Given a collection of exact Lagrangians in a Liouville manifold, we construct a map from the Hochschild homology of the Fukaya category that they generate to symplectic cohomology. Whenever the identity in symplectic cohomology lies in the image of this map, we conclude that every Lagrangian lies in the idempotent closure of the chosen collection. The main new ingredients are (1) the construction of operations on the Fukaya category controlled by discs with two outputs, and (2) the Cardy relation.
@article{PMIHES_2010__112__191_0, author = {Abouzaid, Mohammed}, title = {A geometric criterion for generating the {Fukaya} category}, journal = {Publications Math\'ematiques de l'IH\'ES}, pages = {191--240}, publisher = {Springer-Verlag}, volume = {112}, year = {2010}, doi = {10.1007/s10240-010-0028-5}, mrnumber = {2737980}, zbl = {1215.53078}, language = {en}, url = {http://archive.numdam.org/articles/10.1007/s10240-010-0028-5/} }
TY - JOUR AU - Abouzaid, Mohammed TI - A geometric criterion for generating the Fukaya category JO - Publications Mathématiques de l'IHÉS PY - 2010 SP - 191 EP - 240 VL - 112 PB - Springer-Verlag UR - http://archive.numdam.org/articles/10.1007/s10240-010-0028-5/ DO - 10.1007/s10240-010-0028-5 LA - en ID - PMIHES_2010__112__191_0 ER -
%0 Journal Article %A Abouzaid, Mohammed %T A geometric criterion for generating the Fukaya category %J Publications Mathématiques de l'IHÉS %D 2010 %P 191-240 %V 112 %I Springer-Verlag %U http://archive.numdam.org/articles/10.1007/s10240-010-0028-5/ %R 10.1007/s10240-010-0028-5 %G en %F PMIHES_2010__112__191_0
Abouzaid, Mohammed. A geometric criterion for generating the Fukaya category. Publications Mathématiques de l'IHÉS, Tome 112 (2010), pp. 191-240. doi : 10.1007/s10240-010-0028-5. http://archive.numdam.org/articles/10.1007/s10240-010-0028-5/
1. A cotangent fibre generates the Fukaya category. arXiv:1003.4449 . | MR | Zbl
,2. Maslov 0 nearby Lagrangians are homotopy equivalent. arXiv:1005.0358 .
,3. An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010), p. 627-718 | MR | Zbl
, ,4. Coherent sheaves on P n and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), p. 68-69 | MR | Zbl
,5. Effect of Legendrian surgery. arXiv:0911.0026 . | MR | Zbl
,6. Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007), p. 165-214 | MR | Zbl
,7. Morse theory for Lagrangian intersections, J. Differ. Geom. 28 (1988), p. 513-547 | MR | Zbl
,8. Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993), p. 13-38 | MR | Zbl
, ,9. Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995), p. 251-292 | MR | Zbl
, , ,10. Lagrangian intersection Floer theory: anomaly and obstruction. Part I. AMS/IP Studies in Advanced Mathematics, 46 (2009), American Mathematical Society, Providence | MR | Zbl
, , , ,11. The Symplectic Geometry of Cotangent Bundles from a Categorical Viewpoint, Lecture Notes in Physics 757 (2009), Springer, Berlin | MR | Zbl
, , ,12. Notes on A ∞-algebras, A ∞-categories and Non-commutative Geometry Conference, in: Homological Mirror Symmetry, Lecture Notes in Phys. 757 (2009), Springer, Berlin | MR | Zbl
, ,13. A ∞ functors for Lagrangian correspondences, In preparation (2010).
,14. Lefschetz fibrations and exotic symplectic structures on cotangent bundles of spheres, J. Topol. 3 (2010), p. 157-180 | MR | Zbl
, ,15. Graded Lagrangian submanifolds, Bull. Soc. Math. Fr. 128 (2000), p. 103-149 | EuDML | Numdam | MR | Zbl
,16. A ∞-subalgebras and natural transformations, Homology Homotopy Appl. 10 (2008), p. 83-114 | MR | Zbl
,17. Fukaya Categories and Picard-Lefschetz Theory, Zurich Lectures in Advanced Mathematics (2008), European Mathematical Society (EMS), Zürich | MR | Zbl
,18. Functors and computations in Floer homology with applications, Part I, Geom. Funct. Anal. 9 (1999), p. 985-1033 | MR | Zbl
,Cité par Sources :