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1. Introduction

Let p be a prime number, and let V be a finite dimensional vector space over the
field Q p of p-adic numbers. We write GL(V) for the group of Q p-linear automorphisms
of V. Let GV denote a compact subgroup of GL(V), so that GV is a p-adic Lie group.
We write Hi(GV , V) for the cohomology groups of GV acting on V, which are defined
by continuous cochains, where V is endowed with the p-adic topology. We shall say
that our representation V of GV has vanishing GV-cohomology if Hi(GV , V) = 0 for
all i > 0. More generally, if V′ is any finite dimensional continuous representation of
GV over Q p, we shall say that V′ has vanishing GV-cohomology if Hk(GV , V′) = 0 for
all k > 0. The first interesting example of such V with vanishing GV-cohomology which
occur in arithmetic geometry is due to Serre [26], where GV is the image of Galois
in the automorphism group of the Tate module of an abelian variety defined over a
finite extension of Q. One of the aims of the present paper is to establish a broad
class of new examples arising from the étale cohomology of smooth proper algebraic
varieties defined over a finite extension of Q p, and having potential good reduction.

Throughout this paper, F will always denote a finite extension of Q p. Let Y be
a smooth proper variety defined over such a field F. As usual, we write YQp

for the

extension of scalars of Y to the algebraic closure Qp of Q p. For each i > 0, let

Hi

ét(YQp
, Q p) = Hi

ét(YQp
, Zp)⊗

Zp

Q p

denote the étale cohomology of YQp
with coefficients in Q p. We shall also consider

the standard Tate twists of these cohomology groups by roots of unity. Put

Tp(µ) = lim←− µpn , Vp(µ) = Tp(µ)⊗
Zp

Q p.
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In general, if V is any finite dimensional vector space over Q p on which the Galois
group GF acts continuously, and j is any integer, we define

V( j ) = V ⊗
Q p

Vp(µ)⊗j

endowed with the twisted GF action given by σ(v ⊗ a) = σ(v) ⊗ σ(a). When
V = Hi

ét(YQp
, Q p), we have a canonical isomorphism of GF-modules

V( j ) ' Hi

ét(YQp
, Q p( j ) ) = lim←− Hi

ét(YQp
, µ⊗j

pn )⊗
Zp

Q p.

These cohomology groups are finite dimensional vector spaces over Q p. It will be
convenient to write

(1) ρ : GF −→ GL(Hi

ét(YQp
, Q p( j ) ) )

for the homomorphism giving the action of GF on these vector spaces. Again, let V
be any representation of GF on a finite dimensional vector space over Q p. We recall
that a Galois subquotient of V is a representation of GF of the form V1/V2, where
V1 ⊃ V2 are Q p-subspaces of V, stable under the action of GF. If V′ is such a Galois
subquotient, we again write GV′ for the corresponding image of GF in GL(V′). We
can then consider both the GV-cohomology and GV′-cohomology of V′.

Theorem 1.1. — Let Y be a smooth proper variety defined over F with potential good

reduction. Let i > 0 and j be any integers such that i |= 2j. Put

(2) V = Hi

ét(YQp
, Q p( j ) ) , GV = ρ(GF).

Then V has vanishing GV-cohomology. Moreover, if V′ is any Galois subquotient of V, then V′

has both vanishing GV-cohomology and vanishing GV′-cohomology.

It seems worthwhile to record the following corollary of Theorem 1.1, which was
not known before. Let A be an abelian variety of dimension g defined over F, and let
Apn (n = 1, 2, ...) denote the group of pn-division points on A. As usual, we let

Tp(A) = lim←− Apn , Vp(A) = Tp(A)⊗
Zp

Q p.

If A has good reduction over F, we write Â for the formal group of A over O F, and
~A for the reduction of A. We have the associated GV-subspace V̂ = Vp(Â) ⊂ V, where

(3) T̂ = Tp(Â) = lim←− Âpn , Vp(Â) = Tp(Â)⊗
Zp

Q p ,

and the quotient ~V = V/V̂ = Vp(
~A).
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Corollary 1.2. — Let A be an abelian variety defined over F with potential good reduction.

Then V = Vp(A) has vanishing GV-cohomology, where GV denotes the image of GF in GL(V).

Moreover if A has good reduction over F, then the Galois representations V̂ = Vp(Â) and ~V = Vp(
~A)

both have vanishing GV-cohomology.

We shall prove in §5 that V = Vp(A) has vanishing GV-cohomology for all elliptic
curves A over F, irrespective of whether A has potential good reduction or not. We are
grateful to R. Greenberg for pointing out to us that this condition however is not true
for all abelian varieties. Indeed, as Greenberg remarked, the group H1(GV , Vp(A) ) is
not zero, when A = E1×E2, where E1 and E2 are non-isogenous elliptic curves defined
over F, with split multiplicative reduction. The non-vanishing of H1(GV , Vp(A) ) is easily
seen by looking at the inflation-restriction sequence for H1(GV , Vp(Ei) ) relative to the
kernel of the action of GV on Vp(Ei).

Again, let V′ be any finite dimensional continuous representation of GV over
Q p. The main theme of the present paper will be the calculation of a certain Euler
characteristic, which we now define. Let T′ be any Zp-lattice in V′, which is stable
under the action of GV. Then V′/T′ is a discrete p-primary divisible GV-module.
Assume now that V′ has vanishing GV-cohomology. As is well known (see [33]), it
follows that Hi(GV , V′/T′) is finite for all i > 0. Moreover, since GV is a p-adic Lie
group, it has finite p-cohomological dimension if and only if GV has no element of
order p (see [19], [24]). Assuming that GV has no element of order p, we can therefore
define

(4) χf (GV , V′) =
∏
i>0

# (Hi(GV , V′/T′) )(−1)i .

It makes sense to write χf (GV , V′) in many cases which arise in arithmetic geometry,
since we shall prove in §2 (see Lemma 2.1) that, provided GV admits a quotient
isomorphic to the additive group of p-adic integers Zp, the right hand side of (4)
is independent of the choice of the GV-invariant lattice T. It seems to be an
interesting question to calculate χf (GV , V′) under the above hypotheses on V′ (see
[30], [34], [8] for earlier work in this direction, and [7] for the original motivation,
coming from Iwasawa theory). We mention here that Totaro [34] has shown that the
Euler characteristic of a finite dimensional Q p-representation of a p-adic Lie group
is usually 1, if it has vanishing cohomology. Our work proves the vanishing of the
cohomology for a large class of finite dimensional representations of p-adic Lie groups
which come from motivic Q p-representations of the Galois groups of p-adic local fields,
and also that their Euler characteristic is indeed 1, by totally different methods. In
general, it is not easy to compare our results with Totaro’s because it is not known
when the image of Galois in the automorphism group of such a motivic representation
satisfies the conditions imposed by Totaro [34, Theorem 0.1]. The main local result
of this paper is as follows:
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Theorem 1.3. — Let Y be a smooth proper variety defined over F with potential good

reduction. Let V and GV be given by (2), and assume that GV has no element of order p. Then,

for each odd integer i = 1 , 3 , 5 , ..., we have

(5) χf (GV , V) = 1.

If V′ is any Galois subquotient of V, we also have χf (GV , V′) = 1.

The following corollary is a partial local analogue of the global result proven in
[8]. Let Ap∞ denote the group of all p-power division points on an abelian variety A

over F. If A has good reduction over F, we write Âp∞ and ~Ap∞ for the group of all
p-power division points on the formal group of A and the reduction of A, respectively.

Corollary 1.4. — Let A be an abelian variety defined over F with potential good reduction.

Let V = Vp(A), and let GV denote the image of GF in GL(V). Assume that GV has no element of

order p. Then

(6) χf (GV , Ap∞ ) = 1.

Further, if A has good reduction over F, then χf (GV , Âp∞ ) = 1 and χf (GV , ~Ap∞ ) = 1.

We prove in §5 that (6) is true for all elliptic curves A over F, irrespective of
whether or not they have potential good reduction. Here, of course, χf (GV , Ap∞ ) is
defined by the right hand side of (4) with V′/T′ = Ap∞ .

We prove Theorem 1.3 using the technique of [8]. We recall that this technique
exploits the fact that, under the hypotheses of Theorem 1.3, the p-adic Lie group
GV has a quotient isomorphic to Zp. Let F∞ denote the Zp-extension of F contained
in the field F(µp∞ ), where µp∞ denotes the group of all p-power roots of unity. We
put HV = ρ(GF∞ ), where GF∞ denotes the Galois group of Qp over F∞. As in [8],
Theorem 1.3 is an easy consequence of the following result.

Theorem 1.5. — Let Y be a smooth proper variety defined over F with potential good

reduction. Let V be given by (2), and let HV = ρ(GF∞ ), where GF∞ denotes the Galois group of

Qp over the cyclotomic Zp-extension F∞ of F. Then, for each odd integer i = 1 , 3 , 5 , ..., V has

vanishing HV-cohomology. If V′ is any Galois subquotient representation of V, then V′ has vanishing

HV-cohomology.

We are grateful to J.-M. Fontaine for pointing out to us that the following
corollary of Theorem 1.5 is a well-known consequence of Serre’s description in [25]
of all p-adic Hodge-Tate representations for which the image of Galois is abelian (see
also Imai [17]).
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Corollary 1.6. — Let Y be a smooth proper variety defined over F, with potential good

reduction. Assume V is given by (2). Then, for all odd integers i = 1 , 3 , 5 , ..., and any Galois

subquotient representation V′ of V, we have H0(GF∞ , V′) = 0, where GF∞ denotes the Galois group

of Qp over the cyclotomic Zp-extension of F.

The case when V = Vp(A), where A is an elliptic curve with split multiplicative
reduction, shows that the hypothesis of potential good reduction is necessary. Indeed,
in this case, the Tate curve shows that H0(GF∞ , Vp(A) ) = Vp(µ) provided µp ⊂ F if p is
odd and µ4 ⊂ F if p = 2.

We now briefly discuss global analogues of these results that arise when we take
a smooth proper algebraic variety Y which is now defined over a finite extension K
of Q. Let YQ denote the extension of scalars of Y to Q. We take

V = Hi

ét(YQ , Q p( j ) ) , GV = ρ(GK),

where GK is the Galois group of Q over K. It has long been known (see [27, 2.4])
that the global analogue of Theorem 1.1 is true without any hypotheses on Y about
good reduction at the primes dividing p. However, we stress that it is still unknown at
present whether V is a semisimple GK-module (although this result has been proven
by Faltings [11] when Y is an abelian variety and i = 1; the Hi for an abelian variety
are all semisimple Galois representations as they are exterior powers of H1). Thus the
global method of [8] cannot be applied to study the Euler characteristic χf (GV , V) in
the global case. Nevertheless, the proof of Theorem 1.5 leads to the following new
global result.

Theorem 1.7. — Let Y be a smooth proper algebraic variety defined over a finite extension

K of Q. Assume that Y has potential good reduction at at least one prime v of K dividing p. Let

V = Hi

ét(YQ , Q p( j ) ) , GV = ρ(GK) ,

and assume that GV has no element of order p. Then, for each Galois subquotient V′ of V, we

have χf (GV , V′) = 1 for odd integers i = 1 , 3 , 5 , ....

Since this paper was written, a variant of the method here has been used in
[32] to prove Theorem 1.7 without the hypothesis that Y has potential good reduction
at at least one prime v of K above p.

Finally, we mention a somewhat more technical result which emerges from our
arguments (see §3 and §4 for a full explanation). The analogous global result when V
is the étale cohomology of a smooth projective variety defined over a finite extension
of Q is classical and due to Deligne (see [27, §2.3]).

Theorem 1.8. — Let ρ : GF → GL(V) be a potentially crystalline Galois representation

such that the endomorphism Φ of the filtered module D(V) attached to V has eigenvalues which are
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Weil numbers of some fixed weight w, where w |= 0. Let L(Galg
V ) be the Lie algebra of the algebraic

envelope Galg
V of GV = ρ(GF). Then L(Galg

V ) contains the homotheties.

Corollary 1.9. — The Lie algebra L(Galg
V ) contains the homotheties when V = Vp(A) for an

abelian variety A over F with potential good reduction, or more generally when V is any Galois

subquotient of Hi

ét(YQ p
, Q p( j ) ), where Y is a smooth proper variety over F with potential good

reduction, and i > 0, j are integers with i |= 2j.

We remark that it is not true, under the hypotheses of Theorem 1.8, that
the Lie algebra L(GV) of GV itself always contains the homotheties. Indeed, consider
V = Vp(E1) × Vp(E2), where E1 and E2 are elliptic curves over F with good ordinary
reduction. Let ui be the p-adic unit eigenvalue giving the action of Frobenius on

Vp(
~Ei), where ~Ei denotes the reduction of Ei , i = 1, 2. Assume that u1/u2 is not a

root of unity, so that the p-adic logarithms log(u1) and log(u2) are distinct. Then the
homotheties cannot belong to L(GV), since the logarithm of the image of Frobenius

acting on Vp(
~E1)× Vp(

~E2) is not a homothety.
The paper is organised as follows. In section 2, we state the results in an abstract

setting of Lie algebra representations. The results in this section establish sufficient
conditions for vanishing of cohomology and the triviality of the Euler characteristic, in
terms of the existence of certain special elements in the Lie algebra and is inspired by
the methods in [26]. This approach allows us to work with representations that are not
necessarily semisimple. Section 3 forms the heart of the paper and uses the theory of
semistable representations due to Fontaine [13], [14], to construct such special elements
in the Lie algebra of the image of the Galois representation. The paper [21] of R. Pink
provided the initial inspiration for this approach. These results are applied in section
4 to prove the results announced in section 1. Finally, in section 5, we consider the
general case of elliptic curves with semistable reduction.
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of MSRI, Berkeley, and thank the organisers of the “Galois groups and Fundamental
groups” programme there; the third author thanks the University of California,
Berkeley for inviting him. The second author also acknowledges the financial support of
the Indo-French Centre for promotion of Advanced Research (CEFIPRA). The authors
thank L. Illusie, W. Messing and T. Saito for useful discussions on motives. Finally,
we warmly thank B. Totaro for his suggestions and critical comments, especially for
pointing out to us the formula in section 5 for the Euler characteristic of the Tate
twists of the p-power division points of an elliptic curve with non-integral j-invariant.
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2. Abstract setting

In this section, we describe in a general setting the arguments from Lie algebra
and Lie group cohomology, which underlie the proofs of the results described in
§1. These arguments are similar in spirit to those used in [8], but they have the
fundamental advantage that they apply to representations of p-adic Lie groups which
are not necessarily semisimple.

As in §1, let V be a finite dimensional vector space over the field Q p of p-adic
numbers, and let GV denote a compact subgroup of GL(V), so that GV is a p-adic Lie
group.

Lemma 2.1. — Let V′ be any finite dimensional Q p-representation of GV, with vanishing

GV-cohomology. Assume that GV has no element of order p, and that GV is either pro-p, or GV

has a quotient isomorphic to Zp. Then the Euler characteristic given by the right hand side of (4)
does not depend on the particular choice of Zp-lattice T′, which is stable under the action of GV.

Proof. — The essential point of the proof is the fact that, under our hypotheses
on GV, we have

(7) χf (GV , M) = 1,

for all finite p-primary GV-modules M, where, as usual χf (GV , M) denotes the Euler
characteristic

χf (GV , M) =
∏
i>0

# (Hi(GV , M) )(−1)i ;

here the cohomology groups on the right are finite because GV is a p-adic Lie group.
Now it is well known that (7) is true when GV is pro-p [29, Chap. I, Ex. 4.1 (e)].
To prove that (7) is true when GV has a quotient Γ isomorphic to Zp, we use the
argument of [8] (see the proof in [8] after Prop. 2). We give this argument in the
proof of Theorem 2.4, and do not repeat it once more here. The key observation is
that, writing HV for the kernel of the homomorphism from GV onto Γ, we again have
Hi(HV , M) finite for all i > 0, because M is finite and HV is a p-adic Lie group, and
(7) then follows from the Hochschild-Serre spectral sequence as is explained in [8].

Here is the standard argument required to prove Lemma 2.1 from (7). Let T′

denote any Zp-lattice in V′, which is stable under the action of GV. For each n |= 0
in Z, it is clear that multiplication by n on V′ maps T′ isomorphically to T′′ = nT′,
and induces a GV-isomorphism from V′/T′ onto V′/T′′. Hence, if T1 and T2 are any
two Zp-lattices in V′ which are stable under the action of GV, we may replace T1 by
nT1 for a suitable non-zero integer n, and so assume that T1 ⊂ T2. Then we have the
exact sequence of GV-modules

(8) 0→M→ V′/T1 → V′/T2 → 0,
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where M = T2/T1 is a finite GV-module. Now, as V′ has vanishing GV-cohomology,
all GV-cohomology groups of the modules occurring in (8) are finite, and so
we conclude from (7) and the multiplicativity of the Euler characteristic that
χf (GV , V′/T1) = χf (GV , V′/T2). This completes the proof of Lemma 2.1.

We now explain the basic argument from Lie algebra cohomology, due to Serre
[26] and Bourbaki [3, Chap. 7, §1, Ex. 6] which we use to prove the vanishing of
cohomology. Let K denote a field of characteristic 0, and U a finite dimensional vector
space over K. Let G be a finite dimensional Lie algebra over K. Suppose we are given
a Lie algebra homomorphism

τ : G→ End(U).

As usual, we write Hi(G , U) for the Lie algebra cohomology groups of U, which are K-
vector spaces, and we shall say that U has vanishing G-cohomology if Hk(G , V) = 0
for all k > 0. Let ad

G
: G→ End(G) denote the adjoint representation of G. Suppose

m is the dimension of U over K, and n is the dimension of G over K. For an element
X of G, we write µ1, ..., µm for the eigenvalues of τ(X) and λ1, ..., λn for the eigenvalues
of ad

G
(X), repeated according to their multiplicities, in some fixed algebraic closure of

K. We shall say Serre’s criterion holds for the representation τ of G if there exists
an element X of G with the following property: for each integer k with 0 6 k 6 n, we
have

(9) µj − (λi1 + ... + λik
) |= 0

for all integers j with 1 6 j 6 m and all choices of i1 , ... , ik with 1 6 i1 < i2 < ...
< ik 6 n (when k = 0, this should be interpreted as µj |= 0 for 1 6 j 6 m).

When the representation τ is faithful, we shall work with the original criterion
used by Serre [26]. If X is in G, write A(X) for the set of distinct eigenvalues of
τ(X) in an algebraic closure of K. We shall say that the faithful representation τ of G

satisfies the strong Serre criterion if there exists an element X of G as follows: for
every integer k > 0, and for each choice α1 , ... , αk , β1 , ... , βk+1 of 2k + 1 not necessarily
distinct elements of A(X), we have

(10) α1 + ... + αk |= β1 + ... + βk+1

(when k = 0, this should be interpreted as meaning that every eigenvalue of τ(X) is
non-zero). For faithful τ, the strong Serre criterion for G does indeed imply the Serre
criterion because, in this case, the eigenvalues of ad

G
(X) are of the form µi−µj (see [3,

Chap. 1, §5.4, Lemma 2]) where µi , µj are elements in A(X). We refer to [3, Chap. 7,
§1, Ex. 6] for the proof of the following result.

Lemma 2.2. — If τ satisfies the Serre criterion, then U has vanishing G-cohomology. In

particular, if τ is faithful and satisfies the strong Serre criterion, then U has vanishing G-cohomology.
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Returning to our finite dimensional vector space V over Q p and our p-adic Lie
group GV ⊂ GL(V), we write L(GV) ⊂ End(V) for the Lie algebra of GV. Let Qp be
our fixed algebraic closure of Q p. For any vector space W over Q p, we write WQp

for

W ⊗
Q p

Qp.

Proposition 2.3. — Assume that L(GV)Qp
⊂ End(VQp

) satisfies the strong Serre criterion.

Then V has vanishing GV-cohomology.

Proof. — It is well-known and easy to see that

Hk(L(GV)Qp
, VQp

) = Hk(L(GV), V)Qp
(k > 0).

Hence Lemma 2.2 implies that Hk(L(GV), V) = 0 for all k > 0. But, by a basic result
of Lazard [19], Hk(GV , V) is a Q p-vector subspace of Hk(L(GV), V) for all k > 0. Thus
we conclude that V has vanishing GV-cohomology, as required.

We write det : GL(V)→ Q×p for the determinant map, and, as usual, SL(V) will
denote its kernel. The following result is the basic one we use to establish the principal
results of §1. It is parallel to Theorem 1 of [8], but with the basic difference that the
hypothesis of semisimplicity is replaced by Serre’s criterion.

Theorem 2.4. — Let HV = SL(V) ∩ GV, and let L(HV) denote the Lie algebra of HV.

Assume that L(HV)Qp
⊂ End(VQp

) satisfies the strong Serre criterion. If det(GV) is infinite and

GV has no element of order p, then we have χf (GV , V) = 1, where χf (GV , V) is defined by (4).

Proof. — Assuming that L(HV)Qp
⊂ End(VQp

) satisfies the strong Serre criterion,
the same argument as in the proof of Proposition 2.3 shows that V has vanishing
L(HV)-cohomology. Hence, by Lazard’s theorem, V has vanishing HV-cohomology.

Now assume that det(GV) is infinite. As det(GV) is a closed subgroup of Z×p , it
must therefore be isomorphic to Zp×∆, where ∆ is a finite abelian group. Hence there
exists a closed normal subgroup JV of GV, which contains HV as an open subgroup,
such that Γ = GV/JV is isomorphic to Zp. Since HV is open in JV, the Lie algebra
L(JV) of JV is equal to L(HV), and hence V has vanishing L(JV)-cohomology. Again, by
Lazard’s theorem, it follows that V has vanishing JV-cohomology.

Suppose now that GV contains no element of order p, so that it has finite
p-cohomological dimension. As in [8], we now complete the proof by applying the
Hochschild-Serre spectral sequence. We pick any Zp-lattice T in V which is stable under
GV, and put B = V/T. Since Γ = GV/JV is isomorphic to Zp, it has p-cohomological
dimension equal to 1. Hence the Hochschild-Serre spectral sequence yields, for all
k > 1, the exact sequence

(11) 0→ H1(Γ , Hk−1( JV , B) )→ Hk(GV , B)→ H0(Γ , Hk( JV , B) )→ 0.
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Now the fact that V has vanishing JV-cohomology implies that Hk(JV , B) is finite for
all k > 0. In turn, this implies that

# (H0(Γ , Hk( JV , B) ) ) = # (H1(Γ , Hk( JV , B) ) ) for all k > 0.

Denoting the common order of the above groups by hk, we conclude from (11) that
Hk(GV , B) is finite of order hk · hk−1 for all k > 1. We deduce that V has vanishing
GV-cohomology, and that

χf (GV , V) = h0 · (h0h1)−1 · (h1h2) · (h2h3)−1... = 1.

This completes the proof of Theorem 2.4.
By a GV-subquotient of V, we shall always mean a quotient of a GV-invariant

subspace of V by another such one contained in it. We now discuss the analogues of
Proposition 2.3 and Theorem 2.4 for an arbitrary GV-subquotient V′ of V. We write
GV′ for the image of the natural map of GV in GL(V′). Let HV′ = GV′ ∩ SL(V′) be
the elements of determinant 1 in GV′ . Note that we can now consider both the GV

and the GV′-cohomology of V′; of course, the representation of GV on V′ is no longer
faithful in general.

Proposition 2.5. — Assume that L(GV)Qp
⊂ End(VQp

) satisfies the strong Serre criterion.

Then, for every GV-subquotient V′ of V, we have Hi(GV , V′) = Hi(GV′ , V′) = 0 for all i > 0.

Proof. — We claim that the hypothesis of the proposition implies that L(GV′ )Qp
⊂

End(V′
Qp

) also satisfies the strong Serre criterion. Indeed, if X is an element of

L(GV)Qp
⊂ End(VQp

) satisfying (10) for all k > 0, then its image XV′ in L(GV′ )Qp
⊂

End(V′
Qp

) under the natural map also satisfies (10), because the eigenvalues of XV′ form

a subset of the eigenvalues of X. Hence V′ has vanishing GV′-cohomology.
Next, let

τ : L(GV)Qp
→ End(V′Qp

)

be the representation obtained from the original representation. Let X be as above,
so that τ(X) = XV′ . Since the eigenvalues of adL(GV)

Qp

(X) are of the form µi − µj, [3,

Chap. 1, §5.4, Lemma 2] where {µh} denotes the eigenvalues of X, it is clear that the
strong Serre criterion for X implies that (9) is valid for τ(X). Thus Hk(L(GV), V′) = 0 for
all k > 0, whence Hk(GV , V′) = 0 for all k > 0. This finishes the proof of Proposition 2.5.

Theorem 2.6. — Assume that L(HV)Qp
⊂ End(VQp

) satisfies the strong Serre criterion. Let

V′ be any GV-subquotient of V. Then the following assertions hold:
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(i) V′ has vanishing HV-cohomology.

(ii) If det(GV) is infinite and GV has no element of order p, then χf (GV , V′) = 1.

Proof. — Assertion (i) follows as in the proof of Proposition 2.5. Assertion (ii)
follows from (i) along the lines of the proof of Theorem 2.4, as GV has a quotient
isomorphic to Zp.

3. Construction of elements in the Lie algebra

Let p be a prime number, F a finite extension of Q p, and GF the Galois group
of Qp over F. We suppose that we are given a continuous p-adic representation

(12) ρ : GF → GL(V),

where V is a Q p-vector space of finite dimension d. As before, we write GV = ρ(GF). If
we are to successfully apply the Lie algebra criteria of §2 to study the GV-cohomology
of V, we must be able to construct elements in the Lie algebra

L(GV)Qp
= L(GV) ⊗

Q p

Qp.

The aim of this section is to take an important first step in this direction when V is
a semistable Galois representation in the sense of Fontaine [14].

Let F0 denote the maximal unramified extension of Q p contained in F. We recall
that V is said to be semistable if

D(V) = (Bst ⊗
Q p

V)GF

has dimension d over F0, where d = dimQ p
(V); here Bst is Fontaine’s ring for semistable

representations (see [14]). Assume from now on that V is semistable. Then D(V)
is a filtered (ϕ , N)-module in the sense of [13], [14]. We recall briefly the main
properties of D(V). Firstly, D(V) is endowed with an F0-linear endomorphism N,
called the monodromy operator. Recall that the representation is said to be
crystalline if N = 0. Secondly, D(V) is endowed with an isomorphism of additive
groups ϕ : D(V) → D(V), which is σ-linear in the sense that ϕ(av) = σ(a)ϕ(v) for a in
F0 and v in D(V); here σ denotes the arithmetic Frobenius in the Galois group of F0

over Q p (i.e. σ operates on the residue field of F0 by raising to the p-th power). Let
kF denote the residue field of F, and suppose that kF has cardinality q = p f. Hence

(13) Φ = ϕ f

will be an F0-linear automorphism of D(V), and we shall refer to it as the Frobenius
endomorphism associated to the filtered module. Recall that we have

NΦ = qΦN.
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By definition, Φ is an automorphism of a vector space on which GF acts trivially. It
is therefore somewhat surprising that we shall show, using the Tannakian formalism
of [9] and an elementary fact about Fontaine’s theory for unramified representations,
that Φ gives rise to interesting elements in the Lie algebra L(GV)Qp

of GV = ρ(GF) of
our original Galois representation.

We recall the extension of the p-adic logarithm to the multiplicative group of
Qp. Let O denote the ring of integers of Qp, O

×
the group of units of O , and m

the maximal ideal of O . The usual series for log z converges on 1 + m. Let µ denote
the group of all roots of unity of Qp of order prime to p. Then O

×
= µ× (1 + m). We

extend log z to O
×

by specifying that log(µ) = 0. Now fix any non-zero element π of
Qp whose absolute value is less than one. If x is any element of Qp

×
, we can write

x = πay, where a ∈ Q and y ∈ O
×

. We then define logπ(x) = log( y ). Note that this is
well-defined as the ratio of any two such y must be a root of unity.

Theorem 3.1. — Assume that V is a semistable Galois representation, and let D(V) be

the associated filtered (ϕ , N)-module. Let λ1, ..., λd denote the roots in Q p of the characteristic

polynomial of the automorphism Φ = ϕ f of D(V). Then there exists X in the Lie algebra L(GV)Qp

of GV = ρ(GF) such that the characteristic polynomial of X on VQp
has roots logπ(λ1), ..., logπ(λd).

We will also need an analogue of this result for the Lie algebra L(HV)Qp
,

where, as before, HV = GV ∩ SL(V). We recall from [13], [14] that the F-vector space
D(V)F = F⊗

F0

D(V) is endowed with a canonical decreasing filtration Fil
iD(V)F (i ∈ Z)

of F-subspaces such that Fil
iD(V)F = D(V)F for i sufficiently small and Fil

iD(V)F = 0
for i sufficiently large. This filtration enables us to define the so called Hodge-Tate
weights of D(V). These are a family of integers

(14) i1 6 i2 6 ... 6 id ,

which are defined as follows. Any integer h occurs in (14) if Fil
hD(V)F |= Fil h+1D(V)F,

and when h does occur its multiplicity in (14) is the F-dimension of the quotient
Fil

hD(V)F/Fil
h+1D(V)F. We define

(15) t =
d∑

h = 1

ih.

Let det : GF → Z×p denote the character of GF obtained by composing the
representation ρ with the determinant map. We write ξ : GF → Z×p for the cyclotomic
character of GF, i.e. the character giving the action of GF on Tp(µ). As V is a semistable
GF-module, it is known (see [14, Prop. 5.4.1]) that the restriction of det to the inertial
subgroup IF is equal to the restriction of ξ−t to IF, where t is given by (15). Further,
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the p-adic valuation of the determinant of Φ is equal to that of qt. If we set det Φ = qtu,
with u ∈ F0 a unit, then det : GF → Z×p is ηξ−t with η an unramified character and,
moreover, η is of finite order if and only if u is a root of unity.

Theorem 3.2. — Assume that V is a semistable Galois representation, and that its determinant

character det : GF → Z×p coincides on an open subgroup of GF with ξ−t where ξ is the cyclotomic

character, and t is given by (15). Let λ1, ..., λd denote the roots in Qp of the characteristic polynomial

of the automorphism Φ = ϕ f of D(V). Then there exists X in the Lie algebra L(HV)Qp
of

HV = ρ(GF) ∩ SL(V) such that, for a suitable ordering of λ1, ..., λd, the roots of the characteristic

polynomial of X on VQp
are given by logπ(λ1q−i1 ), ..., logπ(λd q−id ), where q = p f, and i1, ..., id

denote the Hodge-Tate weights (14).

Before embarking on the proof of these two theorems, we recall some basic
definitions about algebraic groups, and the p-adic logarithms of their points. Let W
be any finite dimensional vector space over some finite extension K of Q p. We write
GLW for the general linear group of W, considered as an algebraic group over K.
Thus, for each finite extension M of K contained in Qp, the group GLW(M) of M-
points of W is the group of M-automorphisms of W⊗

K
M. If J denotes any algebraic

subgroup of GLW, we write L( J) for its Lie algebra, which coincides with the Lie
algebra L( J(K) ) of the p-adic Lie subgroup J(K). Now take θ to be any element of
GLW(K). We can write θ = su, where s is semisimple, u is unipotent, and s and u

commute. As u is unipotent, some power of u− 1 is zero, and so we can define log(u)

by the usual series log(u) =
∑∞

n = 1(−1)n−1 (u−1)
n

n
. We define logπ(s) as follows. We can write

Qp⊗K W = ⊕Wi, where Wi is some subspace on which the semisimple element s acts
via some eigenvalue αi. We then define logπ(s) to be the endomorphism of Qp ⊗K W,
which operates on Wi by logπ(αi). In fact, it is clear that if π belongs to K, logπ(s)
belongs to the endomorphism ring of W over the original base field K. We finally
define

logπ(θ) = logπ(s) + log(u).

The automorphism θ topologically generates a compact subgroup of GLW(K) if and
only if its eigenvalues αi are units. If this is the case, then logπ(αi), and therefore logπ(θ),
do not depend of the choice of the αi. In fact, we can define log(θ) in a more natural
manner. Let r denote the cardinality of GLm(k), where m is the dimension of W over
K, and k is the residue field of K, and put β = θr. Our hypothesis on θ shows that
θ must stabilize a lattice in W, and so it is clear that the matrix A of β relative to
a K-basis of W coming from this lattice must satisfy A ≡ 1 mod πK, where πK is any
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local parameter of K. We can then define

log(θ) =
1
r

∞∑
n = 1

(−1)n−1 (A− 1)n

n
.

The following lemma is well-known (cf. [3, Chap. III, §7.6, Propositions 10 and 13]).

Lemma 3.3. — Let W be a finite dimensional vector space over K, where K is a finite

extension of Q p, and let θ be any element of GLW(K). If θ topologically generates a compact

subgroup of GLW(K), then logπ(θ) = log(θ). If J is any algebraic subgroup of GLW, and θ belongs

to J(K), then logπ(θ) belongs to the Lie algebra L( J) of J.

Proof of Theorem 3.1. — If H is any subgroup of GLV(Q p), we define Halg to be
the Zariski closure of H in GLV i.e. the intersection of all algebraic subgroups J of
GLV such that J is defined over Q p and J(Q p) contains H. As earlier, let IF denote the
inertial subgroup of the Galois group GF. We put

GV = ρ(GF), IV = ρ(IF).

We then have the algebraic groups Galg
V and Ialg

V in GLV, and we can consider the four
Lie algebras L(GV), L(IV) , L(Galg

V ) , L(Ialg
V ). By a basic result of Serre and Sen, [23], we

have

(16) L(IV) = L(Ialg
V ).

Hence we have the inclusions

(17) L(Ialg
V ) ⊂ L(GV) ⊂ L(Galg

V ).

By definition, the image of the Galois representation ρ of GF is contained in Galg
V (Q p).

Thus, for each representation α of the algebraic group Galg
V in a finite dimensional

Q p-vector space Vα, we obtain a new Galois representation:

(18) ρα : GF → Galg
V (Q p)→ GLVα (Q p) = GL(Vα).

The main idea of the proof of Theorem 3.1 is to work with this new Galois
representation ρα for a suitable choice of α. We first note that, for every such α,
the Galois representation ρα is also semistable. Indeed, it is known [9, Proposition
2.20] that the representation α of Galg

V is a subquotient of a finite direct sum of copies
of tensor products of the tautological representation of Galg

V and its dual. But it is
also known that the category of semistable representations of GF is stable under the
Tannakian operations in the category of finite dimensional p-adic representations of
GF and so ρα must be semistable, because ρ is semistable. For simplicity, we write Dα
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for the filtered (ϕ , N)-module associated with ρα. In general, we write a subscript α on
each object associated with the original representation ρ to denote the corresponding
object attached to ρα.

We put GVα = ρα(GF). The algebraic groups Ialg
V , Galg

V clearly act on Vα, and we
denote the images of these groups in GLVα by Ialg

Vα , Galg
Vα , respectively.

For the rest of the proof, we fix the following representation of Galg
V . As Ialg

V is
clearly normal in Galg

V , there exists a representation α0 of Galg
V in GLVα0

whose kernel

is precisely Ialg
V . For simplicity, we write V0 instead of Vα0 , ρ0 instead of ρα0 , and so

on for all objects attached to the representation ρα0 . We write Fr for the arithmetic
Frobenius in GF/IF. Thus ρ0(Fr) topologically generates GV0 = ρ0(GF). Hence the Lie
algebra L(GV0) of GV0 is the one dimensional Q p-subspace of End (V0) generated by
log(ρ0(Fr) ); note that log(ρ0(Fr) ) is defined as explained earlier because ρ0(Fr) generates
a compact group. Clearly Galg

V0
is the smallest algebraic subgroup of GLV0 containing

ρ0(Fr), and is abelian. Let π : L(Galg
V ) → L(Galg

V0
) denote the natural surjection. Since

L(Ialg
V ) = L(IV), we evidently have

(19) L(GV) = π−1(L(GV0) ).

There are two basic steps in the proof of Theorem 3.1. The first uses all the
representations α of Galg

V to construct, via the Tannakian formalism, an element in
the Lie algebra L(Galg

V )Qp
having the same eigenvalues as the endomorphism logπ(Φ)

of D(V). The second step exploits the unramified Galois representation ρ0 arising
from α0 to show, using Fontaine’s theory in the modest case of unramified Galois
representations, together with the key fact (19), the existence of the desired element X
in L(GV)Qp

.

We now give the first step. Denote by Rep(Galg
V ) (respectively, Rep(Galg

Vα ) ) the
category of all finite dimensional Q p-representations of the algebraic group Galg

V

(respectively, Galg
Vα ). Since α gives rise to a homomorphism from Galg

V to Galg
Vα , we can

identify Rep(Galg
Vα ) with a sub-category of Rep(Galg

V ). We refer to [9] for the following
basic facts about Tannakian categories and their associated formalism. We note that
Rep(Galg

V ) is a Tannakian category, and that Rep(Galg
Vα ) is a sub-Tannakian category. Let

VecF0
denote the category of all finite dimensional vector spaces over the field F0. We

have two fibre functors over F0,

ωG : Rep(Galg
V )→ VecF0

, ωD : Rep(Galg
V )→ VecF0

which are defined by

ωG(α) = Vα ⊗
Q p

F0 , ωD(α) = Dα;



122 JOHN COATES, RAMDORAI SUJATHA, JEAN-PIERRE WINTENBERGER

we recall that Dα is the filtered (ϕ , N)-module attached by Fontaine’s theory to the
semistable Galois representation ρα. It is proven in [9, Proposition 2.8] that we can
identify Galg

Vα over F0 with the group of ⊗-automorphisms of ωG restricted to the
sub-category Rep(Galg

Vα ) of Rep(Galg
V ). We define Galg

D to be the algebraic group of
⊗-automorphisms of the fibre functor ωD. Let Galg

Dα denote the algebraic group of
⊗-automorphisms of ωD restricted to the sub-category Rep(Galg

Vα ). Both Galg
D and Galg

Dα

are defined over F0, and Galg
Dα is the image of Galg

D in GLDα .
Write =s for the affine algebraic variety of ⊗-isomorphisms from ωD to ωG, and

=sα for the variety of ⊗-isomorphisms from ωD and ωG restricted to Rep(Galg
Vα ). The

variety =sα is a right torsor under Galg
Dα , and a left torsor under Galg

Vα . Now the choice
of a point i in =s(Qp) gives, for each α, a point iα in =sα(Qp). This point iα gives rise
to an isomorphism

(20) ηiα : Dα⊗
F0

Qp '→ (Vα)Qp
= Vα ⊗

Q p

Qp

which induces an isomorphism of algebraic groups

Galg
Dα ×F0

Qp ' Galg
Vα ×Q p

Qp

and an isomorphism of Lie algebras

L(Galg
Dα )⊗

F0

Qp ' L(Galg
Vα )Qp

.

Moreover, a different choice of the point i has the effect of changing these two
isomorphisms by an inner automorphism of Galg

Dα (Qp) or an inner automorphism of

Galg
Vα (Qp).

For each α in Rep(Galg
V ), we recall that the associated Galois representation ρα

is semistable, and that the filtered (ϕ , N)-module Dα attached to ρα has the F0-auto-
morphism Φα = ϕ f

α. Thus the family of all Φα define an automorphism of the functor
ωD, and so we obtain a canonical element of Galg

D (F0), which we again denote by Φ.
Recalling the definition of logπ(Φ) given earlier, it follows that it belongs to the Lie
algebra L(Galg

D ) of the algebraic group Galg
D . Now fix any point i in =s(Qp), and let ηi

denote the isomorphism (20) for the tautological representation of Galg
V in GLV. We

define the endomorphism Xi of VQp
by

(21) Xi = ηi ◦ logπ(Φ) ◦ η−1
i .

As logπ(Φ) belongs to L(Galg
D ), it follows that Xi belongs to L(Galg

D )Qp
. Moreover, if

λ1, ..., λd denote the eigenvalues of Φ with multiplicities, it is clear that the eigenvalues
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of Xi with multiplicities are logπ(λ1), ..., logπ(λd). This construction of Xi completes the
first basic step in the proof of Theorem 3.1.

To finish the proof of Theorem 3.1, we must show that Xi belongs to the Lie
subalgebra L(GV)Qp

of L(Galg
V )Qp

. Here we make use of the representation α0 of Galg
V .

Let L(α0) be the map from L(Galg
V )Qp

to L(GLV0)Qp
induced by α0. In view of (19), it

suffices to show that

(22) L(α0)(Xi) ∈ L(GV0)Qp
.

Let i0 denote the point in =sα0 (Qp) arising from i. We have

(23) L(α0)(Xi) = ηi0 ◦ logπ(Φ0) ◦ η−1
i0

,

where Φ0 = ϕ f

0 comes from the filtered (ϕ , N)-module D0. Since the representation ρ0 of
GF is unramified, it is well-known that Φ0 fixes a lattice (see [13]). Hence Φ0 generates
a compact subgroup of GLD0(F0). Thus logπ(Φ0) = log(Φ0) is independent of the choice

of π. Moreover, GV0 is topologically generated by ρ0(Fr), and so Galg
V0

is abelian, whence

Galg
D0
×
F0

Qp is also abelian. In view of the remark made earlier, we see that the right

hand side of (23) does not depend on the choice of i in =s(Qp) nor on the choice
of π. In fact, we see that the right hand side of (23) is the same for any choice of i0
in =sα0 (M), where M is any extension field of F0. We now make a suitable choice of
M and i0, which will enable us to compute explicitly the right hand side of (23).

We will use the following lemma about Fontaine’s theory for arbitrary unramified
Galois representations ψ : GF → GL(W), where W is a Q p-vector space of finite
dimension. Let K denote the maximal unramified extension of Q p, and write K̂ for
the completion of K. In the following, GF acts on K̂ ⊗

Q p

W by τ(a⊗ w) = τ(a)⊗ τ(w) for

a in K̂ and w in W.

Lemma 3.4. — Assume that the Galois representation ψ is unramified. Consider the F0-

subspace of K̂ ⊗
Q p

W given by U = (K̂ ⊗
Q p

W)GF . Then W is crystalline in the sense of Fontaine

[13], [14] and the associated filtered (ϕ , N)-module is D(W) = U. Moreover, the F0-automorphism

ΦW = ϕ f

W of D(W) is given by

(24) β ◦ ΦW ◦ β−1 = ψ(Fr−1) ,

where Fr is the arithmetic Frobenius in GF/IF, and β : K̂⊗
F0

U '→ K̂ ⊗
Q p

W is the isomorphism

obtained by extending scalars on the F0-subspace U of W.
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Proof. — The fact that β is an isomorphism is, of course, not obvious, and we
refer to the Appendix of Chapter 3 of [25] for a proof. Also, K̂ is naturally included
in Fontaine’s ring Bcris, and so U is an F0-subspace of D(W) (see [13], [14]). But the
fact that β is an isomorphism shows that the F0-dimension of U must be equal to the
Q p-dimension of W, and hence D(W) = U. Let ϕB denote the action of Frobenius on
the Fontaine ring Bcris (see [13], [14]). We write σ for the arithmetic Frobenius in the
Galois group of K over Q p. The restriction of ϕB to K̂ is the arithmetic Frobenius σ.
Let 1W denote the identity map of W. By definition, ϕW is the restriction to U of the
map σ ⊗

Q p

1W. Hence the σ-linear extension σ ⊗
Q p

ϕW of ϕW to K̂⊗
F0

U satisfies

β ◦ (σ⊗
F0

ϕW) ◦ β−1 = σ ⊗
Q p

1W.

Raising both sides to the power f and extending ΦW linearly to the whole of K̂⊗
F0

U,

we conclude that

(25) β ◦ (σ f⊗
F0

1U) ◦ ΦW ◦ β−1 = σ f ⊗
Q p

1W.

As the restriction to K̂ of the action of GF on Bcris is the usual action, U is the
F0-subspace of K̂ ⊗

Q p

W fixed by the σ f-linear extension of ψ(Fr) to K̂ ⊗
Q p

W. Extending

ψ(Fr) linearly to K̂ ⊗
Q p

W, it follows that

(26) β ◦ (σ f⊗
F0

1U) ◦ β−1 = (σ f ⊗
Q p

1W) ◦ ψ(Fr).

The equation (24) follows on comparing (25) and (26). This completes the proof of
Lemma 3.4.

We can at last complete the proof of Theorem 3.1. We apply Lemma 3.4 to the
unramified Galois representation ρ0 of GF in V0. We have the isomorphism

(27) β0 : K̂⊗
F0

D0 ' K̂ ⊗
Q p

V0 ,

and the analogous isomorphisms for all the unramified Galois representations in the
Tannakian category generated by ρ0. Thus these isomorphisms define a point i0 in
=s0(K̂). On applying log to both sides of (24), we deduce from (23) that

(28) L(α0)(Xi) = log ρ0(Fr−1).

As the right hand side of (28) is clearly an element of L(GV0), the proof of Theorem
3.1 now follows from (19).
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We shall need the following lemma for the proof of Theorem 3.2. Recall that
ξ : GF → Z×p is the cyclotomic character.

Lemma 3.5. — Assume that V is a semistable representation, and let det : GF → Z×p be

its determinant character. Then the following statements are equivalent:

(i) The map det coincides on an open subgroup of GF with ξ−t, where t is given by (15).
(ii) If δ = δ(Φ) denotes the determinant of the endomorphism Φ = ϕ f of D(V), then

(29) logπ(δ) = logπ(qt) , where q = p f.

In particular, when t |= 0, these equivalent assertions imply that the image of det is infinite.

Proof. — Recall that d is the Q p-dimension of V, and put W = (ΛdV)(t). As the
restriction of the determinant character of GF to IF is equal to ξ−t, we see that W
is an unramified representation of GF of dimension 1 over Q p. Let ψ : GF → Q×p
denote the character giving the action of GF on W. We can compute ΦW in terms
of δ as follows. We have that D(W) = Z[−t], where Z = ΛdD(V), and Z[−t] means that
the automorphism ΦZ of Z is replaced by the automorphism q−tΦZ. Hence ΦW is
multiplication by δ.q−t, and we recall that δ.q−t is a p-adic unit. Now assertion (i) is
equivalent to saying that GF/IF acts on W via a finite quotient. Hence the arithmetic
Frobenius Fr in GF/IF must act on W via a root of unity, and therefore we have
ψ(Fr)n = 1 for some integer n. Applying Lemma 3.4 to W, we conclude that Φn

W = 1.
Hence (i) is equivalent to

δ.q−t = ζ ,

for some n-th root of unity ζ. The lemma is now obvious as logπ(ζ) = 0.

Proof of Theorem 3.2. — Assume now that the hypotheses of Theorem 3.2 hold for
V. Then λ1, ..., λd = δ, where δ is the determinant of Φ. By Theorem 3.1, there exists an
element X in L(GV)Qp

, whose characteristic polynomial has roots logπ(λ1) , ..., logπ(λd).
Recall that HV = GV ∩ SL(V), so that L(HV)Qp

consists of the elements of L(GV)Qp
of

trace zero. But, by Lemma 3.5,

(30) tr(X) =
d

Σ
i = 1

logπ(λi) = logπ(qt).

Hence, as t =
d

Σ
i = 1

ij, it suffices to find another element Y in L(GV)Qp
, whose characteristic

polynomial has roots

(31) logπ(λ1q−i1 ) , ..., logπ(λdq
−id ) ,
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for a suitable ordering of λ1 , ..., λd. Since V is semistable, it is of Hodge-Tate type (see
[28, §2]), and we now exploit this fact. Let C denote the completion of Qp. We consider
VC = C⊗Q p

V, endowed with the semilinear action of GF given by τ(c⊗v) = τ(c)⊗τ(v) for
all τ in GF, c in C, and v in V. For each m in Z, we write VC{m} for the F-subspace
of VC consisting of all v such that τ(v) = ξm(τ)v for τ in GF. Put VC(m) = C ⊗F VC{m},
again endowed with the semilinear action of GF. To say that V is of Hodge-Tate type
means that we have a direct sum decomposition

(32) VC = ⊕
m∈J

VC(m) ,

where J is some finite set of integers. It is well-known [13], [14, Theorem 3.8] that
the integers in J are the negatives of the distinct integers occuring in the sequence
of Hodge-Tate weights (14), and that the C-dimension of VC(m) is equal to the F-
dimension of Fil

−mD(V)F/Fil
−m+1D(V)F. Moreover, the direct sum decomposition (32)

allows us to define a homomorphism

(33) µ : Gm → Ialg
V ×

Q p

C

of algebraic groups over C, where, for c ∈ C×, µ(c) is the automorphism of VC given
by the formula

µ(c)(x) = cm x for all x in VC(m) (m ∈ J).

As is explained in [28, §1.5], the image of µ is contained in Ialg
V ×Q p

C.
As in the proof of Theorem 3.1, let =s denote the affine algebraic variety of

⊗-isomorphisms from the fibre functor ωD to the fibre functor ωG. Again, we fix a
point i in =s(Qp), and we write ηi for the isomorphism (20), when α is taken to be

the tautological representation of Galg
V in GLV. Put

(34) Ω = ηi ◦ Φ ◦ η−1
i ,

where Φ is given by (13). Thus Ω belongs to Galg
V (Qp). Now it is well-known [2,

Theorem 4.4] that there then exist commuting elements s and u in Galg
V (Qp) such that

s is semisimple, u is unipotent, and

(35) Ω = su = us.

Let Θ be the smallest algebraic subgroup (over Qp) which contains s. As s

is semisimple, Θ is a multiplicative group (see [10, Chap. IV, §3]). Let Θ0 be the
connected component of Θ so that Θ = Θ0×P, where P is a finite group. Suppose that
F′ is a finite extension of F such that the residue field extension has degree a multiple
of #P. Passing to the extension F′ and working with the Φ and s associated to F′, we
may clearly assume that the multiplicative group Θ is a torus.



ON THE EULER-POINCARÉ CHARACTERISTICS OF GALOIS REPRESENTATIONS 127

Let T denote a maximal torus in Galg
V ×Q p

Qp containing the torus Θ. Returning
to our homomorphism µ coming from p-adic Hodge theory, we choose a maximal
torus in Galg

V ×Q p
C containing the image of µ. But all maximal tori in Galg

V ×Q p
C

are conjugate [B, Prop. 11.3], and so there exists g in Galg
V (C) such that µ′ = gµg−1 has

image in T. Moreover, the induced map µ′ : Gm → T is necessarily defined over Qp

(see [2, Proposition 8.11]). Hence µ′(q) belongs to T(Qp).
We recall that we are seeking to construct an element in the Lie algebra L(GV)Qp

,
whose characteristic polynomial has the roots (31). To complete the proof, we use once
more the representation α0 of Galg

V in GLV0, whose kernel is precisely Ialg
V . The torus

T acts on Galg
V ×Q p

Qp and its normal subgroup Ialg
V ×Q p

Qp by inner automorphisms,

and so also on the quotient Galg
V0
×Q p

Qp. As Galg
V0
×Q p

Qp is abelian, T acts trivially on

it by inner automorphisms. Given an algebraic group M over Q p, let MQp
= M×Q p

Qp

denote its extension to Qp. For an algebraic group H defined over Qp we write Hu for
its unipotent radical [2, §11.21] and L(H)u for the corresponding Lie algebra. Now we
have the exact sequence of Lie algebras over Qp

0→ L( (Ialg
V )Qp

)u → L( (Galg
V )Qp

)u → L( (Galg
V0

)Qp
)u → 0

[2, Cor. 14.11]. The action of T on the algebraic groups induces the adjoint action of
T on the Lie algebras. We denote with the superscript T the maximal Lie subalgebras
on which T acts trivially. Then, since representations of a torus are semisimple, we
have the exact sequence

(36) 0→ L( (Ialg
V )Qp

)Tu → L( (Galg
V )Qp

)Tu → L( (Galg
V0

)Qp
)u → 0.

Here we have used the fact that T acts trivially on the Lie algebra L( (Galg
V0

)Qp
)u,

as GV0 is abelian. Let u0 be the image of u in (Galg
V0

)Qp
and let n′ be an element

in L( (Galg
V )Qp

)Tu which is a lift of log(u0). Consider the element u′ = exp(n′); clearly u′

commutes with elements of T. In particular, we have now arranged that the elements
µ′(q), s and u′ commute. It is plain that the roots of the characteristic polynomial of

Y = logπ(s.µ′(q).u′)

are as in (31). As X and Y have the same image in L(Galg
V0

)Qp
, by Theorem 3.1 and

(19), we conclude that Y lies in L(HV)Qp
, as required. This completes the proof of

Theorem 3.2.
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4. Applications

The main aim of this section is to show that the results of §3 apply to a large
class of motivic Galois representations V, thereby enabling us to show that V has
vanishing GV-cohomology. We continue with the notation of the previous sections, so
that ρ : GF → GLV is a p-adic Galois representation of F, with image GV; here, as
always, F denotes a finite extension of Q p. Further, HV = GV ∩ SL(V) and q = p f is
the cardinality of the residue field kF of F. Let w be an integer. Recall that a Weil
number of weight w (relative to q) is an algebraic number all of whose archimedean
absolute values are qw/2, and the v-adic absolute value is one for any non-archimedean
prime v, which does not divide p.

Suppose ρ : GF → GL(V) potentially crystalline and let w be an integer. Let us
define purity condition (Pw) for ρ. If ρ is crystalline, ρ satisfies (Pw) if the associated
endomorphism Φ of the filtered module D(V) (see (13)) has eigenvalues which are Weil
numbers of weight w. In general, we say that ρ satifies (Pw) if its restriction to GF′ does,
where F′ is a finite extension of F such that the restriction of ρ to GF′ is crystalline
(this definition does not depend on the choice of F′).

Proposition 4.1. — Assume that ρ : GF → GL(V) is a potentially crystalline Galois

representation and suppose that (Pw) holds for the representation V where w is a non-zero integer.

Then, for every GV-subquotient V′ of V, we have Hi(GV , V′) = Hi(GV′ , V′) = 0 for all i > 0.

Proof. — We choose the number “π” used to define logπ to be transcendental
over the rational field Q. The beauty of such a choice is that it guarantees that logπ(z)
is non-zero for every element z of Qp which is algebraic over Q, and which is not
a root of unity. We check that the strong Serre criterion holds for the representation
GV ⊂ GL(V). We can replace F by a finite extension and suppose that ρ is crystalline.
For any set

λ1 , ..., λi+1 , µ1 , ..., µi+1

of (2i + 1) eigenvalues of Φ, the product

λ1, ..., λi.µ
−1
1 , ..., µ−1

i+1

is a Weil number κ of weight w |= 0. Therefore κ is an algebraic number which is not
a root of unity, hence logπ(κ) |= 0. This implies, by Theorem 3.1, that there exists X
in the Lie algebra L(GV)Qp

which satisfies the strong Serre criterion. The proposition
now follows from Proposition 2.5.

Proposition 4.2. — Suppose that ρ : GF → GL(V) is a potentially crystalline Galois

representation and that (Pw) holds with w an odd integer. Suppose we are given a finite extension F′

of F such that the restriction ρ|F′ of ρ to GF′ is crystalline. Let Φ be the associated endomorphism of
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the filtered module associated to ρ|F′ . Suppose further that the determinant δ(Φ) of the endomorphism

Φ is a rational number. Then L(HV) ⊂ End(V) satisfies the strong Serre criterion. In particular, for

each subquotient V′ of V, we have χf (GV , V′) = 1 if GV has no element of order p.

Proof. — As before, we can suppose F = F′ and choose π transcendental. The
rational number δ(Φ) is a Weil number whose p-adic absolute value is the same as that
of qt, where t is given by (15). Therefore it must be equal to ±qt. Let Fr ∈ GF/IF be the
arithmetic Frobenius. It follows from Lemma 3.4 that Fr acts on the Tate twist Λd(V)(t)
via multiplication by ±1. Hence by Lemma 3.5, there exists an open subgroup of
GF on which the determinant character coincides with ξ−t, where ξ is the cyclotomic
character. Now assume (Pw) holds, with w odd. We have t = dw/2 and hence t |= 0. It
follows that the image of det(GV) is infinite. By Theorem 3.2, there exists an element
X1 in L(HV) whose eigenvalues are as in (31) where the integers ij are the Hodge-Tate
weights (cf. (14)). If (λ1 , ..., λj+1 , µ1 , ..., µj) is a family of 2j + 1 eigenvalues of X1, then
it is easily checked that λ1 + ... + λj+1 − µ1 − ... − µj is equal to logπ(κ), for κ a Weil
number of weight m/2, with m an odd integer. In particular logπ(κ) |= 0, and hence the
strong Serre criterion holds for the representation L(HV) ⊂ GL(V). The proposition
now follows from Theorem 2.4.

Remark 4.3. — If w is an integer and V is a potentially semistable representation
such that the eigenvalues of Φ are Weil numbers of weight w, then V is potentially
crystalline and therefore satisfies (Pw). We give a proof of this well-known statement.
Obviously the proof reduces to the case where V is semistable. We must show that the
endomorphism N of D(V) is equal to 0. We can clearly extend scalars on D(V) to Qp

and write W = D(V)Qp
. For each eigenvalue λ of Φ, and each integer n > 1, we put

E(λ , n) = Ker(Φ− λ)n.

Since W is a direct sum of such spaces E(λ , n) for suitable n, it suffices to show that
N vanishes on E(λ , n), and we now proceed to prove this by induction on n. If v

belongs to E(λ , 1), then v is an eigenvector for Φ with eigenvalue λ. As NΦ = qΦN, it
follows immediately that u = Nv satisfies Φ(u) = ru, where r = λ/q. But r does not have
complex absolute value equal to qw/2, and so we see that u = 0. Assuming that we have
already shown that N annihilates E(λ , n), take v to be any element of E(λ , n + 1). Thus
z = (Φ− λ)(v) belongs to E(λ , n), and so N(z) = 0. But, again using that NΦ = qΦN, we
obtain

0 = N(z) = qΦN(v)− λN(v)

and so we see that N(v) = 0, completing the argument.
The above propositions can be applied to a wide class of motivic Galois

representations. We list a few of them below; these will cover Theorems 1.1-1.7 stated
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in the introduction. By the above remark, the representations occuring in the examples
are necessarily potentially crystalline.

Examples 4.4

1) Let X be a smooth and proper scheme over F with potential good reduction.
Let i > 0 and j be integers. If i |= 2j, Proposition 4.1 applies to V = Hi

ét(XQp
, Q p( j ) ).

To see this, we may suppose that X has good reduction. Let X be a smooth proper
scheme over the ring of integers O F of F whose generic fibre is X. Denote by X0

the special fibre of X. Let F0 be the maximal unramified extension of Q p in F; it is
the fraction field of the ring of Witt vectors W of the residue field kF. The crystalline
cohomology groups Hi

cris(X0/W)⊗W F0 [1] possess a natural filtered ϕ-module structure,
which we call D. More precisely, it has an action of the Frobenius ϕ. One has an
isomorphism of Hi

cris(X0/W)⊗W F with the de Rham cohomology of X and the Hodge
filtration on the de Rham cohomology gives the filtration. By the Ccris conjecture
proved by Fontaine-Messing and Faltings (cf. [16]), the representation V is crystalline
and the associated filtered module D(V)F is canonically isomorphic to D.

It is known that crystalline cohomology is a Weil cohomology theory, hence the
purity results for crystalline cohomology imply that the eigenvalues of the Frobenius
automorphism Φ are Weil numbers with complex absolute value qi/2 (the eigenvalues
are the same as for l-adic étale cohomology groups, l |= p). When X is projective, this
follows from results of Katz-Messing [18] and for X proper it is a consequence of
results of Chiarellotto-Le Stum [5]. Furthermore, as the characteristic polynomial of Φ
has rational coefficients, we can apply Proposition 4.2 when i is odd and GV has no
element of order p.

Let V′ be a subrepresentation of V. If i is odd and GV′ has no element of
order p, we can apply Proposition 4.2 to V′ and prove that χf (GV′ , V′) = 1 provided
we know that the determinant of the Frobenius Φ′ on D(V′) is rational. We mention
one particular case, as it is closely related to motives arising from modular forms. Let z

be a correspondence of degree zero on X, i.e. z is a Q-linear combination of cycles
of dimension equal to the dimension of X in X ×F X modulo rational equivalence.
Suppose that the p-adic étale class cét(z) induces a projector on V = Hi

ét(XQp
, Q p( j ) ) and

let V′ = cét(z)(V). Let us prove that the determinant of the Frobenius Φ′ is rational. The
correspondence z comes from a pullback of a correspondence z on X, whose pullback
z0 to the special fibre X0 is the specialisation of z. Let ccris(z0) be the crystalline class
of z0 [15]. It is known that ccris(z0) corresponds to cét(z) in the p-adic comparison
theorem [12, Lemma 5.1]. Thus we have D(V′) = ccris(z0)(Hi

cris( (X0/W)⊗W F)( j ) ). As in
[18, §3], the purity results of [18] and [5] imply that the projection from the whole
crystalline cohomology H∗cris(X0/W) ⊗W F of X0 to Hi

cris(X0/W) ⊗W F is given by the
class of a correspondence on X0, which is in fact a polynomial in the Frobenius Φ
with coefficients in Q. Furthermore, one knows that crystalline cohomology is a Weil
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cohomology theory in the strong sense [15]. Therefore the Lefschetz trace formula
implies that the characteristic polynomial of Φ′ on D(V′) has rational coefficients
(which are in fact integral if j = 0), and hence the determinant δ(Φ′) is a rational
number. Thus our claim that χf (GV′ , V′) = 1 is established.

2) Let A/F be an abelian variety of dimension g and

Tp(A) = lim←− Apn , Vp(A) = Tp(A)⊗
Zp

Q p.

Then V = Vp(A) is a Q p-vector space of dimension 2g. There is the natural Galois
representation ρ : GF → GL(V) and we let GV denote the image, as before.
The representation V is dual to the representation induced by H1

ét(A ×F F, Q p). It
is potentially semistable always and potentially crystalline if A has potential good
reduction. Assume that A has potential good reduction over F. Then V has vanishing
GV-cohomology and χf (GV , V) = 1 whenever GV has no element of order p. There is
a “natural” GF-invariant subspace W of V = Vp(A) defined as follows: W is the GF-
invariant Q p-subspace of V of minimal dimension such that some open subgroup of
finite index of the inertia group IF, acts trivially on V/W. It can be checked that W
exists and is unique (cf. [6, p. 150]). Let C be the image of W in Ap∞ . If A has good

reduction over F, W is none other than V̂ = Vp(Â), where Â is the formal group over

O F, C = Âp∞ , and the quotient V/W is the Galois module ~V = Vp(
~A) associated to the

reduced abelian variety ~A. Applying Theorem 2.6, we can conclude that both W and
V/W have vanishing GV-cohomology and χf (GV , C) = 1 = χf (GV , Ap∞/C) whenever GV

has no element of order p and A has potential good reduction.

3) Let K be a finite extension of Q. As for the proof of Theorem 1.7, let DV be
the image of the Galois representation restricted to the decomposition group. Then by
the above results, the representations restricted to DV satisfy the strong Serre criterion.
It suffices to observe that therefore the original representation of GV satisfies the strong
Serre criterion. Further, the image of the determinant character is clearly infinite, and
HV satisifes the strong Serre criterion too. Hence Theorem 1.7 follows from Theorem
2.6.

Remark 4.5 — Observe that in Example 4.4 1), we can show that χf (GV , V), when
defined, is equal to 1 only for the cohomology representations V with odd degree i.
When i is an even positive integer, a similar result would hold by our result on the
vanishing of cohomology in conjunction with a theorem of Totaro (see [34, Theorem
0.1]), if one knew that the dimension of the centraliser of every element in the Lie
algebra L(GV) has dimension at least 2.

We state a more general theorem below. As before let ρ : GF → GL(V)
be a potentially semistable representation with image GV and let Galg

V be its Zariski
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closure in GLV. Given a linear representation α of the algebraic group Galg
V in a finite

dimensional Q p-vector space V′, and composing ρ with the morphism

Galg
V → GL(V′)

induced by α, we obtain a p-adic Galois representation ρ′ : GF → GL(V′), which is
again potentially semistable (resp. potentially crystalline if V is potentially crystalline).
As before, the proof of the theorem below reduces to the case when the representation
is crystalline.

Theorem 4.6. Let w, w′ be two integers. Suppose that the representations ρ and ρ′ satisfy

condition (Pw) and (Pw′ ) respectively, where, as explained above ρ′ comes from any representation of

the algebraic group Galg
V in a finite dimensional Q p-vector space V′. Then:

(i) If w′ |= 0, V′ has vanishing GV-cohomology.

(ii) Suppose that w′ is odd and the determinant δ(Φ) of the endomorphism Φ of D(V) is

equal to qt.ε, where t is given by (15) and ε is a root of unity. If GV has no element of order p,

and T′ ⊂ V′ is a Zp-lattice stable under GV, then χf (GV , V′/T′) = 1.

Proof. — Let Φ′ be the associated endomorphism of the filtered module D(V′).
We claim that the eigenvalues of Φ′ are products of eigenvalues of Φ. Indeed, let M
be a torus over an algebraically closed field, W a faithful representation of M and W′

another representation of M. As W is faithful, the characters χi of M in W generate
the character group of M. Given a character χ′ of M in W′ therefore, χ′ can be
written as a finite product

∏
i

χ
ni

i , ni ∈ Z. Hence, given an element m of M, we have

χ′(m) =
∏

i

χ
ni

i (m), and thus the eigenvalues of m in W′ are products of the eigenvalues

of m in W. Let s and s′ denote respectively the semisimple components of Φ and Φ′.
The claim now follows on considering, as in the proof of Theorem 3.2, an element
which is a power of Φ and a torus M in Galg

V containing s, and noting that s′ is the
image of s under the composite

M ⊂ Galg
V → GL(V′).

Let GV′ be the image of ρ′, GV′ is a quotient of GV. Applying Theorem 3.1,
we therefore obtain elements X and X′ respectively in the Lie algebras L(GV)Qp

and
L(GV′ )Qp

whose eigenvalues are logarithms of the eigenvalues of Φ and Φ′ respectively.
Now, the discussion above allows us to deduce that the eigenvalues of Φ in V′ are
products of eigenvalues of Φ′ in V′. Thus if w′ is not zero, w is also non-zero and
hence one checks that the element X satisifes Serre’s criterion in the representation
L(GV)→ End(V′). Assertion (i) now follows from Lemma 2.2.
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As before, let HV = GV ∩ SL(V). We have the natural representation

(37) L(HV)→ End(V′)

induced by ρ′. The hypothesis of (ii) along with Lemma 3.5 imply that Theorem 3.2
can be applied to V and V′. We argue as in the proof of (i), noting that w′ odd
implies w odd. One then checks (cf. proof of Proposition 4.2) that the representation
(37) satisfies Serre’s criterion and therefore V′ has vanishing HV-cohomology. Using
the Hochschild-Serre spectral sequence as in the proof of Theorem 2.4, assertion (ii)
follows. This completes the proof of Theorem 4.6.

We give an interesting application of the above theorem. The examples consid-
ered above in 4.4 are all of algebraic varieties with potential good reduction. In the
case of an arbitrary abelian variety A over F, it is known that V = Vp(A) is potentially
semistable. But even in the case of elliptic curves with potential multiplicative reduction,
any element in the Lie algebra L(GV) has at least one eigenvalue zero [25, Appendix].
Thus the methods of this paper fail as Serre’s criterion cannot be applied. Indeed,
as mentioned in the introduction, it is not true that V has vanishing GV-cohomology
for arbitrary abelian varieties A over F. Nevertheless, we now show that our methods
give a partial description of the Lie algebra L(GV) as a semidirect product of certain
Lie subalgebras. Recall that, for every abelian variety A over F, there is a canonical
filtration of V by subrepresentations [22, Exposé 1]

(38) W−2(V) ⊂W−1(V) ⊂ V;

here there is a finite unramified extension F′ of F such that the absolute Galois group
GF′ acts on W−2(V) via the cyclotomic character, and on the quotient V/W−1(V) via
the trivial character. Moreover, the one remaining quotient W−1(V)/W−2(V) can be
explained as follows [22, Exposé 9, §7]. There exists a second abelian variety Ar

over F with good reduction such that there is a canonical Galois isomorphism from
W−1(V)/W−2(V) to Vp(Ar). Let Gr denote the image of the Galois representation

ρr : GF → GL(Vp(Ar) ).

We write L(GV) and L(Gr) respectively for the Lie algebras of GV and Gr. The natural
surjection of GV onto Gr induces a surjection

πr : L(GV)→ L(Gr)

and we denote its kernel by N. As N = Nalg ∩ L(GV), and Nalg is the kernel of
the natural map L(Galg

V ) → L(Galg
r ), N is an ideal in L(Galg

V ). Recall that a special
automorphism of a Lie algebra is an automorphism of the form exp(adX) [3, Chap.
1, §6.8], where X is in the nilpotent radical of the Lie algebra.
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Proposition 4.7. — Let A be an arbitrary abelian variety defined over a finite extension F of

Q p, and let V = Vp(A). Let Ar be the abelian variety over F with good reduction, which is attached

as explained above, to the canonical filtration (38) of the Galois module V. Let GV and Gr denote

the respective images of GF in GL(V) and GL(Vp(Ar) ). Then the natural surjection πr from L(GV)
onto L(Gr) has a section, and L(GV) is the semidirect product of L(Gr) and the kernel N of πr.

Moreover, the section of πr is unique up to a special automorphism of L(GV).

Proof. — The filtration (38) induces a filtration on N which we denote by

(39) W−2(N) ⊂W−1(N) = N ,

where W−2(N) consists of all elements X in L(GV) such that X(V) ⊂ W−2(V) and
X(W−1(V) ) = 0. This filtration is stable under the adjoint representation of L(GV) and
L(Galg

V ). For U equal to either V or N, we define

gri(U) = Wi(U)/W(i−1)(U) i = 0, − 1, − 2,

where it is understood that W−3(U) = 0. Now the representation gri(V) satisfies the
purity condition (Pw) with w = i for i = 0, − 1, − 2. Since we have inclusions

gri(N) ⊂ ⊕
j

Hom(gr j(V), gri+j(V) ) ,

it follows that the representations gri(N) satisfy (Pw) for w = i, with i = − 1 and −2.
Hence we can apply Theorem 4.6 to the adjoint representation of L(Gr) on N/W−2(N)
and W−2(N). As the filtration (39) is stable under the adjoint representation of L(Galg

V ),
we can conclude from assertion (i) of Theorem 4.6 that Hk(L(Gr) , N/W−2(N) ) and
Hk(L(Gr) , W−2(N) ) are trivial for all k > 0. In particular, it is trivial for k = 2. But
H2(L(Gr) , N/W−2(N) ) classifies the set of equivalence classes of extensions of L(Gr)
by N/W−2(N) (cf. [4, Theorem 26.1]). Therefore, we see that L(GV)/W−2(N) is a
semidirect product of L(Gr) and N/W−2(N). Denote by N0 the inverse image in
L(GV) of s0(L(Gr) ) where s0 is a section in the above semidirect product. Then as
H2(L(Gr) , W−2(N) ) = 0, the extension

0→W−2(N)→ N0 → L(Gr)→ 0

is a semidirect product. This implies that L(GV) is a semidirect product of N and
L(Gr). The uniqueness of the section up to special automorphisms now follows from
the vanishing of the corresponding H1-cohomology groups and this completes the proof
of the proposition.

We close this section by proving Theorem 1.8.

Proof of Theorem 1.8. — The proof is entirely analogous to the classical case.
We first observe that the hypotheses along with Theorem 3.1 gives an element in
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L(GV) whose eigenvalues are the logarithms of the eigenvalues of the Frobenius Φ. As
the representation is potentially crystalline, the purity condition (Pw) holds with w |= 0.
Arguing as in [27, 2.3], we see that this is sufficient to guarantee the inclusion of the
homotheties in the algebraic envelope L(Galg

V ).

5. Elliptic curves

In this section, we complete the proof that χf (GV , Ap∞ ) = 1 for all elliptic curves
A over F, where, as always, F denotes a finite extension of Q p. We also discuss some
interesting results about the Euler characteristic χf (GV , Ap∞ (n) ), when A is an elliptic
curve over F with split multiplicative reduction and n is any integer not equal to ±1,
which were first remarked to us by B. Totaro.

We assume for the rest of this section that F is a finite extension of Q p, and
that A is an elliptic curve defined over F with non-integral j-invariant (in other
words, A does not have potential good reduction over F). We consider the Galois
representation V = Vp(A), and again write GV for the image of the Galois group GF

in the automorphism group of V. We observe that if p |= 2, the group GV has no
p-torsion. This follows from the fact that GV can then be represented as a subgroup
of the upper triangular matrices in GL2(Zp). We shall prove the following two results.

Theorem 5.1. — Let A be an elliptic curve defined over F, with non-integral j-invariant.

Then V = Vp(A) has vanishing GV-cohomology. Moreover, if GV has no element of order p, then

χf (GV , Ap∞ ) = 1.

If M is a Zp-module on which GF acts, and n is any integer, we define the Tate
twist as usual, by

M(n) = M⊗Zp
Zp(n) ,

endowed with the natural GF-action. Put Ω = Q p/Zp, endowed with the trivial action
of GF, and denote its n-th Tate twist Q p/Zp(n) by Ω(n).

Theorem 5.2. — Let A be an elliptic curve which has split multiplicative reduction over F.

Let n be any integer not equal to 1 or −1. Then, if V = Vp(A), V(n) has vanishing GV-cohomology.

Moreover, if GV has no element of order p, then

(40) χf (GV , Ap∞ (n) ) = # Ω(n + 1)(F)/# Ω(n− 1)(F).

We are very grateful to B. Totaro for pointing out Theorem 5.2 to us when
n |= 0. Indeed, the representation V in Theorem 5.2 is one of the simplest cases in
which GV is a p-adic Lie group of dimension 2, [25, Appendix A.1] but in which
there exists an element in the Lie algebra L(GV) whose centralizer has dimension 1.
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This is precisely the situation in which Totaro’s general method [34] for proving the
Euler characteristic is 1 breaks down. But, as Totaro explained to us, his arguments
in [34, Proof of Theorem 7.4] work beautifully to calculate the Euler characteristic
in this exceptional case, and give precisely the result (40) when F is replaced by a
suitably large finite extension. We do not use Totaro’s method here, but instead prove
Theorem 5.2 by direct arguments with Tate curves, as in the proof of Theorem 5.1.

Assume that µp ⊂ F if p is odd, and µ4 is contained in F if p = 2. Then F(µpr ) is
a cyclic extension of F of p-power order for all r > 1, and it follows easily that

(41) # Ω(n)(F) = # Ω(1)(F)pordp(n) (n |= 0).

Hence we obtain the following corollary of Theorem 5.2.

Corollary 5.3. — In addition to the hypotheses of Theorem 5.2, assume that µp ⊂ F if p is

odd, and µ4 ⊂ F if p = 2. Then, for all integers n |= ± 1, we have

(42) χf (GV , Ap∞ (n) ) = pordp(n+1)−ordp(n−1).

In particular, by choosing n appropriately, we obtain examples of representations
where the Euler characteristic is either a strictly positive or a strictly negative power
of p, even though the associated motives have odd weight. This illustrates the completely
new phenomena which arise if one seeks to extend Theorem 1.3 to algebraic varieties
which do not have potential good reduction.

We now turn to the proofs of Theorem 5.1 and 5.2, beginning with a well-known
lemma.

Lemma 5.4. — Assume that GV has no element of order p. If r is any integer such that

H2(GV , Ap∞ (r) ) is finite, then H2(GV , Ap∞ (r) ) = 0.

Proof. — We choose n so large that pn kills H2(GV , Ap∞ (r) ). Taking GV-
cohomology of the exact sequence

0→ Apn (r)→ Ap∞ (r)
pn

→ Ap∞ (r)→ 0,

we obtain the exact sequence

(43) H2(GV , Ap∞ (r) )
pn

→ H2(GV , Ap∞ (r) )→ H3(GV , Apn (r) ).

Now the group on the right of (43) is zero because GV has p-cohomological dimension
equal to 2 as dimension GV is 2 and we are assuming that GV has no elements of
order p. The image of the map on the left of (43) is zero by our choice of n. Hence
(43) gives H2(GV , Ap∞ (r) ) = 0, as required.
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We now prove Theorems 5.1 and 5.2, beginning first with the proof of
Theorem 5.2.

Proof of Theorem 5.2. — We assume for this proof that A has split multiplicative
reduction over F, and so is isomorphic over F to a Tate curve with p-adic period qA

[31, Chap. V, §5]. Put

F∞ = F(Ap∞ ) , H∞ = F(µp∞ ).

We can then identify GV with the Galois group of F∞ over F, and we define

H = G(F∞/H∞) , G = G(H∞/F).

We have the diagram of fields:

Now the theory of the Tate curve shows that F∞ is obtained by adjoining to H∞ the
pn-th roots (n = 1, 2, ...) of qA. Hence, by multiplicative Kummer theory, we have an
isomorphism of G -modules

(44) H '→ Hom( J, µp∞ ) ,

where J is the image in H×∞ ⊗ Q p/Zp of the tensor product with Q p/Zp of the
subgroup q

Z
A of H×∞. Since qA lies in F, it follows immediately from (44) that we have

an isomorphism of G -modules

(45) H '→ Zp(1).

Now, as A is a Tate curve over F, we have the exact sequence of GF-modules

0→ µp∞ → Ap∞ → Ω→ 0.

For each integer n, this gives rise to the exact sequence

(46) 0→ Ω(n + 1)→ Ap∞ (n)→ Ω(n)→ 0.

Now H is isomorphic to Zp as an abelian group, and hence H has p-cohomological
dimension equal to 1. Taking H-cohomology of (46), and recalling that from
multiplicative Kummer theory, the connecting map from Ω to H1(H , µp∞ ), whence
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also the connecting map from Ω(n) to H1(H , Ω(n+1) ), are isomorphisms, we conclude
that

(47) H0(H , Ap∞ (n) ) = Ω(n + 1), H1(H , Ap∞ (n) ) = H1(H , Ω(n) ) ,

and that Hi(H , Ap∞ (n) ) = 0 for i > 2. Since H acts trivially on Ω(n), it follows from
(45) that

(48) H1(H , Ap∞ (n) ) = Hom(H , Ω(n) ) = Ω(n− 1).

We need the following folkloric lemma, whose proof we include for completeness.

Lemma 5.5. — Let F be a finite extension of Q p, and put H∞ = F(µp∞ ). Write

G = G(H∞/F). Let r be a non-zero integer. Then Hi(G , Ω(r) ) is finite for all i > 0, and

# Hi(G , Ω(r) ) = # Hi+1(G , Ω(r) )

for all integers i > 1.

Proof. — We have G = ∆ × Γ, where Γ is isomorphic to Zp, and ∆ is a cyclic
group (in fact, ∆ has order prime to p, unless p = 2 and µ4 is not contained in F).
Since r |= 0, we claim that

(49) Hi(Γ , Ω(r) ) = 0 for all i > 1.

This is automatically true for i > 2, since Γ has p-cohomological dimension equal to 1.
For i = 1, we have

H1(Γ , Ω(r) ) = Ω(r)/(γ− 1)Ω(r) ,

where γ denotes any topological generator of Γ. But, as r |= 0, γ − 1 is surjective on
Q p(r), and therefore also surjective on Ω(r) = Q p(r)/Zp(r), proving (49) for i = 1. In view
of (49), and the Hochschild-Serre spectral sequence where we view ∆ as a quotient of
G , we immediately get

(50) Hi(G , Ω(r) ) = Hi(∆ , B) (i > 0),

where B = H0(Γ , Ω(r) ). But B is clearly finite because r |= 0, and so we deduce that the
Hi(G , Ω(r) ) are finite for all r > 0. Moreover, as ∆ is cyclic and B is finite, we know
that Hi(∆ , B) and Hi+1(∆ , B) have the same order for all i > 1. In view of (50), this
proves the second assertion of Lemma 5.5.

We can now complete the proof of Theorem 5.2. We claim that Lemma 5.5
implies that Hi(GV , Ap∞ (n) ) is finite for all n |= ± 1. Indeed, since Hi(H , Ap∞ (n) ) = 0
for i > 2, the Hochschild-Serre spectral sequence gives, in view of (47) and (48), the
exact sequence

(51) Hi(G , Ω(n + 1) )→ Hi(GV , Ap∞ (n) )→ Hi−1(G , Ω(n− 1) ) (i > 2).
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When i = 1, (47) and (48) show that (51) remains exact by the usual inflation-restriction
sequence. Hence Lemma 5.5 proves that the Hi(GV , Ap∞ (n) ) are finite for all i > 0.

Suppose now that GV has no element of order p, so that GV has p-
cohomological dimension equal to 2. Since H2(GV , Ap∞ (n) ) is finite, Lemma 5.4 shows
that H2(GV , Ap∞ (n) ) = 0. Thus the usual inflation-restriction exact sequence, together
with (47) and (48), yields the exact sequence

(52)
0→ H1(G , Ω(n + 1) )→ H1(GV , Ap∞ (n) )→

H0(G , Ω(n− 1) )→ H2(G , Ω(n + 1) )→ 0.

In view of Lemma 5.5, we conclude that

(53) # H1(GV , Ap∞ (n) ) = # H0(G , Ω(n− 1) ).

Combining (53) with the fact that (47) gives

(54) # H0(GV , Ap∞ (n) ) = # H0(G , Ω(n + 1) ) ,

and the proof of Theorem 5.2 is now complete.

Proof of Theorem 5.1. — We shall use the following standard notation. Let M be
a GF-module. If L is an algebraic extension of F, we write

M(L) = H0(G(Qp/L), M).

Suppose that $ : GF → µ2 is a continuous homomorphism. Then M($) will denote
the twist of M by $, i.e. M($) is the same underlying abelian group as M, but
with the new action of GF given by σ ◦ m =$(σ)σ(m), where σ(m) denotes the original
action of σ in GF on m. Suppose first that A has split multiplicative reduction over F.
Then Theorem 5.2 with n = 0 implies Theorem 5.1 because, in this case, Ω(1)(F) and
Ω(−1)(F) are clearly dual finite abelian groups. Hence they have the same order, and so
χf (GV , Ap∞ ) = 1. Assume for the rest of this section that A has potential multiplicative
reduction over F. Then, by the theory of the Tate curve, (see [31, Chap. V, Lemma
5.2]), there exists a quadratic extension K of F such that A is isomorphic over K
to a Tate curve. Let $ be the homomorphism from GF to µ2 corresponding to the
quadratic extension K over F. The theory of the Tate curve shows that we then have
the exact sequence of GF-modules

(55) 0→ Ω(1)($)→ Ap∞ → Ω($)→ 0.

In particular, (55) shows that K is contained in F∞ = F(Ap∞ ), because $(G(Qp/F∞) ) = 1
since Ω($) is a quotient of Ap∞ .

We now define

L∞ = K(µp∞ ) , H = G(F∞/L∞) , G = G(L∞/F).
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We have the diagram of fields:

Since A is defined over F, its j-invariant lies inside F, and thus the Tate period qA

of A over K actually lies in F rather than K. Hence, just as in the proof of (45),
multiplicative Kummer theory shows that again H ' Zp(1) as a G -module, where
we stress that G now denotes the Galois group of L∞ = K(µp∞ ) over F. Taking H-
cohomology of the exact sequence (55), an entirely similar argument as before shows
that

(56)
H0(H , Ap∞ ) = Ω(1)($) , H1(H , Ap∞ ) = Ω(−1)($) ,
Hi(H , Ap∞ ) = 0 (i > 2).

Lemma 5.6. — Let L∞ = K(µp∞ ), and put G = G(L∞/F). Let r be a non-zero integer.

Then Hi(G , Ω(r)($) ) is finite for all integers i > 0.

Proof. — We now have G = D× Γ, where Γ = D× Γ, where Γ is isomorphic to
Zp, and D = G(K(µ2p)/F). Unlike the proof of Lemma 5.5, D will not now generally
be a cyclic group. However, since r |= 0, exactly the same argument as in the proof of
Lemma 5.5 shows that

(57) Hi(Γ , Ω(r)($) ) = 0 (i > 1).

Hence we again obtain from the Hochschild-Serre spectral sequence that

(58) Hi(G , Ω(r)($) ) = Hi(D, B),

where now B = H0(Γ , Ω(r)($) ). But B is finite, and the assertion of the lemma is now
clear.

We continue with the proof of the theorem. Assume from now on that GV has
no element of order p, so that GV has p-cohomological dimension equal to 2. Since
H2(GV , Ap∞ ) is finite, Lemma 5.4 shows that H2(GV , Ap∞ ) = 0. The argument now
breaks up into two cases.
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Case 1. — Assume that either p is odd or p = 2 and K = F(µ4). We claim that in
this case, we have

(59) # H1(G , Ω(1)($) ) = # H2(G , Ω(1)($) ).

If p is odd, this is immediate from (58), since D is of order prime to p, and so both
groups have order 1. If p = 2 and K = F(µ4), then D is a cyclic group of order 2. But,
as D is cyclic and B is finite, we have that H1(D, B) and H2(D, B) have the same
order, and so again (58) implies (59). Once we have (59), we can complete the proof
of Theorem 5.1 in exactly the same way as that of Theorem 5.2. Again, using (56)
and the fact that H2(GV , Ap∞ ) = 0, we obtain the exact sequence

0→ H1(G , Ω(1)($) )→ H1(GV , Ap∞ )→
H0(G , Ω(−1)($) )→ H2(G , Ω(1)($) )→ 0.

Hence, in view of (59),

# H1(GV , Ap∞ ) = # H0(G , Ω(−1)($) ).

Also, (56) gives

# H0(GV , Ap∞ ) = # H0(G , Ω(1)($) ).

But since $−1 =$ , Ω(−1)($)(F) and Ω(1)($)(F) are dual finite abelian groups, and
hence they have the same order. Thus χf (GV , Ap∞ ) = 1 in this case.

Case 2. Assume that p = 2 and K |= F(µ4), so that D = G(K(µ4)/F) is a product
of two cyclic groups of order 2. Our earlier argument to prove (59) breaks down in
this case, and we proceed as follows. Since Ω(1)($)(F) = Z/2, it follows from the first
equation in (56) that

(60) H0(GV , A2∞ ) = Z/2.

To prove the analogous statement for H1(GV , A2∞ ), we first consider

G′V = G(F∞/K), G
′ = G(K(µ2∞ )/K).

By the definition of K, A has split multiplicative reduction over K, and hence (52)
holds for A over K. In particular, when n = 0, this gives the exact sequence

(61)
0→ H1(G ′, Ω(1)($) )→ H1(G′V , A2∞ )

→ H0(G ′, Ω(−1)($) )→ H2(G ′, Ω(1)($) )→ 0.

Put ∆′ = G(K(µ4)/K), so that G ′ = ∆′ × Γ. Applying Lemma 5.5 to the extension
K(µ2∞ )/K, (50) gives, for r = ± 1, that the non-trivial element of the cyclic group ∆′
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of order 2 acts on B by −1. Hence it follows that

(62) Hi(G ′, Ω(r)($) ) = Z/2 (i > 0, r = ± 1).

It follows immediately from (61) that

(63) H1(G′V , A2∞ ) = Z/2.

But, as H2(GV , A2∞ ) = 0, we have the inflation-restriction sequence

(64)
0→ H1(∆ , A2∞ (F′) )→ H1(GV , A2∞ )

→ H1(G′V , A2∞ ) → H2(∆ , A2∞ (F′) )→ 0,

where ∆ = G(K/F). Now A2∞ (F′) = Z/2 and ∆ is of order 2, whence we conclude from
(63) and (64) that

(65) H1(GV , A2∞ ) = Z/2.

Hence (60) and (65) show that χf (GV , A2∞ ) = 1 in this case. The proof of Theorem 5.1
is now complete.
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