We study the dynamics of the Teichmüller flow in the moduli space of abelian differentials (and more generally, its restriction to any connected component of a stratum). We show that the (Masur-Veech) absolutely continuous invariant probability measure is exponentially mixing for the class of Hölder observables. A geometric consequence is that the action in the moduli space has a spectral gap.
@article{PMIHES_2006__104__143_0, author = {Avila, Artur and Gou\"ezel, S\'ebastien and Yoccoz, Jean-Christophe}, title = {Exponential mixing for the {Teichm\"uller} flow}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {143--211}, publisher = {Springer}, volume = {104}, year = {2006}, doi = {10.1007/s10240-006-0001-5}, mrnumber = {2264836}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-006-0001-5/} }
TY - JOUR AU - Avila, Artur AU - Gouëzel, Sébastien AU - Yoccoz, Jean-Christophe TI - Exponential mixing for the Teichmüller flow JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 143 EP - 211 VL - 104 PB - Springer UR - http://archive.numdam.org/articles/10.1007/s10240-006-0001-5/ DO - 10.1007/s10240-006-0001-5 LA - en ID - PMIHES_2006__104__143_0 ER -
%0 Journal Article %A Avila, Artur %A Gouëzel, Sébastien %A Yoccoz, Jean-Christophe %T Exponential mixing for the Teichmüller flow %J Publications Mathématiques de l'IHÉS %D 2006 %P 143-211 %V 104 %I Springer %U http://archive.numdam.org/articles/10.1007/s10240-006-0001-5/ %R 10.1007/s10240-006-0001-5 %G en %F PMIHES_2006__104__143_0
Avila, Artur; Gouëzel, Sébastien; Yoccoz, Jean-Christophe. Exponential mixing for the Teichmüller flow. Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 143-211. doi : 10.1007/s10240-006-0001-5. http://archive.numdam.org/articles/10.1007/s10240-006-0001-5/
1. Weak mixing for interval exchange transformations and translation flows, preprint (www.arXiv.org), to appear in Ann. Math. | MR
and ,2. Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, to appear in Acta Math. | MR
and ,3. An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50. American Mathematical Society, Providence, RI, 1997. | MR | Zbl
,4. Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedicata, 119 (2006), 121-140 | MR | Zbl
,5. Exponential decay of correlations for surface semi-flows without finite Markov partitions, Proc. Amer. Math. Soc., 133 (2005), 865-874 | MR | Zbl
, ,6. Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichmüller flow on the moduli space of abelian differentials, J. Amer. Math. Soc., 19 (2006), 579-623 | MR | Zbl
,7. On decay of correlations in Anosov flows, Ann. Math. (2), 147 (1998), 357-390 | MR | Zbl
,8. Asymptotic formulas on flat surfaces, Ergod. Theory Dynam. Syst., 21 (2001), 443-478 | MR | Zbl
, ,9. Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. Math. (2), 155 (2002), 1-103 | MR | Zbl
,10. Sur un théorème spectral et son application aux noyaux lipschitziens, Proc. Amer. Math. Soc., 118 (1993), 627-634 | MR | Zbl
,11. Simplicial systems for interval exchange maps and measured foliations, Ergod. Theory Dynam. Syst., 5 (1985), 257-271 | MR | Zbl
,12. Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153 (2003), 631-678 | MR | Zbl
, ,13. Analogs of Wiener's ergodic theorems for semisimple Lie groups. II, Duke Math. J., 103 (2000), 233-259 | Zbl
, , ,14. The cohomological equation for Roth type interval exchange transformations, J. Amer. Math. Soc., 18 (2005), 823-872 | MR | Zbl
, , ,15. Interval exchange transformations and measured foliations, Ann. Math. (2), 115 (1982), 169-200 | MR | Zbl
,16. The rate of mixing for geodesic and horocycle flows, Ergod. Theory Dynam. Syst., 7 (1987), 267-288 | MR | Zbl
,17. Echanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328 | EuDML | Zbl
,18. Gauss measures for transformations on the space of interval exchange maps, Ann. Math. (2), 115 (1982), 201-242 | MR | Zbl
,19. The Teichmüller geodesic flow, Ann. Math. (2), 124 (1986), 441-530 | MR | Zbl
,20. Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier, 46 (1996), 325-370 | EuDML | Numdam | MR | Zbl
,Cité par Sources :