Gilbert Strang

The Finite Element Method-Linear and Nonlinear Applications

Publications des séminaires de mathématiques et informatique de Rennes, 1974, fascicule S4
«Journées éléments finis », , p. 1-11
http://www.numdam.org/item?id=PSMIR_1974___S4_A9_0

[^0]THE FINITE EJEMEMT METHOD--LINEAR AND NONLINEAR APPLICATIONS

Gilbert Strang; M.I.T.

Numerical analysis is a crazy mixture of pure and applied mathematics. It asks us to to tro things at once, and on the surface tiney do appear complementary: (1) to propose a cood alforithm; and (i1) to analyze it. In principle, the analysis stould reyoal what makes the algorithm good, and suggest how to make it better. Por some prob-lems--computing the eigenvalues of a lare matrix, for example, which ustd to be a hopeless mess--this combination of invention and analysis has actuaily succeeded. But for partial differential equations, wich come to us in such terrible veriety, there seems to bo a lons way to go.

Fie want to speak about an algorithm which, at least in its rapicily developing extensions to nonlinear problems, is still new anc flexjbie enough to be improved by analysis. It is known as the finite element meihod, and was created to solve the equations of elasticity and pla:ticity. In this instance, the "numericil analysts" werc all engineers. They needed a better technique than finite differences, especially for complicated systems on irregular domains; and they founc one. Thes method falls into the framework of the Ritz-Galerkin technique, which operates with problems in "variational forn:"-mstartine cither from an extremun principle, or from the wolk form of the differential equation, which is the engineer's equation of virtual work. The key idea which bas made this classical approach a success is to use piecewise polynomials as trial functions in the variational problen. ${ }^{\text {? }}$

[^1]We plan to begin by describing the mothod as it applies to innear problens. Because the basic.idea is mathenatically sound, convergerce can be proved and the error can be estimated. This theory has been developed by a great many numerical analysts, and we can sumnarize only a few of the most essential points--the conditions which guarantee convercence, and which govern its speed. This lincar analysis has left everyone happier, and some divergent elements have been thrown out, but the method itself has not been enormously changed. For nonlincar nroblems the situation is entircly different. It seems to me that numerical analysts, especially those in optimization and nonlincar systems, an still make a major contribution. The time is actually a little short, because the large scale programs for plasticity, buckilng, and nonlinear olasticity are already beine written. But everyone is agreed that they ... tremendously expensive, and that new ideas are needed.
iNonlinear problems present a new challence also to the aralyst who concerned with error estimates. The main aim of this paper is to describe some very fragnentary.results (Scetion III) and scveral open questjons (Section IV). We are primarily interested in those nonlincirities which arise, in an otherwise linear problem, when the solulion is required to satisfy an inequality constraint. This is typical of the problems in plasticity. The solution is still determined by a variational principle, but the class of admissible functions becomes a convex set instead of a subspace. In other words, the equation of virtual work becomes a variational inecuality.

At the end we look in still a different direction, at linear nonpraming constrained by differential equations. Here we need not only meod alporithas and a proper numerical analysis, but also anmore to
the more fundamental questions of existence, uniqueness, and regularity.
II. Linear Equations. The finite element method applies above all to elliptic boundary value problens, which we.write in the following form: Find u in the space of admissible functions V such that

$$
\begin{equation*}
a(u, v)=\ell(v) \text { for all } v \text { in: } v . \tag{1}
\end{equation*}
$$

Standard example: $\iint\left(u_{x} v_{x}+u_{y} v_{y}\right) d x d y=\iint f v . d x d y$ for all v in $H_{0}^{2}(s i)$. This is the weak form of Poisson's equation $-\Delta u=f$. Because the oxpression $a(u, v)$ is in this case symmetric and positive definite, the problem is equivalent to: finimize $J(v)=a(v, v)-2 l(v)$ over the admissible space V. The "strain eneryy" $a(v, v)$ is the natural norn In which to estimate the error.

The error comes from changing to a finitedimensional problem:
Find u_{h} in. S_{h} such tiat

$$
\begin{equation*}
a_{n}\left(u_{n}, v_{h}\right)=e_{n}\left(v_{n}\right) \text { for all } v_{n} \text { in } s_{n} \tag{2}
\end{equation*}
$$

It is this problem which the computer actually solves, onee it is given a basis $\phi_{1} \ldots . . \phi_{N}$ for the space S_{p}. Very bricfly, it has to form the stiffness matrix $x_{1 j}=a_{h}\left(\phi_{1}, \phi_{j}\right)$ and the load vector $F_{j}=\ell_{1}\left(\phi_{j}\right)$, solve the lincer system $K Q=F$, and print out the approxinate solution $u_{h}=\sum Q_{j} \varphi_{j}$. That sounds straichtformard, but it is nearly impossible unless the basis functions ϕ_{f} are extrencly simple, and nearly useless unless they can provide a good approximation to the true solution u. The finite element method manages to combine both properties. ${ }^{2}$

[^2]Our plan in this section $1 s$ to sumarize four of the main points In the theory of convereence. Each of them is concerned with tine chance ari solution when there is a change in the problem--when the admissible space V is replaced by S_{h}, or the riven a and l are approximated by a_{n} and ℓ_{h}. To give some kind of order to the discussion, we formulate all four as applications of the "fundanen:tal theorem of numerical analysis":

CONSISTENCY + STABILITYG \Rightarrow COMVERGENCE.

1. The classical Ritz-Galerinn case: The energy a(v,v) is symmetric positive derinite; S_{h} is a subspace of $V ; \quad a_{h}=a$ and $\ell_{h}=\ell$. Since every v_{h} is an admissible v, we may compare (1) and (2): $a\left(u, v_{h}\right)=a\left(u_{h}, v_{h}\right)$. This means that in the "energy inner product," $h_{\text {is }}$ is the projoction of u onto the subspace S_{h}. In other words, the Fositive deriniteness of $a(v, v)$ implies two properties at once [I, p. 40]: the projection u_{h} is no larger than L itself, (-3)

$$
a\left(u_{h}, u_{n}\right) \leq a(u, u),
$$

and at the same time u_{h} is as close as possible to u :

$$
\begin{equation*}
a\left(u-u_{n}, u-u_{n}\right) \leq a\left(u-v_{h}, u-v_{n}\right) \text { for all } v_{h} \text { in } S_{n} \tag{4}
\end{equation*}
$$

jrorerty (3) represents stability; the approximations are uniformly bounded. Given that u can be approximated by the subspace $S_{h}-$ in this Ritz-Galerkin context, consistency is the same as approximability-convergence follows immediately from (4).
2. The indefinite case: u is only a stationary point of the functional $J(v)$. This corrcsponds to the usc of Lagrange multipliers in optimization; the form $a\left(v_{8} v\right)$ can take cither sicn, and v may include two different types of unknowns-moth displacenents and stresses, in the "mixed method" and "hybrid method."

Consistency reduces as before to approximation by polynonials. Eut stability is no longer automatic; even the simplest inderinite form $J(v)=v_{1} v_{2}-w h i c h$ has a unique stationary point at the origin, if. V is the plane $R^{2}-w i l i$ collapse on the one-dinensional subspace fiven by $V_{2}=0$. Therefore, for each finite element space S_{h} and each functional $J(v)$, it has to be proyed that a degeneraay of this kind does not occur.

The proper stability condition is due to Babuska and Brezzi:

$$
\sup _{\|v\|=2}|a(v, w)| \geq c\|w\| .
$$

Brezzi has succeeded in verifying this condition for several important hybrid elements. For other appilcations the verification is still incomplete, and the convergence of stationary points-which is critical to the whole theory of optinization--remains much harder to prove than the convergence of minima.
3. The modificd alarkin method: a and l are changed to a_{h} and ℓ_{h} (numerical integration of the stiffness matrix and load vector), and v_{h} may iie outside v (non-conforming elements). The effect on u can be estimated by combining (1) and (2):

$$
\begin{equation*}
a_{h}\left(u-u_{h}, u-u_{h}\right)=\left(a_{h}-a\right)\left(u, u_{-}-u_{h}\right)-\left(l_{h}-l\right)\left(u-u_{h}\right) \tag{6}
\end{equation*}
$$

Stability, in this situation, means a lower bound for the left side:

$$
\begin{equation*}
a_{h}\left(u-u_{h}, u-u_{h}\right) \geq c a\left(u-u_{h}, u-u_{h}\right) . \tag{7}
\end{equation*}
$$

Consistency is translated into an upper bound for the right side, and it is checked by applyins the patch test: whenever the solution is in a "state of constant strain"--the highest derivatives in $a(u, u)$ are all constant--then u_{h} musticoincide with $u_{0}{ }^{3}$ The patch test applies especially to nonconforming elements, for which $a\left(v_{h}, v_{h}\right)=\infty$; the derivatives of v_{h} introduce delta-functions, which are simply ignored in the approximate energy a_{h}. This is extranely illegal, but stili the test is sometimes passed and the approximation is consistent. Convergence was established by the author for one such element, and Raviart, Ciarlet, Crouzeix, and Lesaint have recently made the list much more complete.

[^3]4. Sunerconvergence: Extra accuracy of the findte element approximation at certain points of the domain. It was recognized very early that in some special cases--u". f with linear. elements, or $u^{\prime \prime \prime}=f$ with cubics--the computed u_{h} is exactly correct at the nodes. (The Greun's function lies in S_{h}.) And even earlier therc arose the difculty of interpreting the finite element output in a more general problem; u_{h} and its derivatives can be evaluated at any point in the domain; but which points do we choose? This question is as important as. ever to the engineers.

In many problems the error $u-u_{h}$ oscillates within each element, and there must be points of exceptional accuracy. Thomee discovered superconvergence at the nodes of a regular mesh, for $u_{t}=u_{x x}$, and his analysis has been extended by Douglas, Dupont, Bramble, and Wendroff. It is not usually carried out in our context of consistency and stability, but perhaps it could be: consistency is checked by a patch test at the superconvergence points, to see wifich polynomial solutions and which derivatives are correctly reproduced, and stability needs to be established in the pointwise sense."
III. Variational Inequalities. What happens when a constraint like $v \leq \psi$ is enforced on the adissible functions v, so that the functional $J(v)$ is minimized only over a convex subset K of the oricinal space V ? This occurs naturally in plasticity theory; when v zepresents the stress; wherever the yield Iimit ψ is reached, the differential equation (Hooke's law) is replaces by plastic flow. For the minimizirg u, the "free boundary" which marks out this plastic region $u=\psi$ is not known in advance. ${ }^{s}$ Since such a solution u Lies on the edge of the convex set $K, J(u) \leq J(u+\varepsilon(v-u))$ is guaranteed only for $\varepsilon \geq 0$. This translates into the variational inecuality which determines u :

[^4]In the finite element method, we minimize an approximate functional $J_{h}(v)=a_{h}(v, v)-2 \ell_{h}(v)$ over a finite-dimensional convex set K_{h}. For exanple, the piecewise poiynomials may be constrained by $v_{h} \leq \psi$ at the nodes of the triangulation. Again tre minimizing u_{h} is determined by a variational inequality,

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}-u_{h}\right) \geq \ell_{h}\left(v_{h}-u_{h}\right) \text { for all } v_{h} \text { in } K_{h} \text {; } \tag{9}
\end{equation*}
$$

now a polygonal free boundary is to be
The practical problem is to carry out this minimization, and co:spute u_{h}; we are in exactly the situation described in the introduction, with many proposed algorithms and a difficult task of comparison and analysis. The theorctical problem, which assumes that u_{h} has somahow been found, is to estimate its distance from the true solution u. We vant to report on this latter problem, and it is natural to ask the same rour questions about convergence which werc answered in the linear case.

The easiest way is to take the questions in reverse order:
4. Superconvercence is almost certainly destroyed by the error in determining the frec boundary. Even in onc dinension with $u^{\prime \prime}=1$: u differs from u_{h} by $O\left(h^{2}\right)$,
3. The approxirnation of a and ℓ by a_{h} and ℓ_{h} lead to no difficulties; the identity (6) simply becomes an inequality, if $w \in$ combine (8) and (9), and the patch test 15 still decisive. The sane is true for nonconforming elements, and the extra term Δ in the error estimates [1, p. 178] is exactly conied from the linear case.
2. It is an open problem, both for K and for the discrete K_{h}, to show how stability can compensate for the indefiriteness of $a(v, v)$.

1. This is the basic question in the nonlincar Ritz-Galerkin method: if the trial functions in X_{h} can approximate u to a certair accuracy, how close is the particular choice u_{h} ? It is no longer exactly optimal, becausc it is nc longer the projection of u. But we hope to prove, in the natural norm $\|v\|^{2}=a(v, v)$, that $\left\|u-u_{h}\right\| \leq c \min \left\|u-v_{h}\right\|$.

First, we ask how large this minimum is, choosing v_{h} to be the piccewise polynomial u_{I} in S_{h} which interpolates u at the finite
element nodes. The answer depends on the decree of the polynomial and on the regularity of u. For our obstacle problem, with $-\Delta u=f$ in the clastio part and $u=\psi$ in the plastic part, it is now known trat u lies in $\mathrm{N}^{2, \infty}$. (Brezis and Kinderlehrer may announce this longsought result in Vancouvcr.) At the free boundary there is a jump in the second derivative of u--which absolutely linnits the accuracy of the interpolation. Courant's linear approximation, on triangles of size h, is still or order $\left\|u-u_{I}\right\|=O(h)$. But for polynomials of hicher defree, and a smooth free boundary, this is improved only to $O\left(h^{3 / 2} j-\right.$ ard no diemeats can do better. Theire are $\left.0: 1 / h\right)$ triangles in which the gradient is in error by $O(h)$. Therefore there is no justification for usine cubic polynomials, and the question is whether quadratics are worthwile; we believe so.

To prove that the actual error $u-u_{h}$ is of the same order as u-u ${ }_{I}$, we ecpend on an a priari estinate or Faik [2]. It resembies (4), but the change in (8) and (9) from equations to inequalities procul a new term:
(10) $\quad\left\|u-u_{h}\right\|^{2} \leq\left\|u-v_{h}\right\|^{2}+2 \int(f+\Delta u)\left(u-v_{h}+u_{h}-v\right)$.

We may choose any v_{h} in K_{h} and any v in k-and for simpicicy we have specialized to $\ell=\ell_{h}=\int f v$ and $a=a_{h}=\int|\nabla v|^{2}$. The new term is autcinatically zero in the elastic part, where $-\Delta u=r$, but e]sowhere $f+\Delta u>0$.

To cstimate (10), we take $v=\psi$ and $v_{h}=u_{y}-w h i c h$ lies in K_{h} Mrajuse it cannot exceed ψ at the nodes, where it agrees with u. isi the casc of quadratic polynomials, some members of K_{h} will go s.ue the yield linit ψ within the triancles, but we havento be
A. enouch to permit that; it docsn't hurt the crror cotimate, andy it is only constraints on v_{h} at modal "checlipoints" which cen be cnforced in practice.) With this choice of v and v_{h}, the torinc in (10) are
(1) With Courant's Innear finite clements:

$$
\left\|u-u_{I}\right\|^{2} \sim h^{2} ; \quad \int(\hat{f}+\Delta u)\left(u-u_{I}\right) \sim h^{2} ; \quad \int(f+j u)\left(u_{h}-\psi\right) \leq 0 .
$$

(11) Wich ruadratic finite elements:

$$
\left\|u-u_{I}\right\|^{2} \sim n^{3} ; \quad \int(I+\Delta u)\left(u-u_{I}\right) \sim r^{3} ; \quad \int(r+M u)\left(u_{h}-v\right) \approx h^{3} .
$$

(The next-to-last interal is splic into a part completely vithin the plastic region, where $u-u_{I} n^{3}$, and a part formed from those triangles which cross the free boundary. This transition region has area $O(h)$, and the integrand $u-u_{I}$ is $O\left(h^{2}\right)$.) Substituting back into (10), the rates of convergence are h and $h^{3 / 2}$ in the two casesthese rates are confirmed by experiment.
IV. Open Problems, True plasticity theory is a deeper mathematical problem than the model we have used above. The rason is that the history of the loading f has to be taken into account; a part of the domain can co from elastic to plastic and back again, as the external loads are increased. Therefore incremental theory introduces a time parameter, and a rate of loading r in the functional J--and it computes the stress rate \dot{d}. In other words, as Haler and Capurso have shown, we have a time-dependent variational incqualitv;
(1i) $\quad \min _{\dot{\hat{v} \in K(t)}} J(\dot{v})=J(\dot{u})$, with $K=\left\{\dot{v} \in \|_{0}^{2}, \dot{v} \leq 0\right.$ where $\left.u(t)=\psi\right\}$.
Notice that at each instant the convex set depends on the current state u. In a practical problem the state is actually a vector of stresses and plastic multipliers, but we hope that this quasi-static obstacle problem ulll serve as a reasonable model. We also hope that the new results on regularity can be extended to $u(t)$. But even on this assumption, there remain three new problems in numerical analysis:
(1) Keeping time continuous, to prove convergence of the finite element approximations. The difficuity is that the convex set K, and therefore the minimizing \dot{u}, depend discontinuously on the current state u; therefore it is not true that \dot{u}_{h} is close to \dot{u} whenever u_{h} is close to u.
(ii) To amit finite difference approximations in tine, and to determine the stability inmits on the interval Δt.
(111) To find a quick way of solving, with adequate accuracy, the obstacle problem which arises at each time step.

We believe that these are among the nost important questions in nonlinear finite element analysis, and that answers can be found.

A second class of problems, of an entirely cifferent lybc, ariees
 induce plastic collapse. This is known as limit analysis, ard no longer requires us to follow the loading history. In place of minimizirs a quadratic functional, the problem falls into thc framework of infiritcdimensicnal linear programminc. Here is a typical example, with unknown stresses $\sigma_{1 j}(x, y)$ and mulilplier $\lambda:$ Maximize λ, subject to Equilibrium: $\quad\left[\frac{\partial \sigma_{1 j}}{\partial x_{i}}=\lambda I_{j}\right.$ in $\Omega, \sum \sigma_{1 j} n_{1}=\lambda g_{j}$ on 2Ω, and

Piecewise Linear Yield Conditions: $\sum b_{i j} \alpha_{1 j} \leq c^{\alpha}$ in $\Omega, \quad 1 \leq a \leq M$.

Suppose we make this problem rinite-dimensionala by assuming that the stresses (and also the displacements, which are the unknowns in the dual program belong to piecewise polynomial spaces S_{h}. The continuous innear programing problem is then approximated, in a compietely natural way, by a discrete one [3]. But we know nothing about the rate or convergence.

REFERENCES

1. G. Strange and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall (1973).
2. R. Fall, Error estimates for the approximation of a class of variational inequalities, Mathematics of Computation, to appear.
3. E. Anderheggen and H. Knőpfel, Finite element limit analysis using linear programing, Int. J. Of Solids and Structures 8 (1972), j-2431.

This paper will appear in the Proceedings of the International Congress of Mathematicians, Vancouver, Canada, J.974. I am very grateful for the support of the National Science Foundation (P22928).

CARBAIGGE, MAS. 22139
U.S.A -
opartemes. of makematics

[^0]: © Département de mathématiques et informatique, université de Rennes, 1974, tous droits réservés.
 L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[^1]: ${ }^{1}$ The most empertant applications are still to struetural problems, but no lonfer to the desipn of airplance; that has now been superseded by the safety of nuclenr reastors.

[^2]: ${ }^{2}$ We shall have to refer to the book [1] ard to its bibliography, both for the construction of pieceulse polynomials and for the proof of their approximation properties. Perhaps the favorites, when derivatives of order m appear in the energy $a(v, v)$, are the polynomials of der,ee $m+1$.

[^3]: ${ }^{3}$ The patch test is aliso an ideal way to check that a finite element procram is actually working.

[^4]: "Convergence in $I_{\infty} w i l l$ be discussed by Bramble ${ }_{A}$ at this Congress; it is one of the outstanding problems in the linear theory. ${ }^{\text {SThis }}$ boundary cannot be found by solving the original linear problem and then replacing u by $\min (u, \psi)$!

