Every bounded convex open set of is endowed with its Hilbert metric . We give a necessary and sufficient condition, called quasisymmetric convexity, for this metric space to be hyperbolic. As a corollary, when the boundary is real analytic, is always hyperbolic. In dimension 2, this condition is: in affine coordinates, the boundary is locally the graph of a C strictly convex function whose derivative is quasisymmetric.
@article{PMIHES_2003__97__181_0, author = {Benoist, Yves}, title = {Convexes hyperboliques et fonctions quasisym\'etriques}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {181--237}, publisher = {Springer}, volume = {97}, year = {2003}, doi = {10.1007/s10240-003-0012-4}, mrnumber = {2010741}, zbl = {1049.53027}, language = {fr}, url = {http://archive.numdam.org/articles/10.1007/s10240-003-0012-4/} }
TY - JOUR AU - Benoist, Yves TI - Convexes hyperboliques et fonctions quasisymétriques JO - Publications Mathématiques de l'IHÉS PY - 2003 SP - 181 EP - 237 VL - 97 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-003-0012-4/ DO - 10.1007/s10240-003-0012-4 LA - fr ID - PMIHES_2003__97__181_0 ER -
Benoist, Yves. Convexes hyperboliques et fonctions quasisymétriques. Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 181-237. doi : 10.1007/s10240-003-0012-4. http://archive.numdam.org/articles/10.1007/s10240-003-0012-4/
1. Lectures on quasiconformal mappings, Wadthworth (1966). | MR | Zbl
,2. The boundary correspondance under quasiconformal mappings, Acta Math. 96 (1956) 125-142. | MR | Zbl
, ,3. Convexes divisibles I, preprint (2001) et Comp. Rend. Ac. Sc. 332 (2001), 387-390. | MR | Zbl
,4. Sur les variétés localement affines et localement projectives, Bull. Soc. Math. Fr. 88 (1960), 229-332. | Numdam | MR | Zbl
,5. Semianalytic and subanalytics sets, Publ. IHES 67 (1988), 5-42. | Numdam | MR | Zbl
, ,6. Analysis on symmetric cones, Oxford Math. Mono. (1994). | MR | Zbl
, ,7. Sur les groupes hyperboliques d'après Mikhael Gromov, PM 83, Birkhäuser (1990). | Zbl
, ,8. W. Goldman, Projective Geometry, Notes de cours a Maryland (1988).
9. Hyperbolic groups, in “Essays in group theory”, MSRI Publ. 8 (1987), 75-263. | Zbl
,10. Extremum problem with inequalities as subsidiary conditions, Courant anniversary volume (1948), 187-204. | MR | Zbl
,11. The Hilbert metric and Gromov hyperbolicity, l'Ens. Math. 48 (2002), 73-89. | Zbl
, ,12. Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 1 (1983), 193-260. | MR | Zbl
,Cité par Sources :