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DUAL ITERATIVE TECHNIQUES FOR SOLVING
A FINITE ELEMENT APPROXIMATION OF THE
BIHARMONIC EQUATION

Ph. Ciarlet, R. Glowinski

Abstract. A finite element approximation of the Dirichlet problem
for the biharmonic operator is described. Its main feature is that it is
equivalent to solving a sequence of discrete Dirichlet protlexms for the
operator -_A._This method, which has already been shown to be convergent.

is particularly well-suited. for problems -in Fluid Dynamies.

Résumé. On décrit une méthode d'approximgtion par €léments finis du
probléme‘delbirichlét'pour 1'opérateur biharmonique. Le™principal intérét
de cette méthode est d'équivaloir & la résolution d'une suite de problémes
de Dirichlet pour 1'opérateur -A. Cette méthode, dont la convergence a &té
démontrée par ailleurs, est pérticuliérement bien adaptée aux probléemes de

la Dynamique ‘des Fluides.



1. Introduction. Throughout this paper, 0 denotes the interior
of a convex polygon in the plane,‘vith boundary F; %; denotes the exterior
normal derivative along ', and f is a given function belonering to the
space L2(T). We consider the Dirichlet problem for the biharmonie operator,

which reads formally as :

(1.1) A%u = £ in Q,
(1.2) us= 2w Oon T,
v

We first study in §2 a variational formulation of probdblem (1.1)-(1.2),
recently introduced in [ 1], whose main feature is that the associated solu=-
tion lies in the product space Hé(ﬂ) x L2(Q), instead of the svace Hg(ﬂ)
for the "classical" variational formulation. Therefore, when this anrproach
is discretized, it suffices to use finite element of elass €°, whereas
finite element of class &! are needed for the usual conforming methods,
such as the well-known 2l-desree of freedom triangle of Argyris | 2].
Moreover, it is not necessary to use finite element of Hermite tvpe, as is
the case for standard nonconforming methods. For eeneral discussions about
finite element methads far rrAlvine vrohlem (1.1)=(1.2). we refer the reader
to [},h] and the various references quoted therein.

in addition, from the point of view of Fluid Mechanics, the vresent
method seems even more interesting than any conformine method, since it not
only yields a continuous approximation of the stream function u, but also
of the vorticity Au, whereas a standard approximation using finite elements
of class ¥} would result in a discontinuous approximation df the vorticity.

As was already pointed out in [ 1], it seems that a safe way to verform
variational crimes, such as curved boundaries or numerical intearation

(cf. [S]), when one deals with fourth-order problems is thus to use this



method or a similar one, since, in essence, the associated computations
are exactly the same as in the case of second order problems.

Indeed, a variational crime was already performed on this method
in { 6] , where convergence was proved for subspaces made up of piecewvise
polynomials of degree 1 (which are not included in the error analysis
of [1]). As was pointed out in [ 6], the discrete equations associated
with this type of subspaces are identical to the usual 13-point finite-
difference approximation of the operator AZ.

As regards the convergence of the method, the following was proved
in (1) : If the trial functions are piecewise polynomials of degree k,
then a sequence (“h’°h) of approximations of the solution u (of (1.1)-(1.2))
and -Au is obtained which satisfies

+ Joure, | :

K-
(1.3) Hu-u.h " <~7§“u “ K+ h
H ()

B (q) L2(q)
for some constant:k: independent of h. As a consequence, an Q(h) conver-
gence is therefore obtained with polynomials of degree only 2. Let us add
that this method falls in the general category of mixed finite element

. methods
methods. For gereral results concerning thesez which however do rot contain

the present ores, see the works of Oden and Reddy [ 7,8,9!.
The main object of this paper is to show (Theorems 4,5,8 and 9) that

solving either the continuous or the discrete problem amounts to solvinz a

sequence of Dirichlet problems for either the operator -4 or its variational

approximation.

The method presented here is thus an ansver to a problem which several
authors have considered, for either the continuous problem or its various
possible discretizations; see for instance [10,11,12,13,14] ard the references

therein,
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As a practical consequence, all that is needed for approximating the

solution of problem (1.1)-(1.2) is therefore a finite element program for

solving second order problems.

Following and generalizing a method due to the second author f6], the
basic idea consists in applying Uzawa's method [ 15, Chapter 2] for solving
the saddle~point equations of the Lagrangian associated with the present
variational formulation; see §§2 and 3. As usual, this method is convergent
provided a certain parmmeter p lies in socme interval. In the case of the

discrete problem, we show (Theorem 10) that this interval is of the form

0<p< 20%, vhere
Hav i, »
(1.4) 1lim o, = inf -3;“_}L'gll ,
h+o vEH2(n)NH1(Q) I5v |
o v Lz(r)

for regular families of finite element subspaces and provided an appropriate
inner-product i§ chosen in the space of the discrete Lagrange multipliers.
Thgs the quantity o, mey be estimated in practice, at least for simple
geometric domains 1. This result generalizes Theorem 6 of [ 11], where an
analogous result was proved for a finite-difference approximation over a
rectangle, using Fourier series technique.

The above results were announced in [ 16]; complete proofs for the
discrete problem will be found in [17]. Finally, we refer to a fofihcoming
paper of Bourgat in the same Journal, where numerical results will be
presented.

| The duality pairing betveen a space X and its dual X' will be
denoted by

< ope 2



Given a mapping £ : X — Y, vhere X and Y are normed vector spaces,
its Fréchet derivative at the point a € X will be denoted {assuming its
existence)

Df(a).
At several places, we shall use Green formulas in Sobolev spaces,,

. -
for which ve refer to Necas [ 18] .



2, The contipuous problem.

The standard variational formulation of problem (1.1)-(1.2)

consists in finding a function u € Hg(n) vhich satisfies

(2.1) J(u) = min J(v),
veug(n)
where
(2.2) J(v) =21 lav|2ax - [ tvax,
27q a

and it can be shown [ 19] that the unique solution u of the above problem
belonzs to the space H3() N Hg(n).

We may also consider that vwe minimize the functional

(2.3) j(v.w) = é.l‘ [w]2ax - [ fvax,
Q Q

vhen the functions v € Hg(n) and v € L2(0) satisfy the equation -Av = y.
Since the corresponding subspace of the product space Hg(ﬂ) x L2(Q) can be

alternatively described as the space
(2.4) ’g; {(v,8) € B} ()x12(0); Wu € H(a), B{(v,¥).u) = O},
with

(2.5) 8{(v,¥),u) = [ aradv grads ax - [ ¢ u ax,
0 Q

we have the following result (for the proofs, see Theorem 1 of [1]).
Theorem 1. Let u denote the solution of the minimizstion problem

(2.1). Then we also have

(2.6) ;?f(u,-Au) = min (v,v),
‘ (v,0)e¥
vhere ? is the functional defined in (2.3). .

To solve the constrained minimization problem (2.6), we will use

a standard technique in duality theory: Let there be given a subspace



£ the space H!(Q) such that we may write the direct sum
(2.7) ' (@) = Hl(a) o’ﬂ},.
We next introduce the space
(2.8) - {(v,u) € Bl(A)xL2(Q); wu € H)(Q), 8((v,¥),u) = O},
and the Lagrangian
(2.9) L{(v,0) ) =F w00 + 8{(v,0) ),

with 5{ and B8 defined as in (2.3) and (2.5), respectively.
In view of decomposing the original problem as a sequence of Dirichlet

problems for the operator -8, the following result will play a central role.

. 3
Thecrem 2. Given a function X € ?L, the problem : Find & pair (ux,¢x) e W

such that

(2.10) L((u.,6.),0) =  min L (v,9),2)
((u,,6,),3) (v.wew(

has one and only one solution, which may also be obtained by solving the

following Dirichlet problems for the operator =A :

(1) Find a function ¢, € H!(Q) such that

(2.11) 6y} € Hé(ﬂ),

(2.12) Vv € Hé(ﬂ), I grad, gradv dx = [ £ v ax.
0 Q

(i1) Find a function u, € Hé(ﬂ) such that

RS 2 A

(2.13) Yv € Hé(ﬂ), [ ersdu, gradv dx = T ¢, v ax.
Q

Q
one

Proof. First, we observe that problem (2.10) has one and only/solution
. . .1, .
since the leading term in the Lagrangian : 5,[ |w|2dx, is the square of a

norm over the space &&*.



By definition (see (2.8)), a pair (v,y) € H;(Q) x L2(Q) belongs to

the space'?? if

wu € Hé(n),.r gradv gradp dx = [ ¢ u dx.
9] Q

Since for any given function y € L2(Q), there exists a unique function
v & H;(Q) which satisfies the above relations, we may write v = Ay, the

linear operator
(2.14) A : L2(Q) — Hé(ﬂ)

defined in this fashion being continuous.
We may thus consider that we minimize a function of two variables

(1 is fixed), namely :
L{-,)0) ¢ (v,0) € HYa) x L2(0) = L((v,9) 1)
when these two variables satisfying the constraint
¢(v,y) = 0,
where the mapping
(2.15) ¢ : HI(Q) x L3(Q) — H1(q)

is defined by ¢(v,¥) = Ap-v.
Both functions &ﬁ{(',-),x) and ¢ being differentiable, there exists

a unigque Lagrange multiplier EA € H-I(Q) such that :
DL((u,,8,),1) = £, «Do(u,,4,).

Taking partial derivatives with respect to the two variasbles, we

find that

(2.16) Vv € H;(Q). <z, ,w>+ [ grad) gradv dx = [ f v ax,
Q Y

(2.17)  we e L2(a), <z ,av>+ [ v adx=[ ¢ vdx,
Q Q



and thus, equations (2.16) and (2.17) together with the equation

(2.18) u, = A4, ,

allow to determine the functions u, and ¢+ In order to put relations
(2.16) and (2.17) in more explicit a form, it is convenient to introduce

the unique function g, € Hé(n) which satisfies

(2.19) v € H;(n), < Ey Y >= [ gradgx gradv dx.
Q

Then equations(2.15) become

(2.20) Vv € Hé(ﬂ), [ gred(g,+1) gradv dx = [ £ v ax,
8 0

on the one hand, and in view of the definition of the mapping A of (2.14),

equations (2.17) may be rewritten as

(2.21) vy € L2(a), fn‘ﬁx“-%”’ ax = 0,
on the other hand. Thus

(2.22) 4, = &%),

vhich achieves the proof. -

Notice that since the boundary of the domain is smooth enough, the
function u, is in fact in the space HZ(Q) N H;(n), so that equations (2.13)

can be equivalently written as

We now show that the solution of the original problem is also the
first argument of the saddle-point of the Lagrangian L.

Theorem 3. Let u denote the solution of problem (2.1) and let X*

be the function in the space 1 with the proverty that the function (Au+i*)

. —— ———— —

belongs to the space Hé(n). Then the triple ((u,-Au),*) is the unique
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saddle-point of the Lagrangian o, of (2.9) over the space ¥'xM, , i.e.,

(2.24) L ((u,=tu) ) < L{(u,-su) ) < L((v,p),)

for all pairs (v,y) eW and a1 e, .
Proof. Since the pair (u,-Au) belongs to the space %f defined in

(2.4), we have

wu €M , i{(u,-Au),u) = ;/(u,-Au),

and thus the first inequality of (2.24) is proved. To prove the second

inequality of (2.2L4), it suffices to show that

(2.25) Vv € Hé(ﬁ), [ grad(-Au) gradv ax = [ £ v dx,
Q Q

in view of Theorem 2; we have already noticed that the function u is in

the space H3(Q) N Hg(n). Using Green's formula, we obtain

Vv € Hg(ﬂ), I du av ax = [ grad(-Au) gradv dx = [ £ v dx,
Q R

and equations (2.25) follow since the space Hi(ﬂ) is a dense subspace of
1
HO(Q).
Let now {(u*,¢*),’*) be any saddle-point of the Lagrangisan cﬁ .

From Theorem 2, we infer that

(2.26) ph-2* € Hé(ﬂ),

(2.27) Vv € H})(n), J'Q;;raddﬂ gradv dx = Arn'f'v dx,
(2.28) Vv € Hé(ﬂ). ,fngradu* gradv dx = "rn“ v dx,
since

SZ((u*,qst),A*) = min of((v,w),x*).
(v,p)e

Likewise, the inequalities

ey, L{(w,e) ) < L{(w,o%) 4],
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imply that

(2.29) Vu e | [ gradur grady dax = I ¢*u ax.
9] 9}

Combining (2.28) and (2.29),we deduce that (uw,¢*) e’Y’, i.e.,
(2.30) ww € Hg(n) and ¢% = -pur,
Using Green's formula, (2.27) and (2.30), we get

W € Hg(n), [ dux Av dx = [ grad(-ou%) gradv ax = [ £ v dx,
v} Q Q

i.e., u* = u, and the conclusion follows using ((2.26) end (2.30). [

As a corollary of Theorem 3, we can write (see [ 20, Chapter VI})

(2.31) x((u,-Au),A*) = max g(i),’
M,

vhere the function g is defined by

(2.32) gt 2AEM — glr) = min  &(v,v),2).
(v,0)ER

Using the same notations as in Theorem 2, we may thus write

(2.33) g3) = & ((u,,6,),0) = = 31 [¢,]2 ax
Q

for any e,

Lemma 1. Assume thst the space T, is equipped with a norm equivalent

e ————— v,

aifferentisble and its derivative Da(\) € ' is given by
(2.3%) < Dglr),u > = 8((u,,6,).m)
for all ,u € m .
Proof. Write g = £ » h, with the functions f and h defined by
f:ve€EHR(Q) = - ]2"[' lv]2ax,
]

hzkem—w,xe H1(Q).
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Let us show that the affine mapping h is continuous : From (2.11)

and (2.12), we obtain

I eraa(s,-2) grad(¢,-A)dx = [ £(¢,-))ax
f a

<jf

so that, for some constant C solely dependent upon the set R, we have
Ferx> |

and thus the mapping h is continuous since
e <§* |

The mapping h being affine, it suffices to compute its derivative

fex=> 4

12() 12(n)’

<C “f "

Hi(Q) Lz(n)'

el

K {Q) Hl(a) 12(a)

when f = O, which yields for all A,u € T,
(2.35) <Dh(A),u > = o5,
where the function ¢: € H(Q) satisfies
o _ € gl
(2.36) ¢, = HO(Q).
(2.37) Vv € Hi(R), | erads? gradv dx = 0.
Q
Since, for all v,w € Hl(Q),
(2.38) <Dpf(v),w> = = v v ax,
Q
we obtain, from (2.35) and (2.38),
<Dg(r),u>= - ¢ ¢° ax.
Q U
To transform this last expression, ve observe‘that
o = - o -
(2.39) = [ ¢, 82 ax = [ o (u-¢2)ax - [ ¢, u dx
1 Q Q
= 8{(u,,8,)m),

as a simple consequence of (2.13), (2.36) and (2.37). (]
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Using the differentiability of the function g which we just
established, we now apply the gradient method to the maximization problem
(2.31), a technique known as Uzawa's method for the original problem.
Given any function 1° in the space M, and a parameter p > O to be speci-
fied later (cf. Theorem 5), the method consists in defining a sequence of

functions A" € mf such that

(2.50)  VueM ., O™ W), = < <Dg(b M) >, n >0,

m

where ("')’m, is an inner-product in the space m vhose associated norm
is equivalent to the norm in the space Hi(Q).
As a simple corollary of Theorem 2 and Lemma 1, we then have :
Theoren M. Each iteration of Uzewa's method consists of the following
steps :

(i) Given & function A" € M , find the function ¢" € H}(a) which

satisfies

(2.41) ¢ - 2" € H(R),

(2.L42) v € Hol(ﬂ), I zrad¢n gradv dx = [ £ v dx.
9] 19}

(ii) Find the function W e Hi(ﬂ) vhich satisfies :

(2.43) X/v € Hé(n), [ greau” gradv dx = [ ¢"v dx.
Q N

. + . . .
(1) Find the function A""* € T which satisties

(2.84)  wueM (A‘“'l-x“,u)%' = 5 8{(u",6") ).

The Uzawa method described in the previous theorem thus consists
in solving a sequence of Dirichlet problems. That this scheme yields

indeed the solution of the original problem will now be proved.
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Theorem 5. The method described in Theorem 4 is convergent, in the

sense that

(2.45) lim u" = u in H(Q),
n-se
(2.46) lim ¢ = -fu in L2(a),
. o
provided that
(2.47) 0 < p < 2¢202,

vhere the quantity o is defined by

| LA
(2.48) o=  inf T;“—L" ’
veRH (2)0H] ()55 |
Y 'L2(r)

and c is any constant such that

(2.49) Vu € HI(Q), ¢ v " <V Zu.ujqn.

LZ(r)

Proof. We recell that the space qn is equipped with a norm equivalent

| "H‘(n)

it suffices to prove that lim u" = 0 in E)(Q) and 1lim ¢" = 0 in L2(q), in
e o)

the special case where f = 0,

to the norm . To prove the convergence (cf. (2.45) and (2.46)),

Let us define a mapping
(2.50) B : L2(Q) — T,

as follows : for any given Y € L?(Q), the function By € M is uniquely

determined by the condition that
Yu € (m, y (BW,U)m = B((A“hw)ﬂ‘)’

vhere the mapping A : L2(Q) = Hé(ﬂ) is the mapping of (2.1L). As a conse-

quence, equaticns (2.LbL) may be rewritten as
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xn+l =0 4 o B ¢n’

so that by making use of (2.39) (recall that f = 0), we deduce :

n+l n+l n .n n,2 2/p,0 g,
A -
R i L + of(BeT,Be )y s
L2(q)
and therefore,

n+l  n+l

(2.51) OGP - (P S (2002 4B H2) et g2,
with
| YACTES
(2.52) 1B =18 = sup .
Lerasm) werzta) 1V,

From (2,51), we may conclude that

lim ¢" = 0 in L2(R),
nre

and also, in view of the continuity of the mapping A, that

lin u" = 0 in H)(a),
e

provided that

2

It therefore remains to obtain a lower bound for the quantity nglz‘

We have, for any function ¢ € L2(Q),

| (Bdhu ).ml I
N ZBw.BuJ,,, = sup ——ce-—t—
T uEmMm \/('u",'uT"m

and using Green's formula, we can write

av

v

(Bw,u)y = B{(AV,4),u) = [
J r

u dy,

vhere v = AY. As a consequence :
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3v 1,3v
I(Bw,u)m| < HWHLZ(I') v HLz(r) <5 "LZ(r) V‘u.ﬂm ,

with the constant ¢ defined as in (2.49). Since -Av = y, we finally obtain
the estimate

3_V. 2
(2.54) I® | <i syp fav ln2(r)
° verz(@)nul(a) |av || 20,

from which the conclusion follows. (]

Remark l. Assume the space ﬁm is chosen to be the orthogonal complement
of the space H;(Q) in the space H!(Q). Then it is known that the space M is
isamorphic to the space HI/Z(F). That the space M can be thought of as a

space of traces on T is also reflected by the identity

(2.55) B((v,¥),m) = [ 32w ax,
r

valid for any pair (v,y) € % .

Indeed it is possible to develop a treatment analogous to that consi-
dered here with the space qm replaced by a Hilbert space of functions
defined over I'; this is basically what has been done in [ 6], with the
space L2(Tr') in lieu of 7, . Let us review briefly the main steps in this
case : One looks for the saddle-point of the Lagrangian

(2.56) Livyu) =T (v) + [ -:-:’-) u dx

(J defined as in (2.1)) over the product space WxL2(T') with

(2.57) W = H2(g) N H;(n)-

The Lagrange multiplier is the trace of the function -Au over I'; Compare

with Theorenm 3.
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As shown in [ 6}, one iteration of Uzawa's method consists in the
following steps :

(i) Given a function \" € L2(r), find the function u” € W which

satisfies
(2.58) L(u™,2™") = min L{v,\").
vEW
(ii) Find a function A e L2(r) such that
n
(2.59) WL P, -g-% .

Notice that the minimization problem (2.58) amounts to solving, at

least formally,

>

N
=
ft

f in Q,

(2.60) w=0onr,

-Au = )P onT,

a problem which can be obviously decomposed into two Dirichlet problems
for =A. Notice also that equations (2.L4) have now been replaced by the
explicit equation (2.59), since we are now working in the space L2(r).
For the same reason, we could prove the convergence of the above algorithm
provided the parameter o belongs to the interval 10,202 [ ; compare with
Theorem 5.

However there is one good reason for "prefering" the space M, : the
functional set-up being in this case exactly the same for both the conti-
nuous and discrete problems, the proofs are the same in the discrete‘case,

as we will see in the next section.
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3. The discrete problem. We are given a finite-dimensional

subspace V. of the space H}(Q) and we define the spaces

h

(3.1) Veon * {vh € Vs v, =0Oon r},

and
(3.2) B = {{vpay) €V v s Wi €V, 8((v, .4 ).m,) = O},
where 8 is defined as in (2.5).

Remark 2. It is worth pointing out that the same space Vh approximates
both spaces L2(Q) and H!(Q); compare (3.2) and the definition (2.L) of the
space ¥, Indeed, we could carry out a seemingly more general discretiza-
tion in which another space, say Y, , would approximate the space L2(Q), but
since we eventually need the inclusion Yh Cc Vh to derive the error estimates
€f. [1, Theorem T ]) it is therefore appropriate to assume at the outset
that ¥ = Vh. In addition, this assumption results in simpler statements

h

and proofs at several places.
|

In analogy with Theorem 1, we define the discrete problem : Find a

pair (uh,éh) E'ﬁrh such that

(3.3) é;(uh’°h) = min (vh,wh).
("h"%)ex,

It was proved in [1l, Theorem 3] that this problem has a unique solu-

tion.

Let there be given a subspace qnh of the space Vh such that

(3.4) v, =V, ® ‘m,h.

We define the space

(3.5) Wh = {(Vh,\f,’h) € Voh*Vh;Vuh € th' 8((Vh.%).uh) = 0}.



The following is the discrete analog of Theorem 2.

Theorem 6. Given a function A € , the problem: Find a pair
h h

(uh,¢h) E'ﬁyk such that

(3.6) o ((u ) A

WA ’h)=

in . L{(v .4 ),
h h <vh’fz>e2; (ot )

has one and only one solution, which may also be obtained by solving the

following discrete Dirichlet problems :

(i) Find & function ¢, €V, such that

h
h
(3.8) Vv, € Voh,.f grad¢, g@radv, dx =[r v, dx.
Q h Q
(ii) Find a function u, € V . such that
mind e funcrion ¥y € Vop 2uch thet
(3.9) \fvh € Voh,,lngradu)‘h gradv, dx =_IQ¢Ah v, dx.

Proof. The proof is basically the same as the proof of Theorem 2 and,
for this reason, will be omitted. We shall just mention that an essential

use is made of the fact that the same space V., approximates both spaces

h
L2(Q) end H!(R); cf. Remark 2. 1
The pair (uh,¢h) being the solution of the discrete problem (3.3),

we let 6 be the unique function in the space Voh such that the function

h
(¢h-¢oh) belongs to the space qm e We then have the following theorems
whose proofs follow the same lines as the proofs of Theorems 3, 4 and 5,
resvectively.

Theorem 7. The triple ((uh,¢h). aﬁ—éoh] is_the unique saddle-point

of the _I.ng_ra_nvgi'a.n i/ of (2.9) over the space Wh xmh. .
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In the next theorem, (° .-)/mh is any inner-product in the spa.cecm,h
and p is a strictly positive parammeter.

Iheorem 8. Each iteration of Uzawa's method consists of the folloving

steps :
(1) Given a function A € . find the function ¢ € V, which satisfies
n n
. - E
3.10) gh N
. n
(3.11) th € Voh.,lnzrad¢h gradv, dx = rnf v, dx.
. . . n . . .
(ii) Find the function u € V_ which satisfies
(3.12) \7vh €V, o T zraduh aradv, dx = r ¢ v, dx.
aQ
(iii) Find the function A;ﬂ € mh vhich satisfies
+
(3.13) Vi, €10, (X: 1 Xn,u )m = p B{(uh ¢ 2Y u )

As in (2.1%), we define a mapping

(3.14) ALV VL
by the condition that v, = Ah wh be enuivalent to the equations
(3.15) \1uh € Voh.,lnzradvh gradu, dx =,(Qwh u

We also define a mapping

(3.16) Bt Vy --»"m,h

as follows : for any function wh € V, , the function Bh wh satisfies the

h’
equations (compare with (2.50))

(3.17) wu, € My (3w Yy, = 80(A v uy Do )

In the sequel it will be understood that HBh Il is the norm of the

linear mapping Bh when the spaces Vh and %@h are respectively equipped
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with the norms Il « §} and V Z'TT3;%£.
L2(n) '

Theorem 9. The method described in Theorem 8 is convergent in the

sense that

. n .
(3.18) limw =w in V.,
n-ree
(3.19) | lim ¢ = ¢ inV,,
e

provided that

(3.20) 0<op <2a§,
vhere

1
(3.21) oh"'Bn x

It is worth pointing out that the convergence of the present method

is thus guaranteed for any choice of subspace n satisfying (3.L4) and

h

any choice of inner-product over the space ‘nth' What is not independent

upon these data however is the quantity g, of (3.21) and in practive, it

h
is of course desirable to get an asymptotic estimate of this quantity.
This will be achieved in the next theorem, but first, we need to develop
some preliminaries,

In the sequel, triangulations é;ﬁ made up of finite elements K,

are established over the set Q in the sense that 2 = U K, the finite

xef’h

elements satisfying the usual geometrical restrictions about their respective
positions. It is assumed that for all the triangulations which we consider,

A A
all the finite elements K are the image FK(K) of a reference finite element X

through an affine mapping FK' With such a triangulation, we associate

the space



- 22 -

(3.22) vV, = {v, € €@, vke €h, "hllce Pt
where
(3.23) P, = {v: k=R ;V-G-Fgl,Vw‘}E?’},

A, . . . . . . a D .
and P is a given finite-dimensional space of functions v : K — R which

satisfies the inclusion
A
(3.2L) P, C P,

where P, denotes the set of all polynomials of degree< 1 in two variables,
The space V_, is then defined as in (3.1).
By a regular family (fh) of triangulations, we mean that for some

constants a and 8 independent of h, we have

(3.25) max <a,
th (Ozxj) a
(3.26) T max h(K)€ min h(K),
Kt xet’h

vhere h(K) = diameter of X, o(K) = sup{diameter of inscribed spheres in K}.

Finally we let

(3.27) h = max h(K).

| K€

Although the space ‘mh is not uniquely determined by the sole condition
that the direct sum (3.4) shall hold, there is a "canonical" choice for
the space ‘m,h : Since we are considering subspaces made up of piecewise
volynomials defined by their values at nodes, we shall henceforth” assume

that the space M . consistsof those functions in the space Vh vhose values

h
are zero at the interior nodes, i.e., in Q. Defined in this fashion, the
space %h also appears as a natural discrete analog of the space ’ﬂl,,

wvhich essentially consists of traces over I'; ¢f. Remark 1.
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Theorem 10. With the above choice for the space ‘m,h, asgume that

the innegrgzpduct’(-,~%n' is_the inner-product of the space L2(T). Then
: h

for_subspaces V,, V_ . end 9], , satisfying the sbove conditions, and

asgociated with regular families of triangulations, we have

(3.28) v lim o, = 9,
h+o

vhere o, end o are defined as in (2.18) and (3.21), respectively.

Proof. Given two functions ¢ and u in the space HI(Q), there exist

two sequences, (wh) and (uh), of functions in the space V. such that

h

(3.29) lim W, = ¥ and lim v
h+o h+o

h =M in HY(R),

in view of (3.24), Using the operators of (2,1L) and (3.1k), it is easily

established that

(3030) 1lim % wh = Aw in Hl(ﬂ).
h+o

Given any function My € Vh. we can write in a unique fashion

i

=y + withuoev

(]
"n " ¥on T Mr,n n ‘oh’ Yr,n n’

so that, as a consequence of our present choice for the space th and
its inner-product, we have

_lrnhwh B, dv = (Bhwh’“r,n)th

a.[ngradAhwh gradup pdx ’-rnwh“r,h dx ,

in view of the definition of the operstor B, of (3.16). Since on the other
hand, from (3.15),

_JngradAhwh gradu ) dx -,rnwh Mo 9%

vwe may always write
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(3.31) [ By w dy=[ gradd y grady dx - [ 4 u dx
r a A

for all functions My € V,+ As a consequence of (3.29), (3.30) and (3.31),

h

we thus have :

(3.32) lim [ By u v = [ greddy gradu dx = [ ¢ v dx
h+o T Q Q

’r UdYt

vhere the function v € H2(q) N Hé(ﬂ) satisfies -Av = .

By definition (ef. (3.21)), we have for all h :

u
Hwh “LZ(Q) H h “Lz(r)
l-rrah"h ¥y dv|

“ h “ ﬂﬂ)
H n“dl

so that ve easily deduce from (3.29) end (3.32) that

(3.33) o, <

L3(r)

(3.34) lim sup o, < 0.
h+o

Let us now derive the opposite inequality. For any h, we let W and Uy

be two arbitrary functions in the spaces Vh and 7Eh, respectively. We let

(3.35) w =AW andu = Ak.
By definition of o, we have
= I gradAy gradu ax - [ ¥V 94X
LT M : ‘. \
¢ Av ] u

for all functions ¢ = -Av € L2(Q) and u € H!(Q), and thus
[lnzradAwh grady dx -.rﬂwh by, dx|

TYINTY

>

(3.36)

al~

LZ(r)
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in particular. Since
,fngradAwh grady, dx -°r9wh"h ax -_rrBhwhuh ay +

+ [ srad(:.h-uh) erady, dx,
Q

we have

(3.37) rr gradAwh graduh dx -.f whuh dxl >
1] 1]

> | - |u -
|-‘rBh“’h”h d"l |“h ‘%ll,n l“hll,n’
where, in general, |v|1 Q = [ |gradv|?dx. Since we are considering
?
1
regular families of triangulations, it is easily established on the one
hand that

(3.38) |“h'“h|1 o < Ch flu, “Lz(n)'

and on the other hand that
(3.39) |u | <Xy

h1a i "Lz(l‘)
for some constants C and Yy independent of h, the inequality of (3.39)
making use of the fact that the functions of the space dnLh vanish outside

the "boundary" finite elements. From (3.36), (3.37), (3.38) and (3.39),

we obtain

f B wu dy
(3.0) L lrhhh ' - Cy+Wh,
o
u
YT .

L2(Q)

for all wh € Vh and My € %Lh' Since
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3" B | = sup sup sup - ’
h v EV 1% €
I "LZ(Q) LY w*’ "nzm)“ o)
ve eventually obtain
l- < '1; + Cy \Ei
o o
h
and therefore
(3.k1) lim int o, > 0.
h-+o
The conclusion then follows from (3.34) and (3.L1). [ ]

Remark 3. With this choice for the inner-product in the space ‘%Lh,
solving problem (iii) (c¢f. Theorem 8) amounts in general to solving a
linear system of roughly oy equations, a : constant independent of h,
vhereas solving either problem (i) or (ii) (cf. Theorem 8) requires the
solution of X linear equations.

As a consequence, the amount of work required for solving problem (iii)
is negligible with respect to the total amount of work required in one
iteration, at least asymptotically.

Tf this is still considered to be too much, there remains the possi-
bility to use a numerical integration procedure over I', and this is
precisely why Theorem 9 was proved with an arbitrary inner-vroduct over

the space mh' 1



(1

[2]

(3]

(L)

[5]

[ 6]

(7

(8]

(9]

(10}

{11

- 27 -

REFERENCES

CIARLET, P.G.; RAVIART, P.-A, : A mixed finite element method for
the biharmonic equation, To appear in Proceedings of the
Sympos1um_on Mathematical Aspects of Finite Elements in Partial
D1’ferent1al Egpatlons, Mathematics Research Center, Un1ver51ty
of | Wlscon51n, Madison, April 01-03, 19Tk.

ARGYRIS, J.H.; FRIED, I.; SCHARPF, D.W. : The TUBA family of plsate,
elements for the matrix displacement method, The Aeronautical
J.R.Ae. S. 72 (1968), 701-T09.

CIARLET, P.G. : Conforming and nonconforming finite element methods
for solving the plate problem, in Conference on the Numerical
Solution of Differential Equations {G.A, Watson, Edltor)

Y. 21~ .31, Sprlnger-Verlag, New York, 1974,

CIARLET, P.G. : Quelques méthodes d'éléments finis pour le probléme
d'une plaque encastrée, in Computing Methods in Applied Sciences
and Engiveering, Part 1 (R, GLOWINSKEI and J.L. LIONS, Editors),
PpP. 156-176, Lecture Notes in Computer Science, Vol. 10, Springer-
Verlag, Berlin, 1974,

STRANG, G. : Variational crimes in the finite element method, in The
Mathemat1cal Foundations of the Finite Element Method wlth__ppll-
catlons to Partial Differential Equations, pp.‘3*9-710 Academic
Press New York, 1972.

GLOWINSKI, R. : Approximations externes, par €léments finis de Lagrange
d'ordre un et deux, du probléme de Dirichlet pour l'opérateur
biharmonique. Méthodes itératives de résolution des problémes
approchés, in Topics in Numerical Analysis (J.J.H. Miller, Editor),
pp. 123-171, Academic Press, London, 1973.

ODEN, J.T. : Some contributions to the mathematical theory of mixed
finite element approximations, in Theory and Practice in Finite
Element Structural Analysis, pp. 3-23, Unxver51ty of Tokyo Press,
1973,

ODEN, J.T.; REDDY, J.N. : On dual complementary variational principles
in mathermatical physies, Int. J. Engng Sci. 12 (1974}, 1-29

REDDY, J.N. : A Mathematical Theory of Complementary-Dual Varistional
Principles and Mixed rlnlte-Elemgpt AEproxlmat;ggghof Linear

Boundarx-Value Problems in Continuum Mechanics, Ph. D. Dlssertatlon,
The University of Alsbama in Huntsville, Huntsville, 1973.

BOSSAVIT, A. : Une méthode de décomposition de 1l'opérateur biharmonique,
Note HI 585/2, Electricité de France, 1971.

SMITH, J. : The coupled equation approach to the numerical solution of
the blharqulc equation by finite differences.I, SIAM J.Numer.
Anal. 5 (1968), 323-339.



[12]

(13]

[ 14}

[ 15]

[ 16}

(17)
[ 18]

[19]

{20]

- 28 -

SMITH, J. : On the approximate solution of the first boundary
value problem for V4u = f, SIAM J. Numer. Anal. 10 (1973),

EHRLICH, L.W. : Solving the biharmonic equation as coupled finite
difference equations, SIAM J. Numer. Anal. 8 (1971), 278-287.

McLAURIN, J.W. : A general coupled equation approeach for solving the
biharmonic boundary value problem, SIAM J. Numer. Anal. 11
(1974), 1L4-33.

GLOWINSKI, R.; LIONS, J.L.; TREMOLIERES, R. : Analyse Numérique
des Inéquations Variationnelles (to appear).

CIARLET, P.G.; GLOWINSKI, R. : Sur la résolution numérique du
probléme de Dirichlet pour l'opérateur biharmonique. C.R. Acad.
Sci. Paris Sér. A (to appear).

CIARLET, P.G.; RAVIART, P.-A. : La Méthode des Eléments Finis pour
les Problémes aux Limites Elliptiques. To appear.

NECAS, J. : Les Méthodes Directes en Théorie des Equations Elliptigues,
Masson, Paris, 1967.

KONDRAT'EV, V,A., : Boundary value problems for elliptic equations
in domains with conical or angular points, Trudy Mosk. Mat.
Ov¥®. 16 (196T), 209-292.

EKELAND,I.; TEMAM,R. : Analyse Convexe et Problemes Variationnels,
Duned, Paris, 1974, ‘




