Counting p-groups and nilpotent groups
Publications Mathématiques de l'IHÉS, Tome 92 (2000), pp. 63-112.
@article{PMIHES_2000__92__63_0,
     author = {Du Sautoy, Marcus},
     title = {Counting $p$-groups and nilpotent groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {63--112},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {92},
     year = {2000},
     mrnumber = {1839487},
     zbl = {01656529},
     language = {en},
     url = {http://archive.numdam.org/item/PMIHES_2000__92__63_0/}
}
TY  - JOUR
AU  - Du Sautoy, Marcus
TI  - Counting $p$-groups and nilpotent groups
JO  - Publications Mathématiques de l'IHÉS
PY  - 2000
SP  - 63
EP  - 112
VL  - 92
PB  - Institut des Hautes Études Scientifiques
UR  - http://archive.numdam.org/item/PMIHES_2000__92__63_0/
LA  - en
ID  - PMIHES_2000__92__63_0
ER  - 
%0 Journal Article
%A Du Sautoy, Marcus
%T Counting $p$-groups and nilpotent groups
%J Publications Mathématiques de l'IHÉS
%D 2000
%P 63-112
%V 92
%I Institut des Hautes Études Scientifiques
%U http://archive.numdam.org/item/PMIHES_2000__92__63_0/
%G en
%F PMIHES_2000__92__63_0
Du Sautoy, Marcus. Counting $p$-groups and nilpotent groups. Publications Mathématiques de l'IHÉS, Tome 92 (2000), pp. 63-112. http://archive.numdam.org/item/PMIHES_2000__92__63_0/

[1] N. Blackburn, On a special class of p-groups, Acta Math. 100 (1958), 49-92. | MR | Zbl

[2] R. M. Bryant and J. R. J. Groves, Algebraic groups of automorphisms of nilpotent groups and Lie algebras, J. London Math. Soc. 33 (1986), 453-466. | MR | Zbl

[3] J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), 1-23. | MR | Zbl

[4] J. Denef and L. Van Den Dries, p-adic and real subanalytic sets, Annals of Math. 128 (1988), 79-138. | MR | Zbl

[5] J. Denef and F. Loeser, Motivic Igusa zeta functions, J. Algebraic Geom., 7 (1998), 505-537. | MR | Zbl

[6] J. Denef and F. Loeser, Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., 135 (1999), 201-232. | MR | Zbl

[7] J. D. Dixon, M. P. F. Du Sautoy, A. Mann and D. Segal, Analytic pro-p groups, Second Edition, Cambridge Studies in Advanced Mathematics, 61, Cambridge, CUP, 1999. | MR | Zbl

[8] M. P. F. Du Sautoy, Finitely generated groups, p-adic analytic groups and Poincaré series, Annals of Math. 137 (1993), 639-670. | MR | Zbl

[9] M. P. F. Du Sautoy, Zeta functions and counting finite p-groups, Electronic Research Announcements of the American Math. Soc., 5 (1999), 112-122. | MR | Zbl

[10] M. P. F. Du Sautoy, A nilpotent group and its elliptic curve : non-uniformity of local zeta functions of groups, MPI preprint 2000-2085. To appear in Israel J. of Math. 126. | Zbl

[11] M. P. F. Du Sautoy, Counting subgroups in nilpotent groups and points on elliptic curves, MPI preprint 2000-2086.

[12] M. P. F. Du Sautoy, Natural boundaries for zeta functions of groups, preprint.

[13] M. P. F. Du Sautoy and F. J. Grunewald, Analytic properties of Euler products of Igusa-type zeta functions and subgroup growth of nilpotent groups, C. R. Acad. Sci. Paris 329, Série 1 (1999), 351-356. | MR | Zbl

[14] M. P. F. Du Sautoy and F. J. Grunewald, Analytic properties of zeta functions and subgroup growth, Annals of Math. 152 (2000), 793-833. | MR | Zbl

[15] M. P. F. Du Sautoy and F. J. Grunewald, Uniformity for 2-generator free nilpotent groups, in preparation.

[16] M. P. F. Du Sautoy and F. Loeser, Motivic zeta functions of infinite dimensional Lie algebras, École polytechnique, preprint series 2000-2012.

[17] M. P. F. Du Sautoy and A. Lubotzky, Functional equations and uniformity for local zeta functions of nilpotent groups, Amer. J. Math. 118 (1996), 39-90. | MR | Zbl

[18] M. P. F. Du Sautoy, J. J. Mcdermott and G. C. Smith, Zeta functions of crystallographic groups and analytic continuation, Proc. London Math. Soc. 79 (1999), 511-534. | MR | Zbl

[19] M. P. F. Du Sautoy and D. Segal, Zeta functions of groups, in New horizons in pro-p groups. Progress in Mathematics, vol. 184 (ed M. P. F. du Sautoy, D. Segal and A. Shalev), p. 249-286. Boston, Birkhäuser (2000). | MR | Zbl

[20] M. D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, Heidelberg, New York, 1986. | MR | Zbl

[21] F. J. Grunewald, D. Segal and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), 185-223. | MR | Zbl

[22] G. Higman, Enumerating p-groups, I, Proc. London Math. Soc. 10 (1960), 24-30. | MR | Zbl

[23] G. Higman, Enumerating p-groups, II, Proc. London Math. Soc. 10 (1960), 566-582. | MR | Zbl

[24] K. Ireland and M. Rosen, A classical introduction to modern number theory, Second Edition, Graduate texts in mathematics 84, Springer-Verlag, New York, Berlin, Heidelberg, 1993.

[25] S. Lang, Algebra, Addison-Wesley, Reading, MA, 1965. | MR | Zbl

[26] C. R. Leedham-Green and S. Mckay, On p-groups of maximal class II, Quart. J. Math. Oxford (2) 29 (1978), 175-186. | MR | Zbl

[27] C. R. Leedham-Green and S. Mckay, On p-groups of maximal class III, Quart. J. Math. Oxford (2) 29 (1978), 281-299. | MR | Zbl

[28] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime-power order I, Arch. Math. (Basel) 35 (1980), 193-202. | MR | Zbl

[29] C. R. Leedham-Green, The structure of finite p-groups, J. London Math. Soc. 50 (1994), 49-67. | MR | Zbl

[30] W. Magnus, A. Karras and D. Solitar, Combinatorial Group Theory, Wiley, Chichester, UK, 1966.

[31] M. F. Newman, Groups of prime-power order, Groups-Canberra 1989, Lecture Notes in Math., 1456 Springer-Verlag (1990), 49-62. | MR | Zbl

[32] M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), 131-169. | MR | Zbl

[33] V. P. Platonov, The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups, Math. USSR-Izv. 3 (1969), 1139-1147. | Zbl

[34] V. P. Platonov, Addendum, Math. USSR-Izv. 4 (1970), 784-786. | Zbl

[35] V. P. Platonov and A. S. Rapinchuk, Algebraic Groups and Number Theory, Pure and Applied Mathematics 139, London, Academic Press, 1994. | MR | Zbl

[36] D. Segal, Polycyclic Groups, Cambridge tracts in mathematics, 82, CUP (1983). | MR | Zbl

[37] A. Shalev, The structure of finite p-groups : effective proof of the coclass conjectures, Invent. Math. 115 (1994), 315-345. | MR | Zbl

[38] C. C. Sims, Enumerating p-groups, Proc. London Math. Soc. 15 (1965), 151-166. | MR | Zbl

[39] R. P. Stanley, Enumerative Combinatorics, vol. 1, Cambridge Studies in Advanced Mathematics, 49, CUP, 1997. | Zbl