Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants
Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 61-179.

A holomorphic 1-form on a compact Riemann surface S naturally defines a flat metric on S with cone-type singularities. We present the following surprising phenomenon: having found a geodesic segment (saddle connection) joining a pair of conical points one can find with a nonzero probability another saddle connection on S having the same direction and the same length as the initial one. A similar phenomenon is valid for the families of parallel closed geodesics. We give a complete description of all possible configurations of parallel saddle connections (and of families of parallel closed geodesics) which might be found on a generic flat surface S. We count the number of saddle connections of length less than L on a generic flat surface S; we also count the number of admissible configurations of pairs (triples,...) of saddle connections; we count the analogous numbers of configurations of families of closed geodesics. By the previous result of [EMa] these numbers have quadratic asymptotics c·(πL2). Here we explicitly compute the constant c for a configuration of every type. The constant c is found from a Siegel-Veech formula. To perform this computation we elaborate the detailed description of the principal part of the boundary of the moduli space of holomorphic 1-forms and we find the numerical value of the normalized volume of the tubular neighborhood of the boundary. We use this for evaluation of integrals over the moduli space.

@article{PMIHES_2003__97__61_0,
     author = {Eskin, Alex and Masur, Howard and Zorich, Anton},
     title = {Moduli spaces of abelian differentials : the principal boundary, counting problems, and the {Siegel-Veech} constants},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     pages = {61--179},
     publisher = {Springer},
     volume = {97},
     year = {2003},
     doi = {10.1007/s10240-003-0015-1},
     zbl = {1037.32013},
     language = {en},
     url = {https://www.numdam.org/articles/10.1007/s10240-003-0015-1/}
}
TY  - JOUR
AU  - Eskin, Alex
AU  - Masur, Howard
AU  - Zorich, Anton
TI  - Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants
JO  - Publications Mathématiques de l'IHÉS
PY  - 2003
SP  - 61
EP  - 179
VL  - 97
PB  - Springer
UR  - https://www.numdam.org/articles/10.1007/s10240-003-0015-1/
DO  - 10.1007/s10240-003-0015-1
LA  - en
ID  - PMIHES_2003__97__61_0
ER  - 
%0 Journal Article
%A Eskin, Alex
%A Masur, Howard
%A Zorich, Anton
%T Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants
%J Publications Mathématiques de l'IHÉS
%D 2003
%P 61-179
%V 97
%I Springer
%U https://www.numdam.org/articles/10.1007/s10240-003-0015-1/
%R 10.1007/s10240-003-0015-1
%G en
%F PMIHES_2003__97__61_0
Eskin, Alex; Masur, Howard; Zorich, Anton. Moduli spaces of abelian differentials : the principal boundary, counting problems, and the Siegel-Veech constants. Publications Mathématiques de l'IHÉS, Tome 97 (2003), pp. 61-179. doi : 10.1007/s10240-003-0015-1. https://www.numdam.org/articles/10.1007/s10240-003-0015-1/

1. M. Atiyah, Riemann surfaces and spin structures, Ann. Scient. ÉNS 4e Série, 4 (1971), 47-62. | Numdam | MR | Zbl

2. E. Calabi, An intrinsic characterization of harmonic 1-forms, Global Analysis, Papers in Honor of K. Kodaira, D. C. Spencer and S. Iyanaga (ed.), pp. 101-117, 1969. | MR | Zbl

3. A. Eskin, H. Masur, Asymptotic formulas on flat surfaces, Ergodic Theory and Dynamical Systems, 21 (2) (2001), 443-478. | MR | Zbl

4. A. Eskin, A. Zorich, Billiards in rectangular polygons, to appear.

5. A. Eskin, A. Okounkov, Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., 145 (1) (2001), 59-104. | MR | Zbl

6. E. Gutkin, Billiards in polygons, Physica D, 19 (1986), 311-333. | MR | Zbl

7. E. Gutkin, C. Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., 103 (2) (2000), 191-213. | MR | Zbl

8. J. Hubbard, H. Masur, Quadratic differentials and foliations, Acta Math., 142 (1979), 221-274. | MR | Zbl

9. P. Hubert, T. A. Schmidt, Invariants of translation surfaces, Ann. Inst. Fourier (Grenoble), 51 (2) (2001), 461-495. | Numdam | MR | Zbl

10. D. Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. (2), 22 (1980), 365-373. | MR | Zbl

11. A. Katok, A. Zemlyakov, Topological transitivity of billiards in polygons, Math. Notes, 18 (1975), 760-764. | MR | Zbl

12. S. Kerckhoff, H. Masur, J. Smillie, Ergodicity of Billiard Flows and Quadratic Differentials, Ann. Math., 124 (1986), 293-311. | MR | Zbl

13. M. Kontsevich, Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996), (in Honor of C. Itzykson) pp. 318-332, Adv. Ser. Math. Phys., 24, World Sci. Publishing, River Edge, NJ, 1997. | MR | Zbl

14. M. Kontsevich, A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (3) (2003), 631-678. | MR | Zbl

15. H. Masur, Interval exchange transformations and measured foliations, Ann Math., 115 (1982), 169-200. | MR | Zbl

16. H. Masur, J. Smillie, Hausdorff dimension of sets of nonergodic foliations, Ann. Math., 134 (1991), 455-543. | MR | Zbl

17. H. Masur, S. Tabachnikov, Flat structures and rational billiards, Handbook on Dynamical systems, Vol. 1A, 1015-1089, North-Holland, Amsterdam 2002. | MR | Zbl

18. K. Strebel, Quadratic differentials, Springer 1984. | MR | Zbl

19. W. Veech, Teichmuller geodesic flow, Ann. Math. 124 (1986), 441-530. | MR | Zbl

20. W. Veech, Moduli spaces of quadratic differentials, J. D'Analyse Math., 55 (1990), 117-171. | Zbl

21. W. Veech, Teichmuller curves in moduli space. Eisenstein series and an application to triangular billiards, Invent. Math., 97 (1990), 117-171. | MR

22. W. Veech, Siegel measures, Ann. Math., 148 (1998), 895-944. | MR | Zbl

23. A. Zorich, Square tiled surfaces and Teichmüller volumes of the moduli spaces of Abelian differentials, in collection Rigidity in Dynamics and Geometry, M. Burger, A. Iozzi (eds.), pp. 459-471, Springer 2002. | MR | Zbl

  • Boissy, Corentin; Geninska, Slavyana Relative systoles in hyperelliptic translation surfaces, Algebraic Geometric Topology, Volume 24 (2024) no. 4, p. 1903 | DOI:10.2140/agt.2024.24.1903
  • Chen, Dawei; Faraco, Gianluca Period realization of meromorphic differentials with prescribed invariants, Forum of Mathematics, Sigma, Volume 12 (2024) | DOI:10.1017/fms.2024.71
  • Nguyen, Duc-Manh Intersection theory and volumes of moduli spaces of flat metrics on the sphere, Geometriae Dedicata, Volume 218 (2024) no. 2 | DOI:10.1007/s10711-023-00883-y
  • Lee, Myeongjae Connected components of strata of residueless meromorphic differentials, Geometriae Dedicata, Volume 218 (2024) no. 5 | DOI:10.1007/s10711-024-00956-6
  • Chaika, Jon; Fairchild, Samantha Shrinking rates of horizontal gaps for generic translation surfaces, Geometriae Dedicata, Volume 218 (2024) no. 6 | DOI:10.1007/s10711-024-00953-9
  • Winsor, Karl Saturated Orbit Closures in the Hodge Bundle, International Mathematics Research Notices, Volume 2024 (2024) no. 6, p. 4710 | DOI:10.1093/imrn/rnad144
  • Hamenstädt, Ursula Periodic orbits in the thin part of strata, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2024) no. 0 | DOI:10.1515/crelle-2023-0102
  • Athreya, J.S.; Fairchild, S.; Masur, H. Counting pairs of saddle connections, Advances in Mathematics, Volume 431 (2023), p. 109233 | DOI:10.1016/j.aim.2023.109233
  • Nenasheva, M. Connectedness of Prym Eigenform Loci in Genus 5, Doklady Mathematics, Volume 108 (2023) no. 3, p. 486 | DOI:10.1134/s1064562423701429
  • Calsamiglia, Gabriel; Deroin, Bertrand; Francaviglia, Stefano A transfer principle: from periods to isoperiodic foliations, Geometric and Functional Analysis, Volume 33 (2023) no. 1, p. 57 | DOI:10.1007/s00039-023-00627-w
  • Allegretti, Dylan G L On the Wall-Crossing Formula for Quadratic Differentials, International Mathematics Research Notices, Volume 2023 (2023) no. 9, p. 8033 | DOI:10.1093/imrn/rnac071
  • Le Fils, Thomas Holonomy of complex projective structures on surfaces with prescribed branch data, Journal of Topology, Volume 16 (2023) no. 1, p. 430 | DOI:10.1112/topo.12287
  • Ненашева, М. Связность локусов Прима в роде 5, Доклады Российской академии наук. Математика, информатика, процессы управления, Volume 514 (2023) no. 1, p. 74 | DOI:10.31857/s2686954323600155
  • De Mourgues, Quentin A combinatorial approach to Rauzy-type dynamics II: The labelling method and a second proof of the KZB classification theorem, Discrete and Continuous Dynamical Systems, Volume 42 (2022) no. 7, p. 3465 | DOI:10.3934/dcds.2022022
  • Masur, Howard; Rafi, Kasra; Randecker, Anja Expected Covering Radius of a Translation Surface, International Mathematics Research Notices, Volume 2022 (2022) no. 10, p. 7967 | DOI:10.1093/imrn/rnaa385
  • Bainbridge, Matt; Smillie, John; Weiss, Barak Horocycle Dynamics: New Invariants and Eigenform Loci in the Stratum ℋ(1,1), Memoirs of the American Mathematical Society, Volume 280 (2022) no. 1384 | DOI:10.1090/memo/1384
  • Delecroix, Vincent; Goujard, Élise; Zograf, Peter; Zorich, Anton Masur–Veech volumes, frequencies of simple closed geodesics, and intersection numbers of moduli spaces of curves, Duke Mathematical Journal, Volume 170 (2021) no. 12 | DOI:10.1215/00127094-2021-0054
  • Fu, Ser-Wei Flat grafting deformations of quadratic differentials on surfaces, Geometriae Dedicata, Volume 214 (2021) no. 1, p. 119 | DOI:10.1007/s10711-021-00607-0
  • Aggarwal, Amol Large genus asymptotics for intersection numbers and principal strata volumes of quadratic differentials, Inventiones mathematicae, Volume 226 (2021) no. 3, p. 897 | DOI:10.1007/s00222-021-01059-9
  • Biswas, Indranil Deformation quantization of moduli spaces of Higgs bundles on a Riemann surface with translation structure, Journal of Mathematical Physics, Volume 62 (2021) no. 9 | DOI:10.1063/5.0067178
  • Nevo, Amos; Rühr, Rene; Weiss, Barak Effective counting on translation surfaces, Advances in Mathematics, Volume 360 (2020), p. 106890 | DOI:10.1016/j.aim.2019.106890
  • Goujard, Elise; Möller, Martin Pillowcase covers: counting Feynman-like graphs associated with quadratic differentials, Algebraic Geometric Topology, Volume 20 (2020) no. 5, p. 2451 | DOI:10.2140/agt.2020.20.2451
  • Pardo, Angel A Non-varying Phenomenon with an Application to the Wind-Tree Model, International Mathematics Research Notices, Volume 2020 (2020) no. 18, p. 5642 | DOI:10.1093/imrn/rny188
  • Chen, Dawei; Möller, Martin; Sauvaget, Adrien; Zagier, Don Masur–Veech volumes and intersection theory on moduli spaces of Abelian differentials, Inventiones mathematicae, Volume 222 (2020) no. 1, p. 283 | DOI:10.1007/s00222-020-00969-4
  • Aggarwal, Amol Large genus asymptotics for volumes of strata of abelian differentials, Journal of the American Mathematical Society, Volume 33 (2020) no. 4, p. 941 | DOI:10.1090/jams/947
  • Dozier, Benjamin Convergence of Siegel–Veech constants, Geometriae Dedicata, Volume 198 (2019) no. 1, p. 131 | DOI:10.1007/s10711-018-0332-7
  • Aggarwal, Amol Large Genus Asymptotics for Siegel–Veech Constants, Geometric and Functional Analysis, Volume 29 (2019) no. 5, p. 1295 | DOI:10.1007/s00039-019-00509-0
  • Chen, Dawei; Chen, Qile Spin and hyperelliptic structures of log twisted differentials, Selecta Mathematica, Volume 25 (2019) no. 2 | DOI:10.1007/s00029-019-0467-x
  • Bainbridge, Matt; Chen, Dawei; Gendron, Quentin; Grushevsky, Samuel; Möller, Martin Compactification of strata of Abelian differentials, Duke Mathematical Journal, Volume 167 (2018) no. 12 | DOI:10.1215/00127094-2018-0012
  • Pardo, Angel Counting problem on wind-tree models, Geometry Topology, Volume 22 (2018) no. 3, p. 1483 | DOI:10.2140/gt.2018.22.1483
  • Hamenstädt, Ursula Ergodicity of the absolute period foliation, Israel Journal of Mathematics, Volume 225 (2018) no. 2, p. 661 | DOI:10.1007/s11856-018-1674-4
  • Chen, Dawei; Möller, Martin; Zagier, Don Quasimodularity and large genus limits of Siegel-Veech constants, Journal of the American Mathematical Society, Volume 31 (2018) no. 4, p. 1059 | DOI:10.1090/jams/900
  • Farkas, Gavril; Pandharipande, Rahul THE MODULI SPACE OF TWISTED CANONICAL DIVISORS, Journal of the Institute of Mathematics of Jussieu, Volume 17 (2018) no. 3, p. 615 | DOI:10.1017/s1474748016000128
  • Lanneau, Erwan; Nguyen, Duc-Manh Connected components of Prym eigenform loci in genus three, Mathematische Annalen, Volume 371 (2018) no. 1-2, p. 753 | DOI:10.1007/s00208-017-1542-2
  • Eskin, Alex; Mirzakhani, Maryam Invariant and stationary measures for the action on Moduli space, Publications mathématiques de l'IHÉS, Volume 127 (2018) no. 1, p. 95 | DOI:10.1007/s10240-018-0099-2
  • Ghazouani, Selim; Pirio, Luc Moduli Spaces of Flat Tori with Prescribed Holonomy, Geometric and Functional Analysis, Volume 27 (2017) no. 6, p. 1289 | DOI:10.1007/s00039-017-0426-7
  • Mirzakhani, Maryam; Wright, Alex The boundary of an affine invariant submanifold, Inventiones mathematicae, Volume 209 (2017) no. 3, p. 927 | DOI:10.1007/s00222-017-0722-8
  • Chen, Dawei Teichmüller dynamics in the eyes of an algebraic geometer, Surveys on Recent Developments in Algebraic Geometry, Volume 95 (2017), p. 171 | DOI:10.1090/pspum/095/01626
  • Lanneau, Erwan; Nguyen, Duc-Manh GL+(2, ℝ)–orbits in Prym eigenform loci, Geometry Topology, Volume 20 (2016) no. 3, p. 1359 | DOI:10.2140/gt.2016.20.1359
  • Aulicino, David; Nguyen, Duc-Manh Rank two affine submanifolds in ℋ(2,2) and ℋ(3,1), Geometry Topology, Volume 20 (2016) no. 5, p. 2837 | DOI:10.2140/gt.2016.20.2837
  • Eskin, Alex; Mirzakhani, Maryam; Mohammadi, Amir Isolation, equidistribution, and orbit closures for the SL(2,R) action on moduli space, Annals of Mathematics (2015), p. 673 | DOI:10.4007/annals.2015.182.2.7
  • Matheus, Carlos; Wright, Alex Hodge–Teichmüller planes and finiteness results for Teichmüller curves, Duke Mathematical Journal, Volume 164 (2015) no. 6 | DOI:10.1215/00127094-2885655
  • Forni, Giovanni; Matheus, Carlos Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, Journal of Modern Dynamics, Volume 8 (2015) no. 3/4, p. 271 | DOI:10.3934/jmd.2014.8.271
  • Rios-Zertuche, Rodolfo The pillowcase distribution and near-involutions, Electronic Journal of Probability, Volume 19 (2014) no. none | DOI:10.1214/ejp.v19-3626
  • Looijenga, Eduard; Mondello, Gabriele The fine structure of the moduli space of abelian differentials in genus 3, Geometriae Dedicata, Volume 169 (2014) no. 1, p. 109 | DOI:10.1007/s10711-013-9845-2
  • Athreya, Jayadev S.; Eskin, Alex; Zorich, Anton Counting generalized Jenkins–Strebel differentials, Geometriae Dedicata, Volume 170 (2014) no. 1, p. 195 | DOI:10.1007/s10711-013-9877-7
  • Eskin, Alex; Kontsevich, Maxim; Zorich, Anton Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publications mathématiques de l'IHÉS, Volume 120 (2014) no. 1, p. 207 | DOI:10.1007/s10240-013-0060-3
  • Avila, Artur; Matheus, Carlos; Yoccoz, Jean-Christophe SL(2,R) S L ( 2 , R ) -invariant probability measures on the moduli spaces of translation surfaces are regular, Geometric and Functional Analysis, Volume 23 (2013) no. 6, p. 1705 | DOI:10.1007/s00039-013-0244-5
  • Chen, Dawei; Möller, Martin Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geometry Topology, Volume 16 (2013) no. 4, p. 2427 | DOI:10.2140/gt.2012.16.2427
  • Chen, Dawei Strata of abelian differentials and the Teichmüller dynamics, Journal of Modern Dynamics, Volume 7 (2013) no. 1, p. 135 | DOI:10.3934/jmd.2013.7.135
  • Yu, Fei; Zuo, Kang Weierstrass filtration on Teichmüller curves and Lyapunov exponents, Journal of Modern Dynamics, Volume 7 (2013) no. 2, p. 209 | DOI:10.3934/jmd.2013.7.209
  • Bainbridge, Matt; Möller, Martin The Deligne–Mumford compactification of the real multiplication locus and Teichmüller curves in genus 3, Acta Mathematica, Volume 208 (2012) no. 1, p. 1 | DOI:10.1007/s11511-012-0074-6
  • Gutkin, Eugene Billiard dynamics: An updated survey with the emphasis on open problems, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 22 (2012) no. 2 | DOI:10.1063/1.4729307
  • Boissy, Corentin Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials, Discrete and Continuous Dynamical Systems, Volume 32 (2012) no. 10, p. 3433 | DOI:10.3934/dcds.2012.32.3433
  • Boissy, Corentin Ends of strata of the moduli space of quadratic differentials, Geometriae Dedicata, Volume 159 (2012) no. 1, p. 71 | DOI:10.1007/s10711-011-9646-4
  • Athreya, J. S.; Chaika, J. The Distribution of Gaps for Saddle Connection Directions, Geometric and Functional Analysis, Volume 22 (2012) no. 6, p. 1491 | DOI:10.1007/s00039-012-0164-9
  • Nguyen, Duc-Manh Energy functions on moduli spaces of flat surfaces with erasing forest, Mathematische Annalen, Volume 353 (2012) no. 3, p. 997 | DOI:10.1007/s00208-011-0707-7
  • Chen, Dawei Square-tiled surfaces and rigid curves on moduli spaces, Advances in Mathematics, Volume 228 (2011) no. 2, p. 1135 | DOI:10.1016/j.aim.2011.06.002
  • DeMarco, Laura; Pilgrim, Kevin M. Polynomial Basins of Infinity, Geometric and Functional Analysis, Volume 21 (2011) no. 4, p. 920 | DOI:10.1007/s00039-011-0128-5
  • SCHMOLL, MARTIN VEECH GROUPS FOR HOLONOMY-FREE TORUS COVERS, Journal of Topology and Analysis, Volume 03 (2011) no. 04, p. 521 | DOI:10.1142/s1793525311000647
  • Nguyen, Duc-Manh Triangulations and Volume Form on Moduli Spaces of Flat Surfaces, Geometric and Functional Analysis, Volume 20 (2010) no. 1, p. 192 | DOI:10.1007/s00039-010-0056-9
  • Bainbridge, Matt Billiards in L-Shaped Tables with Barriers, Geometric and Functional Analysis, Volume 20 (2010) no. 2, p. 299 | DOI:10.1007/s00039-010-0065-8
  • Walker, Katharine C Quotient groups of the fundamental groups of certain strata of the moduli space of quadratic differentials, Geometry Topology, Volume 14 (2010) no. 2, p. 1129 | DOI:10.2140/gt.2010.14.1129
  • Leininger, Christopher J.; Schleimer, Saul Connectivity of the space of ending laminations, Duke Mathematical Journal, Volume 150 (2009) no. 3 | DOI:10.1215/00127094-2009-059
  • Boissy, Corentin Degenerations of quadratic differentials on ℂℙ1, Geometry Topology, Volume 12 (2008) no. 3, p. 1345 | DOI:10.2140/gt.2008.12.1345
  • Naveh, Yoav Tight upper bounds on the number of invariant components on translation surfaces, Israel Journal of Mathematics, Volume 165 (2008) no. 1, p. 211 | DOI:10.1007/s11856-008-1010-5
  • Bainbridge, Matt Euler characteristics of Teichmüller curves in genus two, Geometry Topology, Volume 11 (2007) no. 4, p. 1887 | DOI:10.2140/gt.2007.11.1887
  • Forni, Giovanni On the Lyapunov Exponents of the Kontsevich–Zorich Cocycle, Volume 1 (2006), p. 549 | DOI:10.1016/s1874-575x(06)80033-0
  • Eskin, Alex Counting Problems in Moduli Space, Volume 1 (2006), p. 581 | DOI:10.1016/s1874-575x(06)80034-2
  • Eskin, Alex; Okounkov, Andrei Pillowcases and quasimodular forms, Algebraic Geometry and Number Theory, Volume 253 (2006), p. 1 | DOI:10.1007/978-0-8176-4532-8_1
  • Zorich, Anton Flat Surfaces, Frontiers in Number Theory, Physics, and Geometry I (2006), p. 437 | DOI:10.1007/978-3-540-31347-2_13
  • Lelièvre, Samuel Siegel–Veech constants in ℋ(2), Geometry Topology, Volume 10 (2006) no. 2, p. 1157 | DOI:10.2140/gt.2006.10.1157
  • Giraud, O. Periodic Orbits and Semiclassical Form Factor in Barrier Billiards, Communications in Mathematical Physics, Volume 260 (2005) no. 1, p. 183 | DOI:10.1007/s00220-005-1412-8
  • Lanneau, Erwan Parity of the spin structure defined by a quadratic differential, Geometry Topology, Volume 8 (2004) no. 2, p. 511 | DOI:10.2140/gt.2004.8.511
  • Eskin, Alex; Masur, Howard; Schmoll, Martin Billiards in rectangles with barriers, Duke Mathematical Journal, Volume 118 (2003) no. 3 | DOI:10.1215/s0012-7094-03-11832-3

Cité par 75 documents. Sources : Crossref