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DUAL ITERATIVE TECHNIQUES FOR SOLVING 
A FINITE ELEMENT APPROXIMATION OF THE 

BIHARMONIC EQUATION 

Ph. Ciarlet, R. Glowinski 

J^tract* A finite elejnent approximation of the Dirichlet problem 

for the biharmonic operator is described. Its main feature is that it is 

equivalent, to solving a sequence of discrete Dirichlet pro'il'ens for the 

operator -A. This method, which has already been shown to be convergent • 

is particularly well-suited* for problems in Fluid Dynamics• 

Resume. On decrit une methode d 1 approximation par elements finis du 
problemede Dirichlet pour 1'operateur biharmonique. Le^rincipal interet 
de cette methode est d'equivaloir a la resolution d'une suite de problemes 
de Dirichlet pour I'operateur -A. Cette methode, dont la convergence a ete 
demontree par ailleurs, est particulierement bien adaptee aux problemes de 
la Dynamique des Fluides. 
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1. Intr^dugtior\• Throughout this paper, 0 denotes the interior 

of a convex polygon in the plane, with boundary r, r— denotes the exterior 

normal derivative along r, and f is a given function belontfincr to the 

snace L 2 ( r ) . We consider the Dirichlet problem for the biharmonic operator, 

which reads formally as : 

(1.1) A 2u * f in fl, 

(1.2) u » \- = 0 on r. 

We first study in §2 a variational formulation of problem (l.l)-(1.2l, 

recently introduced in f 1) , whose main feature is that the associated solu

tion lies in the product space HMfl) * L 2(Q), instead of the space H 2(Q) 
o o 

for the "classical" variational formulation. Therefore, when this approach 

is discreti&ed, it .su^f ices^ to € ° * whereas 

finite element of class i? 1 are needed for the usual conforming methods, 

such as the well-known 21-decree of freedom triangle of Argyris f 2| . 

Moreover, it is not necessary to use finite element of Hermite type, as is 

the case for standard nonconforming methods. For general discussions about 

finite element ^ethnds for r^ivin** nroM^m (l.l)-(l.P) * we refer the reader 

to [3,**] and the various references quoted therein. 

In addition, from the point of view of Fluid Mechanics, the present 

method seems even more interesting than any conforming method, since it not 

only yields a continuous approximation of the stream function u, but also 

of the vorticity Au, whereas a standard approximation using finite elements 

of class would result in a discontinuous approximation of the vorticity. 

As was already pointed out in [ 11 , it sterns that a safe way to perform 

variational crimes, such as curved boundaries or numerical integration 

(cf. (51 ), when one deals with fourth-order problems is thus to use this 
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method or a similar one, since, in essence, the associated computations 

are exactly the same as in the case of second order problems. 

Indeed, a variational crime vas already performed on this method 

in [ 61 . where convergence was proved for subspaces made up of piecewise 

polynomials of degree 1 (which are not included in the error analysis 

of [ 1] ). As was pointed out in [ 6] , the discrete equations associated 

with this type of subspaces are identical to the usual 13-point finite-

difference approximation of the operator A 2 . 

As regards the convergence of the method, the following was proved 

in [ 1] : If the trial functions are piecewise polynomials of degree k, 

then a sequence (u^*^) °' aPP r o xi j n a' tions of the solution u (of (l.l)-(l.2)) 

and -Au is obtained which satisfies 

II " h " H i ( a ) n h l L 2 ( Q ) II H H * + 2 ( n ) 

for some constantly independent of h. As a consequence, an 0(h) conver

gence is therefore obtained with polynomials of degree only 2. Let us add 

that this method falls in the general category of mixed finite element 
methods 

methods. For general results concerning these^ which however do not contain 

the present ones, see the works of Oden and Reddy [7,8,9] • 

The main object of this paper is to show (Theorems ^,5,8 and 9) that 

solving either the continuous or the discrete problem amounts to solving a 

sequence of Dirichlet problems for either the operator -A or its variational 

approximation. 

The method presented here is thus an answer to a problem which several 

authors have considered, for either the continuous problem or its various 

possible discretizations; see for instance [10,11,12,13,1^1 and the references 

therein. 
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As a practical consequence, all that is needed for approximating the 

solution of problem (l.l)-(l.2) is therefore a finite element program for 

solving second order problems. 

Following and generalizing a method due to the second author [ 6) , the 

basic idea consists in applying Uzawa's method [15, Chapter 2] for solving 

the saddle-point equations of the Lagrangian associated with the present 

variational formulation; see §§2 and 3. As usual, this method is convergent 

provided a certain parameter p lies in some interval* In the case of the 

discrete problem, we show (Theorem 10) that this interval is of the form 

0 < o < 20^, where n 

(l.k) lim c. » inf - _ £ J i i i f 

h-o h v€H 2(n)nHWn) | | I | 
o lav n L 2 ( r ) 

for regular families of finite element subspaces and provided an appropriate 

inner-product is chosen in the space of the discrete Lagrange multipliers. 

Thus the quantity a. may be estimated in practice, at least for simple 
n 

geometric domains ft. This result generalizes Theorem 6 of [11] , where an 

analogous result was proved for a finite-difference approximation over a 

rectangle, using Fourier series technique. 

The above results were announced in [ 16]; complete proofs for the 

discrete problem will be found in [171 • Finally, we refer to a forthcoming 

paper of Bourgat in the same Journal, where numerical results will be 

presented. 

The duality pairing between a space X and its dual X 1 will be 

denoted by 

<.,.>• 
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Given, a mapping f : X —• Y, where X and Y are normed vector spaces, 

its Frechet derivative at the point a € X will be denoted (assuming its 

existence) 

Df(a). 

At several places, we shall use Green formulas in Sobolev spaces^, 

for which we refer to Necas [ 18] • 
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2 - BIB-jeaiitABaagtuj?cafê gB* 

The standard variational formulation of problem (l.l)-(l.2) 

consists in finding a function u € H2(ft) which satisfies 
o 

( 2 . 1 ) J(u) • min J ( v ) , 
v€H2(n) 

where 

( 2 . 2 ) J ( v ) « | J |Av|2dx - / fvdx, 

n n 

and it can be shown I 191 that the unique solution u of the above problem 

belones to the space H 3 ( n ) n H ^ ( ( l ) , 

We may also consider that we minimize the functional 

( 2 - 3 ) ^f(v^)»i-.r ui2dx - j fvdx, 
^ a ft 

when the functions v € H2(ft) and € L2(ft) satisfy the equation -Av * 

Since the corresponding subspace of the product space H2(ft) x L2(ft) can be 

alternatively described as the space 

(2 .10 1N {(v,*) e H*(fl)*L2(n); Vu € H l(fl) t 8((v f«) fu) * 0 } f 

with 

( 2 . 5 ) 8((v%i|>hii) » .f gradv grady dx - .f ip.u dx, 
ft ft 

ve have the following result (for the proofs, see Theorem 1 of [ 1] ). 

Ttieo^em^J.. Let u denote the solution of the minimization problem 

(2.1). Then we also have 

(2 .6 ) 5^(uf-Au) * min / (v,*), 
« (v f*)€* 

where ̂  isu the functional defined in ( 2 . 3 ) . • 

To $olve the constrained minimization problem ( 2 . 6 ) , we will use 

a standard technique in duality theory: Let there be given a subspace 
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of the space Hl(ft) such that we may write the direct sum 

(2.7) Ul(Q) - Hj(Q) 

We next introduce the space 

(2.8) ^ . . { ( v ^ ) € Hj(ft)*L2(ft); Vu 6 Hj(ft), 6((vt*),y) = 0} f 

and the 'Jgjra^jto 

(2.9) ^ ( ( v ^ ) , y ) ^ ( v , * ) • 6((v t*) fy), 

with and 8 defined as in (2.3) and (2.5), respectively. 

In view of decomposing the original problem as a rsequence of Dirichlet 

problems for the operator -A, the following result will play a central role. 

Theorem^. G i j ^ r L ^ X ^ A l ^ * e % * the problem : Find a pair 

such that 

(2.10) o£((u l f*J,x) - min aC((vf*)f\) 
X X (v,*)eW 

has one and only one solution, which may also be obtained by solving the 

following Dirichlet problems for the operator -A : 
(i) Find a function $ € H*(fl) such that 

(2.11) <k-A € H*(ft), 
A 0 

(2.12) V v € H^ft), f grad*. gradv dx • f f v dx. 
0 ' f t ft 

(ii) Find a function u. € H^ft) such that 
— _ _ .... A 0 • 

(2.13) V v € H l(flh f pradu. gradv dx = T i v dx. 
0 ft ft X 

one 

Proof. First, ve observe that problem (2.10) has one and only/solution 

since the leading term in the Lagrangian : ~ / |i|>|2dx, is the square of a 

norm over the space i8f . 
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By definition (see (2.8)) t a pair (v,\J,) £ H*(ft) x L2(ft) belongs to 

the space V if 

Vw ^ H*(ft), f gradv grady dx * T * U dx. 
° ' ft ft 

Since for any given function \J> € L2(ft), there exists a unique function 

v € H*(ft) which satisfies the above relations, we may write v » At|/, the 

linear operator 

(2.lU) A : L2(ft) -M> Hl(ft) 

o 

defined in this fashion being continuous. 

We may thus consider that we minimize a function of two variables 

(X is fixed), namely : 
O.X) : (v.*) € H»(fl) x L2(n) -v *€((v.*),x), 

when these two variables satisfying the constraint 

*(v f*) * 0, 

where the mapping 

(2.15) * : H*(ft) x L2(ft) H^ft) 

o o 

is defined by *(v,i|i) * Ai|>-v« 
Both functions o£((* t *),x) and $ being differentiable, there exists 

a uniaue Lagrange multiplier € H *(ft) such that : 
WC((uA,* x),x) - 5 X-D*(u x,* x). 

Taking partial derivatives with respect to the two variables, we 

find that 

(2.16) \/v € H l ( n ) , < S, ,v > * f gradX gradv dx - f f v dx, 
0 X ' ft ft 

(2.17) V * € L2(ft), < Ex,Aij, > • J" * X dx - J" * x * dx, 
ft ft 
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and thus, equations (2.16) and (2.17) together with the equation 

(2. 18) u A « A<J>X , 

allow to determine the functions u^ and $ x . In order to put relations 

(2.16) and (2.17) in more explicit a form, it is convenient to introduce 

the unique function € H*(ft) which satisfies 
A 0 

(2.19) V v 6 Kl(a)9 < 5 ,v > « f grade, gradv dx. 
o • Q * 

Then equations(2.16) become 

(2.20) V v € H I ( n ) t f grad(£,+X) gradv dx « f f v dx, 
0 " ft A " ft 

on the one hand, and in view of the definition of the mapping A of (2.1b), 

equations (2.17) may be rewritten as 

(2.21) V * e L2(ft), J dx - 0, 
ft A A 

on the other hand. Thus 

(2. 2 2) * X » £ X + A , 

which achieves the proof. m 

Notice that since the boundary of the domain is smooth enough, the 

function u. is in fact in the space H2(ft) n H^ft), so that equations (2.13) 
A 0 

can be equivalently written as 

(2.23) * A - -Au x. 

We now show that the solution of the original problem is also.the 

first argument of the saddle-point of the Lagrangian o£ • 

Theorem, j. Let_ u denote the solution of problem (2.1) and JLet X* 

be the function in the space %, with the property that the function (Au+A*) 

belongs to the space H * (ft). Then the triple ((u ,-Au),X*) is the unique 
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saddle-point of the Lagrangian £, of (2.9) over the space 

(2.21*) *£((u,-Au),u) < <£((u,-Au),X*) < <£((v,*),X*) 

for all pairs (v,i|>) € and all u 

Proof. Since the pair (u,-Au) belongs to the space defined in 

( 2 . U ), we have 

Vu^^l . s£((u,-Au),u) = <^(u,-Au), 

and thus the first inequality of (2 .2U) is proved. To prove the second 

inequality of ( 2 . 2 U ) , it suffices to show that 

( 2 . 2 5 ) Vv € Hx(ft) * f grad(-Au) gradv dx • f f v dx, 
' ft ' n 

in view of Theorem 2 ; we have already noticed that the function u is in 

the space H3(ft) n H2(ft). Using Green's formula, we obtain 
o 

V v € H2(ft), f Au Av dx = f grad(-Au) gradv dx = f f v dx , 
0 ft 'ft 

and equations ( 2 . 2 5 ) follow since the space H2(ft) is a dense subspace of 

H * ( f l ) . 
o 

Let now ((u*,$*),X*) be any saddle-point of the Lagrangian o£ . 

From Theorem 2 , we infer that 
( 2 . 2 6 ) 4>*-A* € H l ( f t ) , 

o 
(2.27) V v € H ^ n ) , f prad<j>* gradv dx « f f'v dx, 

0 ' Q ' 0 
(2.28) V v € H M n ) , f gradu* gradv dx = f <f>* v dx, 

0 "n "n 
since 

^((u*,$*),X*) = min d£((v,*),X*). 
(v,*)eW 

Likewise, the inequalities 

V u G% , £((u * , < j * ) , u ) < <£((u*,**),X*) , 
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imply that 

(2.29) V u G% , J ' gradu* grady dx • J <f>*y dx. 
ft ' f t 

Combining (2.28) and (2.29),we deduce that (u*,<J>*) e V, i.e., 

(2.30) u* € H2(ft) and <f>* - -Au*. 
o 

Using Green's formula, (2.27) and (2.30), ve get 

Vv € H 2(Q), f Au* Av dx • f grad(-Au*) gradv dx = / f v dx, 
0 ft ft 'ft 

i.e., u* « u, and the conclusion follows using ( ( 2 . 2 6 ) and (2.30). I 

As a corollary of Theorem 3, we can write (see [ 20, Chapter VI] ) 

(2.31) c£((u,-Au),X*) » max g(X), 

where the function g is defined by 

(2.32) g : X € % g(x) « min <£((v,'*) ,x). 
(v,*)6«r 

Using the same notations as in Theorem 2 , we may thus write 

(2.33) g(X) » i((u x,* A),x) - - "2-.rQUxl2 dx 

for any X € . 

LenirTia, 1. Assume that the space ^ is equipped with a norm equivalent 

to the norm of the sjpace H 1 (ft). Then the function g defined in (2.32) is 

difTerentifi^le^ i^ -A^AYJ^A'KS D * ( A ) € i^Li.!^^*^. 

( 2.3 * 0 < Dg(X),y > * e((u x,* x),u) 

for all X %u € . 

Proof. Write g » f • h, with the functions f and h defined by 

f : v € H*(ft) — - p~.r |v| 2dx, 
ft 

h : x e % $ e H 1 ( G ) . 
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Let us show that the affine mapping h is continuous : From (2.11) 

and (2.12), we obtain 

J g r a d U x-X) gradU x-X )dx « .f f U x«X ) d x 
ft ft 

sp that, for some constant C solely dependent upon the set P., we have 

11 x B H i ( n ) 1 " L 2 ( P . ) 

and thus the mapping h is continuous since 

II *i « < 1 A I + C II f II 
11 X V ( f i ) " B H l ( Q ) 1 " L 2 ( P . ) 

The mapping h being aff ine, i t suffices to compute i ts derivative 

when f « 0, which yields for a l l X,y 
(2 .35) < Dh(X),y > -

where the function 4° € H^ft) satisfies 
v 

(2 .36) *° - V € H ^ n ) , 
U 0 

(2.37) Vv e H 1 ^ ) , / grad<J>° gradv dx - 0. 
0 n W 

Since, for all v,w € H^Cl), 

(2 .38) < Df(v),w > - -f v w dx, 
n 

we obtain, from (2 .35) and (2 . 3 8 ) , 

< Dg(X),u > » -/ •? dx. 

To transform this last expression, we observe that 

(2 .39) dx - / (w-^.)dx - .f » dx 

- 8((u x,* x),u), 

as a simple consequence of (2 . 1 3 ) , (2 .36) and (2 . 3 7 ) . 
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Using the differentiability of the function g which we just 

established, we now apply the gradient method to the maximization problem 

(2.31), a techniaue known as Uzjawa|s..method for the original problem-

Given any function X° in the space ^ and a parameter p > 0 to be speci

fied later (cf. Theorem 5 ) , the method consists in defining a sequence of 

functions X n € %< such that 

(2.1*0) Vv€*fy, ( X ^ - X ^ u ) ^ « - P < Dg(X n),u > % n > 0, 

where (•-'^ i s 8 1 1 inner-product in the s p a c e w h o s e associated norm 

is equivalent to the norm in the space Hl(ft). 

As a simple corollary of Theorem 2 and Lemma 1, we then have : 

Tj^eo^m_Ju Each iter at ion ofUzawa 1 s methojd consist^ of the following 

steps : 

(i) Given a function X n 6 "Tty f find the function 4>n € which 

satisfies : 

(2.141) * n - X n € H ^ Q ) , 
o 

(2.U2) V v € H l(n), f grad<t>n gradv dx « f f v dx. 
0 o n . 

(ii) Find_the function, u n € K^(^) y^ij^A^i 8/.^. 8 : 

(2.1*3) V v € H l(Q), f gradu11 gradv dx * f * nv dx. 

(iii) Find thejfUnction X n** € Vt^ wh i_ch _s at is f ie_s_ 

(2. W O Vu€^T y , ( X ^ - X ^ ) - o 8((u n
t* n),u). 

The Uzawa method described in the previous theorem thus consists 

in solving a sequence of Dirichlet problems. That this scheme yields 

indeed the solution of the original problem will now be proved. 
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Thgpremjj^ The method described in Theorem k is convergent, in the 

sense that 

(2.U5) lim u n * u in Hj(Q) f 

(2.U6) lim <frn - -Au in L2(fl), 
n-*« 

provided that 

(2.1*7) 0 < p < 2 c 2 a 2 , 

where the quantity a is defined by 

|Av (J 
(2.U8) a » inf __ LiM 

^ ( n ) n H i ( n ) | , | l | L 2 ( r ) 

and c is any constant such that 

(2.U9) V u e Hl(fi), c IIu II < V (u,uk, . 
II l ! L 2 ( r ) * 

Proof. We recall that the space ^ is equipped with a norm equivalent 

to the norm II • II . To prove the convergence (cf. (2.1*5) and ( 2 .1 *6 ) ) , 

it suffices to prove that lim u « 0 in Hl(fl) and lim $ 3 0 in L2(ft), in 
n-H» nx» 

the special case where f « 0 . 

Let us define a mapping 

( 2 . 5 0 ) B : L 2(Q) % 

as follows : for any given ip € L2(fl), the function B\J> € ^ is uniquely 

determined by the condition that 

Vu € T ( B * f u ) ^ - B ( ( A * f * ) f y ) t 

where the mapping A : L2($J) H*(fl) is the mapping of (2.1k). As a conse

quence, equations (2.UU) may be rewritten as 
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.n+1 .xi ~ .n X « X + p B ^ , 

so that by making use of (2.39) (recall that f * 0 ) , ve deduce : 

<*n+V+\ » ( X n , A \ - 2 P | * B | 2 + o H * ? M \ , 
L 2(0) 

and therefore } 

(2.51) ( X n , A n ) w - ( X n + 1 , X n + 1 ) ^ > ( 2 0 - o 2 I B II2) | U n II2 

* " " " L 2 ( P . ) 

With 

(2.52) If B U H = sup - . 
11 11 11 U{LHQ)M.) « ^ L 2 ( n ) l * l L 2 ( f l ) 

From (2.51), we may conclude that 

lim <)>n a 0 in L 2(H), 
and also, in view of the continuity of the mapping A, that 

lim u n « 0 in H x ( n ) , o 7 

provided that 

(2.53) 0 < o < jpg-p • 

2 

It therefore remains to obtain a lower bound for the quantity j|2* 

We have, for any function \l> € L2(fl), 

r- UB*.w) n| 
\r(w^W)% = sup —-—-— » 

V ( y . u ) ^ 
and using Green's formula, we can write 

(BiML. = B((A*t*)fy) -J\ ~ p dy, 
"V ' p dv 

where v » AiJ/. As a consequence : 
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i ' ^ i < « i 7 » L 2 ( r ) i » i L J ( r ) < c - i E i L 2 ( r ) > ^ r . 
vith the constant c defined as in (2.1*9). Since -Av « </f ve finally obtain 

the estimate 

( 2 . 5 U ) I B I < i sup SJiî ll 
1 C ^ ( ^ ( P . ) ||Av|| L 2 ( n ) 

from which the conclusion follows. • 

Remark 1. Assume the space °% is chosen to be the orthogonal complement 

of the space H*(Q) in the space H l(Q). Then it is known that the space 9)1, ia 

isomorphic to the space H 1 / 2 ( r ) . That the space X can be thought of as a 

space of traces on r is also reflected by the identity 

(2.55) B((v t*) ty) - / U dx, 

r 

valid for any pair (v,\J/) € 

Indeed it is possible to develop a treatment analogous to that consi

dered here with the space ^ replaced by a Hilbert space of functions 

defined over T; this is basically what has been done in [6] * with the 

space L 2 ( r ) in lieu of %4 . Let us review briefly the main steps in this 

case : One looks for the saddle-point of the Lagrangian 

(2.56) L(v ty) - «• J r |J ii dx 
(J defined as in (2.1)) over the product space W x L 2 ( r ) with 

(2.57) w » H 2 ( n ) n H 1 ( O ) . 
o 

The Lagrange multiplier is the trace of the function -Au over rj Compare 

with Theorem 3. 
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As shown in [6] , one iteration of Uzawa*s method consists in the 

following steps : 

(i) Given a function A n € L 2 ( r ) , find the function u 1 1 € .w which 

satisfies : 

(2 .58 ) L(u n,X n) » min L(v,X n). 

(ii) Find a function X n < f l € L 2 ( r ) such that 

•/« ,n-»-l .n 3u n 

( 2 . 5 9 ) X » X • p — . 

Notice that the minimization problem ( 2 . 58 ) amounts to solving, at 

least formally, 

A 2 u n • f in (1, 

( 2 .60 ) u n = 0 on T, 
' n _n _ -Au » X on T, 

a problem which can be obviously decomposed into two Dirichlet problems 

for -A. Notice also that equations (2.kk) have now been replaced by the 

explicit equation ( 2 . 59 )» since we are now working in the space L 2 ( r ) . 

For the same reason, we could prove the convergence of the above algorithm 

provided the parameter o belongs to the interval ] 0 , 2 a 2 [ ; compare with 

Theorem 5 . 

However there is one good reason for "prefering" the space ^1 : the 

functional set-up being in this case exactly the same for both the conti

nuous and discrete problems, the proofs are the same in the discrete case, 

as we will see in the next section. 
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3. The, discrete.problem. We are given a finite-dimensional 

subspace of the space H*(n) and ve define the spaces 

(3.1) Voh-K 6 V v h - O o n r ) > 
and 

(3.2) Y h - {(vV 6 V o h x V h ; V P h 6 V B ^ , * , ) ,uh> - 0}. 

where 8 is defined as in (2.5). 

Remarjc. 2. It is worth pointing out that the same space approximates 

both spaces L2(fl) and H^fl); compare (3.2) and the definition (2.U) of the 

space *t . Indeed, we could carry out a seemingly, more general discretiza

tion in which another space, say Y^ t would approximate the space L2(fl), but 

since we eventually need the inclusion Y^ C to derive the error estimates 

(cf. [1, Theorem 7 ]) it is therefore appropriate to assume at the outset 

that Y. « V, . In addition, this assumption results in simpler statements n n 
and proofs at several places. 

In analogy with Theorem 1, we define the discrete problem : Find a 

pair (u^**^ € ^ h s u c h that 

(3.3) ^K'V " ( V
m ) n ^ ( W ' 

It was proved in [1, Theorem 3] that this problem has a unique solu

tion. 

Let there be given a subspace 
% u Of the space such that 

(3.10 \"\*eX' 
We define the space 

(3.5) \ « {(vh,«,h) € v ^ ; V U h 6 V o h , B ^ v V ^ - 0}. 
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The following is the discrete analog of Theorem 2. 

TjieoremjS. Given a function X^ € the problem: Find a pair 

( u ^ , ) € iflf such that 

0.6) * « » - ^ ^ v ^ W 
h h ( v * ^ 

has one and only one solution, which may also he obtained by solving the 
following discrete Dirichlet problems : 

(i) Find a function • _ € V, such that . ^ h 

< 3 ' T ) \ - X h G V o h ^ 

h 
(3.8) V v h € V Q h , J grad^A «radv h dx • / f v h dx. 

u h n 
(ii) Find a function u. G V , such that 

— — > on — 1 — 
n 

(3.9) V v e V / gradu, gradv dx * J' <K v dx. 
h oh fl X h h Q X h h 

Proof. The proof is basically the same as the proof of Theorem 2 and, 

for this reason, will be omitted. We shall just mention that an essential 

use is made of the fact that the same space approximates both spaces 

L 2(Q) and H l(n); cf. Remark 2. | 

The pair ( u^»^) being the solution of the discrete problem (3.3), 

we let <b ̂  be the unique function in the space V _ such that the function oh H oh 
(<t> -<J> ) belongs to the space ^ , • We then have the following theorems n on n 

whose proofs follow the same lines as the proofs of Theorems 3, U and 5, 

respectively. 

ThegremJ[. The triple ((u
h»*j1)« *h""*oh^ ^s^Ae..3fPAclu.e. .?.€f^dAe"T).9^n.t 

of the Lagrangian oU of (2.9) over the space 
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In the next theorem, * 8 inner-product in the space % ^ 

and p is a strictly positive parameter. 

Theorem^8. Each iteration of Uzawa^s jnethod consists pf^Jthe following 

steps : 

(i) Give£ a function ,?iSA, the^jf un c tJp in ̂  6 which satisfies 

(3.10) < - ^ e V o h ' 

(3.11) Vv h e V Q h , / «rad*J| gradv h dx » f f v
h
 d x -

(ii) Find the function € v vhich_.jsatisfies 

( 3 . 1 2 ) V v h 6 V Q h , T «radu£ CTadvh dx = f v h dx. 

(iii) Find the function € % which satisfies 
............ . ... — ri n -- • i - - - . - -

(3.13) V U h * \ , ( C ' - ^ h V " 0 »K-<'-"hl-
n 

As* in (2.1U), we define a mapping 

^ A h : V h - V o h 
by the condition that v^ = A, 4 be enuivalent to the equations 

n n n 

(3.15) Vu h
 e V Q h % J' *radvh gradu h dx = .f * h u h ^ 

We also define a manpinc 

( 3 . 1 6 ) B h : V h - ^ , h 

as follows : for any function * h 6 V^, the function ^ satisfies the 

equations (compare with (2.50)) : 

(3.17) V u h ^ % h % ( B A , v h ) ^ h * B { ( A n * h ^ h ) , u n ) . 

In the sequel it will be understood that II II is the norm of the 

linear mapping B^ when the spaces and 1T/̂  are respectively equipped 
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with the norms II • II and >/(•,• ) m u . 
L2(ft) * h 

Theory. %. The method described in Theorem 8 is convergent in the 

sense that 

(3.18) lim u|J =» in V Q h , 

(3.19) lim - 4^ in V h , 

provided that 

(3.20) 0 < p < 2o 2, 

vhere 

( 3 - 2 1 ) °h-fB;-'ir 
It is worth pointing out that the convergence of the present method 

is thus guaranteed for any choice of subspace ^ satisfying (3.*0 and 

anjr choice of inner-product over the space What is not independent 

upon these data however is the quantity of (3.21) and in practive, it 

is of course desirable to get an asymptotic estimate of this quantity. 

This will be achieved in the next theorem, but first, we need to develop 

some preliminaries. 

In the sequel, triangulations € , made up of finite elements K, 

are established over the set ft in the sense that ft * U K, the finite 

elements satisfying the usual geometrical restrictions about their respective 

positions. It is assumed that for all the triangulations which we consider, 

all the finite elements K are the image F^lK) of & reference finite element K 

through an affine mapping F^. With such a triangulation, we associate 

the space 
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(3.22) V h - { v h e C.( B ) f V K e € h , v h | K € P K } , 

where 

(3.23) P K * {v : K R ; v - v.F^ 1 ,Vv € p} , 

and P is a given finite-dimensional space of functions v : K —• R which 

satisfies the inclusion 

(3 .2M ?x c p, 

where P^ denotes the set of all polynomials of degree< 1 in two variables. 

The space V ^ is then defined as in (3.1). 

By a regular family ( of triangulations, we mean that for some 

constants a and 8 independent of h, we have 

(3.25) max < a, 
B E * o ( K ) 

n 

(3 . 2 6) x max h(K) < min h(K), 

where h(K) * diameter of K, o(K) » sup{diameter of inscribed spheres in K}. 

Finally we let 

(3.27) h - max h(K). 

Although the space is not uniquely determined by the sole condition 

that the direct sum (3.*0 shall hold, there is a "canonicaltf choice for 

the space : Since we are considering subspaces made up of piecewise 

nolynomials defined by their values at nodes, we shall henceforth assume 

that the space %, ̂  consists of those functions in the space whose values 

are zero at the interior nodes, i.e., in fl. Defined in this fashion, the 

space % ^ also appears as a natural discrete analog of the space ^ , 

which essentially consists of traces over V\ cf. Remark 1. 
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Thegrgm 10, With the above choice for the space assume that 

the inner-product (••Ô , is the inner-product of the space L 2(r). Then 

for subspaces V^, ̂ Q^» and fy^1 satisfying the above conditions, and 

associated .v^hjrepwlar families of triangulations, ye have 

(3.28) lim 0 , « c, 
h-*o h 

where aid a are defined as in (2.U8) and (3*21), resjecjtiyeljr. 

Proof. Given two functions i> and p in the space H 1 (ft)* there exist 

two sequences, (1̂) and (v^K of functions in the space such that 

(3.29) lim <i • • and lira u. « u in Hl(ft), 
h-o ^ h+o h 

in view of (3 .2U). Using the operators of (2,lU) and (3 . 1M, it is easily 

established that 

(3.30) l i m \ *h 3 A * i n h 1 ^ « 
h-*o 

Given any function p, € v we can write in a unique fashion 
n n 

vh * woh + wr,h w i t h woh e Voh' wr,h 6 \ > 

so that, as a consequence of our present choice for the space ^fy^ 

its inner-product, we have 

' - f Q
6 r a d A h * h ^ ^ r . h ^ ~ • r

0 V r f h d x ' 

in view of the definition of the operator B h of (3.16). Since on the other 

hand, from (3 .15), 

J g r a d / ^ gradu Q h dx - / * h v Q h dx, 
ft ft 

we may always write 
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(3.31) .^Vh % ^ " •' ,
n* r a dV ,h 6 r a d w h te --r

n*a \ **• 

for all functions y^ € v^. As a consequence of (3*29) • (3.30) and (3.31), 

we thus have : 

(3.32) lim / B lk y dy • / gradkty prady dx - / • P dx 
h-*o r ft n 

where the function v € H 2 ( n ) n H l ( f l ) satisfies -Av • 
o 

By definition (cf. (3.21) ) p we have for all h ; 

so that we easily deduce from (3.29) and (3*32) that 

(3.3*0 lim sup c h < o. 

h+o 

Let us now derive the opposite inequality. For any h, we let and u 

be two arbitrary functions in the spaces and r e s P e c t i v e l y . We let 

(3.35) " h - V h » n d ^ h - A V 

By definition of a, we have 

IIfill I J gradA* gradu, dx - J * V d X 

1 ! l L 2 ( n ) " * L 2 ( f l ) 1 1 H L 2 ( r ) 

for all functions \i> » -Av e L 2 ( n ) and u 6 H^fi), and thus 
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in particular. Since 

/ gradA\J>h grady^ dx - / i|^wh dx « / B^il^u^ dy + 

• J grad(u h-u h) gradyh dx, 

ve have 

(3.37) |,f gradAi^ grady h dx - / ^v» h dx| > 

> |-'>Vh d*| " |V"h|i,n |"h|i,n-
where, in general, |v| « f |gradv|2dx. Since we are considering 

regular families of triangulations, it is easily established on the one 

hand that 

and on the other hand that 

(3.39) K| < L | y h | 

I hli fo v S " h " L 2 ( D 

for some constants C and y independent of h, the inequality of (3.39) 

making use of the fact that the functions of the space vanish outside 

the "boundary" finite elements. From (3.36), (3.37), (3.38) and (3.39), 

we obtain 

for all * h e V h and y h e Since 
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- » II B, II « sup • sup sup > 

^hlM L 2 ( a ) V * h ^ m L 2 J K I L 2 ( r ) 

we eventually obtain 

and therefore 

( 3.1*1) lim inf o h > a. 
h-K> 

The conclusion then follows from (3.3U) and (3.^1). • 

Rgmâ Jĵ . With this choice for the inner-product in the space ̂V̂* 
solving problem (iii) (cf. Theorem 8) amounts in general to solving a 

linear system of roughly avfa equations, a : constant independent of h, 

whereas solving either problem (i) or (ii) (cf. Theorem 8) requires the 

solution of K linear equations. 

As a consequence% the amount of work required for solving problem (iii) 

is negligible with respect to the total amount of work required in one 

iteration, at least asymptotically. 

If this is still considered to be too much, there remains the possi

bility to use a numerical integration procedure oyer r, and this is 

precisely why Theorem 9 was proved with an arbitrary inner-product over 

the space ^ ^. | 
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