We prove that the chain-transitive sets of
@article{PMIHES_2006__104__87_0, author = {Crovisier, Sylvain}, title = {Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {87--141}, publisher = {Springer}, volume = {104}, year = {2006}, doi = {10.1007/s10240-006-0002-4}, language = {en}, url = {https://www.numdam.org/articles/10.1007/s10240-006-0002-4/} }
TY - JOUR AU - Crovisier, Sylvain TI - Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms JO - Publications Mathématiques de l'IHÉS PY - 2006 SP - 87 EP - 141 VL - 104 PB - Springer UR - https://www.numdam.org/articles/10.1007/s10240-006-0002-4/ DO - 10.1007/s10240-006-0002-4 LA - en ID - PMIHES_2006__104__87_0 ER -
%0 Journal Article %A Crovisier, Sylvain %T Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms %J Publications Mathématiques de l'IHÉS %D 2006 %P 87-141 %V 104 %I Springer %U https://www.numdam.org/articles/10.1007/s10240-006-0002-4/ %R 10.1007/s10240-006-0002-4 %G en %F PMIHES_2006__104__87_0
Crovisier, Sylvain. Periodic orbits and chain-transitive sets of $C^1$-diffeomorphisms. Publications Mathématiques de l'IHÉS, Tome 104 (2006), pp. 87-141. doi : 10.1007/s10240-006-0002-4. https://www.numdam.org/articles/10.1007/s10240-006-0002-4/
1. Global dominated splittings and the C1 Newhouse phenomenon, Proc. Amer. Math. Soc., 134 (2006), 2229-2237 | MR | Zbl
, , ,2. Generic diffeomorphisms on compact surfaces, Fundam. Math., 187 (2005), 127-159 | MR | Zbl
, , , ,3. Pseudo-orbit shadowing in the C1-topology, to appear in Discrete Cont. Dyn. Syst. | MR | Zbl
and ,4. Nongenericity of Ω-stability, Global analysis I, Proc. Symp. Pure Math. AMS, 14 (1970), 5-8 | Zbl
, ,5. Création de connexions en topologie C1 , Ergodic Theory Dyn. Syst., 21 (2001), 339-381 | MR | Zbl
,6. Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques, Ann. Sci. Éc. Norm. Supér., IV. Sér., 36 (2003), 173-190 | Numdam | Zbl
,7. Dynamiques symplectiques génériques, Ergodic Theory Dyn. Syst., 25 (2005), 1401-1436 | MR | Zbl
, , ,8. Récurrence et généricité, Invent. Math., 158 (2004), 33-104 | MR | Zbl
, ,9. Persistent nonhyperbolic transitive diffeomorphisms, Ann. Math., 143 (1996), 357-396 | MR | Zbl
, ,10. On maximal transitive sets of generic diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 96 (2003), 171-197 | EuDML | Numdam | MR | Zbl
, ,11. A C1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicicity or infinitely many sinks or sources, Ann. Math., 158 (2003), 355-418 | MR | Zbl
, , ,12. Pas de “shadowing lemma” pour des dynamiques partiellement hyperboliques, C. R. Acad. Sci. Paris, 330 (2000), 587-592 | Zbl
, , ,13. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin - New York (1975) | MR | Zbl
,14. Isolated invariant sets and Morse index, AMS, Providence (1978) | MR | Zbl
,15. Homoclinic classes for C1-generic vector fields, Ergodic Theory Dyn. Syst., 23 (2003), 1-13 | MR | Zbl
, , ,16. Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl., 189 (1995), 409-423 | MR | Zbl
, ,17. Structural stability of diffeomorphisms on two-manifolds, Invent. Math., 21 (1973), 233-246 | EuDML | MR | Zbl
,18. Heteroclinic cycles and homoclinic closures for generic diffeomorphisms, J. Dyn. Differ. Equations, 15 (2003), 451-471 | MR | Zbl
, ,19. Dynamical phenomena in systems with structurally unstable Poincaré homoclinic orbits, Chaos, 6 (1996), 15-31 | MR | Zbl
, , ,20. Connecting invariant manifolds and the solution of the C1-stability and Ω-stability conjectures for flows, Ann. Math., 145 (1997), 81-137 | Zbl
,21. Contribution à la théorie des champs génériques, Contrib. Differ. Equ., 2 (1963), 457-484 | MR | Zbl
,22. Contributions to the stability conjecture, Topology, 17 (1978), 383-396 | MR | Zbl
,23. An ergodic closing lemma, Ann. Math., 116 (1982), 503-540 | MR | Zbl
,24. A proof of the C1 stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 161-210 | EuDML | Numdam | MR | Zbl
,25. Tolerance stability conjecture revisited, Topology Appl., 131 (2003), 33-38 | MR | Zbl
,26. Hyperbolic limit sets, Trans. Amer. Math. Soc., 167 (1972), 125-150 | MR | Zbl
,27. Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9-18 | MR | Zbl
,28. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math., Inst. Hautes Étud. Sci., 50 (1979), 101-151 | EuDML | Numdam | MR | Zbl
,29. Generic homeomorphisms have the pseudo-orbit tracing property, Proc. Amer. Math. Soc., 110 (1990), 281-284 | MR | Zbl
,30. On the C1 Ω-stability conjecture, Publ. Math., Inst. Hautes Étud. Sci., 66 (1988), 211-215 | EuDML | Numdam | Zbl
,31. Structural stability theorem, Proc. Amer. Math. Soc. Symp. Pure Math., 14 (1970), 223-232 | MR | Zbl
, ,32. Hyperbolicity & sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993. | MR | Zbl
and ,33. High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. Math., 140 (1994), 207-250 | MR | Zbl
, ,34. Shadowing in dynamical systems, Lect. Notes Math., vol. 1706, Springer, Berlin, 1999. | MR | Zbl
,35. The closing lemma, Amer. J. Math., 89 (1967), 956-1009 | MR | Zbl
,36. An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021 | MR | Zbl
,37. The C1-closing lemma, including hamiltonians, Ergodic Theory Dyn. Syst., 3 (1983), 261-314 | MR | Zbl
, ,38. A structural stability theorem, Ann. Math., 94 (1971), 447-493 | MR | Zbl
,39. Generic properties of conservative systems, Amer. J. Math., 92 (1970), 562-603 | MR | Zbl
,40. Cr - structural stability implies Kupka-Smale, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 443-449, Academic Press, New York, 1973. | MR | Zbl
,41. Structural stability of C1-diffeomorphisms, J. Differ. Equ., 22 (1976), 28-73 | MR | Zbl
,42. Stability theorems and hyperbolicity in dynamical systems, Rocky Mt. J. Math., 7 (1977), 425-437 | MR | Zbl
,43. Persistence of homoclinic tangencies in higher dimensions, Ergodic Theory Dyn. Syst., 15 (1995), 735-757 | MR | Zbl
,44. Diffeomorphisms with weak shadowing, Fundam. Math., 168 (2001), 57-75 | EuDML | MR | Zbl
,45. Stability and genericity for diffeomorphisms, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 493-514, Academic Press, New York, 1973. | MR | Zbl
,46. M. Shub, Topologically transitive diffeomorphisms of T4, Lect. Notes Math., vol. 206, pp. 39-40, Springer, Berlin-New York, 1971.
47. A 3-dimensional Abraham-Smale example, Proc. Amer. Math. Soc., 34 (1972), 629-630 | MR | Zbl
,48. Stable manifolds for differential equations and diffeomorphisms, Ann. Sc. Norm. Super. Pisa, 17 (1963), 97-116 | EuDML | Numdam | MR | Zbl
,49. Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817 | MR | Zbl
,50. On Zeeman's tolerance stability conjecture, Lect. Notes Math., vol. 197, 209-219, Springer, Berlin, 1971. | Zbl
,51. Tolerance stability, Lect. Notes Math., vol. 468, 293-304, Springer, Berlin, 1975. | MR | Zbl
,52. A uniform C1 connecting lemma, Discrete Contin. Dyn. Syst., 8 (2002), 257-265 | MR | Zbl
,53. C1 connecting lemmas, Trans. Amer. Math. Soc., 352 (2000), 5213-5230 | MR | Zbl
, ,54. On the tolerance stability conjecture, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pp. 663-665, Academic Press, New York, 1973. | MR | Zbl
,55. An open set of maps for which every point is absolutely non-shadowable, Proc. Amer. Math. Soc., 128 (2000), 909-918 | MR | Zbl
, ,- A uniform C1 connecting lemma for singular flows, Journal of Differential Equations, Volume 429 (2025), p. 247 | DOI:10.1016/j.jde.2025.02.043
- A Closing Lemma for Non-uniformly Hyperbolic Singular Flows, Communications in Mathematical Physics, Volume 405 (2024) no. 8 | DOI:10.1007/s00220-024-05045-z
- -chain closing lemma for certain partially hyperbolic diffeomorphisms, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 7, p. 1923 | DOI:10.1017/etds.2023.71
- A mechanism for ejecting a horseshoe from a partially hyperbolic chain recurrence class, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 8, p. 2080 | DOI:10.1017/etds.2023.76
- On the Partial Hyperbolicity of Robustly Transitive Sets with Singularities, Journal of Dynamics and Differential Equations, Volume 35 (2023) no. 3, p. 2035 | DOI:10.1007/s10884-022-10132-7
- Local Topological Stability for Diffeomorphisms, Qualitative Theory of Dynamical Systems, Volume 22 (2023) no. 2 | DOI:10.1007/s12346-023-00755-6
- An entropy dichotomy for singular star flows, Transactions of the American Mathematical Society (2023) | DOI:10.1090/tran/8989
- Generalized hyperbolic sets on Banach spaces, Acta Mathematica Hungarica, Volume 168 (2022) no. 1, p. 63 | DOI:10.1007/s10474-022-01266-7
- C-closing lemma for partially hyperbolic diffeomorphisms with 1D-center bundle, Advances in Mathematics, Volume 407 (2022), p. 108553 | DOI:10.1016/j.aim.2022.108553
- Topological horseshoes for surface homeomorphisms, Duke Mathematical Journal, Volume 171 (2022) no. 12 | DOI:10.1215/00127094-2022-0057
- Weakly shadowable vector fields on non-oriented surfaces, Dynamical Systems, Volume 37 (2022) no. 1, p. 127 | DOI:10.1080/14689367.2021.2016631
- Bi-Lyapunov Stable Homoclinic Classes for C1 Generic Flows, Acta Mathematica Sinica, English Series, Volume 37 (2021) no. 7, p. 1023 | DOI:10.1007/s10114-021-0420-8
- Symmetries of vector fields: The diffeomorphism centralizer, Discrete Continuous Dynamical Systems, Volume 41 (2021) no. 10, p. 4943 | DOI:10.3934/dcds.2021063
- On the centralizer of vector fields: criteria of triviality and genericity results, Mathematische Zeitschrift, Volume 297 (2021) no. 1-2, p. 283 | DOI:10.1007/s00209-020-02511-x
- Orbital shadowing property on chain transitive sets for generic diffeomorphisms, Acta Universitatis Sapientiae, Mathematica, Volume 12 (2020) no. 1, p. 146 | DOI:10.2478/ausm-2020-0009
- Orbital shadowing and stability for vector fields, Journal of Differential Equations, Volume 269 (2020) no. 2, p. 1360 | DOI:10.1016/j.jde.2020.01.026
- Singular robustly chain transitive sets are singular volume partial hyperbolic, Mathematische Zeitschrift, Volume 294 (2020) no. 1-2, p. 687 | DOI:10.1007/s00209-019-02291-z
- Vector Fields with the Asymptotic Orbital Pseudo-orbit Tracing Property, Qualitative Theory of Dynamical Systems, Volume 19 (2020) no. 2 | DOI:10.1007/s12346-020-00388-z
- Hyperbolicity versus non-hyperbolic ergodic measures inside homoclinic classes, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 7, p. 1805 | DOI:10.1017/etds.2017.106
- Asymptotic orbital shadowing property for diffeomorphisms, Open Mathematics, Volume 17 (2019) no. 1, p. 191 | DOI:10.1515/math-2019-0002
- The closure of periodic orbits in the Gromov-Hausdorff space, Topology and its Applications, Volume 264 (2019), p. 493 | DOI:10.1016/j.topol.2019.06.048
- A Type of the Shadowing Properties for Generic View Points, Axioms, Volume 7 (2018) no. 1, p. 18 | DOI:10.3390/axioms7010018
- Hyperbolicity versus weak periodic orbits inside homoclinic classes, Ergodic Theory and Dynamical Systems, Volume 38 (2018) no. 6, p. 2345 | DOI:10.1017/etds.2016.122
- A rescaled expansiveness for flows, Transactions of the American Mathematical Society, Volume 371 (2018) no. 5, p. 3179 | DOI:10.1090/tran/7382
- Orbital shadowing for 3-flows, Journal of Differential Equations, Volume 262 (2017) no. 10, p. 5022 | DOI:10.1016/j.jde.2017.01.015
- Chain Transitive Sets and Shadowing, Shadowing and Hyperbolicity, Volume 2193 (2017), p. 181 | DOI:10.1007/978-3-319-65184-2_4
- A Franks’ lemma that preserves invariant manifolds, Ergodic Theory and Dynamical Systems, Volume 36 (2016) no. 4, p. 1167 | DOI:10.1017/etds.2014.101
- CENTER MANIFOLDS FOR PARTIALLY HYPERBOLIC SETS WITHOUT STRONG UNSTABLE CONNECTIONS, Journal of the Institute of Mathematics of Jussieu, Volume 15 (2016) no. 4, p. 785 | DOI:10.1017/s1474748015000055
- Robust chain transitive vector fields, Asian-European Journal of Mathematics, Volume 08 (2015) no. 02, p. 1550026 | DOI:10.1142/s1793557115500266
- Conservative flows with various types of shadowing, Chaos, Solitons Fractals, Volume 75 (2015), p. 243 | DOI:10.1016/j.chaos.2015.02.022
- On the hyperbolicity of C1-generic homoclinic classes, Comptes Rendus. Mathématique, Volume 353 (2015) no. 11, p. 1047 | DOI:10.1016/j.crma.2015.07.017
- Structurally stable homoclinic classes, Discrete and Continuous Dynamical Systems, Volume 36 (2015) no. 3, p. 1693 | DOI:10.3934/dcds.2016.36.1693
- Robustly chain transitive diffeomorphisms, Journal of Inequalities and Applications, Volume 2015 (2015) no. 1 | DOI:10.1186/s13660-015-0752-y
- DYNAMICAL SYSTEMS WITH SPECIFICATION, Journal of the Chungcheong Mathematical Society, Volume 28 (2015) no. 1, p. 103 | DOI:10.14403/jcms.2015.28.1.103
- On the dominated splitting of Lyapunov stable aperiodic classes, Nonlinearity, Volume 28 (2015) no. 11, p. 4209 | DOI:10.1088/0951-7715/28/11/4209
- Codimension one structurally stable chain classes, Transactions of the American Mathematical Society, Volume 368 (2015) no. 6, p. 3849 | DOI:10.1090/tran/6440
- Stable weakly shadowable volume-preserving systems are volume-hyperbolic, Acta Mathematica Sinica, English Series, Volume 30 (2014) no. 6, p. 1007 | DOI:10.1007/s10114-014-3093-8
- HYPERBOLICITY OF CHAIN TRANSITIVE SETS WITH LIMIT SHADOWING, Bulletin of the Korean Mathematical Society, Volume 51 (2014) no. 5, p. 1259 | DOI:10.4134/bkms.2014.51.5.1259
- STABLE WEAK SHADOWABLE SYMPLECTOMORPHISMS ARE PARTIALLY HYPERBOLIC, Communications of the Korean Mathematical Society, Volume 29 (2014) no. 2, p. 285 | DOI:10.4134/ckms.2014.29.2.285
- Hyperbolicity and types of shadowing for
generic vector fields, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 7, p. 2963 | DOI:10.3934/dcds.2014.34.2963 - Shadowing is generic—a continuous map case, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 9, p. 3591 | DOI:10.3934/dcds.2014.34.3591
- Average Shadowing Property With Non Uniformly Hyperbolicity on Periodic Points, Journal of Dynamical Systems and Geometric Theories, Volume 12 (2014) no. 1, p. 11 | DOI:10.1080/1726037x.2014.917826
- On the singular-hyperbolicity of star flows, Journal of Modern Dynamics, Volume 8 (2014) no. 2, p. 191 | DOI:10.3934/jmd.2014.8.191
- Orbital shadowing property for generic divergence-free vector fields, Chaos, Solitons Fractals, Volume 54 (2013), p. 71 | DOI:10.1016/j.chaos.2013.05.013
- Shadowable chain transitive sets, Journal of Difference Equations and Applications, Volume 19 (2013) no. 10, p. 1601 | DOI:10.1080/10236198.2013.767897
- S-limit shadowing isC0-dense, Journal of Mathematical Analysis and Applications, Volume 408 (2013) no. 2, p. 465 | DOI:10.1016/j.jmaa.2013.06.004
- Uniform hyperbolicity along periodic orbits, Proceedings of the American Mathematical Society, Volume 141 (2013) no. 9, p. 3107 | DOI:10.1090/s0002-9939-2013-11553-4
- Stably asymptotic average shadowing property and dominated splitting, Advances in Difference Equations, Volume 2012 (2012) no. 1 | DOI:10.1186/1687-1847-2012-25
- Usual limit shadowable homoclinic classes of generic diffeomorphisms, Advances in Difference Equations, Volume 2012 (2012) no. 1 | DOI:10.1186/1687-1847-2012-91
- SHADOWABLE CHAIN TRANSITIVE SETS OF C1-GENERIC DIFFEOMORPHISMS, Bulletin of the Korean Mathematical Society, Volume 49 (2012) no. 2, p. 263 | DOI:10.4134/bkms.2012.49.2.263
- Robustly chain transitive sets with orbital shadowing diffeomorphisms, Dynamical Systems, Volume 27 (2012) no. 4, p. 507 | DOI:10.1080/14689367.2012.725032
- Transitivity and Topological Mixing for
Diffeomorphisms, Essays in Mathematics and its Applications (2012), p. 1 | DOI:10.1007/978-3-642-28821-0_1 - ASYMPTOTIC AVERAGE SHADOWING PROPERTY ON A CLOSED SET, Journal of the Chungcheong Mathematical Society, Volume 25 (2012) no. 1, p. 27 | DOI:10.14403/jcms.2012.25.1.027
- GENERIC DIFFEOMORPHISM WITH SHADOWING PROPERTY ON TRANSITIVE SETS, Journal of the Chungcheong Mathematical Society, Volume 25 (2012) no. 4, p. 643 | DOI:10.14403/jcms.2012.25.4.643
- Dominated splitting of differentiable dynamics with
-topological weak-star property, Journal of the Mathematical Society of Japan, Volume 64 (2012) no. 4 | DOI:10.2969/jmsj/06441249 - Chaos and Ergodic Theory, Mathematics of Complexity and Dynamical Systems (2012), p. 63 | DOI:10.1007/978-1-4614-1806-1_6
- Partial hyperbolicity far from homoclinic bifurcations, Advances in Mathematics, Volume 226 (2011) no. 1, p. 673 | DOI:10.1016/j.aim.2010.07.013
- Theory of pseudo-orbit shadowing in dynamical systems, Differential Equations, Volume 47 (2011) no. 13, p. 1929 | DOI:10.1134/s0012266111130040
- Flows with the (asymptotic) average shadowing property on three-dimensional closed manifolds, Dynamical Systems, Volume 26 (2011) no. 4, p. 425 | DOI:10.1080/14689367.2011.604025
- SURVEY Towards a global view of dynamical systems, for the C1-topology, Ergodic Theory and Dynamical Systems, Volume 31 (2011) no. 4, p. 959 | DOI:10.1017/s0143385710000891
- Newhouse phenomenon and homoclinic classes, Ergodic Theory and Dynamical Systems, Volume 31 (2011) no. 5, p. 1537 | DOI:10.1017/s0143385710000465
- Stably weakly shadowing transitive sets and dominated splittings, Proceedings of the American Mathematical Society, Volume 139 (2011) no. 8, p. 2747 | DOI:10.1090/s0002-9939-2011-10699-3
- Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Annals of Mathematics, Volume 172 (2010) no. 3, p. 1641 | DOI:10.4007/annals.2010.172.1641
- Chaos and Ergodic Theory, Encyclopedia of Complexity and Systems Science (2009), p. 953 | DOI:10.1007/978-0-387-30440-3_64
- Chaos and Ergodic Theory, Ergodic Theory (2009), p. 633 | DOI:10.1007/978-1-0716-2388-6_64
- Non-hyperbolic ergodic measures for non-hyperbolic homoclinic classes, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 5, p. 1479 | DOI:10.1017/s0143385708000849
- On the existence of non-trivial homoclinic classes, Ergodic Theory and Dynamical Systems, Volume 27 (2007) no. 5, p. 1473 | DOI:10.1017/s0143385707000090
Cité par 67 documents. Sources : Crossref