The isomorphism problem for toral relatively hyperbolic groups
Publications Mathématiques de l'IHÉS, Volume 107 (2008), p. 211-290

We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic n-manifolds, for n3. In the course of the proof of the main result, we prove that a particular JSJ decomposition of a freely indecomposable torsion-free relatively hyperbolic group with abelian parabolics is algorithmically constructible.

@article{PMIHES_2008__107__211_0,
     author = {Dahmani, Fran\c cois and Groves, Daniel},
     title = {The isomorphism problem for toral relatively hyperbolic groups},
     journal = {Publications Math\'ematiques de l'IH\'ES},
     publisher = {Institut des Hautes \'Etudes Scientifiques},
     volume = {107},
     year = {2008},
     pages = {211-290},
     doi = {10.1007/s10240-008-0014-3},
     zbl = {1207.20038},
     mrnumber = {2434694},
     language = {en},
     url = {http://www.numdam.org/item/PMIHES_2008__107__211_0}
}
Dahmani, François; Groves, Daniel. The isomorphism problem for toral relatively hyperbolic groups. Publications Mathématiques de l'IHÉS, Volume 107 (2008) pp. 211-290. doi : 10.1007/s10240-008-0014-3. http://www.numdam.org/item/PMIHES_2008__107__211_0/

[1] Adian, S.I. (1957) The unsolvability of certain algorithmic problems in the theory of groups. Trudy Moskov. Obsc. 6: pp. 231-298 | MR 95872

[2] Alibegović, E. (2005) A combination theorem for relatively hyperbolic groups. Bull. Lond. Math. Soc. 37: pp. 459-466 | MR 2131400 | Zbl 1074.57001

[3] Baumslag, G., Gildenhuys, D., Strebel, R. (1986) Algorithmically insoluble problems about finitely presented soluble groups, Lie and associative algebras, I. J. Pure Appl. Algebra 39: pp. 53-94 | MR 816890 | Zbl 0577.20021

[4] Belegradek, I. (2007) Aspherical manifolds with relatively hyperbolic fundamental groups. Geom. Dedicata 129: pp. 119-144 | MR 2353987 | Zbl 1139.20036

[5] Bestvina, M. (1988) Degenerations of hyperbolic space. Duke Math. J. 56: pp. 143-161 | MR 932860 | Zbl 0652.57009

[6] Bestvina, M., Feighn, M. (1991) Bounding the complexity of simplicial group actions. Invent. Math. 103: pp. 449-469 | MR 1091614 | Zbl 0724.20019

[7] Bestvina, M., Feighn, M. (1995) Stable actions of groups on real trees. Invent. Math. 121: pp. 287-321 | MR 1346208 | Zbl 0837.20047

[8] Bowditch, B.H. (1998) Cut points and canonical splittings of hyperbolic groups. Acta Math. 180: pp. 145-186 | MR 1638764 | Zbl 0911.57001

[9] B. H. Bowditch, Relatively Hyperbolic Groups, preprint (1999). | MR 2922380 | Zbl 1259.20052

[10] Bowditch, B.H. (2001) Peripheral splittings of groups. Trans. Amer. Math. Soc. 353: pp. 4057-4082 | MR 1837220 | Zbl 1037.20041

[11] Bridson, M.R., Swarup, G.A. (1994) On Hausdorff-Gromov convergence and a theorem of Paulin. Enseign. Math. 40: pp. 267-289 | MR 1309129 | Zbl 0846.20038

[12] Brown, K.S. (1982) Cohomology of Groups. Springer, New York, Berlin | MR 672956 | Zbl 0584.20036

[13] Bumagin, I. (2004) The conjugacy problem for relatively hyperbolic groups. Algebr. Geom. Topol. 4: pp. 1013-1040 | MR 2100689 | Zbl 1111.20035

[14] Bumagin, I., Kharlampovich, O., Miasnikov, A. (2007) Isomorphism problem for finitely generated fully residually free groups. J. Pure Appl. Algebra 208: pp. 961-977 | MR 2283438 | Zbl 1121.20026

[15] M. Coornaert, T. Delzant, and A. Papadopoulos, Géométrie et théorie des groupes, Les groupes hyperboliques de M. Gromov, Lect. Notes Math., vol. 1441, Springer, Berlin, 1991. | Zbl 0727.20018

[16] F. Dahmani, Les groupes relativement hyperboliques et leurs bords, PhD Thesis, Strasbourg (2003) | MR 2105643

[17] Dahmani, F. (2003) Combination of convergence groups. Geom. Topol. 7: pp. 933-963 | MR 2026551 | Zbl 1037.20042

[18] Dahmani, F. (2008) Finding relative hyperbolic structures. Bull. Lond. Math. Soc. 40: pp. 395-404 | MR 2418795 | Zbl 1166.20034

[19] F. Dahmani, Existential questions in (relatively) hyperbolic groups, Isr. J. Math., to appear. | MR 2570661 | Zbl 1189.20034

[20] F. Dahmani and D. Groves, Detecting free splittings in relatively hyperbolic groups, Trans. Amer. Math. Soc., to appear. | MR 2434288 | Zbl 1196.20050

[21] Dehn, M. (1912) Über unendliche diskontinuierliche Gruppen. Math. Ann. 71: pp. 413-421 | JFM 42.0508.03 | MR 1511705

[22] Dehn, M. (1987) Papers on Group Theory and Topology, Translated from the German and with Introductions and an Appendix by John Stillwell, with an Appendix by Otto Schreier. Springer, New York | MR 881797

[23] Diekert, V., Gutiérrez, C., Hagenah, C. (2005) The existential theory of equations with rational constraints in free groups is PSPACE-complete. Inform. Comput. 202: pp. 105-140 | MR 2172984 | Zbl 1101.68649

[24] V. Diekert and A. Muscholl, Solvability of equations in free partially commutative groups is decidable, in Automata, Languages and Programming, Lect. Notes Comput. Sci., vol. 2076, Springer, 2001, pp. 543-554. | MR 2066532 | Zbl 0986.20036

[25] Druţu, C., Sapir, M. (2005) Tree-graded spaces and asymptotic cones of groups. Topology 44: pp. 959-1058 | MR 2153979 | Zbl 1101.20025

[26] Druţu, C., Sapir, M. (2007) Groups acting on tree-graded spaces and splittings of relatively hyperbolic groups. Adv. Math. 217: pp. 1313-1367 | MR 2383901 | Zbl 1138.20024

[27] Dunwoody, M., Sageev, M. (1999) JSJ-splittings for finitely presented groups over slender groups. Invent. Math. 135: pp. 25-44 | MR 1664694 | Zbl 0939.20047

[28] Epstein, D., Cannon, J., Holt, D., Levy, S., Paterson, M., Thurston, W. (1992) Word Processing in Groups. Jones and Bartlett, Boston | MR 1161694 | Zbl 0764.20017

[29] Farb, B. (1998) Relatively hyperbolic groups. Geom. Funct. Anal. 8: pp. 810-840 | MR 1650094 | Zbl 0985.20027

[30] Forester, M. (2003) On uniqueness of JSJ decompositions of finitely generated groups. Comment. Math. Helv. 78: pp. 740-751 | MR 2016693 | Zbl 1040.20032

[31] Fujiwara, K., Papasoglu, P. (2006) JSJ decompositions of finitely presented groups and complexes of groups. Geom. Funct. Anal. 16: pp. 70-125 | MR 2221253 | Zbl 1097.20037

[32] V. Gerasimov, Detecting connectedness of the boundary of a hyperbolic group, preprint.

[33] Grigorchuk, R., Lysenok, I. (1992) A description of solutions of quadratic equations in hyperbolic groups. Int. J. Algebra Comput. 2: pp. 237-274 | MR 1189234 | Zbl 0762.20014

[34] M. Gromov, Hyperbolic groups, in Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263. | MR 919829 | Zbl 0634.20015

[35] Groves, D. (2005) Limits of certain CAT(0) groups, I: Compactification. Algebr. Geom. Topol. 5: pp. 1325-1364 | MR 2171812 | Zbl 1085.20025

[36] D. Groves, Limit groups for relatively hyperbolic groups, I: The basic tools, preprint. | MR 2530123 | Zbl 1231.20038

[37] Groves, D. (2005) Limit groups for relatively hyperbolic groups, II: Makanin-Razborov diagrams. Geom. Topol. 9: pp. 2319-2358 | MR 2209374 | Zbl 1100.20032

[38] Grunewald, F., Segal, D. (1980) Some general algorithms. II. Nilpotent groups. Ann. Math. (2) 112: pp. 585-617 | MR 595207 | Zbl 0457.20048

[39] Guirardel, V. (2004) Limit groups and groups acting freely on R n -trees. Geom. Topol. 8: pp. 1427-1470 | MR 2119301 | Zbl 1114.20013

[40] Hruska, G.C., Kleiner, B. (2005) Hadamard spaces with isolated flats, with an appendix by the authors and Mohamad Hindawi. Geom. Topol. 9: pp. 1501-1538 | MR 2175151 | Zbl 1087.20034

[41] Hummel, C. (1998) Rank one lattices whose parabolic isometries have no rational part. Proc. Amer. Math. Soc. 126: pp. 2453-2458 | MR 1443390 | Zbl 0898.22005

[42] Kharlampovich, O., Miasnikov, A. (2005) Effective JSJ decompositions. Groups, Languages and Algorithms. Amer. Math. Soc., Providence, RI, pp. 87-212 | MR 2159316 | Zbl 1093.20019

[43] Kharlampovich, O., Miasnikov, A. (2006) Elementary theory of free non-abelian groups. J. Algebra 302: pp. 451-552 | MR 2293770 | Zbl 1110.03020

[44] Levitt, G. (2005) Automorphisms of hyperbolic groups and graphs of groups. Geom. Dedicata 114: pp. 49-70 | MR 2174093 | Zbl 1107.20030

[45] Levitt, G. (2005) Characterizing rigid simplicial actions on trees. Geometric Methods in Group Theory. Amer. Math. Soc., Providence, RI, pp. 27-33 | MR 2139674 | Zbl 1079.20040

[46] Lyndon, R.C., Schupp, P.E. (1977) Combinatorial Group Theory. Springer, Berlin | MR 577064 | Zbl 0368.20023

[47] I. Lysenok, Some algorithmic properties of hyperbolic groups, Izv. Akad. Nauk SSSR Ser. Mat., 53 (1989), 814-832, 912; transl. in Math. USSR-Izv., 35 (1990), 145-163. | MR 1018749 | Zbl 0697.20020

[48] G. S. Makanin, Decidability of the universal and positive theories of a free group (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 48 (1984), 735-749; transl. in Math. USSR-Izv., 25 (1985), 75-88. | MR 755956 | Zbl 0578.20001

[49] Miller Iii, C.F. (1971) On Group Theoretic Decision Problems and Their Classification. Princeton University Press, Princeton | MR 310044 | Zbl 0277.20054

[50] Miller Iii, C.F. (1992) Decision problems for groups - survey and reflections. Algorithms and Classification in Combinatorial Group Theory (Berkeley, CA, 1989). Springer, New York, pp. 1-59 | MR 1230627 | Zbl 0752.20014

[51] Osin, D.V. (2006) Relatively Hyperbolic Groups: Intrinsic Geometry, Algebraic Properties, and Algorithmic Problems. Amer. Math. Soc., Providence, RI | MR 2182268 | Zbl 1093.20025

[52] P. Papasoglu, An algorithm detecting hyperbolicity, in Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 193-200. | MR 1364185 | Zbl 0857.20017

[53] Paulin, F. (1988) Topologie de Gromov équivariante, structures hyperbolique et arbres réels. Invent. Math. 94: pp. 53-80 | MR 958589 | Zbl 0673.57034

[54] Rabin, M.O. (1958) Recursive unsolvability of group theoretic problems. Ann. Math. 67: pp. 172-194 | MR 110743 | Zbl 0079.24802

[55] D. Rebbechi, Algorithmic Properties of Relatively Hyperbolic Groups, PhD Thesis, ArXiv math.GR/0302245. | MR 2701979

[56] Rips, E., Sela, Z. (1995) Canonical representatives and equations in hyperbolic groups. Invent. Math. 120: pp. 489-512 | MR 1334482 | Zbl 0845.57002

[57] Rips, E., Sela, Z. (1997) Cyclic splittings of finitely presented groups and the canonical JSJ decomposition. Ann. Math. (2) 146: pp. 53-104 | MR 1469317 | Zbl 0910.57002

[58] V. Roman'Kov, Universal theory of nilpotent groups, Mat. Zametki, 25 (1979), 487-495, 635. | MR 534291 | Zbl 0419.20031

[59] Segal, D. (1990) Decidable properties of polycyclic groups. Proc. Lond. Math. Soc., III. Ser. 61: pp. 497-528 | MR 1069513 | Zbl 0674.20020

[60] Sela, Z. (1995) The isomorphism problem for hyperbolic groups I. Ann. Math. (2) 141: pp. 217-283 | MR 1324134 | Zbl 0868.57005

[61] Sela, Z. (1997) Acylindrical accessibility for groups. Invent. Math. 129: pp. 527-565 | MR 1465334 | Zbl 0887.20017

[62] Sela, Z. (1997) Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II. Geom. Funct. Anal. 7: pp. 561-593 | MR 1466338 | Zbl 0884.20025

[63] Sela, Z. (2003) Diophantine geometry over groups, I: Makanin-Razborov diagrams. Publ. Math., Inst. Hautes Étud. Sci. 93: pp. 31-105 | Numdam | MR 1863735 | Zbl 1018.20034

[64] Sela, Z. (2006) Diophantine geometry over groups, VI: The elementary theory of a free group. Geom. Funct. Anal. 16: pp. 707-730 | MR 2238945 | Zbl 1118.20035

[65] Z. Sela, Diophantine Geometry over Groups, VIII: Elementary Theory of Hyperbolic Groups, preprint (2002). | MR 1957023 | Zbl 1285.20042

[66] Serre, J.-P. (1980) Trees. Springer, Berlin | MR 607504