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LATTICES IN PRODUCT OF TREES
by MARC BURGER and SHAHAR MOZES

Introduction

The aim of this paper is to study the structure of lattices in products
AutTixAutT2 of automorphism groups of regular trees. These lattices have a rich
structure theory both parallel to the theory of lattices in semisimple Lie groups as
well as exhibiting some new phenomena. A basic difference is that cocompact lattices
r <AutTiXAutT2 never have dense projections. The class of lattices considered here
are those whose projections in each factor satisfy various transitivity conditions, in par-
ticular that of being locally quasiprimitive. The structure theory of locally quasiprimitive
subgroups ofAutT is developped in [B-MJs and is used in an essential way in this
paper. The main consequence of the theory outlined in this paper is the existence
and construction of lattices which are finitely presented, torsion free, simple groups;
the corresponding quotients of TixT2 are finite aspherical complexes with simple
fundamental group, thus answering a question of G. Mess ([PLT] Probl. 5.11 (c)). Fur-
thermore, using the action of these lattices on each of the tree factors, we show that
they are free amalgams F*cF of finitely generated free groups; this answers a question
of P. M. Neumann [Ne] (see also [K-N] Problem 4.45). M. Bhattacharjee constructed
in [Ba] a free amalgam L*KH of finitely generated free groups with no finite index
subgroup; on the geometric side, D. Wise [W] constructed a finite complex with no
finite (non trivial) coverings, and covered by a product of two trees.

Torsion free discrete subgroups of semisimple groups are fundamental groups of
locally symmetric spaces. In Chapter 1 we show that the object corresponding to a
torsion free, discrete subgroup of AutTi xAutT2 is a square complex, with additional
structure. In fact, torsion free, cocompact lattices correspond to finite square complexes
whose link at every vertex is a complete, bipartite graph. Such a complex X inherits,
from the product structure of its universal covering, a decomposition of its 1-skeleton
X^ into a "horizontal" X^, and "vertical95 X^ 1-skeleton. The link condition enables
one to define, for every vertex x, an action of ^(X^, x) on the set Ev(x) of vertical
edges with origin x, defining thus a "vertical" permutation group fy{x) < SymEy(^);
one obtains analogously a horizontal permutation group P^(^) < SymE/^). These are
basic invariants associated to the square complex X; they give information of "local"
nature on the action of7Ci(X) on the factors of X; for example, the projections of the
lattice 7li(X) are both locally (quasi) primitive ([B-Mjs) precisely when the above finite
permutation groups are (quasi) primitive.
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A lattice F < AutTixAutT2 is reducible, if it is commensurable to a product
rixr2 of lattices F, <AutT,; for a square complex, this amounts to the existence of a
finite covering which is a product of graphs. In Chapter 1 we give a computable
sufficient condition for the irreducibility of a complex, based on the Thompson-
Wielandt Theorem.

In Chapter 2 we turn to irreducible cocompact lattices with locally quasi-
primitive projections. We prove that if such a lattice meets one of the factors, then it is
not a residually finite group. Using a geometric method and the results in [B-Mjs, we
construct examples of such non residually finite lattices. The existence of such lattices
constitutes a fundamental difference with the case of Lie groups.

In Chapter 3 we obtain, using a method of P. Pansu (see [Pa]), certain
cohomological vanishing results for irreducible lattices with locally quasi-primitive
projections. We deduce, for example (see Prop. 3.1), that if N < F is a normal
subgroup in such a lattice F, and if N has non-discrete projections, then F/N has
property (T). This is an analogue of a theorem of G. A. Margulis in the Lie-group
case (see [Ma]). It is used in the proof of the normal subgroup theorem, in Chapter
4.

In Chapter 4 we prove one of the main results of this paper, namely the normal
subgroup theorem. This concerns lattices F whose projections satisfy stronger transitivity
conditions, in particular they are locally oo-transitive, and asserts that any nontrivial
normal subgroup of F is of finite index. The strategy of the proof is borrowed from
Margulis9 normal subgroup theorem (see [Ma]); it rests on the characterization of finite
groups as being those which at the same time are amenable and have property (T).
While there are many (elementary) methods of showing that certain groups cannot be
finite, there seem to be few methods of showing that certain groups cannot be infinite.

Along the way we prove that closed, locally oo-transitive subgroups of AutT
enjoy the Howe-Moore property.

A natural class of closed subgroups of the automorphism group AutJ^ of the
^-regular tree, introduced in [B-M]s, are the groups U(F) < AutJ^, associated to a
permutation group F < S^. Any vertex transitive subgroup of Aut^, whose local
action at every vertex is permutation isomorphic to F < S^, is conjugate to a subgroup
of U(F). If F < S</ is a 2-transitive permutation group, then U(F) is oo-transitive. In
particular, given Fi, F^, 2-transitive permutation groups, the normal subgroup theorem
applies to all cocompact lattices F < U(Fi)xU(F2), with dense projections. In Chapter 5,
we give effective sufficient conditions (based on [B-Mjs Ghapt. 3) on a finite square
complex X, ensuring that its fundamental group F=7Ci(X) is of the above type.

In Chapter 6 we construct, for every n ̂  15, m ^ 19, a square complex X^ on
one vertex, whose fundamental group TCi (X^) < V(A^) x V{A^) has dense projections.
We introduce certain geometric operations, joining and surgery, on one vertex square
complexes. Using these operations, we show that any finite collection of one vertex
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square complexes whose links are complete bipartite graphs, embeds into a square
complex Y whose fundamental group 71:1 (Y) is a cocompact lattice in U(A^)xU(A^),
with dense projections. Starting with a one-vertex square complex with non-residually
finite fundamental group, (see Chapt. 2) the fundamental group of the resulting square
complex Y is virtually simple, that is, it contains a simple group of finite index. A more
elaborate construction leads to an infinite family of square complexes on 4 vertices,
with simple fundamental groups; an analogue of the Mostow rigidity theorem can be
used to show that the above groups are pairwise non-isomorphic.

We end by stating a few properties that any of the simple groups F constructed
in Chapter 6 enjoys (see Theorem 5.5):

(1) r is finitely presented, torsion-free.
(2) r is a GAT(0)-group.
(3) r is of cohomological dimension 2.
(4) r is biautomatic.
(5) r is isomorphic to an amalgam F*EF of free groups over a subgroup of finite

index.
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2-transitive groups, IHES for its hospitality, and the Israel Academy of Sciences which
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for their numerous remarks and suggestions for improvement.

0. Preliminaries

0.1. A permutation group F < Sym(^) of a set Q. is quasiprimitive if every
nontrivial normal subgroup e =(= N < F acts transitively on Q.. Let F"^ = (F(Q : co G Q.)
denote the normal subgroup of F generated by the stabilizers Fco of points CD € Q.. We
have the following implications:

F is 2-transitive =^> F is primitive =^ F is quasiprimitive =>

F^

or
. F is simple and regular (that is, simply transitive) on Q.

Recall that a permutation group F < Sym Q. is called primitive if it is transitive and if
every F-invariant partition of Q is either the partition into points or the trivial partition
{Q}. An equivalent condition which is often used in the sequel is that F is transitive
and the stabilizer Fco of a point co € Q is a maximal subgroup of F. See [Di-Mo]
Ghapt. 4 for the structure of primitive and [Pr] §5 for the structure of quasiprimitive
groups.
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0.2. For notations and notions pertaining to graph theory we adopt the viewpoint
of Serre's book ([Se]). Let fl=(X, Y) be a graph with vertex set X and edge set Y,
let E{x) = {y G Y : o(ji) = x} denote the set of edges with origin x', for a subgroup
H <Aut@ let H(^) = Stab^) and H(x) < Sym(E(^)) be the permutation group obtained
by restricting to E(x) the action of H{x) on Y. We say that H is locally 'T55 if for
every x G X, the permutation group H{x) < Sym(E(x)) satisfies one of the following
properties "P95 : transitive, quasiprimitive, primitive, 2-transitive. We say that H is locally
Tz-transitive (n > 3) if for every x G X, the group H{x) acts transitively on the set of
reduced paths (i.e. without back-tracking) of length n and origin x. Observe that H is
locally 2-transitive iff, for every x C X, H(x) acts transitively on the set of reduced paths
of length 2 and origin x. We say that H < Autfl is ^-transitive if H acts transitively
on the set of oriented paths of length n without back-tracking; H < Autg is locally
oo-transitive if it is locally Tz-transitive for all n ^ 1.

For a connected graph g and H < Autg, we have H < Sym(Y), and H"^ denotes
the subgroup generated by edge stabilizers; ̂  denotes the subgroup generated by all
vertex-stabilizers. I f0=(X,Y)is connected and locally finite, the group Autg < Sym(Y)
is locally compact for the topology of pointwise convergence on Y.

Let d denote the combinatorial distance on X, n ^ 1 and ;q, ...,^ € X;

) g is the identity on the subgraph ^
H^i,..., Xk) = g G H : spanned by all vertices y G X >

with d{y, {^i,...,^}) <^n }

g is the identity on the subgraph
— - 1 1 n , • -̂ 17-

and for x € X, we set

H^)=H^)/H^).

For ;v,j/eX adjacent vertices, set H(x,j^) := H(x) H H(j^).

0.3. For a totally disconnected group H, we define H^ := Q L, where the
L<H

intersection is taken over all closed subgroups L < H of finite index and QZ(H) =
{h C H : Zn(A) is open}. Let T be a locally finite tree and H < AutT a closed
subgroup; assume that H is locally quasiprimitive: it follows from [B-Mjs, Proposition
1.2.1, that H/H^ is compact, that Q,Z(H) <1 H is discrete and that for any closed
normal subgroup N < H, one has either N D H^ or N C Q,Z(H). Let H^ < G < H
be a closed subgroup; then G/[G, G] is compact and for any open normal subgroup
N < G, one has N D H^ (see [B-MJ3 Corollary 1.2.2).

0.4. (See 3.1 in [B-M]3.) Let T=(X,Y) be a locally finite tree. For a closed
subgroup H < AutT, the following properties are equivalent: (1) H is locally
oo-transitive, (2) H(^) is transitive on T(oo) for all A: G X, (3) H is non-compact and
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transitive on T(oo), (4) H is 2-transitive on T(oo). Any of the proceeding properties
imply, (5) tj_(x) < Sym E{x) is 2-transitive and H is non-discrete.

Finally we mention ([B-M]s Proposition 3.1.2) that if H < AutT is closed and
locally oo-transitive then,

(1)QZ(H)=.,

(2) H^ is locally oo-transitive and topologically simple.

1. Square complexes and lattices

A convenient and powerful way of describing and studying a group acting on a
tree is via the associated graph of groups. Similarly one can associate with a group
acting on a product of trees a complex of groups (see [Ha]). In general one has to
restrict to groups satisfying certain technical conditions such as the "no inversions" in
the case of an action on a single tree. We shall restrict ourselves here to the case of
free actions. Thus we will be able to construct groups acting freely on a product of
trees as the fundamental groups of certain two-dimensional cell complexes. To describe
these we set the following notations: Circ^ is the circuit of length 4, that is the graph
with vertex set { 1 , 2 , 3 , 4 } and edge set { [i,j] : i —j= ± 1 mod 4, 1 ^ ij ^ 4}. We
consider the dihedral group D4 as subgroup of the symmetric group 84; the group D4
acts then by automorphisms on Girc^ and, for any graph @, the group D4 acts on the
set Mor(Circ4, @), of graph morphisms Girc^ —> Q. Recall that the set of edges E of a
graph fl=(V, E) comes equipped with a free action of the dihedral group Ds, denoted
y -^y.y ^ E.

A square complex X is given by a graph X^ = (V, E), a set S with a free action
of D4 and a map Q : S —> Mor(Girc4, X^) which is equivariant w.r.t. the actions of
D4 on source and target. We sometimes denote V by X^; the sets E, S, Ds\E, D4\S
are respectively the sets of: edges, squares, geometric edges and geometric squares. For
later use we let G denote the fixed point free involution on S given by the action of
the transposition (2,4) G D4.

The link Lk(x) of a vertex x C X^ is a graph with vertex set E(x)
and edge set S^={^ G S : 9s{\)=x}; origin and terminus maps are given by
Ox{s) = 9s{[l, 2]), tx{s) = 9s{[l, 4]) s G S^ and the fixed point free involution on S^ is given
by the restriction a\S^ A morphism F : Xi —>• ̂  of square complexes X,=(V,, E,, S,)
is a pair ((p, (|)), where (p : X^ —^ X^ is a morphism of graphs and (|) : Si —> 82 is a map,
such that 9 ̂ =(pW-9, where (p^ : Mo^Circ^, X^) -^ Mo^Girc^, X^) denotes the map
induced by (p. There are obvious notions of composition of morphisms, of monomor-
phisms, epimorphisms and isomorphisms. A morphism F : Xi —^ X2 of square com-
plexes induces for every ^ G X^ ) a morphism of graphs F^ : Lk(^) —» Lk((p(^)), F= ((p, (|)).
We say that a subgroup G < Aut X acts freely on X if the corresponding actions of G
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on V, D2\E, D4\S are free: in this case there is a quotient square complex Y=G\X
and a canonical morphism P : X -^ Y, P=(TC, ]"[). such that P^ : Lk(x) -> Lk(7c(x)) is
an isomorphism for every x G X^.

Example. — Product of two graphs: given graphs (8,=(V,, E,), we define the
square complex X= 0i x02, X=(V, E, S) as follows:

V = V i X V 2 , E = ( V i x E 2 ) U ( E i X V 2 ) , S = ( E i x E 2 ) U ( E 2 x E i ) ;

the graph structure on X^ = (V, E) is given by o(v^, ^) - {v\, 0(^2)), ̂ i, ^2) = (^i, ^2)),
o(e\, ^2) = (o^i), v^), t(e^, ^2) = (^i), ^2), (^i, ^2) = (^i, ^2), (^i, ^2) = (^i, ̂  for y, G V,,
ei G E,. The action of D4 on S is uniquely defined by a(e^ e^) = (e^, ~e\\ where a
corresponds to (2,4) and c{e\, e^)=(e^,e\\ where c corresponds to (1 ,2 ,3 ,4 ) € D4.
Finally, 9(e\, ^2)5 ^(^2? ^i) are given by the sequence of consecutive edges

(^i, 0(^2)), (^i), ^2), (^i, t(e^)}, (^i), ^2),

resp. (^i), ^2), (^i, t(e^\ (p(e^), e^), (e^, o(e^).

Observe that in this case, Lk(x) is a complete bipartite graph, VA: G X^.
Finally, we say that a square complex X is connected when X^ is connected;

if X is connected and x G X^°\ we have the notion of a combinatorial fundamental
group 7li(X,^) and X is the quotient of a simply connected square complex X, its
universal covering, by a free action of7Ci(X,^) <AutX. We record the following basic
fact:

Proposition 1 .1 . — The universal covering X of a connected square complex X is a product
of trees if and only ifVk(x) is a complete bipartite graph for all x € X^.

Square complexes satisfying the link condition of Proposition 1.1 will be called
T-complexes. We say that a T-complex X=r\(T^xT,), where X=T/,xT,, is VH, if
no Y ^ F interchanges the factors of X. Equivalently, there is a partition E = E/; U Ey
such that if E^)=E^ H E(^), E^)=E, H E(^), x € X^, then E^(x), E,{x) gives at every
vertex x € X^ the bipartite structure on Lk(^). Notice that every T-complex has a
two-fold covering which is VH.

Let X=r\(T^xT,) be a VH-T-complex and E==E^ U E,; in X^ we have two
subgraphs, the horizontal X^ =(X^, E^) and the vertical X^ =(X^, E,). For x € X^,
let ^=7c(^, Xy) where n : T^xTy —^ X is the canonical projection, and define

^={y=(Y^Y.):Y.(^)=^},
r^ = {^ (Y^) : y^) = ̂ z}.
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Then r^\(T^x{^}) is the connected component of x in X^, while

r^\({^}xT,)

is the connected component of x in X^. Associating to every y € F^ the projection in
X^ of the horizontal path connecting (^, ^) to (Y^), ^) defines an isomorphism

r--^(x^);
one obtains in a similar way an isomorphism

r^—^(x^).

The group P^ (resp. FJ induces for every n ^ 1 a finite permutation group of the
sphere S(^, 72) (resp. S(^, ^)) in Ty (resp. T^ we give now a direct geometric description
of these permutation groups:

Every e € E^, respectively e e Ey, gives rise to a bijection

(p,:E,(^))—^E^(^)), resp.

(p,:E,(^))——E,(^)),

defined by (p,(^)=^ where /' =9s([2, 3]), and s C S in the unique square such that:

^([1,2])=^ ^([1,4])^;

and (p,(^)=^ where ^'=9j([4, 3]), and j C S is the unique square such that:

941,4])=., ^([l^])^.

More generally, let E^(^), respectively E^(^), denote the set of vertical, resp. horizontal
paths, without backtracking, of length n ^ 1 and origin x G X^; in a similar way, every
. C E^), resp. . € Ey(^), gives rise to a bijection

(p^E^^E^.)), resp.

(p^E^^E^)).

Composing these bijections, we get a system of homomorphisms

m{^:n,(^\x)^SymE^)

m^:n,(^\x)—.SymE^x)

which is compatible with respect to the canonical projection maps E^(^) —> E^^tx),
resn F^fr^ —> F^"1^^resp. r^ ̂  -^ ii,̂  ^.
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Returning to the description of X as a quotient r\(T/;xTy), one obtains natural
bijections,

S(^,, ri) —> E^x), resp.

S(^,TZ)——E^\x)

which are equivariant w.r.t. the isomorphism

r-——n,(x^ \x) , resp.

^-^(x^).
Let P^(^), resp. P^\x), denote the image of m^, resp. m^; for n =1 we will write
P,{x), P^); let H^, resp. H^ denote the closure of the projection of F into AutT,,
resp. AutT^. The above description implies that the groups P^\x) < SymE^(^) and
H^^/Hj {xy) < SymS(^, n) are permutation isomorphic, and that the same holds for

P^{x) < SymE^) and H^)/H^ < SymS(^, n).

In particular, P,{x) < SymE,(^) is permutation isomorphic to H^,) < SymE(x,), and
1?h(x) < SymE^(^) is permutation isomorphic to H^) < SymE(^). This simple but
fundamental observation enables us to control the "local action55 of H^ and H^ in
terms of the complex X.

We turn now to the notion of reducible lattice. Let Ti, T2 be locally finite trees.

Definition. — A lattice Y < AutTi xAutT2 is reducible, if it is commensurable to a product
T\ xF2 of lattices F, < AutT^. The lattice T is called irreducible, if it is not reducible.

Proposition 1.2. — For a cocompact lattice Y < AutTi xAutT2, the following properties
are equivalent:

(a) There exists i € {1, 2} such that prff^ < AutT^ is discrete.

(b) Fi = {Y C AutTi : (y, e) (E F}, resp. V^ = {̂  G AutT2 : (e, TI) € F} are lattices in
AutTi, resp. AutT2 and Y\ x Y^ is of finite index in T.

Proof. — Assume that pr^F) < AutTi is discrete; then F • AutT2 is closed and
hence F D AutT2 is a lattice in AutT2. The group pr^(T) < AutF2 normalizes the
cocompact lattice F H AutT2 and hence ([B-Mjs, 1.3.6) is discrete. Thus ^(F) is
discrete, hence as above, m AutTi is a lattice in AutTi which shows that (a) implies
(b). The converse (b) => (a) is obvious; notice that both projections are discrete. D

We say that a VH-T-complex X=r\(T/,xT,) is reducible, if F < AutT^xAutT,
is reducible, otherwise it is called irreducible.



LATTICES IN PRODUCT OF TREES 159

In geometric terms, the complex X is reducible if and only if X admits a finite
covering which is a product of two graphs. However, we do not have an algorithm
deciding if a given finite VH-T-complex is reducible, nor do we know whether such
an algorithm exists. Nevertheless, we can, using Proposition 1.2 and the Thompson-
Wielandt theorem, give a sufficient condition ensuring irreducibility. More precisely,
let X be a VH-T-complex; for e € E^ resp. e e Ey, x=o(e), let L^(<?) = Stabp /^), resp.

Ly(<?) = Stabp ,.(e)\ let ^(e) C E^^), resp. <§^(<?) C Iv(^), denote the set of horizontal,
resp. vertical, paths of length two starting at e, and:

K,(e)=[^^\x):^ =zd
I ^^)UE^)

K,{e)= TGP^):: T =id\(̂(QUE )̂

When X^ and X^ are connected, then the permutation groups P^), P^)? Ly(^), Lfi(x),
are independent of ^, up to permutation isomorphism; in this case we omit the 'y;
when Py and P/; are transitive, Ky(^) and K^(^) are independent of e, up to permutation
isomorphism, and we omit the "^9.

Proposition 1.3. — Let X ̂  a finite VH-T'-complex; we assume that X^, , X^ ar^ connected
and that Py^, P^ ar^ primitive permutation groups. If either Ky or K/; ?j TZO^ a p-group, then X zj
^TZ irreducible VH-T'-complex.

Proof. — Let X=r\(T/;xTy); H^.H^ as above and Xh,yh-> rcsp. ^,^y, adjacent
vertices in Ty;, resp. Ty. The assumptions imply that H^, H^ are both vertex transitive
and locally primitive. If F is reducible, then H^, H^ are discrete and hence by
Thompson-Wielandt (see [Th],[Wi]2, [B-C-N] or [B-1VTJ3 Chapt. 2), H^(^,^) and
H I { x y y j y v ) are ^-groups; since K/;, Ky are homomorphic images of the latter, they would
also be ^-groups, a contradiction. D

Observe that ifX==r\(T^xTy) is reducible, then F contains a subgroup of finite
index which is a product of two free groups of finite rank; in particular the group F is
linear over C. In this context we mention the following consequence of an arithmeticity
result proved in [B-M-Z], which shows that under the hypothesis of Proposition 1.3,
the group F is not linear over any field, and hence an irreducible lattice.

Theorem 1.4. (See [B-M-Z].) — Let X be a finite VH-T'-complex; we assume that
X^ \ X^ are connected and that Py^ P^ are primitive permutation groups. If either Ky or K^ is not
a p-group then, over any field, any finite dimensional linear representation qfn\(H) has finite image.
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2. A Criterium for non-residual finiteness

2.1. A basic question concerning the structure of a group is whether it is
residually finite. We shall show that certain lattices in AutTiXAutT2, with locally
quasiprimitive projections, are not residually finite; the results from [B-lVTjs on the
structure of locally quasiprimitive groups needed here and in the sequel are recalled
in 0.3. The basis for constructing these examples is given by the following

Proposition 2.1. — Let H^ < AutT^ be closed, non discrete and locally quasiprimitive; let
F < Hi xH2 be a cocompact lattice with H^ C ̂ -(F) C H,. Then,

^(00) -^ TT 00 A TT 00 AF^D [H^.Ai]v y D Hi , AI - J-lg , A2

where A;=T H H^. In particular, if K\ • A^ ^e, then Y is not residually finite.

Proof. — Let Y' < F be a normal subgroup of finite index in F, then A\ = Hi HF'
is of finite index in Ai and both Ai, A.[ are normal in pr\(T) > H^ ; since H^ has no
proper open normal subgroups ([B-M]3 Prop. 1.2.1), the action by conjugation ofH^
on Ai/A'i is trivial and thus A[ D JH^, Ai]. Since H^Ti is finite, ^AutT, (H^) =e

and therefore H^, Ai \ ^-e provided Ai -^.e. D

With the notations of the above proposition, we have the inclusion A, C QZ(H,);
the next result gives information about the size of Q^Z(H^)/A;.

Proposition 2.2. — Let H^ < AutT^ be non-discrete, closed, locally quasiprimitive and
r < HiXH2 a cocompact lattice with pr^) = H,; let A,=m H,. Then, the group Q^Z(H,)/A,
is locally finite, meaning that every finitely generated subgroup is finite.
In particular, Q,Z(H,) ^e iff\,^e.

Proof. — Let S C Q,Z(Hi) be a finite subset and U < Hi be an open compact
subgroup commuting with S. Then, the intersection m(UxH2) is a cocompact lattice
in UxH2, hence finitely generated. Let A C m (UxH2) be a finite generating set;
then the centralizer <^p(A) of A in F is a cocompact lattice in cS^ (A)xH2; since
pr^(^) generates a cocompact lattice in H2 smd pr\(A) generates a dense subgroup ofU,
we obtain ^H^n^)=^H^V)x{e) C QZ(Hi)x(^). Thus, ^^(U)x(<?) is discrete, and
^^(V)x(e)/^^(A) is finite. Since S C ^^(V) and ^i^) c AiX(^), it follows that S
generates a finite subgroup of Q^Z(Hi)/Ai. D

Question. — Is Q^Z(H^)/A^ a finite group?

Corollary 2.3. — Let H^ < AutT^ be closed, non-discrete, locally primitive groups; assume
that Q^Z(H;) ^(e),for some i= \, 2. Then any cocompact lattice Y < HiXH2 with j^(r)=H^
is not residually finite.
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2.2. We describe now how combining Proposition 2.1 with [B-Mjs Section 1.8
leads to examples of non residually finite lattices.

Let E denote the tree consisting of a single edge, fix morphisms (p, : T, —> E and
let r|, : AutT, -^ AutE(c^ Zs) be the induced homomorphisms. Let ^=T,X(pT, be the
graph of diagonals, that is, the fiber product of T, with itself relative to (p, : T,• —> E
(see [B-M]3 Section 1.6 and 1.8). Recall that AutT.x^AutT, <Aut^.

Let r < AutTi xAutT2 be a cocompact, torsion free lattice; let H,:=j^(r), define
^ :^x^^ (HlXHl )x (H2xH2)byv | / ( (Y l ,Y2) , (Y / l ,Y2) )= ( (Yl .Y / l ) , (Y2 ,Y2) )andse t

A:=v|/(rxDn [(HiX^Hi)x(H2X^H2)] .

Then A is of index 1, 2 or 4 in \|/(rxr), it acts as a group of covering transformations
on ̂ x^, and gives rise to a finite VH-T-square complex:

Y:=A\(^x^).

We have the exact sequence

i —> Tci^xTci^) —> 7ci(Y) —^ rxr
where the last arrow has image of index 1, 2 or 4 in FxF.

Proposition 2.4. — Assume that H, is non-discrete and that H^ is locally 2-transitive,
i= \, 2. Then we have:

TTlOO^ D 7li(^)X^l(^2)

and the quotient is isomorphic to r^xr^.

Proof — Set L, = fH.x^.H^ x(T,}, where T, C Aut fT,X(pT^ is the automorphism
exchanging the factors, let ̂  be the universal covering tree of ̂  and

1 —^ 7Ci(^,) -^ G,-^L, —> 1

be the associated exact sequence. Let 00=0)1X0)2 : GixG2 —> LixL2 and

A:=7Cl(Y)=0)- l(A) >7Ti(^)X 7ri(^).

We claim that j^(A) D G"; considering A as a subgroup of Li x L2, we have
j^(A)=0)^ ^r^(A)j since A contains KerOi x Kero)2; the group pr^(A)=pr^.^.(A)
is normal of finite index in j^xH,(V(r x F)) and the latter subgroup being dense in
H^ x H^, we conclude that pr^(A) is normal of finite index in H,x^. H,. Observe now
that li normalizes J^L,(A), hence pr^{A) is normal of finite index in L^, which implies the
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same property for j^(A) in G, and proves the claim. Using that G, is locally primitive
non-discrete (Prop. 1.8.1, [B-MJs and Prop. 2.1), we conclude

A^D [G^Tii^)] x [G^\n^)] =7Ti(^)X7ii(^)=Kerco.

Since A^ contains the kernel of 0), we deduce that A^/Kero equals A^, which in
turn equals \|/(r x r)^ ^ r^ X I"̂  since A is of finite index in \|/(r x F). D

2.3. We briefly describe a way of constructing the complex Y of 2.2 in terms of a
fiber product of square complexes. Thus, let X=F\(TixT2) be a finite VH-T-complex,
(p, : T, —> E, T|, : AutT, —> AutE the morphisms defined in 2.2, and let S:=ExE be
the square complex consisting of 1 geometric square and 4 vertices. Let

(pi x<p2 : TI xT2 —> S

T|ixr|2 : AutTixAutT2 —^AutS

be the corresponding product morphisms; let Fo :=rn Ker(r|i xr|2). Then,

X:=ro\(TixT2)

is a finite covering p : X —> X with Galois group G := F/Fo and the above product
morphisms induce morphisms

( p :X—>S

T|:G—^AutS,

where (p is equivariant w.r.t. T|. The fiber product Y:=Xx^X comes equipped with
an action of Gx^G, and the complex Y in 2.2 is then isomorphic to the quotient
(Gx^G)\Y. The projection maps p \ ^ p ^ of Y on both factors, composed with the
covering map p : X —> X, give rise to homomorphisms

A,:7ii(Y)—>7Ci(X), z = l , 2 .

Using the isomorphism Y ^ (Gx^G)\Y, whose explicit construction is left to the
reader, one gets Ker^=7Ci(^). We denote by X K I X = Y the complex constructed in
this way and let

A:7l i (X^X) ——>7Ci(X)X7li(X)

denote the product homomorphism h \xh^. We now obtain the following

Corollary 2.5. — Let X be a finite, irreducible VH-T-complex. Assume that X^\ X^ are
connected and that P/̂  Py are 2-transitive permutation groups with 2-transitive socles. Let

h : 7Ti(X^X) -^ 7Ci(X)X7Ci(X)
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be the canonical homomorphism. Then, the image of h has index 2 or 4 and,

^(X^X)^ DKerA.

Remark, — The socle of a finite group is the product of all its minimal normal
subgroups. A celebrated theorem ofBurnside (see [D-M], 4.1) states that a 2-transitive
group has a unique minimal normal subgroup which is either elementary abelian
regular, or primitive and simple. Furthermore, in the case of non-abelian socle, it
follows from the classification of 2-transitive groups that the socle is 2-transitive, except
in one case (see [Ga] p. 624).

2.4. An explicit example of such lattices may be constructed as follows. Let p =(= q

be odd primes, both congruent to 1 mod 4, with ( ') = (?) = 1, H(Q) the usual Hamilton
q p

quaternion algebra over Q with basis 1, z,j, k, and

Q,:= {x G H(Z) : ̂ (x)=paq\ a,b € N, x = l(mod2)}.

Fix Ep € <^,, e,q G Q^ with ej = - 1, ̂  = - 1, and let Y p ^ q be the image of the

(p : Q,—— PGL(2, Q^)xPGL(2, Q^q)

map

( ( XQ-^-X^p, X^+X^p\ / XQ-^X^q, X^+X^q\\

W-^2+^3^, X Q - X ^ p ) ' \-X^^-X^q, X Q - X ^ q ) ) '

Then Y p ^ q < AutJ^xAutJ^ is a torsion free cocompact lattice, acting simply tran-
sitively on the set of vertices of ^+1X^1 and satisfying pr^Tp^j = Hp, pr^Yp^)=H^
where for a prime t we define (see also [B-Mjg, 1.8)

H.,{,6PSL(2,tt,):^6(Z^}.

The density of projections follows easily from the fact that Y p ^ q is an irreducible lattice
and that H^ contains the index 2 subgroup H^ =PSL(2, Q^) which is simple. Via the
homomorphism

\V:Yp,qXYp^—> (H^xH^)x(H,xH,)

((Yi, Y2), (Ys, Y4)) —> (Yi, Ys, Y2, Y4)

the group Yp^xYp^q acts simply transitively on the set of vertices of

^/H-l xt(yp+\ xt(yq+\ xf(yq+\
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and the subgroup Ap^ < \|/(r^xr^) acts simply transitively on the set of vertices of
^,x^. The quotient

^:=A^\(^x^)

is a square complex with one vertex. As Y p ^ q is residually finite it follows from
Corollary 2.5 and Proposition 2.4 that:

n^^^n^xn^).

Let us denote the one vertex VH-T-square complex corresponding to the arith-
metic lattice Y p ^ q < PGL(2, Q^)xPGL(2, Q,) < AutJ^xAut^ by ^^=I^\
^+1 x^+i. Both complexes ^p^q and ̂  ^ will be used later for constructing vari-
ous other square complexes and lattices.

3. Cohomological properties of lattices

In this section we turn to certain cohomological properties of fundamental groups
of finite T-square complexes. The main results are Proposition 3.1 and 3.2 below;
Proposition 3.1 enters in an essential way in the proof of the normal subgroup theorem
(see §4) while Proposition 3.2 will imply certain cohomological vanishing results for
irreducible lattices with locally quasiprimitive projections.

Proposition 3.1. — Let T^T2 be locally finite trees, T < AutTixAutT2 a discrete
subgroup such that r\(TiXT2) is finite and N <1 r a normal subgroup such that the quotient
graphs pri(N)\Ti, i= 1, 2, are finite trees. Then F/N has property (T).

Proposition 3.2. — Let Ti, T2, T be as in Proposition 3.1 and H,:=j^(r) < AutT,.

(a) The homomorphism Hom^HiX]-^ C) —^ Hom(r̂  C) mapping % to %|r is an
isomorphism.

(b) Let (n, V) be an irreducible finite dimensional unitary representation of T with
H Î̂  n) =)=0. Then n extends continuously to Hi x K^y factoring via one of the projections.

The following result is an application of Proposition 3.2 to irreducible lattices
with locally quasiprimitive projections:

Corollary 3.3. — Let T\, T^ be locally finite trees, H, < AutT^ closed non-discrete locally
quasiprimitive subgroups and

F < AutTixAutTs

a cocompact lattice with H^ C pr^F) C H,.
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(1) Hom(F,C)=0.

(2) H^F^ n)=(0),for every unitary^ finite dimensional representation (n, V) ofT.

Proof. —Set G,=pn{r).

(1) Follows from Proposition 3.2 (a) and the fact (see [B-M]3 Corollary 1.2.2)
that Gi/[Gi, G^ is compact.

(2) We distinguish two cases:

(a) n extends continuously to GixG2, factoring via one of the projections.
W.l.o.g, let co : GI —> U(V) be a continuous unitary representation with
7c(y^ ^ y^) = co(Yi), y= (Yi 5 Y2) ^ r. Since Gi has small subgroups and U(V) is
a real Lie group, Kerco is open in Gi and since Gi D H", it follows (see
[B-M]3 Prop. 1.2.1.5)) that Kerco D H^; thus Gi/Kerco being compact
and discrete, is finite. This implies that 7l(F) is finite. For any subgroup
F < r of finite index, there is F" <] F of finite index with F" C F'.
Then, pr^") < pr^F) is normal open and hence (Gor. 1.2.2.2. [B-M^),
pri^r] contains H^, in particular ^(P) D H^. Thus (1) applied to F'
implies Hom(r', C) = 0, for any subgroup F' of finite index in F, which
together with the finiteness of 7l(F) implies H^F, 7l)=(0).

(b) 71 does not satisfy the extension property (a); it follows then from
Proposition 3.2 (b) that H^F, 7t)=(0). D

The proofs of Proposition 3.1 and 3.2 rely on the study of a certain complex of
cochains associated to a group acting properly on a square complex. More precisely,
let X=(V,E,S) be a VH-complex, F < AutX a discrete subgroup preserving the
VH-structure, acting in a clean way on X, and K : F —> U(^^) a unitary representation
of F into a Hilbert space S^ . The assumption on the action of F means that, whenever
an element y ^ F fixes a geometric edge, resp. a geometric square (see § 1 for definition),
then it fixes all edges, resp. squares, in this equivalence class. Let F^ denote the stabilizer
of x € V U E U S and n(x) = |F^|. Define for Y G {V, E, S}:

^Y={/ :Y—>^ :/is F-equivariant and [[ /H2^ ^——ll/OQll2 <+00}.
r\Y n[y)

We obtain a complex c2?v ——^ ^E ——> ^s °^ Hilbert spaces, where the
bounded operators d, D are given by:

dAe):=Me))-Me)), /(E J2?y

DF(o) := F(9o[l, 2]) + F(aa[2, 3]) + F(a<y[3, 4]) + F(^[4, 1]), F e J^.
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The space of 1-cocycles,

^\^)={¥^^:DF=0,¥(e)+F(e)=0, V ^ C E }

is a closed subspace of 3S^ the orthogonal complement of Im d in ^^(cS?) is
Ker(8|^i), where 8 : J^ —)> ^v ls ̂  adjoint of d and our first task is to establish
a formula for ||SF|[2, F G c^^cS?), which takes into account the VH-structure and the
link condition. To this end, let oSf^ ? ^^P- ^E 5 be the subspace of maps / € =S?E
having their support in E,, resp. Ey. Let P,, resp. Py, be the orthogonal projection on
^ ^sp. ̂ ; let §, = SP,, §, = 5P,, D, = DP,, D, = DP,.

Proposition 3.4. — 7w all F G ^^(cS?),, the following equality holds:

I ISFII^I I^F^+II^^+IID^+I^^^^

JVoo/; — Let F e c^^c^); since 8==8y + 8/,, we have to compute the following
quantity:

(8,F,S,F)= ^ -^(S^F^.S^)).
^er\v W

Since F(^) + F(^) = 0, we have

<§,F(^ 5,F(x)) = 4 ( ̂  F(.), ^ F(/) ̂  , for all x G V.
\^E^^) ^CE^) /

Taking into account the link condition, we obtain:

W§j)= E—E^)'
»:er\v W oes,

where S, = {o G S : o(0) = ̂ } and u{c) = (F(9o[l, 2]), F(3o[l, 4])).

Using Eoes,"(<^)= Eoer,\s, "—4^ we obtain,
ra(o')

(§/,F,8^F)=4E ——^)-
CTer\s "W

Let R be a set of representatives of the set of geometric squares in F\S, then

4 E ^"(CT) =4 S ̂ "(<T) + M(TACT) + "(TBCT) + "(T^^)}.
o6r\s v / oeR v /
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Using DF=0 and F(<?) + F(^)=0, \/ e € F, a computation leads to:

<G) + <C,G) + <C,G) + ^(WJ) = |[D,F(G)||2 = ||DJ(G)||2,

and hence (§^F, §,F) = ||D/,F||2 = ||D,F||2, which proves the lemma. D

Remark. — P. Pansu obtained in [Pa] an equivalent formula by a different method.

Let now Ti, T2, F, N be as in Proposition 3.1 and n : F —> U(J^) be a unitary
representation of F with KerTi D N; let oS^ be the complex associated to the F action
on X==TixT2 and to n.

In this situation we have:

Lemma 3.5. — There is a constant c > 0, such that

||F||<c||8F||, VF€^1^).

Proof. — We recall the following elementary fact: let S=(X, Y) be a finite tree,
i: Y —> N* an edge indexing and S^ a Hilbert space. For w 6 ̂  Y define

5s w(x)= ̂  <^)^), ^ G X;
o{e)=x

then there exists a constant c > 0, such that \\w\\ ^ ^IS8^], for all w € ^^Y, satisfying
^)+^")=0, V ^ C Y .

Let now T^==(X^ Y^) and let Si =(Vi, Ei) be a finite subtree of Ti which is a
strict fundamental domain for the action of pr\(N) on Ti. The set Es^), (v C Vi) of
edges in Ei with origine v is a fundamental domain for the pr\ (N)(y)-action on E{v) and
we define an edge indexing i\ : Ei —> N* by i\(e)= \pr\(N)(v)e\'^ 8s1 denotes then the
corresponding operator on J%7 El. Let Ws C ¥3 be a finite set of vertices such that
Ei X Ws surjects modulo F onto the set of horizontal edges of F\(Ti X T2). According
to the above general fact, there exists c\ > 0 such that

^ ||F(., w)\f ^ c, ||§^F(., w)f , V^ € ¥2, VF G S.\S\
^CEi

For every e G Es^(^i), v\ 6 Vi, choose a finite set F^ C N, |F,|=z'i(<?), such that
pr\(Fe)^=Pr\(^)(v\)(e)' Then, we have for every v\ G Vi, w G W2:

5,F(,i,^= ^ F(^)
^eE(yi)

= E E ^i^^)
^ES^I) (^1^2)€F,
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thus

^¥{v^w)-W,,w)= ^ ^ (F(^)-F(^,^))
^S^l) {^,n^e¥,

which, by N-invariance of F, equals

= E E (FM-F^-'y,)).
^S^l) ("l.^)6^

Then we observe that

(2) llF^^-F^^^^II^GsllD.Fll2,

where Gg only depends on the distance d{w, n^w).
From (1) and (2) we deduce

E 1|F(., ^)112 ^ C3(||S/,F||2 + ||D,F||2)
eCE^, wGW2

where €3 depends on N, F and the choice ofW2. The same argument applied to the
j&72(N)-action on T2, together with Lemma 3.4 implies Lemma 3.5. D

Proof of Proposition 3.1. — We have to show that H l(^,7c)=0 for any unitary
representation T l o f F such that KerTi D N. In the notation proceeding Lemma 3.5, we
have H^F, n) ̂  ^\^)/Imd.

We may assume that n has no invariant vectors, thus Kerrf==0. Then Lemma
3.5 implies that S : ̂ S1 —> =S?v ls a continuous isomorphism and thus d : =%y —> c^1

is an isomorphism which implies H^F, 7l)=0. D

Proof of Proposition 3.2. — Let (7C, J^) be a finite dimensional unitary represen-
tation of F and 2H the complex associated to the F-action on TixT2 and TC. Since
dimjc < +oo5H l(^,7c) is isomorphic to Ker8|^i^, which by Lemma 3.4 coincides
with {F C &\^} : 8^F=SJ=D/,F=D,F=0}.

a) Suppose 7C=Id,J%7 =C; let % (E H^F, n) and F C Ker§|^i^ correspond
to 3C under the above isomorphism; let / G CX1XX2, with df=T; then
^{i)=foy—f Since D/;F=DyF=0, there are functions F^ : Y, —> C, with
F(^i, v^) == Fi(^i), F(z;i, ^2) = ^2(^2) ? V ̂  ^ X,, ^ G Y,. Since F is F-invariant, F, is
j^(F)-invariant, and hence H^ =j&^(F)-mvariant. Fix a base point b=(b\^ 62) (=

XiXX2, and chooser e C^ with (^=F, and f(b^, b^)=f^) ̂ -f^\ Let
5^ : H^ ̂  C be the continuous homomorphism defined by:

Kz{hi)=foh,-f.
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It follows then that/(^i, 2/2) =/i(^i)+^(^2), V^i ,^ ) ^ XiXXs, and hence
X((Yi?Y2) )=Xi (Yi )+X2(Y2) , V(yi ,Y2) ^ r. This shows that the restriction map
Hom^(HixH2, C) —> Hom(F, C) is surjective; on the other hand, since F is
cocompact, this map is clearly injective.

b) Let n be an irreducible representation, with H^F, 7l)=^0 and take F G
Ker(§|^i), F=^0. As above, there are maps F; : Y, —> ^?, such that
F(^i, v^)=Fi(e\), F(z;i, e^)=¥^)', without loss of generality, we may assume
that FI 4= 0. Using the F-equivariance of F and the fact that n is irreducible,
finite dimensional, we may find ^i,...,^ in Y, such that Fi(^i), ...,Fi(^) is a
basis ofj^. Observe now that Fi(Yi^)=7r(Yi, Y2)(Fi(^)), V(Yi, Y?) e F, V^ G Y.
This implies that there is a representation co : pr\(T) —> U(^7), such that
^(Yi?Y2)=w(Yi)? V(Yi ,Y2) ^ F. Let N be the normal open subgroup of Hi
generated by Hi(^i) D ... H Hi(^); then ^i(F) • N==Hi , and co^nN =Idj^ ;
therefore co extends continuously to Hi. D

4. The normal subgroup theorem

4.1. The main result of this section is the following analogue ofMargulis5 normal
subgroup theorem.

Theorem 4.1. — Let F <AutTiXAutT2 be a cocompact lattice such that H,:== (̂F) is
locally 00-transitive and H ' is of finite index in Hi. Then, any non-trivial normal subgroup ofY
has finite index.

Remark. — The results from [B-Mjs on the structure of locally oo-transitive
groups needed in this chapter are recalled in 0.4.

4.1. Various decompositions

Let T=(X,Y) be a locally finite tree and H < AutT a closed, locally oo-
transitive subgroup. For ^ C T(oo), let P^ := Stab^(^); since H(^) acts transitively on
T(oo), we have

(4.1) H=H(^).P^

For i; € T(oo), let P^ : XxX —> Z denote the Busemann cocycle, that is
^{x,^):= lim{d(x,p) - d(j,p}). The map

f^

/^—.Z

g'—^ Pi;(̂  gx)
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is independent of x C X, and defines a continuous homomorphism. For g € Aut T, let
£(g) := min d(x, gx)', an element a € P^ is hyperbolic iff ̂ (a) 4 0, in which case ^(d) =C{a)

.Xc./v

if ^ is the attracting fixed point of a and ^(a) = — -C(a) if ^ is the repelling fixed point
of a. Let ^(P^)=^Z, with ^ ^ 1, P^=Ker^ and A=(^), where |^)|=^, then we
have the semidirect product decomposition:

(4.2) P^=A.P^.

Since H is 2-transitive on T(oo) ([B-NTjs Lemma 3.1.1), the group P° acts transitively
on T(oo)\{^} and thus

(4.3) H = P!; U P^crPi;, for any o f. P .̂

Let a € P^ be a hyperbolic element with ^ := ̂ (a) > 0 and r : Z —»• X a parametrization
of its axis, with ?(+oo) = ̂ . Then:

P^))CP^A:+I)), v ^ e z -
(4.4) <^P^))a-l=P^+^)), V ^ e Z .,

UP^))=P^, V j € Z^^ )

Since H is locally oo-transitive, t^ does not depend on ^ € T(oo); for the common
value ^H we have ^H = 1 iff H is vertex transitive and ^H = 2, otherwise. For a G H a
hyperbolic element with t(d)=Cu and x,y C X adjacent vertices on the axis of a we
have

H^^A^x) i f ^ H = l

H = H^ [H(^) U H(j0] if ^H = 2
(4.5)

where A"^ = {^ : 72 ^ 0}.

4.2. 7%^ Howe-Moore property

Proposition 4.2. — Z^ H < AutT be a dosed, locally oo-transitive subgroup and {n, ̂ )
a continuous unitary representation ofH with no nonzero H^-invariant vectors. Then all coefficients
ofn vanish at infinity.

The proof of Proposition 4.2 depends on Proposition 4.3 below which treats
the following general situation: Let B=A-N be a locally compact group which is the
semidirect product of the closed subgroups A = {a) ^ Z and a totally discontinuous
group N <] B; assume that there is an open compact subgroup Co C N such that
Co C aCoa~1 and N= U ^Co^, in this setting we have:

^o
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Proposition 4.3. — Let (n, 3^) be a continuous unitary representation of B and v € ̂
such that

N — — C

n i—> {^{a^v, v)

does not vanish at infinity. Then there exists w € J ,̂ w 4= 0, such that Stab^(w) is of finite index
in N.

Proof. — The subspace ^{00} = {w G J^, Stab^w) is open} is dense in J^: fix
a decreasing sequence (K^(=N of compact open subgroups of N, such that Fl K^ = (<7).

n^\

The sequence C/^i, where fn=———•^ is an L1-approximation of the identity, and
m(K )̂

hence \\mn(fn)v=-v for every y 6 < .̂ Observing that 7l(^)^ G ^?(00), we conclude
that J^^ is dense in J .̂ Thus there exists u G ^?(00), such that the function
n —^ {n^u, u} does not vanish at infinity; there exists therefore a subsequence (^),eN?
with lim 7z,= +oo and w C J3 ,̂ ^=[=0 such that (7l(^)^)^i converges weakly to w. Let
K < Go be an open subgroup (of finite index) such that n(k)u=u, \1 k G K. Then
n^a^u is fixed by a^Ka^1 and, passing to a subsequence, one may assume that the
sequence of subgroups (a^Ka^1)^ converges in Ghabeauty topology (that is uniformly
on compacts) to a closed subgroup L < N.

Claim 1. — w is L-invariant.
For i C L and m, G a^Ka^1 with limm,=^, we have,

l—>-00

{n{£)w, w) - {w, w) ={{n{£)w, w} - {n{£)w, 7i(̂ >))+

+ {{n(£)w, 7i(̂ » - {n{mi)w, 7c(^»)+

+ {{w, 7i(̂ » - {w, w}).

The first and last summand tend to zero since (a^u converges weakly to w, and the
second summand tends to zero since it is bounded by ||7i(^)^ — 7r(m^|| • \\w\\ and
}imnii=t. This shows Claim 1.

1—rOO

Claim 2. — The subgroup L is of finite index in N. Let d be the index of K in
Co and pick ^i,...,^ G N with r > d\ since the increasing union U a^C^aT^ equals N

Z>1

there exists io such that {x\, ...,^} C ^Go^"^, for all i ̂  ZQ? since r > d, there exists for
every i ̂  ioji^ki such that x^x^ £ a^Ka'711 and since r < +oo, there exists j^k such
that x- Xk € a^Ka^1 for infinitely many i ^ i^ this implies x~1^ € L and shows that
the index of L in N is at most d. D
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Now fix XQ G X and consider the H-acdon on T(oo)xZ given by:

h(\\,m}=[1^x\,^(h~xxQ,xQ)^m}^ eT (oo ) ,mez ,^c H.
For this action we have Stab^(^, 0)=P°

Lemma 4.4. — The H-orbits in T(oo)xZ are closed.

Proof. — Since H acts transitively on T(oo) it suffices to show that if
lim A^, m) = (^, s) then (^eN is bounded in H/P^. Write hn=knC^Un with kn C
H{xo),a € P^ hyperbolic and Un C P^. For 72 large we have: P^A^o, A;o) + m=j,
which amounts to ^(cT^x^, ^o) + m = ^ hence -^) + m=s, which shows that (^)^i
is stationary and thus (hn)n^ is bounded in H/P° D

Proof of Proposition 4.2. — Let ^ G T(oo), a G P^ with £=^(a)=£^ > 0,
r : Z —^ X a parametrization of the axis of a with 7(00)=^, and Xk:=r(k),k G Z.
Then P^ =A • P^, A= (a), and (see (4.4)), Proposition 4.3 applies to P^. Let (7i,J^)
be a continuous unitary representation of H and assume that some coefficient of n
does not vanish at infinity Since H=H(^o)A+(H(^o) U H(A;i)), (see (4.5)), there exists
v G J^?, v =[= 0, such that n —> (^(^y, z/), n C N, does not vanish at infinity: indeed let
u^O and {gn)n^\ be a sequence tending to infinity such that

\{n(gn)u, u}\ > e > 0, for all yz ^ 1.

Write gn=knaink^ with ^ € H(^o), 4 ^ 1, ^ € H(^o) U H(A:i); we may assume that
(^)^i5%)^i converge, say to resp. k, k . Setting w' =n{kf)u, w=K(k)~^u and applying
the triangle inequality, we get:

J™ \^&n)U, U) - (7l(^)^, W)\ =0

and hence n —^ {n^w', w) does not vanish an infinity; since any matrix coefficients
of a unitary representation is linear combination of diagonal coefficients, we conclude
that there exists v =|= 0 such that n —> {71(^)^5 v) does not vanish at infinity. Hence
(Proposition 4.3) there exists w € ̂ , w=^0, such that L:== Stabpo(w) is of finite index

in 4
Now we claim that there exist sequences (^z)^N? (^)zeN in L, (A,),eN in H(^o) and

an element a! € P^ with. lim iihit\ = d and %(^) = 2^. For every k ^ 1, choose T|̂  G T(oo)
with (r|̂  • ̂  = A;, where (a • ^)y denotes Gromov's scalar product, that is, (a • ^)y is
the distance from y to the geodesic joining a,?; in particular limr|^=^. Choose

Hk € P^(^+^) such that (7^-^ =k+£', with these choices we have T^CH^ 0)=(^r|^, 2£)
and hence ̂ Um ^(r|̂  0)=(^, 2^). Choose a sequence (A^N in H(^o) such that lun^=<?
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and hk(^, 0) = (r^, 0); with this we have ^lm ̂ (^, 0) = (^, 2^) = ̂ , 0). Since the H-

orbits in T(oo)xZ are closed (Lemma 4.4), there exists n[ E P^ such that lim 72^/4= a2.
3 K—^00

Since L is of finite index in Pe, we may assume, passing to a subsequence, that
nk=a£k, ̂ k=^ where o, a' G P^ and ^, ̂  G L, for all A: ^ 1. Setting ^G-1^"1

we have lim iM'k=a' and ^{a/)=2£.
k—^00

This claim implies that

{n{a)w, w) =̂ Um {n^khk^w, w) =̂ Um (7c( ,̂ w) = {w, w)

and hence w is A':= (a')-invariant. The closed subgroup P' generated by A' and L is
of finite index in P^ and w is P'-invariant; by (4.3) we have |P^\H/P^|=2 and hence
[P^H/P'I < +00. The continuous function h —> {n(h)w., w} is left and right P'-invariant
and takes therefore only finitely many values. In particular

Stab^(w) = {h G H : {n{h)w, w) = {w, w)}

is an open subgroup of H; this subgroup is also cocompact in H, since Stab^(w) D P'
and hence Stab^) D H^. D

4.3. In this section we prove the normal subgroup theorem (Theorem 4.1); for
this we follow the strategy of Margulis. First we notice the following corollary to
Proposition 3.1:

Corollary 4.5. — Let Y < AutTi xAutT2 be a cocompact lattice such that H,•:=pri(T) is
locally oo-transitive and H, = H^; let N < T, N 4= {^} be a nontrivial normal subgroup of F.
Then F/N has property (T).

Remark 4.3.1. — Assume H^:=j^(r) is locally oo-transitive; for N < F, N =(=^ we
have j^(N) D H^.

Proof. — As pri(N) < H,, it follows from [B-Mjs Prop. 3.1.2, that either
pri(N) D H^ or ^(N) is trivial. The latter is impossible or else we would have a
nontrivial discrete normal subgroup of Vi^-i which is incompatible with Hs^ being
locally oo-transitive. D

Proof of Corollary 4.5. — By Remark 4.3.1, we conclude that each j^(N) does
not act freely on T^ and hence by [B-MJ3 Lemma 1.4.2, j^(N)\T, is a finite tree and
Proposition 3.1 shows that F/N has a property (T). D

Given H^ < Aut T^, closed, locally oo-transitive subgroups, we will always endow
T^(oo) with the Hrinvariant measure class and denote by ^^(Ti(oo)), ^^(T2(oo)),
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^^(Ti(oo)xT2(oo)) the corresponding measure algebras, that is the algebra of classes
of Lebesgue measurable sets, where two sets are identified if they differ by a null set
(see e.g. [Ma] IV2).

The next fundamental ingredient in the proof of the normal subgroup theorem is

Theorem 4.6. — Let F < AutTixAutT2 be a cocompact lattice such that H,:=j^(F)
is locally oo-transitive and H^ is of finite index in H,. Any Y-invariant subalgebra of
^^(Ti(oo)xT2(oo)) is one of the following algebras:

{(^ Ti(oo)xT2(oo)}, ^(Ti(oo))x{T2(oo)},

{Ti(oo)}x^(T2(oo)), ^(Ti(oo)xT2(oo)).

First we show how to deduce the normal subgroup theorem from Corollary 4.5
and Theorem 4.6.

Proof of Theorem 4.1. — Let {^}=[=N < F, and Fo =F H (H^xH^), No =
NH^^xH^); set G,=H^\ then G, is locally oo-transitive, G^G.-.Fo is of
finite index in F and (Remark 4.3.1) j^-(Fo)=G,. Moreover, No is of finite index in
N, and N being infinite (Remark 4.3.1), we have No ^{e}. We claim that Fo/No is
amenable. Assume the contrary; then ([Ma] FV, Theorem 4.5, Remark 2 and Lemma
4.7) there exists an infinite, Fo-invariant subalgebra ̂  C ^^(Ti(oo)xT2(oo)) such that
NoB = B, for all B 6 ̂ . According to Theorem 4.6, we have the following possibilities
for J9\

^(Ti(oo)xT2(oo)), ^(Ti(oo))x{T2(oo)}, {Ti(oo)}x^^(T2(oo)).

Since NoB=B, for all B € J?, we obtain, respectively, No={^},No C {e}xG^,
No C Gix{^}, neither of which is possible by Remark 4.3.1. Thus Fo/No is amenable
and (by Corollary 4.5) has property (T). Thus FQ/NO is finite and so is F/N. D

The remainder of this section is devoted to the proof of Theorem 4.6.
Let T be a locally finite tree, G < AutT a closed, locally oo-transitive

transitive subgroup, |LI e M^^oo)) the Patterson density for G; in particular
d{g^){w)/d^i{w)=e~^w{gb'b\ where b € X is a fixed vertex and 8 the critical expo-
nent of G; for the properties of the Patterson density used in this section we refer
to [B-M]i §1, §6, and §7. Let s G G be a hyperbolic element with attracting, resp.
repelling fixed point a, respectively ^. For C G ^6 (T(oo)), set \|/(G) = T(oo) if ^ G C
and\|/(G)=0 if^C.

Lemma 4.7. — For every G C ^^(T(oo)) and almost every g C G, the sequence ^(gC)
converges to v(^C) in \\.-measure.
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Proof. — Let r : Z —>• X be the parametrization of the axis of s, such
that r(oo)=a,r(0)=6; for w^w^ G T(oo)\{a}, define d(w^, ^2) = ^-(wl 'W2) where
(^i, ^2) ̂ lm [(^i -^2)^) -^]. Then rf is a complete metric on T(co)\{a}, and the latter
has finite Hausdorff dimension with respect to d. Moreover, d(sw\, sw^)=/d(w\, w^) for
aU Wi G T(oo)\{a}, where £ is the translation length of s. For A C ^(T(oo)), set
^A)- f e^'^d^w); then v is a Radon-measure on T(oo)\{a}, equivalent to ^, and

A

v(sA)=eMv(A). Let C 6 ^(T(oo)) and assume that ^ is a density point of C, that
is 1"% , ' e = l ' where B^' £) is the bau centered at S,, of radius £, for the

distance d. For any fixed R > 0, taking into account that ^"B^, R)=B(^, e'^R), we
have

^v(Cn.-Be.R))^
"°° v(i-B(S,R))

vf^r^ n R^? T?^
and hence lim ——-—S——' = 1. Thus s"C converges to T(oo) in v-measure and

v(B(^,R))
hence m u-measure. We conclude by observing that for almost every g 6 G,g^, is
either a density point of C or a density point of T(oo)\C. D

For ?=1 ,2 , let H, < AutT, be a closed, locally oo-transitive subgroup, u,, 6
M'^^oo)) the Patterson density as above, Si G H, a hyperbolic element, ^,, a, G T,(oo)
the repelling, respectively attracting, fixed point of Si, s=(si, e), t={e, s^) and u,=u,[XU,2.
For B € ^(Ti(oo)xT2(oo)) set

B» = {n e Ti(oo) : (ri, w) € B}, w E T^oo)
B11 = {w e T2(oo): (r|, w) € B}, T| e Ti(oo)

and \|/i(B) = Ti(oo)xB^', ^(B) = B^ xT2(oo).

Lemma 4.8. — For almost every g € Hi xl-̂ .,

^B —. ̂ {gB), ^B ̂  ̂ (^B),

and convergence holds in ^.-measure.

Proof. — lim ^B=\)/i(^B) in (l-measure is equivalent to

(*) n1™ L , , ̂ (w) [ , , ̂ I^IX^B^, "') - ̂ l( ,̂ ̂ )| = 0../T^oo) ^Ti(oo)
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For a.e. w G T2(oo) and g^ E H2, the set B -i is measurable and (^B)^=^(^B)^

converges to \y{{gE)^) (Lemma 4.7). Observe that ^i G (^B)^ i f f w G (^B)^ which, using
the above, implies

J™ / IW^ )̂ - Xvi(^, ̂ )|4l© = 0
JTi(oo)

for almost every w G T2 (00)5^2 ^ H25<?i ^ Hi. Fubini's Theorem and the dominated
convergence theorem imply then (*). D

Assume now that H,^H" and let F < Hi xH2 be a cocompact lattice such that
NT)=H,

Lemma 4.9. — The subgroups (s) and {t} act ergodically on r\(HixH2).

Proof. — Consider the unitary representation n given by the regular action of Hi
on L2(^\(HlXH2)) and let A C F\(HiXH2) be an (^-invariant measurable subset; thus
^A is a 7c(J)-invariant vector. Let P be the orthogonal projection on the subspace J%\ of
7c(Hi ̂ invariant vectors and v:=%^ — P(%A) ^ ^^~. Since S^^ has no nonzero 7l(Hi)-
invariant vector, Prop. 4.2 implies that h\ —^ {^(h^v, v ) , Hi —> C, vanishes at infinity
On the other hand, h\ —> {n(h\)v, v) has constant value ||y||2 along the unbounded
subgroup {s} < Hi and hence %A — P(XA)=^=O. From FHi ==Hi x H2 we deduce that
any Hi-invariant measurable function on F\(Hi x H2) is Hi x H2-invariant and hence
essentially constant; in particular XA^POCA) is essentially constant and therefore A is
either of measure zero or of full measure. D

The above lemma together with BirkhofPs ergodic theorem imply,

Lemma 4.10. — For almost every h G HiXH2^ the sets U Yhs^ and U Thr" are dense
n^\ n^\

in HixH2.

Lemma 4 .11. — Let ̂  C ^^(Ti(oo)xT2(oo)) be a Y-invariant dosed subalgebra,
B G ^} and g € H. Then., for almost every g' G H ,̂ we have

^i(^B) e J
and

^l/2(^B)e^.
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Proof. — The set

f , U r ^ j - ^ = HixH2 ancH
U= ^ / G H l X H 2 : ̂  ^

I ^B)—^^) J

is of full measure in HixH2 (Lemma 4.10, Lemma 4.8). Given g C HixH2 and
g ' € U, take Y, G F and (r^N, such thatHm^=^, where ^•^Y,?'"1^. We have
Yz=^V, Y.B C ̂ , and Y.B=^YB) ̂ ^(^B). D

Proof of Theorem 4.6. — Replacing F by F H (H^ x H^) and using Remark 4.3.1,
we may assume that H^=H^ .

(a) Let ^3 ' C ^%(T,(oo)) be an Hrinvariant subalgebra. Then ^3 ' = {(|), T,(oo)}
or ^'=^^(T,(oo)). Let P,=P^ identifying T,(oo) with H,/P,, we deduce
([Ma] IV Proposition 2.4) that there exists a closed subgroup L, < H^ with
Li D P,, such that ^'=^^(H,/P,, L,). Since H, acts 2-transitively on H,/P,,
P, is a maximal subgroup of H, and thus L, = P, or H,, which establishes (a).

Let JS C M(Ti(oo)xT2(oo)) be a r-invariant subalgebra.

(b) Let B € ,̂ and assume that the set of w € T2(oo) s.t. B^ ^ {(|), Ti(oo)},
respectively, the set of ^ C Ti(co) s.t. B^ {(|), T2(co)} is of positive measure.
Then Lemma 4.11 implies that ^ D J^x{T2(oo)}, respectively, ^ D
{Ti(oo)}x^2 where ^ C ^(T,(oo)) is an Hrinvariant, non-trivial,
subalgebra and thus, by (a), ^=^(T,(oo)).

(c) Assume that ^5 =(={()), Ti(oo)xT2(oo)}; then (b) implies that either ^S D
^(Ti(oo))x{T2(oo)} or J^ D {Ti(oo)}x^^(T2(oo)). In the first (respec-
tively, the second) case, if moreover J? =^^(Ti(oo))x{T2(oo)} (resp.,
^ 4{Ti(oo)}x^^(T2(oo)) we obtain using (b) that

^ D {Ti(oo)}x^(T2(oo))

(respectively,^ D ^^(Ti(oo))x{T2(oo)})

and hence in both cases ̂  =^%(Ti(oo)xT2(oo)). D

5. Applications of the Normal Subgroup Theorem

The normal subgroup theorem applies to lattices in AutTixAutT2 whose
projections are locally oo-transitive. Beside rational points of algebraic groups of rank 1,
the main source of locally oo-transitive groups are the universal groups U(F) whose
definition we briefly recall (see [B-Mjs 3.2). Let d ^ 3, J^=(X,Y) be the (/-regular
tree, F < S^ a permutation group and i: Y —» {1, 2,..., d} a legal colouring.
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Then:

U(F) = {g G AutT, : iEWg'i\^ ^ F, V^ C X}

is a closed subgroup ofAutJ^, acting transitively on X and such that, at every vertex
x € X, V(F)(x) < SymE(^) is permutation isomorphic to F < S^. When F < S^ is
2-transitive we have (see [B-lVTjs 3.1, 3.2)

(1) HFy^iy00) is of index 2 in U(F) and simple.

(2) V(F)+ is locally oo-transitive.

Theorem 4.1 implies then

Corollary 5.1. — Let di ^ 3, F, < S^ ^ 2-transitive permutation groups and
r < U(Fi)xU(F2) be a cocompact lattice with pr^F) D HF^. Then, any nontrivial normal
subgroup e =)= N < F is of finite index in Y.

In general, it is difficult to determine whether a lattice has locally oo-transitive
projections; in [B-Mjs Chapter 3, we have shown that under certain additional
assumptions of local nature, 2-transitive groups of tree automorphisms are oo-transitive
and, in some cases, their closure is a group U(F) of the above type. We now apply
these results to finite VH-T-complexes.

Let X be a finite VH-T-complex; we assume that the horizontal 1-skeleton X^
and the vertical 1-skeleton X^ are connected. Let <4= |E^)|, dy= |E,(^)|, VA: G X;
then X is a quotient r\(J^xJ^) of a product of regular trees of degrees <4 and d^
Let PA < S^ and Py < S^ be the "horizontal", resp. "vertical59, permutation groups;
it follows from [B-1VTJ3 Proposition 3.2.2 that, up to conjugation, F is contained in
U(P^)xU(P,). We assume both P^, P, to be transitive and let L^, L,, K/,, K, be the
finite permutation groups defined in §1. These groups are effectively computable in
terms of the finite complex X.

Proposition 5.2. —Assume that the permutation groups P^ Py are ^-transitive and that L/^

L, are simple non-abelian. Then, K^ ̂  L \̂ Ky ̂  L^ with (an, a^) € {(0, 0), (<4 — 1, ̂  — 1)}.

(1) If{ah,av)={0, 0\ the lattice T is reducible.

(2) If{ah, a,} = {dh - 1, d, - \\ the lattice T is irreducible and T < U(PA)XU(P,) has dense
projections.

Proof — Let H^ =M(T), H^ =pr^).
Since X^, X^ are connected, the groups H^ <Aut^, H^ <AutJ^ are both

vertex transitive. Fix adjacent vertices x,jy in ̂  and A/,y in J^. By hypothesis, the
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following isomorphisms of permutation groups hold:

H^^P,, H^^P,,

H^^/Hi^) ̂  K,, H^,V)/H^ ^ K,

Now we apply Prop. 3.3.1 (and the remark following it) to deduce that K^ c± L^,

K, ^ L^ with an C {0, ̂  - 1}, a, C {0, (/, - 1}; if ^=0, then H^ is discrete, thus
(Prop. 1.2) F is reducible and H^ is discrete; the latter implies (Prop. 3.3.1 [B-lVTjs)
that a^=0.

I f^=<4- l , then (Prop. 2.2.2) H^=U(P/,), and (Prop. 1.2) F is irreducible which
implies that H^ is non-discrete and hence ^=<4 — 1 by Prop. 3.3.1. D

Combining Corollary 5.1 and Proposition 5.2, we obtain

Corollary 5.3. — Let X be a finite VH-T-compkx as in Proposition 5.2 and assume
moreover that (a^ a^) = (dh— \, d y — 1).

Then, any nontrivial normal subgroup N <] 7li(X) is of finite index in 7Ci(X).

Let now Y < HiXH2 be a cocompact lattice, where H^ < AutT\ are locally
oo-transitive, H^ is assumed of finite index in H, and pr^F) D H^^ i= 1, 2; let, as
usual, F^ be the intersection of all finite index subgroups of F: the subgroup F^ is
normal in F. Assume that F is not residually finite; then, (normal subgroup theorem)
I^ is of finite index in F and we claim that F^ is simple: indeed, since F^ is of
finite index in F, we have j^(r(°°)) D H^oo) and the normal subgroup theorem applies
to F^; given 6?=^N < ^^ the group N is of finite index in F^, hence in F and
thus N D r^°°\ This line of reasoning leads to

Corollary 5.4. — Let ̂  be a finite VH-T-complex satisfying the following assumptions:

(1) The horizontal and vertical I-skeleton, X^ and X^\ are connected.

(2) 77^ horizontal and vertical permutation groups P^ ̂  Py ^e alternating groups of degrees
dh and dy at least 6.

(3) 7Ci(X) is not residually finite.

Let Y be the Galois covering o/^X associated to the intersection of all finite index subgroups
ofn\(X). Then

(1) Y is a finite, VH-T-complex.

(2) K{ (Y) is a simple group.
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Proof. — If 7ii(X) < AutJ^xAutJ^ is not residually finite, it has to be an
irreducible lattice, and hence, by Proposition 5.2, Corollary 5.3 applies. D

Theorem 5.5. — Let r=7li(Y) be as in Corollary 5.4; the simple group T enjoys the
following properties:

(1) r is finitely presented, torsion free.

(2) r is the fundamental group of a finite, locally CAT(0)-complex.
(3) r is of cohomo logical dimension 2.
(4) r is biautomatic.

(5) r is isomorphic to an amalgam F*EF of free groups over a subgroup of finite index.

Proof. — (1), (2), and (3) are clear; (4) follows from [Ge-Sh]. To show (5), observe
that r < V{An)+x\J(Am)+ projects densely onto each component, in particular both
actions of F on j^ and S/^n have an edge as fundamental domain. D

In Section 6 we will show how to construct square complexes X satisfying the
assumptions of Corollary 5.4.

6. Embeddings, constructions of complexes and virtually simple groups

6.1. An interesting class of lattices F C AutTixAutT2 are those which act freely
(see chapter 1.) and vertex transitively on TiXT2. Recall that the action of a lattice r
on the square complex TiXT2 is free if and only if r torsion free. In the sequel we
construct and modify various examples of vertex transitive torsion free lattices. Thus it
is convenient to have several ways of presenting such lattices.

Any torsion free cocompact lattice F < AutTixAutT2 corresponds to a finite
VH-T-square complex (see Chapter 1). Vertex transitive torsion free lattices are
precisely those corresponding to VH-T-square complexes which have a single vertex.
Thus vertex transitive torsion free lattices may be defined geometrically by constructing
1-vertex VH-T-square complexes.

A useful tool in constructing a 1-vertex VH-T-square complex as well as describ-
ing its fundamental group, i.e. the corresponding lattice, is provided by a VH-datum.

Definition. — A VH-datum (A, B, (pA, (pa, R) consists of two fmite sets A, B, fixed
point free involutions <PA : A —> A, (pa : B —> B and a subset R c A x B x A x B satisfying
conditions 1 and 2 below. Let us denote a~1 =(pA(a), a G A, Zr1 =^(^b), b € B. The
group generated by the maps G, p : AxBxAxB —> AxBxAxB

<3^b,d^^(a~\b-\a-\b'~^

^ b , a , b ' } = ( a , b ' , a , b )

is isomorphic to Z/2ZxZ/2Z.
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1. Each of the 4 projections of R onto the subproducts of the form AxB or
BxA are bijective.

2. The subset R is invariant under the action of the group ((?, p) and this
action on R is free.

To a given VH-datum (A, B, (pA, (RB, R) one associates a one vertex VH-T-square
complex X=({^o}, E, S) by defining:

E^=A, E,=B, S=={^^/^), s^^a^b^a} (fl-> b, a , b'} G R}.

The origin and terminus maps E —> V={^o} are both the constant map u \—> XQ.
The map E —> E given by u —> u~1 is the orientation reversing map of graphs.
For s=s^^^,u^,u^ e S, let 9s([i, i + 1])=^. The maps G, p' : S —^ S given by
^o^i,^.^))'"^-1,^1,^1,^-1) and P'(^o^i^2^3))=^i^2^3^o) generate a D4=(p / , a )
action on S. Observe that X is a one vertex VH-T-square complex.

The fundamental group of a finite VH-T-square complex is finitely presented.
Starting with a VH-datum (A, B, (pA, (pa, R), a presentation for the fundamental group
r of the corresponding square complex is given by:

^={AU^\xx~l=e, V ^ C A U B , abab'^e, V(^, b, a,b'} € R).

Recall the definition in chapter 1 of the local permutation groups P/;=P^o), Py=P^o).
The edges of the horizontal 1-skeleton of X are loops corresponding to the elements
of A, and similarly those of the vertical 1-skeleton correspond to B. Thus each
element a € A, resp. b C B, defines a generator da € Py C Sym(B), resp. (^ C P^
C Sym(A). These permutations may be determined from the VH-datum by letting
Oa{b/~l)=b (5b(a~^=a! whenever (a, b, d , V} e R. The fact that this indeed gives a
well defined collection of permutations, i.e. maps A —> Sym(B), a ^-> <7^ B —> Sym(A),
b ^—> a^ follows directly from conditions 1, 2 above.

Note that these maps A —> Sym(B), B —> Sym(A) contain all the combinatorial
information needed to construct the 1-vertex square complex X or equivalently the
VH-datum; we will refer to these two maps as the structure maps. One may formulate
certain compatibility conditions on a pair of maps A —^ Sym(B), B —^ Sym(A) which
ensure that they yield a VH-datum and hence a one-vertex VH-T-square complex.

In Section 2.2, 2.3 we described a construction of a fiber product X 13 X of
VH-T-square complex with itself. When X is given by a VH-datum (A, B, (?A, (pa, R)
then X IZI X is the one-vertex square complex corresponding to (Ax A 5 BxB, (PA><(PA?
(pBX(pB, R) where

R= {((^^2),(^^2),(^^2).(^^2))
(^i^i^eR'
(^2,^,^)GR
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6.2. Mating of complexes

We define two operations on VH-T-square complexes. The first "joins55 several
one vertex VH-T-square complexes to produce a new one vertex VH-T-square
complex. The second modifies a given VH-T-square complex by performing "surgery
like55 operations on it. We shall refer to the combination of these operations as "mating
of complexes55.

6.2.1. Joining. — Let ^X, 1 ^ i ^ r, be one-vertex VH-T-square complexes.
/ \ M

Each of the ^X is given by a VH-datum (^A, ̂ , (p(^, (p^, ^R). Let X= V ^X be
v / z = l

the one-vertex VH-T-square complex determined by the VH-datum (A, B, (pA, (RB, R)
where

n n

A=(J^ <PA=U^A
1= 1 ;•= 1

B=\J^ ^=0^
i= 1 i= I

R = [J ^R U { ̂ a, %, ̂ a-\ ̂ b-1) i ̂ j, \ G ^A, ^ € ^B } .

Geometrically, X is obtained by gluing the square complexes ^X at the single vertex
of each and then gluing in a torus for each horizontal loop of ^X and vertical loop
of^X i^j.

Let ^A : ^A ^ Sym^B), ̂  : B ^ Sym^A) be the structure maps of t'^X,
see 6.1. Then the structure maps corresponding to

X= V ^X

are

'PA:A—^Sym(B), VB:B—^Sym(A)

where

A = ^ J ( ^ A , B = ( J ^

and:

for.C^^-'5
^{d)\^=^(d),
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TB(A)| . =id,
f o r & C ^ B , A^

^(b)^=^(b).

Remark. — The complex X comes equipped with monomorphisms of VH-
T-square complexes, X, -> X inducing injections 7Ci(X,) -^ 7li(X) at the level of
fundamental groups.

6.2.2. Surgery. — Let X be a one vertex VH-T-square complex corresponding
to a VH-datum (A, B, q>A, (pa, R). Given a^a^ € A, (a^ b,, a^ b[) € R, 1 ^ i ^ d,
representing d distinct geometric squares and a permutation T € S</, we define a
new VH-datum (A, B, (pA, (pa, R) where R is obtained from R by replacing for each
1 ^ i ̂  d,

{a,, ̂  a,, b'^ (a^ ̂  ^i, b^ {a,\ b~,\ a\\ b\~'}, (^l^/l-1^2~l^.-l)

by

(^i, ̂  ^2, ^). (^2, ^^i, M. (^1. ̂ )1. a'\l. ̂ -1). (^r1, ̂ -1. ̂ 1 , ^)1)-
Observe that this operation indeed produces a VH-datum. Let us denote this operation
^ ^i,^;^...^ and in the special case where a\=a^ by F^^^ ^. One has analogous
operations F^^ ^ exchanging the roles of A and B. Geometrically, such an
operation corresponds to taking d squares in the geometric realization of X all
having the same horizontal boundaries a\, a^ cutting each of them along a vertical
interval connecting the midpoints of a\ and a^ and pasting the cuts according to the
permutation T E S</.

In terms of the structure maps ^FA : A —> Sym(B), ^FB '' B —> Sym(A) the operation
F^^ ^ amounts in modifying only the permutations VA^O, ^A^) ^ SymB; the
new structure maps are given by

^ in V^ J ̂  if b = brl and ! ̂  l ^ d
VA( ' l)w=iyA(^)W otherwise.

b', if A = ̂  and 1 ^ i€ d^ (n \(h\ J 6^ if b= b^ and z ^ l^
^A(a2}{b)= {^Mb) otherwise.

^A(^1) = ̂ (ai)-1, VA(^1) = TA(fl2)-1,

^=^(0), f o r a U a ^ { a i , a 2 } .

^B-fB.
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6.2.3. Useful "building blocks55 in the following construction are the 1-vertex
VH-T-square complexes ^ ̂ , k, t ^ 4 even. They are given by the following VH-
datum

(A^,B^,(pA^,(pB^,R^) where A= ^±1 1^^^ ,

B= { „ i - (i

bf l^l^ andR= (<^^^) î

1 ^ ̂  2

e , § e { ± l } J
6.3. The "mating of complexes55 construction described in 6.2 leads to the

following embedding result:

Proposition 6.1. — Let ^X, ...,^X be 1-vertex VH-T'-complexes; assume that the vertical
permutation group ^P^ < S(G)^ and horizontal permutation group ^P^ < S(o)^ are 2-transitive. Then
for any even k,t ^ 4, ^? ̂ ^ a 1-vertex VH-T-complex X w^A the following properties:

(1) TA^ ̂ ^ embeddings ^X —^ X, 0 ^ i ^ ̂  aW embeddings G^^ €4^4 ^- X^ ^Ao^
images intersect pairwise at the single vertex of X.

(2) The horizontal and vertical permutation groups P^ < S^,, Py < S^ o/' X, a^ both
2-transitive. We have

n

,4=^(^+^+4,
z=o

n

^E^^4-

(3) a) Assume dh > 2(0)<4. If all groups (^ COTZ^ of even permutations, then P^ coincides
with the alternating group A^y and otherwise with the symmetric group S^ .

b) Assume dy > 2(0)^. Then the analogous assertion holds for (^ Py.

Proof. — Let the VH-datum corresponding to ^^X, 0 < i ̂  TZ, be

(^^,(p(^,(p^,^),

and the VH-datum of Cm n be

(A^^,B^^,(pA , (RE , Rm,
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(see 6.1 and 6.23). Let Y be the 1-vertex VH-T-square complex obtained by
joining ^X, ^X, ..,^X, C^ and €4,4. Denote by (^ ̂  (pv^ (pYa, ̂  the VH-
datum of Y. The complexes ^X, G^, €4,4 are indeed embedded injectively in Y,
however, the horizontal and vertical permutation groups of Y are not even transitive.
Performing appropriate surgery operations on Y will produce a 1-vertex VH-T-square
complex X with the asserted properties. Let us denote the elements of each of the sets
^A,^, 1 ̂ i ^ n by:

^={VV1 i^<^/2},

^={V^1 i^^K/2}.
Choose some elements ^a G ^A, ^b G ^ and elements a^a^ € A^, so that

a\ ̂ a^,a^ , elements ^1,^2 ^ B^^ so that 61 4=^2?^1 and ^1,^2 ^ A4^ so that
fl i ^a^>, d^ , elements A i , \ e B4,4 so that \ ̂ \, ̂ \ Denote the elements of the set

Uft 1^<^/2} U{^}

by

^ l ^ ^ ^ = 2 + ^ ^ / 2
I ^ = l

and the elements of

Uft l^^H/2})u{^J2}

by ^ ^ 1 ̂ j ^ t, = 2 + E ^</2 L Let T/, C S,, be the cycle ̂  = (1, 2,..., 4) and T, € S^

be the cycle T,=( l , 2,..., ^). Since for each 1 ^ i ^ t,, [a^ bi,a\\ ̂ -1) G ^R and

onY.

be the cycle T,=( l , 2,..., ^). Since for each 1 ^ i ^ t,, {a^bi,a^\b, ^
correspond to distinct geometric square, we may perform the surgery F-

a i; b\, .... bf
~v

^
b\',a^, ...,a.

on the resulting square complex.Observe that we may perform the surgery E

Denote the resulting square complex by Y. On this square complex we perform the
surgery F^'.2^ followed by F^2^ ^ . Let X be the 1-vertex VH-T-square complex

obtained via these surgery operations and (A, B, (pA, (pa, R) be its VH-datum. Observe
that as the surgeries did not involve any of the squares of the VH-T-square complex
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^X, 0 ^ i ̂  72, Ck,e and €4,4 we have embeddings ^X -^ X, 0 ^ i ̂  n, G^, €4,4 -^ X
as asserted in (1).

To verify that the permutation group P^ is 2-transitive, observe first that the
element G^ =^(^1) ^ Sym(B) contains the cycle (b^, ̂ -i,.... h, t^). Thus any element

n

of U ^ may be moved (using an appropriate power of o^ ) into ^&. Also using the
?'= i l

transitivity properties o fG4^4 together with G^ , every element of^ 4 may be brought

into ^S. We also have a^ =^(^1) ^ SymB which contains the cycle (^0,62). This

together with the transitivity properties of G^ allows us also to bring any element
of By^ fi into ^B. Moreover, given any pair of elements in B, we may first bring one
of them into ^B. If now the second element has not already been brought into ^B,
we may move the image of the first one within ^B to allow bringing the other into
^B without moving out the first element. Thus given any b, V € B, there exists some
n G Py such that n(b), n(b'} G ^B. Since, by assumption, ^P^ is acting 2-transitively on
^B, we conclude that Py is 2-transitive on B. The argument for P^ is analogous. Thus
(2) holds.

Assertion (3) follows from a theorem of Marggraf (1892) (see [Wi]i Theorem
13.5) using the observation that ̂  (resp. ^^ is embedded in Py (resp. P/;) so that its
action on ̂  (resp. ^A) is transitive and it fixes pointwise the complement B^0^ (resp.
A\WA). D

Proposition 6.2. — Let Z be a 1-vertex VH-T-complex; then there is a 1-vertex VH-T-
complex Y such that,

(1) Z embeds into \,
Y V(2) the groups P^ and Py consist of even permutations.

Proof. — Let (A, B, (pA, <PB, R) be the VH-datum corresponding to Z. Define
Y to be the VH-T-square complex corresponding to the VH-datum (A, B, (p. , (p^, R)
where

A = A x { l , 2 } , B = B x { l , 2 } , ( p x = ( p A X ^ , (f^=^xid

and

R= {((^, z), (A,j), (^, z), (^,^)) | (^, 6, a , b'} G R ^-e {1, 2}} D
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6.4. In this section we state and prove the main results of this paper.

Theorem 6.3. — For every n ̂  15 and m ̂  19, there exists a torsion free, cocompact lattice
r < V{A^n) x U(A2^) with dense projections. Any non trivial, normal subgroup N < r is of finite
index in T.

Proof. — We apply Proposition 6.1 to the case where T Z = O and ^°?X is the
arithmetic quotient ^13 17 (see 2.4); in this case ^d^-^ 14, ^^ < S(o)^ is permutation
isomorphic to the PSL(2, F^) action on P^F^), (0)^ = 18, ̂  < S(Q)^ is permutation
isomorphic to the PSL(2,Fi7) action on P^n), in particular both groups are 2-
transitive and consist of even permutations. Let k, t be even integers with k ^ 12,
£ ^ 16 and let X be the complex given by Proposition 6.1. Then P^=A2^, 2n= 18 + k
and Py=A<^, 2^=22 + t\ moreover, the monomorphism Ai3 17c—^ X implies that
X=r\(J^xJ^) is irreducible, and hence (Proposition 5.2) F < V{A^)xV(A^) has
dense projections; the last assertion follows then from Corollary 5.1. D

Definition. — A group F is virtually simple, if the intersection T^ of all finite index
subgroups ofYis of finite index in Y and simple.

Observe that this amounts to say that T admits a subgroup of finite index which is simple.

Theorem 6.4. — For every n ^ 109 and m ^ 150, there exists a torsion free, cocompact
lattice r < U(A2^)xU(A2^) which is virtually simple.

Proof. — We apply Proposition 6.1 to the case where 72= 1, (o?X=Al3^ 17 and
( l )X=Al3^ 17 KlAi3^ 17 (see 2.3), and k, t (even) ^ 4. As in Theorem 6.3, the resulting
complex X=r\(J^xJ^) is irreducible with Pk=^2n, Pv=^2m, 2^=214 + k, 2m =
346+^; moreover (Proposition 2.4 and Corollary 2.5), ( l )X=Al3^ 17 KlA^ 17 has a non-
residually finite fundamental group, injecting into 7li(X) which shows that all conditions
of Corollary 5.4 are satisfied and thus r=7li(X) is virtually simple. D

Theorem 6.5. — Let Z be a 1 -vertex, VH-T-complex. Then there exists a I-vertex VH-T-
complex X such that:

(1) Z embeds into X^

(2) 7ti(X) is virtually simple.

In particular, 7Ci(Z) is isomorphic to a subgroup ofn\(X).

Proof. —Applying Proposition 6.2, we may assume that Pf and Py consist of even
permutations. We apply then Proposition 6.1 to the case n= 2, (o)X=Al3^ 17, ( l )X=Al3^ 17
!ElAi3 17, (2)X=Z, k=£ =4 and argue as in Theorem 6.4. D
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6.5. In Section 6.4 we proved the existence of a finite VH-T-square complex
whose fundamental group is simple. Note, however, that the construction in 6.4 gives
an explicit 1-vertex VH-T-square complex X whose fundamental group is virtually
simple; to obtain the square complex having a simple fundamental group one has to
consider the maximal finite covering X^ of X. We do not know whether a general
procedure for finding the maximal finite covering of a given VH-T-square complex
with virtually simple group exists. We note, however, that for the square complexes
constructed in the proof of Theorem 6.3, there exists a Turing machine which, given
X produces X^; we do not know how to bound the size of X^ in function of X. In
this section we give an explicit construction of a finite VH-T-square complex whose
fundamental group is simple.

Let Y be a one vertex VH-T-square complex corresponding to a VH-datum
(A, B, (pA, q>B, R) and satisfying:

QL 7li(Y) < AutTixAutT2 is an irreducible lattice. (Where TixTz is the
universal covering space of Y.)

Q2. The fmite permutation groups Py < SymB and P^ < SymA, as well as their
respective socles are 2-transitive on the corresponding set.

Q3. Let |A|=2/;and |B[=2^ with i ̂  k+ 5 + [k(k- 1) + k- 1]4 + 4.

Let D be the one vertex VH-T-square complex obtained from Y via D == Y 13 Y,
denote its VH-datum by (AD, BD, (PA^, (pBo? ^a)' Let Y be a copy of Y associated
with VH-datum (A, B, (p^, (pg, R) where for each a € A we let a G A denote the
corresponding element, analogously b € B corresponds to b C B, and R= {(a, 6, a7, &');
(a, b, d ^ b'} ̂  R}. We describe next how to mate these three VH-T-square complexes,
Y, D and Y, to obtain a new one vertex VH-T-square complex Z so that Z has a
covering VH-T-square complex Z^ having 4 vertices and described explicitly, such
that its fundamental group n^Z)^ is a simple group. The idea of the mating is
similar to the one used in the previous construction together with the observation that
we have certain explicit closed loops in the one skeleton of D representing elements of
7Ci(D) which actually belong to TT^Dy00'. Using appropriate mating (joining and surgery
operations) allows us to use these to construct a square complex Z for which every
(necessarily closed) path of length 2 in the horizontal or vertical 1-skeleton represents
an element of ^(Z)^.

Let us denote the elements of the sets A, B by:

-lA = { ^ , ^ : 1 ^ i ̂  k}

B^,^-1:!^^}
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where x and x~1 denote the two orientations of the same geometric edge. Correspond-
ingly we have:

A={^,571 : 1 ^ i < ^ k }

B^j/1:!^;^}

AD={(<,^) : l ^ i J ^ k £,TIG{±!}}

B D = { ( ^ A ; ) : I ^ J ^ £ ,T1G{±1}} .

Let ̂  =Y V D V Y be the join of the 3 one vertex VH-T-square complexes Y, D, Y.
To obtain Z we shall perform a sequence of surgery operations on ^i. All the surgery
operations we shall use will be of the following special type: Fi ^ ^ where T is the
transposition (1, 2); for each i=l,2, the boundary of c, is the path Qc, such that
^([0, 1])=^([3,2])=/,^([1,2])=^([0,3]))=^, I.e, the geometric realization of
the subcomplex consisting of c\ 5 ^ ^d their boundary is a pair of closed tori having
the loop corresponding to/in common. Recall that a one vertex VH-T-square complex
provides us with a natural presentation of its fundamental group. Observe that prior
to the surgery operation R , we had the following relations: f~igtf=g^f~{g^f=g^
between the generators corresponding to the boundary edges of the squares c\^ c^. In
terms of the presentation of the fundamental group of the square complex, the result
of applying the surgery operation F^ ^ is refered to by the phrase: "introduce the
relations /-^i/=^ ,f~lg2f=gi''

As we frequently will be introducing relations:

/-w = A,, /-•v=.?i
/-w = ^2, /-'v=&
f-'&rf = h,, f-^hj=g,.

It will be useful to denote introducing all these relations by the notation

g\g2'"gr ^——^ M2...^.

Before listing the surgery operations which transform (0^ to Z recall that by Corollary
2.5 for any u, z/, a, d € A the closed path of length 4 in the 1-skeleton ofD consisting
of the edges e\, ^? ^s? <4 where e\ = (a, u), ̂  = (^--1 ? u"), e^ = (^-1, z/~1) and €4 == (a', M~1)
represent an element of7li(D) which belongs to K^fD^ = QN where the intersection
is over all finite index normal subgroups of7Ci(D).
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6.5.1. List of surgery operations

1. For 1 ^ i ^ k - 3:

7>-
^_1^_2^<——^, ̂ )(^ ^X^"^ ̂ X^ ^1)

2. For / ; - 2 < ^ f c

! — 1 — 1 — 1 _ 1a^a^di^—>(a^, a^ , ̂ )(^~ , a~, )(^-, ̂  )

Q -1 ^ .3- ^_i^_2^ 1 < A:+l >(fl^ ak) (^ 1, ^i ̂ i, fli)(^ 1, ̂  1)
4

u- <2^_i^_2^ <———>(ak,ak)[a^ ,^ )^^\)w ,
T

4. a^a^a^a^ <——^, ^yfl" . ̂  y/z, , / z iV^ 1 - /7~1^3^1 ^———>(ak,ak)(dk ,a^ )(a^ a^ ,^ )
(^i) ^ ^^i • • • ak<———>a\a^''' a / ,

^ (^2^2)a\a^ <———> a\a^

^k+3

5.

6.

7. a\ (^, ^2) ^———^ <?i ̂ 2
Q - / x ^k+4- ^ ^o. ^1^25^2)^———>a\a^
9. for 1 ^ ij ^ A;, let

/ . ^+5+[^-1)+;-1]4
?5 ^-) ^——————————————————^ ^1

/ %+5+[^-1)+;-1]4+1
?•5 ^•)<(———————————> a^

_1 ^+5+[^-1)+;-1]4+2
W,^- )<———————————^fli

_1 ^+5+[^-1)+;-1]4+3
W-5 ^ ) ^——————————————————> ^2

10. for 1 ^ i<^ k, let

^ fe+i ? ^'+1)^,<——————>a\

^ ^2i+2 5 ^2?+2)ai<————>a^

1 1 A { a 2 ' a 2 ) Z.1 x • °k+5+[k(k- i)+k- 1J4+4 <—————^ ^4

19 A . ^3^3)^ ^14- ^+5+[^-1)+^-1]4+4 <—————^ ^5
fln

13- (^+3 5 ^+3) ^—————^ ^6

ag
14. (62^3 ? ^2A;+3) ^—————^ b-j
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These surgery operations performed on Z^ produce a new one vertex square complex
Z with VH-datum (Az, Bz, (pAz, (pBz, Rz).

Let the universal cover of Z be ̂  x ̂  (as usual J^ denotes the r-regular tree).
Let r=7ii(Z) <Aut^x Aut^, H,=^(T), z= 1, 2.

Claim 6.6. — £^A H^ is locally 2-transitive, i= \, 2.

Proo/^ — This is proved using property Q2 (2-transitivity for Y) together with
surgery operations 9, 10 for the first tree and operations 11-14 for the second tree. D

Recall the following result of A. Bochert:

Theorem 6.7. ([Bo] 5 cf. [Wi]i). — Let G be a 2-transitive group of permutations of a set
2 2ofd elements. If the size of the fixed point set of some non trivial g e G exceeds -d+ -y^ then

G is either A^ or S</.

Observe that the element pr\(b\) G Hi fixes a vertex as well as more than
2 2-n + -^/n edges out of the n edges at that vertex. Thus we conclude using the
\j o

theorem of Bochert that for any vertex x the finite group H^) is the alternating group
An (note that all the elements of H^) are even permutation). (A similar argument
using pr^(a\) € Hs may be used to study H2 instead of Hi.) Applying now [B-M]s
Proposition 3.3.1 together with the fact that each H, is non discrete we conclude:

Claim 6.8. — The subgroups H^ satisfy

Hi=U(A,) H2=U(A,). D

Thus we already know that for the fundamental group r=7Ci(Z) we have that
p(oo) ̂  Q N is a finite index simple normal subgroup of F. Let Z^ denote the

N < r
fi .corresponding (maximal) finite cover of Z.

Proposition 6.9. — The subgroup T^ is the subgroup of index 4 in T generated by the
elements of T corresponding to horizontal or vertical paths of length 2.

This proposition follows using the following claims:

Claim 6.10. — Every horizontal path of length 2 in Z represents an element belonging
to r(°°).
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Proof. — Recall that paths of length 2 corresponds to words of length 2
in Az. Observe that for a, a ' , u, u' € A the path of length 4 determined by
(a, u){a~\ u'}(a'~\ M'"1)^', u~1) represents a word belonging to ^(YD^ and hence
also to r^. The surgery operations 1 , 2 , 3 , 4 imply that each of the words
(2^-1^-2^? 1 ^ i ^ k — 3, a^a^dj^ k — 2 ^ j < A;, fl^_i^_2fli~1 and ^^^^r1

is conjugate to an element of F^ and thus is itself in F^. This however implies that
any word of the form ad for a, a! C A is in F^. Indeed, we have

a^dj= (akak-\ak-^~\akak-\ak-^a]) e F^ 1 ^ ij <^k-3

a^di = (fl^-l^-2^^1)-l(^^-l^-2^•) ^ F^ 1 ^ i ̂  A; - 3.

Thus we see that in r/r^ the images of all the elements ^, ̂ -1 where
1 < i ^ k— 3 are the same element, say ,̂ and moreover t is its own inverse, t=r1.
Now since for each j with A; — 2 ^ j < A; we have a^a^dj G I"̂  we conclude using
the fact that (403 € F^ that ̂  ^ ^(00) and now it is clear that for any two elements
a, a! e A= {^, ^ : 1 < i ̂  A;} we have aa' e I^^^ Applying next the conjugacy given

by surgery operation 5 we conclude that also paths of the form ^Td are in F^ for
any a, a! G A. We turn to paths of length 2 coming from A^) (where AD is defined in

n

6.5 and A^ means words of length 2 of elements in AD). Here we consider again the
conjugacy provided by operations 1-4. Observe that from these now follow that the
following elements are in r^:

(^,^)(^1,^-) 1 ^ i ̂  k - 3 (^ 1. ^-) (^ { , ̂  {)

(*) ^ (^i, 01) (a^ , a,) k - 2 < i < A; (^i~1, ^-) (^-1, ^-1)

[ (^, ^) (^ , a\ ) (^ ,^ i ) ( o i , ^ i )

RecaU that for rD=7Ci(YD) we have FD/FD^^ A2 where A=7Ci(Y). Where the map
is the one naturally induced by viewing each edge ( x ^ y ) in YD as an element of A2.
Note also that the image is the index 4 subgroup of A2 consisting of the elements of
the form (71, 72) such that both "horizontal" and "vertical" length of 7172 are even.
Thus as r^ n FD contains FD^ as well as the elements listed in (*) we deduce that
r^ Ft FD contains the elements:

(**)

(e, OkOi) 1 ^ i < k — 3

< (e, a^a,) k— 2 < i^ k

. (^ ̂ r1)

, -i -i \(^ ^ ^)
/ -1 -1 x
(^1 ^ ^)

(fh ^, e)
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Thus we may conclude that also horizontal paths of length 2 coming from Aj^ are
in r^. The conjugacies provided by surgery operations 6, 7, 8 allow us to conclude

n

that any horizontal path of length 2 corresponding to an element of A^ represent an
element belonging to F^ (and hence corresponds to a closed path in Z^).

Establishing the analogous assertion for vertical paths is provided by the following
general observation applied to our VH-T-square complex Z.

Lemma 6.11. — Let W be a one vertex VH-T'-square complex. Let A=7li(W) <
AutTi x AutT^y H^=j^(r). Assume that each H^ is locally 2-transitive. Let N <] A be a

r\

normal subgroup such that A^y C N ,̂ i.e. any horizontal path of length 2 namely a path represented

by elements ofA^ = {ad : a, a! e Au,} correspond to an element ofN. Then also vertical paths of
Q

length 2 correspond to elements of^y i.e. B^y C N.

Proof. — There exist some b C B^y and a G A^y such that bab~^ ^ A^y in A. To
see this, observe that for any a € A and b G B there exist unique d € A and V € B
such that ba = a ' b ' thus it follows that for any b e B, any n > 1 and any a € A" there
is a unique V € B and an a' € A" (unique when a is "reduced55) so that bcn^a'V'. The
assertion is that there is some b G B and a e A2 so that the corresponding b' € B and
a' e A2 such that ba = db' satisfy V =|= b. If no such b and a exist then it would follow
that given any b G B the collection of b' G B for which there exist a, a G A" (for some
n ^ 1) so that ba=afbf consists of at most two elements. This is however impossible
since the transitivity of the action of Hg on the edges at a vertex implies in particular
that given any b' € B there exist some n ^ 1 and a, a' € A" such that ba=a'b'. We
have then bab~^ =a'P' for some a' G A^ e ^P' C B^. This implies that P7 G N. Using
the local 2-transitivity assumption for H^ we conclude that for any e ̂  P C B^y there
exist some (Xi, 03 € A^y for some r G W so that we have: aiP=P'a2 => o^ P /a2=P.
Observe that as both (Xi, a<^ are of the same length we have (Xi = 002 in A/N; hence P
is conjugate to ?' = e in A/N. Hence also P G N. D

Combining the above we obtain

Corollary 6.12. — The subgroup T^ is of index 4 in Y. The corresponding VH-T-square
complex Z^ is the complex having 4 vertices VQ, v\, ̂  ^3- For each a C Az we have an edge
a^ with ^(^)=z/i, o(^))=z/o and an edge a^ with t(a^}^v^ 0(0^) =v^. For each b G Bz we
have an edge b^ with t{b^)=VQ, o(b^)-=v^ and an edge b^ with t(b{r)')=v^, o{b^)=v\. For each
[a, b, a', b') G Rz we have a square with vertices VQ, v\, v^y v^ and edges a^\ b^y a^\ b ̂ .
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