m(^i). Indeed, for all X e ^W+152W, we
have

PN, .(̂ i)pN. .(&)(X) ̂  ̂ ^( î),;2^ [NF'»(&), X])])

=J2"1 ( [NF"(^), [NF»(&), X] ] ) (Jacobi identity),

^ ^ [NF»(&), [NF'»(^i), X] ] - [X. [NF"(,?i), NF^^)] ] ) .

According to the remark above, we have

J2^ [X, [NF'»(^), NF^)] ]) =J2'"( pC, NF'"( [^i, ̂ 2])]),

thus

PN, m(^l)PN, m(&)(X) = PN, m(&)PN, m(^l)(X) + P^^J [̂ 1 , &] )(X).

It follows that pN,m provides ^w+ ' w with a structure of fl-module. We shall say that
pN,w is a Newtonian representation of order m.

To this representation is associated the Chevalley-Koszul complex (see (4.1.1)):

(7.1.1) 0 ̂  ^W+152W ̂  Hom^ (fl, ^+1'2W) ̂  . . . ̂  Hom^ (A^, ^W+152W) -> 0.
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We shall call this complex the Newton complex of (|) of order m. We shall denote
by HN ^(0, ^m+152w) the z'-th cohomology space of this complex. We recall that
H^(g, S^ ' m) denotes the i-th cohomology space for the representation associated to
^ and that ^^'2m denotes the set of weights of(|) into ^W+152W; ^^132W denotes the
weight space associated to the weight a. The following proposition is fundamental in
our construction. In the first version, its proof depended on a four pages computation.
Following an idea of B. Malgrange, this computation can be written easily using a
classical spectral sequence setting.

Proposition 7.1.1. — Let a € W^^ '2 m be a weight of^. Then, PN, m provides ̂ ^ ' ̂ (S)

with a structure ofQ-module. Moreover, if a is a nonzero weight, then H^ m (fl^ ^Ta ^(S)) =0
fori=0,l.

Proof
• For the first point, it is sufficient to show that ^m^ ' ^S) is invariant by the

Newtonian representation pN,m- Let m + 1 ̂  k ^ 2m be an integer. For all {g\, g^) G fl2

and all X € ^^'^(S), we have:

[S(^),^( [NF-(^), X])] =J^( [S(^), [NF^^), X] ])

=f ( [NF-(^), [S(^i), X] ]) +^( [X, [NF^fe), S(^)] ] )

=J'( [NF^^), [S(^i), X] ]) (by the remark above)
Therefore, we have

[S(^i),J'( [NF"^), X])] = a{g,)f( [NF'-(^), X]).

It follows that, for any weight a € ^^n m °^ ^ t^:le weight space ^^a m(^) ls a

0-submodule of S^ ' m relative to the Newtonian representation.

• Let a be a nonzero weight of (|). Let us show that H^ ^ (f l? ^Ta ^S)) =03

for z=0 , 1. Let us set, for 0 ^j ^ /, K=Hom^ (^3, ̂ a152^)). We set K=0 if
j' < 0 or j> I. We may consider the Newton complex as a differential graded module
K= ®^i K. This module is filtered by F^ ©j^ Hom^ (/Vfl, ̂ ^^'^(S)). Using

the convention that ^M = 0 if k > kf, we have:

{0} = F^K C F^K7 C • • • C F0 '̂ == K7.

Moreover, we have (/(F^K) C F^K since (|) is linear. The filtration is homogeneous since
F^K is the direct sum of the submodules K^ D PK. We set

F^'^K := K^ n F^K = Hom^ (A^fl, ̂ 1^' ̂ (S))

and E^(K)=F^^K/F^+1^-1K.
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Clearly, we have Epo'\K)=Homc (^Q, ̂ "^{S)). Then we define (as in [GE56] [p.
323]) the classical spectral sequence {E^'^(K)}^ together with the differentials df'11 '.
E^ -^ E^'^1. This spectral sequence is defined by E^= Ker d^/ Im ^-r''?+r-l.
We are mainly interested in E^' ̂ (K) with p+ q=0 or p+ q= 1. We recall the definition
of the 0-th and 1-st differentials of the Newton complex: if U € '̂" '̂̂ (S) and
/G Home (fl,^"1:1^2^)), then

^.^^^'"([NF-^.U])

^/(^^^'"([NF'"^), /(&)] - [NF"(&), /(^i)]) -/([^i,&]).

Therefore, we have

<.U^) = [^J^^U)]) mod y2^

^/(^^[^lU^V^))] - [<!>(&) J'""1^/^))] -J'"'1^^^,^]))
, -^,m+2+pmod «;a6^

It follows that the differentials d ^ ' ' 1 with p + q=0 or p + <7= 1 are nothing but the
differentials of the Ghevalley-Koszul complex associated to the linear representation of
^ into ^l+< Thus, by lemma 5.2.1 (we recall that ^'^(S)= (^'^"((l))), we
have

E^H^,^":1^))^, f o r / > + ^ = 0

E^?=H;(0,<„1^(S))=0, f o r / > + y = l .

As a consequence, we have E^ '^=0 i f j & + ^ = 0 or p + ^= 1 and r € N. Let us
define F^H(K) as the image of H ,̂ (fl, ̂ ^"(S)) in H ,̂ (fl, ̂ '"(S))

induced by the injection Hom^ (A^fl, ̂ a1^52^)) -> Home (A^fl, ^152m(S)).
Moreover, the filtration is regular^ that is, for each yz there exists an integer u(n) such
that I-T(F^K) = 0 for p > u{n) (just take u(n) = m). Therefore, the spectral sequence
(strongly) converges to E^(K)=P^H(K)/P+1^-1H(K). Using the fact that ^M/ =0
if k > k ^ we have, for p + q == 0,

^(fl,^1'2^)) =F050H(K)=F15-1H(K)= .. . =Fm5-mH(K)=0;

and for p + y = 1,

HN^fl.^a152^)) =F0^1H(K)=F1^-2H(K)= • • • ==FW5-W-1H(K)=0. D

7.2. TA^ topo logical Newton complex

From now on, we assume that Q is commutative.



SINGULAR COMPLETE INTEGRABILITY 181

We recall that if/= Z^,/Q^ (resp. F= (f^ ...,fn)) is any formal power series (resp.
formal vector field) then, for any r > 0, we set |/|,= EQ^I^I^ (resp. |F|,= max^. \f\r).
Obviously, if F is a polynomial vector field then |F|^ is finite. Let G= {^i, ...,^/} be a
basis of fl, 1 <^p ^ / an integer, and ^ € Hom^fl, ^W+132W). Then we define

max kfep...,^)|r.
1^1<!2<...<Z^

It is clear that (Hom^fl, ^W+132W), |.|^) is a normed space.
Let r > 0 be a fixed positive number. In this section, we shall only consider the

norms relative to r. We shall consider the Newton complex as a complex of normed
spaces.

Lemma 7.2.1. — The Newton complex (7.1.1) is a continuous complex of normed spaces.

Proof. — We have to prove that each differential of the complex is continuous.
First of all, if Y 6 ^m+l'2m and g G fl, then

| [NF^), Y] |,= max E^T^' - (NFW^)^
^ • i C/Xj 0Xi\J='

n a^p^)), ^
9x,

<max^|Y^
^ j = i 9x,

+l(NFm(^)U

<9Y
According to inequality (3.1.3) we have —l-

2w!.__.,
^ —|Y.|,, thus,

(JXi

2m,
[NF"(^), Y] |̂  « ^(NF"^)) |, + —INF^^I, |Y|,

It follows that, if c 6 Home (/^Q, ̂ m+l•2'»\ then

\dp{c}\r= max |^(c)(&i,-,,?^i)|r
l<t'l<»2<"-<'/i+l^

/,+!

max ^(-ly^tNF"^-),^,,,...,^,...,^,)]
l^'l<!2<-<i/,+i</ , = l

2TO,
^ » 0 & + 1 ) |D(NFm)|,+—|NFCT|J |4. D

7.3. Cohomology with bounds for the Newton complex

Let a be a nonzero weight of S into ^OT ' OT and let ̂ a ' m be the associated
weight space. As we have seen in proposition (7.1.1), for all Z € Z^ m(fl, ^f^1'2'"), there
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exists a unique U € ^152W such that J2^ [NF", U]) = Z, for aU integer 1 ^ i ^ I.
This defines a C-linear map ^ from Z^Jfl, ̂ 152W) to ^152m such that

^01 ° ^N ,m=^ym+l ,2m a n d ^ N ^ O ^ a = ^ l ^m+l ,2m. .
",a N,^83 n , a }

The remaining of this section is devoted to the proof of the continuity of s^ as well
as the determination of a bound of its norm under some assumptions. Moreover, we
assume that NFW is the m-jet of the normal form of a completely integrable
deformation of s. More precisely, we shall prove the

Theorem 7.3.1. — Under the above assumptions, there exist constants d ^ 0, r|i > 0 and
q(r|i) > 0 such that, if 1/2 < r ^ \, m=2k and maxdNP" - S|,, [D^P" - S)|,) < ̂
then for any nonzero weight a of s in ^m+{12n\ for any Z € Z^Jfl, ̂ a152^ ^ unique
U e ̂ '2m such that d^JJ = Z satisfies

(7.3.1) |u|^-^|Z|,
^k+\,G

and d depends only on S.

Proof. — First of all, let Z C Z^Jfl, ̂ a152") and let us write U C ̂ 152W the
unique solution ofJ^INF^U^Z, for any integer 1 ^ i ̂  /. These equations can
be written: |NF", U] =Z, + ([NF", U] -J2W( [NF", U])). Let us set, for any integer
1 ^ ̂  /, 3.= [NF", U] -J^INF", U]).

Let us set, as usual, S(^) = S,i= 1,..., / and let S^ denote the projection of S, onto
<9/<9^i,...,<9/<9^. Let Si,...,S/+, be a set a linearly independent diagonal vector fields
of a diophantine hull Dioph{S) of S. Therefore, if g denotes a complex commutative
Lie algebra of dimension / + r, we define the Lie morphism S : g —> S^ by S(^) = S,
(where {^ i , ...gi+r} denotes a basis offl). The value r=0 is a possible value. We recall

0" Q

that, by definition, (^) = (^1) .

By assumption, we have, for any 1 <; i ̂  /, NF^ = ̂ ^ ^,A+V^ with a,j € ^s,
^j(0) = ̂ ,7 and YF = D^ + ̂ // + R^ is a good deformation of S" relative to S.

It follows that

r+l

E (a^-[s? u] - U(5;,,)S,) + [V^, U] = Z, + 3z for any 1 ̂  ̂  /,
j = i

where U(^^) denotes the Lie derivative of aij along U. We recall that U is a weight
vector for S for the nonzero weight a; such a weight is the restriction to Q of a weight
a of S. Let us choose an index 1 ̂  i <^ I such that |a(^)| = ||a||; this value is nonzero.
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Since U belongs to the a-weight space of g into ^'"+1>2CT, then U belongs also to the
a-weight space of g into ^OT+1'2'". Therefore, for all 1 < i < I + r, [S,, U] = a{g,)V.
These equations can be written in the following matrix form

/[Si ,U]\ /Di(U)\ / Z i + 5 i \

A(.) = M ; = ;
\[s/ ,u]7 \D,(U)/ \ z ;+3 /7

where A=(ap ,y)i^p ,y^i is the matrix defined by

( r+l —/ \ \„ .„ , . , ^ , v^ , a(&) l
^,?=^,? if ? + ? and ^,,= ^,; + ̂  ap.j—— ;

j=l+l "Vsi/ /J=^

D^ is the ^^-linear map defined by

D. : u e ̂  ̂  -^u(^)S,+ [vr, U] c ̂ 2.
j = i

The ̂  -linearity is straightforward for the first term while for the second one, one has
o

to remind that ̂  "-» C[[x^ ...,^/]] whereas V^ involves only the vector fields 9 / 9 x k
with k>n/.

Since A(0)=Id, A(x) is formally invertible: if A := (^-Ji^-j^/ denotes the transpose

of the cofactors matrix of A, then A~1 := .——.A<:=(^^)l^^^/ belongs to ̂ /(^/ ) anddet A ' -^ ? -^
A A

satisfies to A-1A=AA-1 =Id. It follows that

I'̂

[Si,U]\ /Di(U)\ ^ /Z i+3i \
: + : = A-1 : where 4(U) = ̂  ̂ , ,D,(U).

[S/,U]7 \Dz(U)7 V Z , + 3 / / '=1

Thus, the z'-th equation of the cohomological equation can be written

(7.3.2) U-(P,+Q.)(U)=Z,+3,
Here, we have written

/
a(&)Z,=^^A,

/
^gi)Si= ̂ bi,k3k,

i / l+rp.(u)=—^E&^EU(a^•,
w^ k= 1 j= 1

Q<•(lJ)=—E^^^U]•
^^ k=\
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We claim that the operator P, is nilpotent: it satisfies P, o P, = 0. In fact, we have
, / r+l

w(u) ) = ̂  ̂  kk E W^^ •
"<<^ k=\ j = \

But, since for all 1 ̂  k , p ^ /, a/,,? C ̂ s = ̂ s then for aU 1 ̂  q ^ /+ r, S^(^) = 0; it
foUows that P,(U)(5A;j) = 0 and so P, o P, = 0, as claimed.

Let us give bounds for the operators P^ and Q. To do so, we shall write
A(x)=Id^-R{x) where R(0)=0; we shall write R(x) =(^))i^-j^. Let <9fbe the group
of permutations of {1,...,/}. If a G J?f, then e(a) denotes the signature of a. Recalling
the expression of the determinant, we have

p \ / i \
det(A(^))= ^ e(o) rh^) = E ̂  II^,^(°) + ̂ ^W

oe^ \ z = i / oe^ \ z = i /
=l+P(r^))

where P(Z) C C[Zi,...,Z^] is a polynomial functions of /2 variables without constant
term and of degree /; it can be written as P(Z) = ̂  ^ d^L^ As a function of

_ l^lQjs^
Zi,.. . ,Z^2, it is dominated by P(Z)= E^^/2 |̂ |Z ,̂ thus there exists r) > 0 such

l^lQj^/
that |P(Z)|^ < 1/2. It follows that, if |R(^)|,= \A{x) - A(0)|,= max^.|rj, < TI, then
I^J^))!^ < 1/2. By lemma (3.1.1), if \A{x) - A(0)|, < r|, then we have

<
detA(^)|^ 1-|P(,,,(^))|,

<2;
|detA(^)|,<l+|P(r^))|,

We recall that (^j)i^j^=A is the transpose of the cofactor matrix of A.
Thus, there are universal polynomials of degree ^ / — 1, Qj(Z)= ^ ^ ^,j,sZ8 e

1<|S|^/-1
C[Zi,...,Z^] such that ^j(A:)=Q,^(A(^)). It follows that, for all 1 ^ i, j < /,
|^,j(^)|r ^ Q(|A|r) where Q^is the universal polynomial of one variable defined by

Q^)= ^ max|^,s|^.
2 ^J

SON1

1^|S|^/-

As a consequence, if |A(;c) — A(0)|^ < TI, we have

detA detA
(7.3.3) \^\r= c^ ̂  2Q(|A|,). <
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By definition, we have, for all integers 1 ̂  i ̂  / and 1 ̂ j ^ r+ /

aS,= ^ ,̂ ^x/-—^ /_^/ J , k kg
k- i ^^A;yl= 1

r+l r+l9
NF" == ̂  ̂ .Sy := ̂  ̂  ,— with ^,, = ^ ̂ , A,, ,

QxiA ; = = lj = i

185

that is

^,1

<^,H-^

/&

i a-

, i \

^

=

Ai

. '3i,

, 1 ••• ^r+

^ .

< , i \

J\§i,n/ \^\,n • • • ^r+l,n/

and r + / < yz (in fact, we have r + / ^ n — s).
By assumption, the S,'s (1 ^ z < r + /) are linearly independent over C (S is

injective), the matrix (X^,) i^^» has rank r + l . Without loss of generality, we may
l^r+l

assume that the matrix L:=(^Ji^j^,+/ is invertible with inverse L~1 :=(X,j)i^j^/+,.
Thus, we can write, for 1 ̂  i ̂  / and 1 ̂ j ^ r + / ,

r+l r+l

a^(x) - a^(ft)= ̂ ,k(gi,k{x)-g^(ft)) -< ̂  |^,,|fc,^)-^,(0)).
k=\ k=\

Since 1/2 < r then

I & k{x) - &, ,(0)|^ < 2r | &, ̂ ) - ̂  ,(0)|̂  = 2 |̂ (^, ̂ ) - ̂ , ,(0) )|^

< 2|NFr - S,|,,

so that

\a^{x) - a^G)\r ^ 2(r+ ^L-^NFr - S,|,

Since, for any 1 ̂  k ^ n, 'N^k/xk=gi,k is formal power series, then

^(&^)-gu(0))
Qx,,

9(gz,k(x)-g^{0))=^p{s,k{x)-g^(0))+Xk-—
9x.

that is

Xfc
Q{gz, k{x) - &, ,(0)) 9x^ k{x) - &, ,(0))

9x, 9x, -^,(&,^)-&,.(0)).
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Rnt ^ce . ̂ ^)-^(°)) ^(^)-^'(0)) , ——7-.————^ . ,Hut, smce Xk————-^—————, ————^————— and (gi,k(x) -gi,k(0)) are formal9x. 9x.
power series with non negative coefficients, we have

9{gi,k(x)-gi,k{0)) _, 9xk{gi,k{x)-g,,k(0)}
• " • h ^ — — — — — — — — ~^ 9xf,9x,

Since 1/2 < r, then

9(gi,k(x)-gi,k{0))
9x? <2r

^2

^2

^,^)-&,.(0))
^^

..9{gi,k{x)-&,k{0))
li 00^

^(&,^)-&,,(0))
9xp

It follows that, for all 1 ̂  i ̂  /, 1 <j ̂  /+ r,

9(^^)-^(0)) _^ ^,^)-.?^(0))<EI^A = i3^ a^
r+;

^ n V^ lY | ^(&-,^)-g.,/fc(0))
< 2 2^ 1^*1 —————a-——————9^k=l

<2(/+r)|L- l||D(NFm-S,)|,.

This can be summarized as follows: let us set

95
A = (^•j)i^</;i^/+r 5 |A|r = max [^•j|, and |D(A)|, = max •i,j

a 5
^ 9^ |,^j

then we have

(7.3.4) |S-A(0)|, ^ 2(r+ ^IL-^INF" - S|,

(7.3.5) |D(A)|,<2(r+/)|L- l||D(NFW-S)|,.

Let us estimate the norm of the matrices A — A(0) and D(A). First of all, we
have dp^ q — dp^ q{ff) = S p ^ q — Sp^ q{G) for all integers 1 ̂  p , q < / with q =j= i. Thus, for these
pairs of integers, we have \a?^ - ap^(0)\, ̂  2(r+ ^IL-^INF^ - Sp\. On the other hand,
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for all 1 ̂  p ^ /, we have

r+l

^ - ̂  .(0) = ( (^. - ̂  ,(0)) + ̂  (5,,, - ̂ ,(0) )^
\ j=^i ^A^

But, according to the fact that S(g) is a diophantine hull of S, then there exists a
constant c > 0 such that, for any weight a of S, ||a|| ^ c\\do i\\. As a consequence, we

have —— ^ c for all /+ 1 ̂ j ^ r+ /. According the above estimates, we obtain
a(&).

\ap^ - a^Mr ^ 2(r+ ^IL-^INI; - S^|,(l + ^).

The same estimates holds for the derivatives since

8{a^x)-a^0))
^(r+^llD^-S^I,Qxf,

Since 1 + re ^ 1, the two inequalities found may be written as follows:

(7.3.6) \A{x) - A(0)|, ^ 2(r+ l)(l + ̂ IL-'HNF"- - S|,

(7.3.7) |D(A)|, ^ 2(r+ /)(! + ̂ IL-'HD^F" - S)|,

Let us set

ni1i= 2(r+^)(l+rc) |L- l | '

If |NP" - S|, < ili, then by (7.3.6), we have \A{x) - A(0)|, < T\ so that
\bi,j\r ^ 2Q(|A|,) by (7.3.3). Moreover, we have |A|, ^ |A(0)| + |A - A(0)|, ^ 1 + r\.
It foUows that Q(|A|,) < Q(l + 2(r+ /)(! + ^iL-'lrii).

On the other hand, if |D(NP" - S)|, < •Hi then |U(flAj)|r < ra|U|,|D(A)|, s$ ren|U|,.
Let us set ^= max^^^ , ^ |^ij|, then, since r< 1, for all 1 ^j< /, \Sj\, < X,.

We recall (see the section of notation) that, given two vectors of formal power
series Y==(Yi,...,Yy) and W=(Wi, ...,Wy), we say that Y is dominated by W, and we
write Y -< W, if Y,• ^ W, for all 1 ^ i ̂  q. Moreover, we shall write Y:=(Yp...,Y^.
Now, we are able to give estimates of P; and Q(. We have:

, / r+l

P.(U)= Î>,..EW
Therefore,

P--(U)^|-|E^,.EU(^)S,,
11^11 A : = l j = l
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where S^ stands for ELi \^,k\Xk9/Qxk. It follows that if

1/2 < r ̂  1 and max(|NF" - S|,, |D(NF"1 - S)|,) < r\i,
then

(7.3.8) |P.(U)|̂  ̂ |U|.

with
^) =4/(r+ ^QdA^)! + 2(r+ ^(1 + ̂ IL-1!^)^! + rc^L-1^.

Let U be a polynomial vector field, then let us denote by ^'(U) the degree of U
in the variable x^+\,...,Xn. Since the vector fields V^ depend only on the derivatives
Q/9xn'+\, ...,9/Qxn, then, the estimate of the previous section shows that

|[V^ U]|, ^ n f|D(\a+ ̂ m} |U|..

We recaU Aat V^ = (NF" - S. - (Ej^j - ̂ ,j(0))S,). Since r ^ 1, we have

|Vn, ^ |NF" - S|, + 2(/+ ^IL-'HNF" - S|, ^ (1 + 2(/+ ^IL-'DTII.
Moreover, we have

9V^ ^ '̂ IJ - S.) ^ /— ~9(a^ - a,^0)) S;
Qxk 9xk [L^ Qxk

it follows that
W/)\r ^ |D(NF" - S)|, + 4^/+ ^IL-'HNF" - S|,

^(I+^+^IL- 'DTII ,
hence,

1 ,̂ U]|^ J(l + 4(/+ ̂ IL-'I) + ̂ (1 + 2(/+ ̂ IL-1!)) ni|U|..

Finally, we obtain

(7.3.9) |Q,(U)|̂  ̂ llĵ lUl,

with
C3(ni ,</"(U)) = 2/nQ(|A(0)| + 2(r+/)(!+rc)|L-1 |ili)

x ((1 + 4(/+ ^IL-'I) + 2<r'(U)(l + 2(/+ ^IL-'I)) ni .

We have a(^)Z, = - ̂ 1= i ^, <;ZA. It follows that

H 110^ 1^1 < 2/Q(|A(0)|-^2(r+/)(l+^|L-l|^^0(7.^.10) |Z|. ̂  ————————^j————————|Z|,
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Let Sep{S) > 0 be a separating constant for S; according to lemma 6.2.7, if a is
a weight of S and ||a|| < Sep(S) then a is a weight of H. We recall that if n' =n then
we set Sep{^)= 4- oo and H=V(^(fl)).

In order to give good estimates, we shall consider two different cases:

i. |H|^(S),
2. ||a|| < Sep{S).

For each weight a of each case, we shall solve the cohomological equation with
Z in the corresponding weight space and rewrite the solution of equation (7.3.2) in an
appropriate way.

1. ||a||̂ (S).
Let us write the equation (7.3.2) as follows:

U-P,(U)=Z,+3,+Q-(U).

Since P,oP,=0 then we have: U=(/rf+P,)(Z,+3,+Q(U)). We can be a bit more precise
since U is a polynomial vector field of degree 2m. In fact, by definition, for any integer
1 ^ i^ /, 3z is a vector field of order greater than or equal to 2m + 1. Since the ^j's
are formal power series, a(^)3^= —Z^=i b^kbk is a formal vector field of order greater

than or equal to 2m + 1. Hence, both P^) and QjQi) are formal vector fields of order
greater than or equal to 2m + 1. It follows that L^J^ (z, + P,(Z,) + Q(U) 4- P,(Q(U))V
Hence, we have

U ^ Z, + P,(Z,) + Q-(U) + P.(Q<U)).

According to inequalities (7.3.8), (7.3.9), we have

I T T I < 191 (^ + ̂ \ + ^(Th.^))) . cMc^^d^U)^
lulr ^ ' lr [ l|a|| ; ^ ||a|| ||a|p ) Mr-

According to lemma 6.2.7, there is a constant d > 0 such that, if Ot=OtQ^, then
|j&"(Q)| ^ </||a||. It foUows that, if we set

^(ni):=2/HQ(l + 2(r+ /)(! + ̂ iL-'hi

t̂1!4 !̂̂ ^^ ,̂.̂ -!)),..X

then, 1?—„—— ^ ^4(^1). Now we may choose T)i small enough so that:

(^+(^)^/2-
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hence, by (7.3.10), we obtain

(„,,) lUl^lZI^^^^;';^"^)^^).
Sep{b) \ Sep{S)J

2. ||a||<^(S). ^
We recall that if X € ,̂ , then X' (resp. X") denotes its projection onto the

space generated by 9/9x\, ...,9/9xn' (resp. 9/9xn'+\, ....,9/Qxn).
Let us project the equation (7.3.2) onto these two natural subspaces; we obtain:

(7.3.12) U' - W) = Z:. + 3;. + W) + Q;.(ir),

(7.3.13) U" - ( '̂(U") = ̂  + ̂  + W) + Q^OJ').

It should be noticed that, since ̂  ^ ̂ ,, we have P,(U) = P,(U'). Since |[a|| < Sep(S),
then a belongs to H (unless n' =TZ, in which case equation (7.3.13) doesn't make sense).
Since U belongs to the a-weight space, then both U7 and U" belong to the a-weight
space.

First of all, let us consider equation (7.3.12). We have P ^ o P ^ = 0 by the
same argument which shows that P, o P^ = 0; moreover, (^(U') = 0. In fact, we have
^^{^^mjW + P^Q)^) for some 0.0 N" and 1 ^ ^ < n1. But, P^(Q) (())") = 0
(this is due to the fact that a € H and PJ&^Q)^") lies on one side of H) and since (j)7'
is flat then J&//(Q)=0. It follows that U' doesn't depend on ^/-n, ...,^; hence Q(U')
doesn't have any component along 9/9x\, ..^9/9x^. Moreover, we have Q^(U")=0
since both U" and V" don't have any nonzero component along Q/Qx\^ . . . ^ Q / Q x ^ .
Therefore, equation (7.3.12) may be written U' - P^LJ') = Z\ + 3,'; it follows that

U'^^+P^).

Therefore, we have

U' ^ Z^ + P^(ZO.
Hence, we have the following estimates

IU^IZ^+IP^)),
/ , cM\ ,7,,

^ [ H\ ) I llr

/, , cM\ 2/Q(1 +2(/+r)(l+n•)|L-l|T^l),^

^l iiaiiy IHI l l r '
By definition, i fOT=2 A then (Qk+i,G ^ |M|. Let us set

c,(Tii)=(&j&(S) + C2(Tli))2/Q(|A(0)| + 2{l+ r)(l + r^L-'liii).
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It follows that, if 1/2 < r < 1, m= 2^ and maxdNF7" - S|,, ID^P" - S)|,) < Th, then

(7.3.14) lu'l^^^lZl,
°VH, G

Let us consider equation (7.3.13) and let us set ?,=2;' + ^/ + P^(U') +
^'(U'). Then, at least formally, the solution of equation (7.3.13) may be written as
U" = EA^O 0^)- But since u" is a polynomial of degree ^ 2m then

(7.3.15) U" = ^J^O^-)) with ID, = ̂  + ^'(U') + (^(IT).
^o

We shall show that there exists an integer Ao, independent of m, such that

U"= E?=o J^Q^z))- we reca11 Aat both tx^ and u/' are finite sums of the weight
spaces associated to the weight (XQ^ such that Q^G N" with 1 < |QJ ^ 2m, TZ'+ 1 ̂  i ̂  n
and aQ^=a. Since |[a|[ < 6<?j&(S) then (X^/(Q)^(S") belongs to the hyperplane H. On
the other hand, we have V^=D^ +^ / / + R^ where D^' (resp. Ml'/) is a linear

-—^-s7

diagonal (resp. nilpotent) deformadon of 0 (resp. 0) in <^, 0c C° /̂i(S") (resp. in

^s/ ®c C (^1-,') ), R^ is a nonlinear deformadon of 0 in < ,̂ ®c C (̂ L') n (•̂ ')
(it is not, a priori, a morphism) and P^, Ml'/ + R'/] = 0. By lemma (6.2.2), (^^

\ / h

(that is the weight spaces relative to the weights of S" which belong to H) is a finite
dimensional C-vector space. Hence, there is a smallest positive integer d(S") such that
(^ \ _ f^i,<s")\
\^n-n'), - \^n-n' ) ,

Let us recall mat Q,(U)= ^— ELi ^• W, U]- It should be noticed that
î)

[V '̂, tt),] = [MI'k, n),] + [RA', tu.] :=jg>^„(rt),) + ̂ ^(tu,); this is due to the fact that tu,

belongs to < ,̂, <8>c (C (̂ !-'n<;s )) ) and that D" commutes wim every element of this

space. Moreover, both J§N" and ^R" are ^.'-linear maps on ^®c (C (̂ l-'«<;s )) )•

In fact, first of all, let a and p denotes weights of S"; let X 6 ('J ,̂1) (S") and

Y 6 (3^, ) (S") denotes elements of the weight spaces. From Jacobi Identity, we show\ /p
that PC, Y] G te1) (S"). Indeed, we have

\ / a+P

[S", [X,Y]]= - pC, [Y,S"]] - [Y, [S",X]]=(a+p)pC,Y].

Therefore, if a and P belong to H then so does a + P. By assumption, both Mk"

and R'/ belong to ,̂, ®c (C (̂ a„l-'„<(s")) ). Thus, if X belongs to that space so do
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[Mli'^X^ and [R^,X]. The ^,-linearity comes from the fact that the vector fields
depend only on the derivations <9/<9^/+i, ...,(9/<9^.

Let A be a positive integer; we have for any X (E ̂ , (g)c ( C f^1-'̂ 8 )) V
\ V /A /

^(^-^ E fn^^v,"°---o^(x)a(&r. — l - i i ^ f—, ——v,«i , . . . ,» t=i V-1 /
\k I ( k \

n^^-M^^R'')*
;=1 / '1 •I '* 'k

I_ lU

0^ E (^^J(^/"+^R")°•••°(^/"+^R")(X).
"(..St; . . , \ , i " / •I '1 'k 11,

i l , ...,14=]

Let us first notice that <W%^,,(X)) > WX and ord"{^,,(X)) > W"X+ 1.
Let us set for k=(A:i,...,A:/) € N'

^^^^o.-.o^',,.

Let us set, for any nonnegative integer p, i=(?i,...,^) e {l,...,/}^ and K=(ko,...,k.) €
(N')^1:

t^ i K^-^N^ °^R" "^ 0 • • • O^R" 0^^.
'1 '/>

It follows that (^N" + ̂ R") o • • • o (^N" + ̂ R")(X) is a sum of the ^5. . ,c(X)'s with
'1 '1 'k 'k P,1,1^'-

|K| +/>:= |ko| + • • • + \kp\ +p=k; furthermore, we have ord"{J8^,^<^} ̂  ord"X+p.

As a consequence, since ,̂ <2>c (C f^1-'̂  )) ) is left invariant by both J
\ / ^/

N7'

and ^R//, then for any positive integer p such that ord^X+p > ^(S"), for any

i=(zi,.. ,z^) C {l,...,y and for any K=(ko,..,k^) € (NY^, we have ^,i,K(X)=0.
Thus, Q^(X) is a linear combination (with coefficients in ^//) of the J9. ^ ^(X)'s for
which p^ ^S'O-WX^ d(S^ i={^^ip) C {l,..,/}^ K=(ko, ..,^) €'(NQ^1 and
\K\+p=k.

Let us show that ord(JS^(K)) ^ m + <W(X) if |k| is large enough. In fact, by
assumption, each Nil", is the m-jet of a nilpotent vector field 5^ with coefficients in

Q/ J ,

^ ; thus ad^, is nilpotent too. Let us notice that a d . ^ o ... o adl^(X) - ̂ ^(X)

is a sum of compositions of adjoint operators in which appears at least one of
the ad^,, \ for some i. Since '̂ - Nil", is of order ^ m + 1, it follows that

( !

ord(ad^„ ° • • • ° ̂ ^(X) - ̂ r^W) ^ orrf X + TO. Now, let nil be the maximum of the
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orders ofnilpotency of the a(/^,,'s; if |k| ^ nilxl, then there is at least one k{ ^ m7, hence

arf^ o ... o fl^,(X) == 0. It follows that if |k| ^ nil x /, then ord{^3 ^(X)) > m + <W(X).
N^ N^

Let us go back to the study of ^p^^QQ with P ^ ^(s//)- If l^ + P
= k > d{S/f){l + nil x I) + nil x I then |ko | + • • • + |k^| > (rf(S") + l)(m7 x / ) ^ Q& + l)(m7 x /).
Hence, there is at least one of the k^s which is of norm greater than or equal to
nil x /; thus, ord(J9p^^(X)) > m + ord(X) > 2m + 1 if W(X) ^ m + 1.

As a conclusion, we can say that for all X C ̂  ®c (C (^-n/ ) ) °f order

greater than m, then J^Q^)) = 0 for all k > d(Sff){l + nil x I) + m7 x /.
Let us go back to our first problem, that is, the solution U". According to what

has just been said, equation (7.3.15) can be written as

^S^Xl+m/x^+m'/x/

(7.3.16) IT= ^ J^QW,
A=0

where W. = Z^ + f ' / ( U ' ) + ̂ (UQ. As a consequence,

d(S"){l+mlxl)+nilxl______

V" -< ^ Q,̂ .),
A;=0

(/(S^Xl+w/x^+mYx/

|u"|̂  E IQ.̂ )1-
A==0

We recall that ti), belongs to (^ ®c (c (^!-5,/(s//))j) H (^) ; thus, according to

ite (7.3.9), we have |Q<tt),)|, ^ ^H^l^^^

Therefore, since (O^+I,G ^ ||oc|| < Sep{S), we have

estimate (7.3.9), we have |Q,(tt),)|, ^ ———l115^-

d^^i+nilx^+nilxl /. , > , \ ^
ITT"! ^ Itr. I \^ [ C4V}U \|U |. ̂  ltD.I. ^ -„-HIk=0

i i ^S^Xl+^/x^+mYx/

^ cKS^UxD+niixi JL {c^)Sep{S)) .
(%4-1,G k=0

Let us set

rf(S / ')(l+m7x^)+?^^7x/

^0= E (^o^(s))'.
A:==0
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Using first estimates (7.3.8) and (7.3.9) and then, estimate (7.3.10), we obtain

H^IZ^+lprTO+i^TO
< 2^|A(0)|+2(/+r)(l+r.)|L-%) c^)
^||a|||detA(0)|—————IZl^-FFlUMQ.CU)!.

According to estimate (7.3.9), we have \Q^'(U% < ̂ ^"^{UV, but V, as an
element of the weight space does not depend on Xn,+i,...,Xn; therefore, in this case, we
have

^..^^^(^.^^^^^^-•^((.^^^IL-'I)),..
Hence, we have

|m| ^2/Q(|A(0)|+2(/+r)(l+r.)|L- l |T^O ^i) + ̂ h)^,
wr ^ ——————|a|||detA(0)——————wr + ———a———'u I-

^ /fe(T1i)+^(i1i)ki(T1i) _^ 2/Q(|A(0)|+2(/+r)(l+^)|L-l|T^O^
" ^ CO^^G co,.i,G|detA(0)| ^ 1 l r-

Finally, we obtain

(7317} ITT"! <___t;7(rll)___171\ I ^ . L I ) |U |r ^ (/(S//)(l+m7x^+m7x/+3 1^1^ 5
^-hl^

where we have set

^,)=^,) (fe(.,)^(n.)y.(n.). ̂ W^^^L-^

This ends the proof of the theorem. D

Furthermore, we may assume that c\ > co^i o (if not, we can take a greater
value for ^i), so we can write c^ =0^1 ̂ ^m with y^ 1. Then, the previous estimate
becomes

(7.3.18) |U|,<Yr|Z|.
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8« The induction argument

We assume that fl is a commutative Lie algebra of dimension / and that the
morphism S is diagonal.

Let 1/2 < r ^ 1 be a real number and let r|i > 0 be the positive number defined
in theorem 7.3.1. For any integer m ̂  [87z/T|i] + 1, let us set

r̂̂ ,(r)= fxeHom^,^1-'")! max(|X - S|,,|D(X-S)|,) < lli-^l

^,(r)= {X G Homc(0, ̂ m+l) | |X|, < l}.

If m=2k for some integer k ^ 1, let us define

/ Y^/m

p==^- l / wr and R=Y^~2/wr where jh= ——— is defined in (7.3.18).
\^+1,G/

It is clear that m^ > 1. According to the fact that all the numbers CD^G are
assumed to be smaller than 1, we have Inco^G < 1/^lnm so that Inco^G — 2/mlnm <
-1/mlnm < 0, that is, R < p < r < 1.

Let S + £ be a holomorphic deformation of S, which is formally completely
integrable. Let us assume that S + £ is normalized up to order m. Thus, we may write

S + £ = N F W + R ^ l

where NF7" is the m-jet of the normal form of S + £, R^+i e Hom^(g, ̂ w+l).
The core of this section is the following proposition:

Proposition 8.0.2. — With the above notations, let us assume that (NF̂  R^+i) €
.y^J (̂r) X ^?^(r). If m is sufficiently large (say m > TUQ independent of r), then there exists a

unique U € (B^y^i,2^^ ̂ a15^ such that

y, n

1. 0 :=(/</+ U)-1 e Dij[f^C\ ff) is a diffeomorphism such that Dp C <E>(Dp),
2. 0*(S + £) rrNF^ + R2m+i ^ normalised up to order 2m,
3. (NF2^ R^i) € ^T^JR) x J§^(R).

The proof of this proposition will require several steps.

8.1. The normalising diffeomorphism

Let us write

S + £ = N F W + B + C
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where NP" C Hom^ (fl, ^15W), B € Hom^ (fl, ^+132W) and C € Hom^ (fl, ^2W+1).
We may decompose B along the weight spaces of S: B = Bo + B* where

/ \
Bo € Home (fl, ̂ 1'2'") and B* e Home 0, Q <•:l•2m

V ae^-^'^YW ^

We claim that B* is a 1-cocycle for the Newtonian complex of order m associated
to NP". In fact, since S + e is a Lie morphism, we have, for all g\, g^ € Q,

[NF^i) + B(^i) + G(^), NF»(&) + B(&) + C(&)]
=(NF"+B+C)([^,&]);

that is

[NF"(^), B(&)] - [NF"(&), B(^i)] - B( [g,, &])
+[NF»^), NF"(&)] - NF"( [g, ,&])=- [B(^i) + C(^), B(&) + G(&)]

-[NF»(^),C(&)]
+[NF"(&),C(^)]+C([^,^]).

Since the right hand side of this equation has an order greater than or equal to 2m+1,
we conclude that

j2"( [NF"(^i), B(&)] - [NF"(&), B(^,)] - B( [^i, &])
+[NFTO(^),NF"(&)]-NF"([^,^]))=0.

Since we have the decomposition
^m+\,2m _ ^m+\,2m /T\ ^w+l,2w
^n ~^»,0 \37 ^n,a

aey^'^VO}

into fl-modules for the Newtonian representation, we obtain

j2-( [NF^i), B*(&)] - [NF-(&), B*(^)]) = B*( [^, g,])
^([NF^^i), Bo(&)] - [NF^), Bo(^i)] + [NFW(^), NFW(^)])
=NFm([^2])+Bo([^&]),

1 * i-i * — r~» 1 j ^T\ /^77l^' 1 i ^W I

that is B* € ZN,^ (fl, ©^y""'2'"^} ̂ >» •
\ v ^ n /

According to proposition (7.1.1), there exists a unique U belonging to the weight
spaces associated to a non zero weight of S into ^w+l '2W such thatj27^ [NF772, U]) = B*.
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Let us set 0-1 =Id + U € Diffi(C", 0). Since, €>*(S + £)(0(^)) = D(€»)(^)(S + t.)(x)
then, by setting x=^S>~l(J), we obtain

0*(S + e)(j) = D^XO-^XS + £)(0-'(^)
=D(<I>-l)-10>)(S+e)(<I>-l(^))
P^-'OWO-'XJ^^.

It follows that
(8.1.1) D^-'XjWS + eXj') = (S + eXO-1^)).

Let us write ^•(O+eXj^NF^+B^+C'^), with B' € Home (fl, ^m+l>2OT+1')
and C' € Hom^ (fl, J%",, TO+ ). Thus, the conjugacy equation (8.1.1) can be written in
the following form:
(8.1.2) (Id + D(U)(jy) )(NF" + B' + C')(^) = (NF" + B + C)(0-' (jy))

= NF"(^) + D(NFOT)(J')U(^ + B(j»)

+(B(4>-1(^))-B(^))+C(0-•(^)

+ NF"(<I>-1^)) - (NF»(^ + D(Nr')(^)U(^)) .

Here, D(NF") denotes the application which maps g € fl to the differential D(NF"(^)).
This can be written

G^) + (B'OQ - B(j») + [NF", U](^)) = (B^-1^)) - B(j)) + G(0-1^))

+Nr'(<I>-l(Jy))- (NF"(^) +D(Nr')(^)U(^))
-D^^XB'+GO^)

=:D(^).

Since the order of (B^"^)) — B(j)>)) is greater than or equal to the order of
D(B)(jy)U(j») and the order of NF"^-1^)) - (NF"^) + D(NF")(j>')U(j»')) is greater
than or equal to the order of D2^^^)^^), V(jy)), then the order of D is greater
than or equal to 2m + 1. It follows that J2"^^^) - B(jy) + [NF"1, U]) = 0. According to
the definition of U, we obtain that B' - Bo +J2'" (-[NF", U] + [NF", U]\ = 0. Hence
B' =Bo € Hom^fl, '̂"o1'2'") and <t>*(S + e) is normalized up to order 2m.

8.2. Computation of the remainder

In order to obtain an estimate of C', we will write the equation (8.1.2) in the
following way

0^)= (NF"(<1>-'OQ) - NF"(^)) + (B + C)(0-1^))

- B^) - D(U)(^)(NF" + B' + G^).
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Since NF"(€>-l ( ;»>))- NF"'( y)= jj D(Nr')(jy+ tV{y))V{y)dt, we shaU use the
following definition in order to estimate C',

(8.2.1) C\y) = I ' D(NF")(^ + fU(^) )V^dt + (B + C)(<&-1 (^))
v0

- B^) - D(U)(j/)(Nr + B' + C'Xj/).

8.3. Estimate for the dzffeomorphism

Let 0= (J^+U)"1 be the normalizing diffemorphism. By assumption, NP" belongs
to ^^^(r); thus, we can apply proposition (7.3.1) so that

|U|^^—|B*|,
^k+1,0

Since B* ^ B* + B^ -< R^p we have |B*[, < 1. It foUows that |U|, ^ y^w.

Lemma 8.3.1. — Under the above assumption and if m is large enough (say m > mo), then
for all 0 < 6 ^ 1 and any integer 1 ^ i ^ n, we have \yi + GU,(^)|R < p. As a consequence,
0(Dp) D Dp.

Proof. — We borrow the proof of Bruno [Bru72] [p. 203]. It is sufficient to show
that R + |U|R < p. Since the order of U is greater than or equal to m + 1 then, by
(3.1.2) and the inequality above, we have

/RY^
(8.3.1) |U|R^M |U|,

^T^TY
^ Y^-2-2/-

^ m-2-2/-.

Since R=Y^~2/mr ^ w'^r, it is sufficient to show that m'^r+m"2) < p=w - l /wr,
m-2

that ls ^i/m _ i < r' But-

m~2 m~2 m~2 1
^ ———— ^

^l/w - 1 exp1^111'2 - 1 ^ 1/mlnm ^ m}nm

since 1 + x < exp ^ for all x G R4'. But, for 0 < x sufficiently large, we have 2 < xlnx.

Thus, since 1/2 < r, we obtain the result: —-——— < - < r. Dy^i/m _ ^ ^
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8.4. Estimates/or the remainder

199

We have (R/r)^ =^m-2-^m as well as ^m-^. Thus,
r

lUlR^m-2-2/- (by (8.3.1)),

(8.4.1) < ^m-2

r

(8.4.2) < m-2.

As we have seen, <&*(S + e) is normalized up to order 2m and we have
Np2m ^NP^+Bo. Since the polynomial vector field of degree 2m, Bo, is dominated by
B, which is dominated by R^p we have |Bo|, < |Rm+i|r < 1. It follows that

iBolR^Y^T^lBol.
^m-2;

|D(Bo)|R^^|Bo|R (by (3.1.3))

2mfvz-77^-2/w^w+l^MY^ ) ^ ^^^
2mCy,m^T

^ ———————————1-Dolr

^ ('/2<r)-

It follows that

|NF2'" - S|R = |(NF'" - S) + Bo|R < INF" - S|R + |Bo|R,
8ti 1

< ^ i - — + ^
'yw •»»îw w
8n

<^-— if l<47zm;
^w

ID^F2" - S)|R = ID^F" - S) + D(Bo)|R ^ ID^F" - S)|R + |D(Bo)|R,
8?! 4 Sn

<i1i - — + - <'ni-—
w m im

That is, NF2'" € NF^(R). It remains to show that Rz^+i € ^2m+l(R)•
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We have the following estimates:

K B + q o O - ^ ^ l B + G l p by (8.3.1)

( , / \ m+l
< w-1/") |B+C|,

(B + G is of order > m + 1)
^m~1

|D(U)(NF" + Bo)|R ^ ralD^lRdNr'lR + |Bo|R),

^^|U|R(|NF»|R+|BO|R)

(U is a polynomial of degree 2ni)

< ^m-^NF^lR + |Bo|R) (by (8.4.1))

<4raOT-l(|NF"|,+m-2) (r^l/2);
|D(U)(J')C'|R ^ 47^w-l|C/|R by the same argument.

Furthermore, for all 0 ^ 9 ^ 1,

D^F")^ + 9U(>))U(j»') -< D(NFm)(J + U(jc) )U(ji).

It follows that

f1 D(NF'")(^ + eU(.y))U(j^ ^ |D(NF")(j + U(^))U(^)|R,
•'o

^ niD^^lplUlp

^ ^|NF'"|p|U|R

(NF" is a polynomial of degree m),

< ""INF^I.IUIR (since NF" vanishes at 0)

^^INF-I^-2 (by (8.4.1))

^ 2ra|NFm|,TO-l.
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According to (8.2.1), we have
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I G ' I R ^ /^(NF^+^U^))^^ +|(B+C)(0-1(^))|R
1/0 R

+ IB'IR + IDQJX^NF" + Bo)|R + ^(UX^C'IR

^ 2/^|NFm|,m-l + m-1 + 47^m-l(|NFm|, + m-2) + 47^m-l|C/|R
^ Gwn^iNF^ + 4wn~3 + 47^m-l|C/[R.

It follows that, if m > 4-n then

l c / | R ^ ^ - f 3 [ N n + 4 )m— 4:n \ m2 j

^d^3^^0^

Thus, if m > 27z(3(|S|i + T|i) + 2) + 4n then IC'IR < 1, that is C' = R2,+i G ^2m+i(R).
This ends the proof of the proposition.

9. Proof of the theorem

In this section, we shall prove our main result:

Theorem 9.0.1. — Let S be an infective diagonal Lie morphismjrom a commutative complex
Lie algebra g of dimension I to the Lie algebra of linear vector fields S^ m C". Assume S is
diophantine. Let (S^ S") be its analytic splitting. Then, any holomorphic nonlinear deformation of
S which is formally completely integrable is holomorphically normali^able. As a consequence it is
holomorphically integrable.

Remark 9.0.2. — The theorem does not depend on any choice of a basis of Q. Consequently,
tfS-^-eis holomorphically normali^able, so is S o z+ £ o i where i is a Lie automorphism ofg (the
latter being commutative, i is just an automorphism of linear spaces). As already noticed, some of the
linear part S(i(^)) may be very wild and may not satisfy Bruno^s condition.

Let 1/2 < r ^ 1 be a positive number and let us consider the sequence {R^}^o
of positive numbers defined by induction as follows:

Ro=^
R^^Y^"27^ where m=2k.

Lemma 9.0.3. — The sequence {RA;}^O converges and there exists an integer m\ such that
for all integer k > m\, Rk > Rmi/2.
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/ \ -1/2!

Proof. — We have RW =^-1 Y^')-21", with y,= -̂ 1— . Hence, we
V^+I.G '

obtain

lnR„=+^ln^-ln.,f:--21n2E-+lnr.
z = l 4 z = l A z = l ^

The last two sums are convergent and the first is also convergent by assumption. It
follows that there exists an integer mi, such that

+00n Y^r21'"> 1/2.
Z'= W]+ l

T)

Thus, if k > m, then R, = R^ nt=^i Y^)-21^ > ——. D

Let S + £ be a holomorphic deformation of S in a neighbourhood of the origin
in C". We may assume that it is holomorphic in a neighbourhood of the closed
polydisc Di. Let m^ = 2^ be the smallest power of 2 which is greater than max(mo, 2^)
where wo is the integer defined in proposition (8.0.2). By a polynomial change of
coordinates, we can normalize S + £ up to order m^\ in these coordinates, S + £ can
be written as NF^ + R^+i. If necessary, we may apply a diffeomorphism did with
a € C* sufficiently small so that (NF7"2, R^+i) G ̂ ^(1) x ^^+i(l). We may define
as above the sequence {R^}^, with Ry^ = 1. Thus, for all integers k > Ao, we have
1/2 <R,^ 1.

Let us prove by induction on k ^ Ao, that there exists a diffeomorphism 4^ of
(C",0) such that ^(NF^ + R^+O^NF2^ + R^i^ is normalized up to order 2/:+l,

(NF2"1, R^i.O C ./rj^i(R^) x jg^i^(R^) and |Id - ̂ \^ ^ E^ ̂ .

• For k=ko. According to proposition (8.0.2), there exists a diffeomorphism

0^ such that O^NF2'0 + R^^NF2'0^ + R ^ - n _ ^ ^ is normalized up to order 2ko+\

(NF2'0'1, R^.i^) C ./rj^i(R^i) x ̂ .i^(R^,0 and |Id - O^IR^ < 1/22^.
• Let us assume that the result holds for all integers i' ^ k — 1. By assumption,

^(NF^ + R^+i)=NF2 ' + R^ is normalized up to order 2k and (NF2', R^) G
^^k{Rk) X ^^+i(R^). Since 1/2 < Rk < 1, we may apply proposition (8.0.2) : there

exists a diffeomorphism 0^ such that (OA; ° ̂ -O^NF2^ + R ^ )=NF2^1 + R^i^ is

normalized up to order 2^1 and (NF2^1, R^^+i+i) 0 ^^+i(R^i) x ^^+i^i(R^+i).
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Let us set "Vk^^k o^k-i. According to proposition (8.0.2) (or lemma (8.3.1)), we have
IM-O^'IR^, < 1/2^. It follows that

|Id - y,-1 IR^, < (Id - ̂ -_\) o 0,-1 + (Id - 0,-')

^ (Id-V^oO,-
'RWI + (Id-<V) R*+i

According to proposition (8.0.2), we have O^'(DR^,) C DR^. It follows that

r-l||Id - V,|R^ ^ |(Id - ̂ -_,)^ + |(Id - 0;')

^ 1 1
^^+

22^ 2^'^=AO

\h-l

This ends the proof of the induction.

Since D(l/2) C Dp^ for all integers k ^ Ao, then the sequence {IV^Ii/^}^ is
uniformally bounded. Moreover, the sequence {^V^ }^^ converges coefficientwise to a

formal diffeomorphism ^-1 (the inverse of the formal normalizing diffeomorphism).
Therefore, this sequence converges in ^^(r) (for all r < 1/2) to y-1 (see [GR71]).
This means that the normalizing transformation is holomorphic in a neighbourhood
of 0 € C".

10. Consequences

In this section we shall show how we can obtain the results of Bruno and Vey
from our main result. Let us begin with a corollary of our result in the most simple
case.

10.1. Linearisation

Corollary 10.1.1. — Let S be a diophantine injective diagonal linear morphism from a

complex commutative Lie algebra Q to S^. Let us assume that ̂  =C. Let (S' : g —> S^,,

S" : Q —^ S^n-n1} ^e tne ^cilyl10 splitting of S. If the normal form of a holomorphic nonlinear
deformation S + e ofS is the direct sum of^ and a formal normal form with respect to S", then
S + £ is holomorphically normali^able.

Corollary 10.1.2. — Let S be a diophantine injective diagonal linear morphism from a
complex commutative Lie algebra Q to S^. Let S + e be a holomorphic nonlinear deformation of S.
IfS is formally linearwble, then it is holomorphically lineari^able.
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These are direct corollaries of our main result since, in both cases, the
nonlinear deformations are formally completely integrable. It should be noticed that
the last corollary is stronger than the corresponding results known for commutative
local holomorphic diffeomorphisms of (C, 0) having a common fixed point (resp.
G°°-diffeomorphisms of the circle which are close to rotations) due to Delatte
[DeL97] (resp. Moser [Mos90]). The first of these results states that, under a
diophantine type condition, which is sligthly weaker than ours, if Oi, 3>2 arc commuting
local biholomorphisms which map 0 € C to itself and if one of their linear
parts doesn't satisfy any resonance relation and if these linear parts satisfy some
diophantine condition, then they are simultaneously formally linearizable and they
are simultaneously and holomorphically linearizable. The result of Delatte has been
improved to the case of biholomorphisms of (C^, 0) by Gramchev and Yoshino in
an article [GY99] communicated to the author. Our corresponding result would
only require that they are formally linearizable and that their linear parts define a
diophantine morphism.

10.2. Therorems of J. Vey

Theorem 10.2.1. — [Vey79] Let Xi,...,X^_i be n - 1 holomorphic vector fields in a
neighbourhood of 0 C C1, vanishing at this point. We assume that:

• each X, is a volume preserving vector field (S?^(Q=O with co a non singular holomorphic
n-differential form),

• the \-jets ̂ (Xi), ....̂ (X î) are diagonal and independent,
• [X^ Xj =0 for all indices i y j .

Then, Xi,...,X^_i are holomorphically and simultaneously normali^abk.

Proof. — Let g be a n — 1-dimensional commutative Lie algebra with a basis
G = { ^i,...,^_i}. Let \|/ be the linear semi-simple and injective morphism defined
^ ^{gi)=^9/9xi - Xi+i9/9xi+^ for 1 ^ i ^ n - 1. The weight associated to
Q=(<7i,..,^) G N\ IQJ ^ 2 and 1 ̂ j <; n is a^.(^) = q, - q^ + (§̂ . + 8^)(-1)5^
(the last expression in the sum is O i f j = | = z ' , z + l , 1 i f j=z '+ 1 and —1 ifj=i) and
PQ.( gi)=(^i ~ 9rn- First of all, the values of the nonzero weights of \|/ on the ^s are
integers; thus, they cannot accumulate at the origin, so that \y is diophantine. Moreover,
if we set u = x^ ' ' ' Xn, then ̂  = C[ [u] ] and (^1) is the C[ [u] ]-module generated

by Xi 9/9x^ 1 < i < n. An easy computation shows that X G (<^ ) satisfies S^y^u) = 0
if and only if X belongs to the C[ [u]] -module generated by the V^'s.

Let us write ^(X^ Sj=i yiijXi9/9xj. Since X, is volume preserving then,
U., i + • • • + 1^,. = 0; it follows that ^(X,) = ^JJi1 ̂ jV(^). By the independence of the
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1-jets, the (n — 1) x (n — 1) matrix Ao = (^j) is invertible. Let us set

f^ .f^i =V : ;
VY^,/ \x,_i/

they satisfy the same condition as the X^ and define a nonlinear deformation \)/ + e

of \|/ by V|/ + e(^) = Y;. Thus there exists a formal diffeomorphism <I> such that
A „ A 9 A
<S>*(\y+£)(gi) = ] > - ^ ; Fij{u)Xi— for some F,j € €![[«]]. Since they are volume preserving,

""i

div 0*(\|/ + e)(^) = 0, that is:

î )=0=EF„,(.)..̂ )(.).
^1 ^ ^1 ^

A A
An easy computation shows that i - = i F , j = 0 . Thus, ^(v"1"8)^) admits u as a first
integral and \|/ + £ is formally completely integrable. According to our main result, the
diffeomorphism 0 is holomorphic in a neighbourhood of the origin. D

Theorem 10.2.2 [Vey78]. — Let Xi,...,X^ be n holomorphic vector fields in a
neighbourhood of 0 G C27^ vanishing at this point. We assume that:

• each X^ is a hamiltonian vector field,
• the \-jets ̂ (Xi), ...^(X^) ̂  diagonal and independent,
• PC^ X^] =0 for all indices i , j .

Then Xi,...,X^ ̂  holomorphically and simultaneously normali^abk.

Proof. — This works exactly as before with the following ingredients : let Q be
an Tz-dimensional commutative Lie algebra. Let \|/ be the injective semi-simple linear
morphism defined by : \|/( ̂ ) = ̂  Q / Q x i —y^ Q / Q y i . As before, the values of its non zero
weights on the ^s are integers. Hence \|/ is diophantine. We have ^^=C[[u{,...,Un\]

with Ui = xyi and (^2^) is the C[ [u\,..., Un] ]-module generated by ^ Q / Q x i and^ 9 / 9 y i
/__^ \ \y

with 1 ^ z' ^ n. An easy computation shows that X € (^2^) satisfies S?^(ui)=0,
z'=l, . . . ,7z, if and only if X belongs to the C[[^i, ...,^]]-module generated by the
vfeys.

We define the Y^s as above; let 0 be a normalizing diffeomorphism. Since
the Y^s are hamiltonian, then €>*Y^ admits u\,...,Un as first integrals. Therefore, <&*Y^
belongs to the C[[MI, ..., ̂ ]]-module generated by the v^^'s. Thus the deformation is
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formally completely integrable and, by our theorem, the normalizing diffeomorphism
is holomorphic in a neighbourhood of 0 € C^. D

In fact, in his article [Vey78], J. Vey worked with holomorphic functions.
Nevertheless, we have a one-to-one correspondence beetwen ^^^, the square of the
maximal ideal of ^^, and the germs of holomorphic hamiltonian vector fields vanishing
at 0. This correspondence is defined by

'9H 9 <9H Q \
^ Qji Qx, 9xi Qy,) 'H-E

He worked with functions Hi,...,H^ which are Poisson commuting, whose homoge-
neous polynomials of smallest degree are independent linear combinations of the x^s.
These functions are "transformed59 into a so-called Birkhoff normal form which is
nothing but our normal form by the correspondence. We mention here the work of
H. Ito [Ito89, Ito92] who generalized the work of Vey in the hamiltonian case ^. His
main result shows that the Vey's result holds when the second assumption is changed
to: one of the vector fields has a well chosen linear part but nothing is assumed on the
others. The linear part of the first one has all the cohomological informations whereas
the other may not have any linear part.

The proofs of Vey are as follows: first, there are holomorphic 1-differential
forms (1 in the volume-preserving case, n in the hamiltonian case) which have
formal first integrals. Since their singular locus are of codimension ^ 2, then, by
Malgrange theorems [Mal76, Mal77, Ram79], these first integrals are holomorphic
in a neighbourhood of the origin. Using a theorem of Artin [Tou72] [p. 58], we
can show that, in good holomorphic coordinate systems, these first integrals are the
generators of the C-algebra of common first integrals of the linear parts. Therefore,
in this new coordinate system, the vector fields are linear combinations of the linear
parts with holomorphic functions as coefficients. Now, we can use a procedure which
has been generalized by the author [Sto97] to show that, by a holomorphic change of
coordinates, the vector fields are in normal form.

10 •3. Theorems of A. Bruno

Let X = S + R be a holomorphic vector field in a neighbourhood of its singular
point 0 € C" with S = ^^ i ̂  Q / Q x i and R a nonlinear vector field. We assume that
the following condition is satisfied:

^ Ino)^
(0)) - E -9T < +oc

k^o -'

(i) Added in proof: the author has generalized the work of Ito [Ito89] to the nonhamiltonian case [StoOOa, StoOOb]
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where co,= inf{|(Q^ X) - ̂ \ + 0 , 1 ^ i ^ TZ, Q € N72, 2 ^ |Q| ^ 2', }. Let x,=^
z = l , ...5/2 be its formal normal form.

Let us recall, almost verbatim, the results of A. Bruno [Bru72] [p. 141]. Let us
look at complex numbers ^i,...,^ in the complex plane. Two cases can occur:

• there exists a real line passing through the origin such that all the ^'s lie on
the same side of it;

• for each line passing through the origin, there are X^s which lie on each side
of this line.

Condition (A2): if the X/s are in the second case, then there exists power series
fl, b such that ^ = ̂ a + X^, i'= 1,..., n.

Let us consider the first case; then we may assume that ^i,...,X/ belong to the
real line d passing through the origin of C whereas X/+i,...,^ lie on the same side of
d. In this case the formal normal form of X is given by

Vi =¥z i =!,...,/

Jz = E ^+^(Y) i= /+!,.. ,72
j=/+i

where the \|/^s and bij's are formal power series inj/i, ...,j// and the T|̂ s contain neither
linear terms inj^i,...,^/ nor terms independent of these variables.

Condition (A'i): if the Vs are in the first case, then there exists a formal power
series a such that \|^=^, i= I,...,/.

The first case splits into two different cases:
1*: X-i,...,^/ are pairwise commensurable.
1**: there is an uncommensurable pair in ^i,...,X/.
Let M= (|Lli, ...,|l^) be the vector whose coordinates are the distances from the

K\s to the real line d.
Condition (A'/): if the ^'s are case 1*, then all the formal power series bij

are arbitrary. If the X^s are in the case 1**, then there exists formal power series
^+1,..,^ G C[[^i,..,^]] such that

1. i f Q , C N : = { P C Z"|3i such that p,^ -l,j^ 0 if k =(= z , j&i+. . .+ j^ ^ 0} and
(Q,M)=Othen EL/+i?A^O;

2. the matrix (bi^•— Sij^a + ^))/+i^j^ is nilpotent.

We shall say that the normal form satisfies condition A if it satisfies condition
A2, or A\ or A7/ in the respective three cases concerning the linear part S.

Theorem 10.3.1. — [Bru72] Let X=S + R be a holomorphic vector field as above. We
assume that S satisfies the Bruno condition (o). If its formal normal form satisfies condition A, then
X is holomorphically normali^able.
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The proof is a straightforward application of our result: let us set g = C and
S(l) = S; we have Hom^fl, C) = C. Let (S7 : g -^ ̂ , S" : Q -^ ̂ ,) be the analytic
splitting of S. In the first case, we have n' = L In the second case, we have n' = n. Let
us first consider J:his last case and let us define the Lie morphism S : C2 -» ̂  by
S(^i)=S, 8(^2) =S where {^ i , ^} denotes the canonical basis of the commutative Lie
algebra C2 and S:= ELi^z<9/<9^. By assumption, S is injective and has its range
in a diophantine hull of S. In fact, the weight of S in the space of vector fields are
defined by the numbers (Q, K) - ̂ . An easy computation shows that the weights of S
are the linear forms 6£ defined by a(e,) = (Q, X) - ̂  6^2) = (Q, ^) - ̂ ; therefore, a == 0
if and only if a E= 0 and |[a|[ = |(Q, ?l) - ?l,|. Condition A2 means that the normal form
of X belongs to the ^-module generated by S(C2). Hence X is formally completely
integrable.

Let us consider the first case. If we are case 1*, then condition A[ means that
X is formally completely integrable. If we are in the case 1**, condition A'/ means the

following: the vector field EL/+I (Ej=/+i ^-+rh<Y)) Q / Q x , can be written as a sum
of vector fields of C'-^, aS" + D + N + R where D is the diagonal vector field defined
by

D= ^^W^+^
9

k= 1 9xf̂k+n'

N is the nilpotent vector field of C^' with coefficients in ̂  defined by

n-n' /n-n' \

N= ̂  ^ (bi+n^j+^ - 6ij(^i+n'a + ff^)) Xj+^ _———;
i=\ \j=l ) OXi+n'

and R is a nonlinear vector field in C"-^ and [D, N + R] = 0. Hence D + N + R is a
good deformation of 0 relative to the analytic splitting of S. Therefore, X is formally
completely integrable.
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