@article{PMIHES_2008__107__169_0, author = {Laszlo, Yves and Olsson, Martin}, title = {The six operations for sheaves on {Artin} stacks {II:} {Adic} coefficients}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {169--210}, publisher = {Institut des Hautes \'Etudes Scientifiques}, volume = {107}, year = {2008}, doi = {10.1007/s10240-008-0012-5}, mrnumber = {2434693}, zbl = {1191.14003}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-008-0012-5/} }
TY - JOUR AU - Laszlo, Yves AU - Olsson, Martin TI - The six operations for sheaves on Artin stacks II: Adic coefficients JO - Publications Mathématiques de l'IHÉS PY - 2008 SP - 169 EP - 210 VL - 107 PB - Institut des Hautes Études Scientifiques UR - http://archive.numdam.org/articles/10.1007/s10240-008-0012-5/ DO - 10.1007/s10240-008-0012-5 LA - en ID - PMIHES_2008__107__169_0 ER -
%0 Journal Article %A Laszlo, Yves %A Olsson, Martin %T The six operations for sheaves on Artin stacks II: Adic coefficients %J Publications Mathématiques de l'IHÉS %D 2008 %P 169-210 %V 107 %I Institut des Hautes Études Scientifiques %U http://archive.numdam.org/articles/10.1007/s10240-008-0012-5/ %R 10.1007/s10240-008-0012-5 %G en %F PMIHES_2008__107__169_0
Laszlo, Yves; Olsson, Martin. The six operations for sheaves on Artin stacks II: Adic coefficients. Publications Mathématiques de l'IHÉS, Volume 107 (2008), pp. 169-210. doi : 10.1007/s10240-008-0012-5. http://archive.numdam.org/articles/10.1007/s10240-008-0012-5/
[1] Derived l-Adic Categories for Algebraic Stacks, Mem. Amer. Math. Soc., vol. 163, no. 774, Amer. Math. Soc., Providence, RI, 2003. | MR | Zbl
,[2] Faisceaux pervers. Analysis and Topology on Singular Spaces, I (Luminy, 1981). Soc. Math. France, Paris | MR | Zbl
, , (1982)[3] Homotopy limits in triangulated categories. Compos. Math. 86: pp. 209-234 | EuDML | Numdam | MR | Zbl
, (1993)[4] La conjecture de Weil II. Publ. Math., Inst. Hautes Étud. Sci. 52: pp. 137-252 | EuDML | Numdam | MR | Zbl
(1980)[5] Cohomologie étale | MR | Zbl
(1977)[6] On the multiplicative properties of the de Rham-Witt complex. II. Ark. Mat. 23: pp. 53-102 | MR | Zbl
(1985)[7] On the adic formalism. The Grothendieck Festschrift, vol. II. Birkhäuser, Boston, MA | MR | Zbl
(1990)[8] Notes on some t-structures. Geometric Aspects of Dwork Theory, vol. II. Walter de Gruyter, Berlin, pp. 711-734 | MR | Zbl
(2004)[9] Catégories dérivées et foncteurs dérivés, in A. Borel (ed.) Algebraic D-Modules, Perspect. Math., vol. 2, Academic Press, Boston, MA, 1987. | MR
,[10] Théorie des topos et cohomologie étale des schémas, in Séminaire de Géométrie Algébrique du Bois-Marie (SGA 4), Lect. Notes Math. vols. 269, 270, 305, Springer, Berlin, 1972. | Zbl
, , and ,[11] Cohomologie l-adique et fonctions L, in L. Illusie (ed.) Séminaire de Géometrie Algébrique du Bois-Marie (SGA 5), Lect. Notes Math., vol. 589, Springer, Berlin, 1977. | MR | Zbl
et al.,[12] Continuous étale cohomology. Math. Ann. 280: pp. 207-245 | MR | Zbl
(1988)[13] On the cyclic homology of ringed spaces and schemes. Doc. Math. 3: pp. 177-205 | MR | Zbl
(1998)[14] The six operations for sheaves on Artin stacks I: Finite coefficients, Publ. Math., Inst. Hautes Étud. Sci., (2008). | Numdam | MR | Zbl
and ,[15] Perverse sheaves on Artin stacks, Math. Z., to appear. | MR
and ,[16] Champs algébriques. Springer, Berlin | MR | Zbl
, (2000)[17] The Grothendieck duality theorem via Bousfield's techniques and Brown representability. J. Amer. Math. Soc. 9: pp. 205-236 | MR | Zbl
(1996)[18] Triangulated Categories. Princeton University Press, Princeton, NJ | MR | Zbl
(2001)[19] Sheaves on Artin stacks. J. Reine Angew. Math. 603: pp. 55-112 | MR | Zbl
(2007)[20] Pureté (d'après Ofer Gabber), in Théorèmes de finitude en cohomogie étale d'après Ofer Gabber, in preparation, preprint (2007), http://www.math.u-psud.fr/~riou/doc/gysin.pdf.
,[21] Resolutions of unbounded complexes. Compos. Math. 65: pp. 121-154 | Numdam | MR | Zbl
(1988)Cited by Sources: