@article{PSMIR_1969-1970___2_A5_0, author = {Van Eeden, Constance}, title = {A {One-Sample} {Analogue} of a {Theorem} of {Jure\v{c}kova}}, journal = {Publications des s\'eminaires de math\'ematiques et informatique de Rennes}, note = {talk:5}, pages = {1--20}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {2}, year = {1969-1970}, language = {en}, url = {http://archive.numdam.org/item/PSMIR_1969-1970___2_A5_0/} }
TY - JOUR AU - Van Eeden, Constance TI - A One-Sample Analogue of a Theorem of Jurečkova JO - Publications des séminaires de mathématiques et informatique de Rennes N1 - talk:5 PY - 1969-1970 SP - 1 EP - 20 IS - 2 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://archive.numdam.org/item/PSMIR_1969-1970___2_A5_0/ LA - en ID - PSMIR_1969-1970___2_A5_0 ER -
%0 Journal Article %A Van Eeden, Constance %T A One-Sample Analogue of a Theorem of Jurečkova %J Publications des séminaires de mathématiques et informatique de Rennes %Z talk:5 %D 1969-1970 %P 1-20 %N 2 %I Département de Mathématiques et Informatique, Université de Rennes %U http://archive.numdam.org/item/PSMIR_1969-1970___2_A5_0/ %G en %F PSMIR_1969-1970___2_A5_0
Van Eeden, Constance. A One-Sample Analogue of a Theorem of Jurečkova. Publications des séminaires de mathématiques et informatique de Rennes, Séminaire de probabilités et statistiques, no. 2 (1969-1970), Exposé no. 5, 20 p. http://archive.numdam.org/item/PSMIR_1969-1970___2_A5_0/
[1] Theory of rank tests. Academic Press, New-York | MR | Zbl
and (1967).[2] Asymptotic linearity of a rank statistic in regression parameter. Ann. Hath. Stat. 40 1889-1900 | MR | Zbl
(1960),[3] Efficient linearized estimates based on ranks. Proceedings of the First International Symposium on Namparametric Techniques in Statistical Inference Blcomington, Indiana
and (1969).[4] Relative efficiences of quick and efficient methods of computing estimates from rank tests. Submitted.
and (1969).[5] Asymptotic behavior of Wilcoxon type confidence regions in multiple linear regression. Ann. Math Stat. 40 1950-1979 | MR | Zbl
(1969).[6] Some concepts of dependence, Ann. Math. Stat. 37 1137-1153. | MR | Zbl
(1966).