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1. INTRODUCTION. 

The purpose of this note is to give a formula for zne calculation of 

the conditional, given a sample U^,...,U from F, distribution of a randomly 

selected distribution function F. The sole restriction on the method of selection 

is that F is chosen, with independent interpolation, by the method of Kraft and 

Van Eeden Q>] . 

Ferguson [j3] gives a method of selecting a prior which also admits a 

formula for the calculation of the posterior. His selection has the advantage 

that it can be used to describe a prior for a distribution on a completely 

arbitrary sample space. If the sample space is the unit interval the method here 

includes Ferguson selection (see Antoniak [l] ) as well as selections which con­

centrate on absolutely continuous distributions. 

The method, described in [ 4 ] (see also [ 6 ] ) , of concentrating the prior 

on absolutely continuous distribution functions F on [p#f] requires that %F[x) = x. 

This method can be adapted (see [ 5 J ) to concentrate on absolutely continuous 

distributions G on the real line by letting G(x) = F ( H Q ( X ) ) for a fixed absolu­

tely continuous H . On this case, of course, %G = H . 
0 o 
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. TRIORS, SAMPLES, ANP POSTERIORS. 

Let {X ( — )} , m - 1,2,3, ... , 

m 
K - 1,3,5, . . . , 2 - 1 , be sequence of completej y I - . : - ; percent random variable £-
tach taking in |o,ll. It can be supposed that the / [ — ] have densities P 

2 m X(i-i 
r:. 

with respect to a fixed measure p on [o,1J-

Let F be the distribution function that Hives mass to the intervals 
m 

' 2 2^ 1 I D , — j , ( — , — 1 , ... , [ , 1*1 as determined bv the density 
2 2 2 ' 2 

m P = H q. where m . „ i i=1 

1/2 q = X (1/2).I [0,1/2] + [l-X(1/2j]. 1(1/2, l] 

1/2 q 2 = X (1/4) I [0,1/4] + (1-XU/4) 1(1/4,1/2] + 

+ x (3/4? 1(1/2, 3/4] + (1-XC3 / 4 ) ; :c3/4)1"] 

2m-1 
1/2 q = I X ( — ) I ( , — 1 + (1-X [ Ji- ) I [ J L f Jiil] 

m K=1 2 m 2 m 2 m J 2 m 2 m 2 m 

kodd 

Let F then be the right continuous distribution function determined 

bv lim F (-—-), 
" m m

 2
J 

j = 1,2,... 

1 — 1,3,5,..., 2 ™~ 1 • 

The following alternate definition of r ; 

F (1/2; - FtO) = XC1/2) 
FC1/2) = X (1/23 or 

FC13 - FC1/2] = 1-XC1/2] 
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F(1/4) - F(0) = XC1/2Î X(1/4) 

FC1/4) = XC1/43 XC1/2) F(1/2) - F(1/4) = XC1/2) [l-X (1/4)] 
or 

FC3/4) = X(1/2) + X(3/4) [l-X(1/2)] F(3/4) - F(1/3) = [l-X(1/2)] X (3/4) 

F(1) - F (3/4.3 = [1-X (1/2)] [1-X (3/4)] 
etc.. . 

makes it clear that F is determined by successive interpolations with the variables 

X ( — ) . The distribution obtained for F will be described by saying F is 

determined by interpolation with independent X ( — ) . 

After F is determined, let , ..., be a sample of n independent 

observations with P (U. < t) = F(t). Define random variables {n .}, m=1,2,3,... 
i - m,j 

1 = 1,2,..., 2 m by n . = (the number of U. in ( J—- , -J- ) ) where as above the 
mj l 2 m 2 m 

interval for j = 1 includes • while those for j > 1 are open on the left and closed 

on the right. It is clear that the {n^ A determine, uniquely, the sample cumulative 

Of U. <_ t 
G (t) = i . 
n n 

With these definitions the following theorem and immediate corollary 

can be given. 

Theorem. 

The conditional, given LL,...,U , distribution of F is that of F where 
I n G n k F is determined by indépendant interpolation with variables {2 ( — )} and 

1̂  
•2 ( — ) has the density with respect to y. 

m,k ,„ , m,k+1 
P (x) = . P . Cx) 

] , V k . nm,k+1 X ( — ] 
& L m J ^ 2

m 
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Corollary. 

*£(f| , . .. ,11 ) is the distribution function determined by interpolation 

with the numbers 

XC-^-J 1-X (—J 
- - ^ ~ 2 m-l a — = •—1 

r̂n n n . . 2 r . -i m,k r- -i m,k+1 
X W 1-X- (—) L 2

m J - 2
m J 

Proof. 
G (t) 

Let P (F(t) A) denote the probability that F(t) is in A when F is 

determined by the independent {?(-—)} and let P ( F C t ) 6 A ) denote the probability 

that F(t) is in A when F is determined by interpolation with the independent 

{X(-^J}. If 
1
 2 m J 

r G (t) 
1] P n (F(t)feA] d P = P ( F ( t ) 6 A , G (t)6B) 

J n 

B 
G n(t) 

for all sets B in a(G ( t ) K then P will be the stated conditional probability. 

1 
It is sufficient to show that 1) holds for A = f\ (F(t ) £ 3± and 

i=1 
1 ' 

B = C\ (G (t!) €J!) where J. and J! are subsets of the unit interval. Because 
i-i n 1 1 

the processes F(t) and G^Ct) are, with probability one, determined by their values 

on the dyadic rationals, it will be sufficient to allow the t^ and t^ bo be of the 

K m 
form — where 2 is their least common denominator. Hence, it is sufficient to 

1 2 1 
prove that 1) holds if A is measurable with respect to a ( F ( — ) , F t — ) - F ( — ) , . . . , 

2 m 2 m 2 m 

2 m - I 
1 - p( )] a n cj g i S measurable with respect to a(n n ) . In this case, 

2 m,1 m,2 
P ( F ( t ) € A , G ( t ) £ B ) is the integral over A x B of 
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n P . ] K(n n n X(-Jr) 
• i=1....,m Xt^r) \ m.1 m , 2 m i=1....,m - 2 1-! 

j = 1.3. ...,2 m-1 2 1 I j = 1,3 ,2 m-1 
n. . . 

r H "I 

L 2iJ 
Because the X C - ^ T3 are independent and n. . + n. . „ = n. „ . „ , i odd, 

2 i j,i J,i+1 

the marginal probability of (n , n ) is K(n , n ) times the 
mt,1 m,2 m,1 m,2 

products of the expectations in the denominator of 

n P . Q. E. D. 
i=1,...,m -St-Jr) 
j=1,3,...,2 m-1 2 1 

A somewhat different way to describe p r i o r ^ for distribution functions 

was given by Dubins and Freedman QfJ . Their way involves interpolation with 

k k I random variables X ( — ) , F ( X [ — ] ) The above formula has an interpretation for L 2 m 2 m J 
this interpolation if the n . are the numbers of observations betwenn X(-*—) and 

mj 2 m 
i + 1 X ( - — ) . However, the conditional distribution so obtained is not that of F given 
2 m 

the observation since the n ^ are now functions of nature 9 s strategy. 
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3. THE SUPPORT OF THE PRIOR. 

Suppose that the support of P . is all of [o.l̂  and P (F is conti-
X ( — ) 

2 m 

nuous) = 1. Then the support of the distribution of F is the space of all distri­

bution functions with respect to the topology of weak convergence and containe 

the continuous distribution functions with respect to the topology point-wise 

convergence. These facts are immediate upon noting that the map of the product 

of the coordinate spaces of the variables X ( — ) into the space of distribution 
2 m 

functions, which is obtained by regarding the points of the coordinate spaces as 

degenerate random variables, is continuous with respect to the point-wise conver­

gence in both spaces when the map is restricted to the continuous distribution 

functions. 
Metivier [B] , has shown another result, namely that, if the support of 

each X C — ) is the closed unit interval, then the support, with respect to weak 2^ 

convergence, of the prior defined by interpolation with the { x ( —)} is the space 
2 m 

of all distribution functions. 
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