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PADE-GALERKIN METHODS FOR PARABOLIC PARTIAL 
DIFFERENTIAL EQUATIONS 

Nabil R. NASSIF 

Mathematics Department, American University of Beirut, Lebanon, and 
Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Suisse 

A B S T R A C T 

The variational formulation of Pade methods for solving linear parabolic equa
tions is studied. Optimal error estimates are derived. The efficiency of a time 
discretization with respect to the initial condition is then considered. A 
starting index is defined which shows considerable advantage in using under-
diagonal Pade discretizations. Some practical aspects of the methods are also 
presented. 
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I. I N T R O D U C T I O N 

In [1], Descloux and Nassif have derived a class of one step methods for the 
numerical integration of the initial-value problem 

y' = f(t,y) . 

The principal fea-ture of this class of methods is that when applied to the 
linear case f(t,y) = Xy , it reduces to the family of Pad§ approximations to 
exp(Xt). Precisely let 

c = c a r) = V*1"*)- (*)! o < k < I 

and d k = ck(r,£) . Then it is proved [i bid] , that if y G C * + r + 1 , 

I (-t)k c y ( k )(t-+T) - I ( x ) k d . y ( k ) = 
k=0 k=0 K 

(1) 
= f (s-t)A(t+r-s)r y [t < J l >,(t+T) < r >,s] ds , 

J t 
where y[t < A >,(t+x) < r >,s] is the usual notation for the divided difference as 
available in [2]. In particular when f(t,y) = Xy , one obtains from (1) 

z(t+x) = R J L > r(XT) z(t) 
A r 

where R £ (x) » I d x k / I c. (-x)k , 
*.r k=0 K / ; k=0 K 

is the (A,r) entry of the Pad§ table, and z(t) the approximating solution 
to y(t) . 

We shall systematically apply (1) to obtain fully discretized schemes for the 
evolution parabolic problem. These schemes will be semi-variational, in the 
sense that the space discretization is of the Galerkin (or finite element) type. 
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We note that these schemes can be also derived by the usual Galerkin semi-dis
cretization followed by the approximation of the system of ordinary differen
tial equations that is obtained. See for example [2] and' [3]. This new approach 
is however more natural and will directly yield the necessary error estimates. At 
first, we shall introduce the problem together with few notations. Let V and 
H be two Hilbert spaces such that V C H . We shall respectively denote by 
|| «11 and HI «111 , the norms on H and V and we assume as it is currently 
done (for example in [4]) that the identity mapping from V into H is bounded 
i.e. that ||v|| i|||v|||, V v G V ; (-,•) and ((•,•)) are respectively the 
inner products on H and V . 
k 

C ([0,T] ; X) , with X = V or H is the space of k continuously differen
tiate functions from [0,T] into X 
We are interested in obtaining u(t) G V such that 

( 2 ) u-(t) + Lu(t) = f(t) , 
( u(0) = g , 

where f(t) and g are given in H and L is a continuous linear operator 
from V into H , independent of t satisfying a strong V-ellipticity pro
perty, namely that 

a(v.v) = (Lv,v) I y 0 H M H 2 , V v G V y Q > 0 

Existence, uniqueness and regularity of the solution to (2) has been discussed 
by several authors. See for example [4] . Note then that (2) can be written 
in the equivalent semi-variational form, 

* 

(2.) , (u'(t).v) + a(u(t),v) = (f(t),v), t > 0 
1 (u(0),v) = (g,v), V v G V 

Although the formulation is weak the solution u(t) to (2)- (2') will be 
assumed sufficiently regular. In fact if u G C ([0,T] ; V] , then using 
(1), we may write 
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(3) I (-T)kc. u ( k )(t+T) - l T k d . u ( k ) ( t ) = f t + T(s-t) A(t+T-s) ru[t < A >,(t +T) < r >,s]ds 
k=0 K k=0 K J t 

Simultaneously, these regularity assumptions on u and henceforth on f allow 
us to write 

(4) (u ( k )(t),v) + a(u* k" 1 J(t),v) = (f< k + 1)(t),v), V v 6 V , t*0, l*kgmax(£,r) 

Now let « = M h C V , be a finite-dimensional subspace of V , with a "good" 
approximation properties for elements of H and V , as h 0 . Let us also 
define a partition of the interval [0,T] , 

(5) 0 » t Q < tj < ... < t « T , 

with t. , - t. = t. . We shall write u k = u^ k^(t.), and f k = f^(t.) . 
J + * J J J J ^ k 

Define then the Pade-Galerkin method as follows. We construct, IK G M , 
(U = u9), 0 < k < p , 0 < j < n , such that j j *~ 

' r i 
J ( " T j ) k Ck (Uj+l'v) • I Tj d k ( U j * v ) " 0 0 - J . V v 6 M 

( 6 ) 4 (U°,v) = (g,v) , V v 6 M 

(U k + 1 ,v) + a(uj,v) = (fj.v) V v G J I J j O . 

Of course this scheme can be defined without the introduction of the derivatives k of f . We may clearly replace f. by some difference approximation that is 
j 

consistent with the order of accuracy of (1). 

Let us now give examples of this scheme, for the particular cases that have 
been so far used : 

(i) I = 1 , r = 0 . The application of (6) gives 

( U j + r v ) - ( U . , v ) - T . ( U V , v ) = 0 

(U°.v) = (g.v) , 

(uj.v) + a(Uj.v) = (fj.v) , 
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which reduces to 

U. , - U. 

( J + | t
 J , v) + a(U\,v) = (f j fv) , V v 6 M , j > 0 

(U0,v) = (g,V) V v 6 M . 
Which is the classical Euler-Forward scheme. Similarly 

(ii) i = 0 , r = 1 , gives the fully-implicit or Euler Backward scheme. 
Precisely, 
U. , - U. 

( - J ± L _ J . , v ) + a(U j + 1,v) = (f j + 1.v) , V v G M , j > 0 
3 

(U0.v) = (g,v) , V v 6 M . 

(iii) I = 1 , r = 1 , is the well-known Crank-Nicolson introduced and analysed 
by Douglas and Dupont [5] . Similar calculation as above yields, 
U. , - U. U . , + U . f. + f. . 

l,v) + a( J +' J , v) = ( J
 9

 J +' ,v) , V v G M , j > 0 

(U0,v) = (g,v) V v 6 M . 

(iv) The case I = r = 2 has been used in [6] and [7]. Formula (6) gives 
2 

( U j + r v ) " (Tj/2) («J + 1.v) +^-(Uj 2
+ 1.v) = (Uj. rv) + (Tj/2) (uj.v) + 

x2. 

+ U ( U j ' v ) V V G M 

(U0,v) = (g,v) V v G M 

(uJ.v) • a(Uj,v) = (fj.v) .and (U*,v) + a(u],v) = (f],v) , j * 0 V v G M 

which can be rewritten in a simplified form as 
U. , - U. U. , + U. U1. - U"! , f. + f. , 
( J ^ , v , . . ( J i 3 r J . » , + T j . ( J T | J i l . v ) . ( - i T ^ . » ) . 

J f l - f l 
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(U0.v) = (g.v) V v 6 M 

(ul,v) + afUj.v) = (fj,v) V v 6 M , j i 0 . 

(v) More recently, in [8], several advantageshave appeared from the use of 
(6) with I = 0, r = 2, and A = 1, r = 2 . We shall directly write these 
schemes. They are respectively 

< ^ i f ^ - » ) + a<Vi - T i u ] + i " > ° <Vi f ] + r v ) , V V 6 M , j » 0 
J 

and 

V v G M . 

with (uj.v) + a(Uj,v) = (fj-.v) , V v G M , j I 0 . 

and (u0'v^ = ( g , v) ' 

Let us now introduce the linear operator L : M •*• M defined by 

(7) (Lw,v) = a(w,v) , V v G W 

Note then that 

(7') (Lv.v) * Y 0 ||v||2 , V v G M 

implying that (a+L)~^ exists for all a , with Re(a) ^ -YQ • 

Let also for <p 6 H , <p be its projection on M , i.e. , 

(8) (<P-v,v) = 0 V v G U . 

It is then possible to write the above schemes in the following form, 
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where fj corresponds to the discretization of the non-homogeneous term f . 
To illustrate, let us take the Crank-Nicolson and the Pad§ (2.2). For the first 
R £ r(z) = (2+z)/(2-z) , and f̂  = (fj + fj + 1)/2 and for the second 
R.'(z) = (12+6z+z2)/(12-6z+z2) and 
J6, r 

From (7*), it is clear that (2+L)"1 exists and also (3±i/3 + L)" 1 , where 
3± i)/3 are the roots of z + 6z + 12 . 
As for the algorithmic implementation of (9) when r > 2 , complex factoriza
tion is necessary. We shall return to this point in the last section. 

Our paper will be divided as follows. In the next section we shall derive esti
mates on u.-U. , in terms of those on U. - U. , where U. is the V-projec-
tion of u. on M , which is known to be optimal in most practical cases, j 
We will restrict ourselves to those cases shown above, i.e. for I i r i 2 . 
However, the modification of our arguments to higher order cases can be done 
and we shall avoid if for simplicity. We shall rely heavily on a concept of 
strong stability, thus avoiding the use of the A-stability test, as it is done 
by Crouzeix in [9]. In section 3, we consider the starting problem in parabo
lic equations, and we show by defining a starting index how the accuracy can 
be increased at the initial stage when we use Pade under diagonal schemes. 
They have indeed a particular feature, that seems to lack in most other schemes, 
in the sense that they provide a good approximation to exp(-x) both near zero 
and at infinity. In the last section, we consider the numerical implementation 
of the Pade schemes. We shall see in particular that they are considerably ef
ficient when we use complex arithmetic. 
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2. STABILITY AND ERROR ESTIMATES 

2.1. Stabi 1 ity 

From (9), we have the following easy lemma 

LEMMA 1 

V i ' [ J 0

 R *- r ( ~ T ' l ) 1 U° + Jo T" 'ill ?* 
j 

(with n R 0 „(-T.L) = 1 , when k = j ) . 
i=k+l *"r 1 

DEFINITION 
Let 

(10) g. = l|RA,r(-V)ll • T = m ^ x { T i } • I =
 m™<V • 

We shall assume the partition (T.-}.. to be regular, i.e., 

(11) T / T S 5 (constant) 

The scheme (10) is said to be stable, if there exists 6̂  > 0 , 6 2
 > 0 » a n d 

U Q real such that 

(12) inf {min [(1-g^/T.] }> y Q 

T^S-J i 
h<6 2 

If 
(i) u n i 0 the scheme U.,, = R c „(-T.L) U. + T . f. , is said to be weakly 

stable 

(ii) If u Q > 0 , it is strongly stable. 
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REMARK 
This definition of stability stems from the well-known Von-Neumann condition 
of stability and also from Kreiss definition of dissipative difference opera
tors, [ 9] in the case of strong stability. 

We can state the following theorems. 
THEOREM 1 
A necessary and sufficient condition for stability is that there exists a real 
number Y^ » and positive numbers 6.j,ô2, such that, 

j+r-1 
(13) n g k < exp {-Y^tj+j.-tj)} . v J» r • T ^ 6 1 , h < 6 2 

PROOF 
Stability implies 

9^ i 1 - P 0 T I , T i ^ » h = 6
2 » 

and therefore g. < e x p ^ u ^ ) , which gives immediately condition (13), with 
Yl = y0 ' 
Conversely if we put in (13) r = 1 , then we have 

g. < é x p ( - Y 1 T J ) , T S . h < 6 2 

and therefore 

1 - g. > 1 - expî-Y^j) . 
2 

Using the relation exp(-x) = 1-x + V e" 9 X • 0 < 9 < 1 W e h a v e i f Yl > 0 ' 
1 and by taking x. Î min(6 1, —) J • Y*| 

Yi Yi 
( 1 ' g J ) / T d 1 y o = Y i " T - T ' 5 , 0 ' 

For Y ] - 0 , it is obvious that < 1 , for x < , h < « 2 . Last,for Y-, < 0 , 
taking x. < min(6-,,l) , we find easily that 

(i-gjO/Tj * y} - n\ e x P ( " Y i ) / 2 1 • % • 
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We have next 
THEOREM 2 
(i) If the stability is strong then 

(14) ||U.|| i exp(-u t•) !|U0|| + f sup ||fk|| 

J u j u y Q 0< k<j_-| K 

(ii) If the stability is weak then 

(15) IIU..II < exp(w1tj)[||U0||+ tj < S u p ||fk||] (w, = -y Q) 

PROOF 
Lemma 1 implies 
06) P i + 1 N ( n g k ) | |uJ|+ I x [ n g i] ||fk|| . 

3 1 k=0 K u k=0 K i=k+l 1 K 

First, let us suppose the stability to be strong i.e^ y Q > 0 . Then the first 
term in the right hand side of ( 1 6 ) is bounded by exp(-y Qtj + 1) ||UQ|| . In 
the second term, note that 

( 1 7 ) TL g, t (l-y 0i) j~ k • 
i=k+l 1 u 

Therefore 

||Uj+1||'S exp(-y 0t j + 1) ||U 0||+ T [ J (l-y 0x) j" k] sup || || 
k~*0 k 

Clearly I ( l - y Q T ) j _ k < i 
k=0 u V 

and therefore 

p i H i i*««p<-v J i + i>ii<wi*4 7 ii?k" • 
which proves the first part of the theorem. 
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The second part relies simply on theorem 1, since (16) implies 

f l I I * ( n g k) ||u0||+ ( I t k) sup ||f.|| . a 
J 1 k=0 K u k=0 K 0<k<j K 

As a result of theorems 1 and 2, our task is reduced to the estimation of 
9i = IIRc ».(Tii-)|l • As we shall see in the case when L (and therefore L) is 
symmetric, one can arrive at a great deal of information about g^ , for all 
the Pade table. Unfortunately when L and. L are not symmetric, an impor
tant tool introduced by Crouzeix [8], that relies on a spectral theorem due 
to Von Neumann, can give in some cases the same strong results obtained for 
the self-adjoint problem. 

We assume the following well-known facts 

(Al) a ( v , v ) = ( L v . v ) > Y0l||v||f > Y 0 | | V | | 2 , yQ > 0 

(A2) L is a 2 m t n order elliptic operator, i.e. 

Hj(fl) C V C Hm(Q) H = L2(fl) , Q C pP , 

where Hm(fi) = { v | D av € L2(ft) , |a| i m} 
Hj(n) = { v 6 H m(n) | D av = 0 on 3G , |a|. i m-1} 

with | | v |g = 7 f |D av| 2 dx . 

(A3) The largest eigenvalue of L , * N is 0(h" ) , and the first 
is 0(1) . 

We can then state 
THEOREM 3 
Suppose L is symmetric, i.e., 

a(v,w) = a(w,v) V v,w G V , 

and let A^, A 2, A 3 be satisfied. 
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Then 
(i) The Pade under-diagonal schemes (£<r) are unconditionally strongly 

stable. 
(ii) The Pade diagonal schemes are unconditionally stable. Furthermore if 

T = 0(h m a), a M , this stability is strong. 
(iii) The other Pad§ schemes (£>r) are stable for T = 0(h a m) , a > 2 . 

In some cases this condition entails strong stability. 

PROOF 
For the Pad§ under diagonal schemes, and for x.. sufficiently small, we have 
g.. = R^ r(-x IX^) , where is the first eigenvalue of L , with > Y Q • 
Thus it can be easily proved that g.. i 1 and 1-g: = 0(x), which implies (i). 

r k r k For t = r , we have c. = d. and R(-x) = I c. (-x) / I c.x . 
k=0 K k=0 K 

This clearly implies, that 

g 1 = max {Rf-x.X^, |R(-x.X N)| } , 

and 1-g. = min {1 -Rf-x.X^, 1 - | R(—r iX N)| } . 
Note then that 

R(-x) - I ck(4)"k+r / I c k ( 7 ) " k + r - $(7) . k=0 K x k=0 K x x 

r r 
with Q(y) = I c k(-y) k / I c .(y) k . 

k=0 r K k=0 r K 

It is then easily checked that |l-Q(y)| = 0(|y|) as y 0 . We may then have 
three cases : (i) T = 0(h a m) , a > 2 , and then |R(-x iX N)| < 5 < 1 , 6 inde
pendent of T and h , and then 1-g^ = {1-R(-xIX^)} , for T sufficiently 
small, implying strong stability since 1-g.. = 0(T) , or (ii) T = 0(h a m) , 
1 < a i 2 , and then |1-R(-T,X n)| = | 1 - Q ( — = 0(h ( 2" a ) m) , implying that 

(18) |1 - R("T iX N)| / x i = 0 ( h ( 2 " 2 a ) m ) , -2 < 2-2a < 0 
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thus = [1 - R(-T,.XJ)]/TJ = 0(1) , hence strong stability. 
Finally for (iii) x = 0(h a m) , 0 < a < 1 , then (18) is still valid with 
2-2a I 0 , and thus 

( l - g 1)/x 1 = |1 - R ( - T . A n ) | / x 1 - 0 as x(or h } * 0 . 

i.e. no strong stability. This completes the proof of the second part of the 
theorem. 

For the last part : I > r , let (0,a) be the interval such that 
lR£ r(-*)l ^ 1 » for x G (0,a), then by choosing x..XN 1 a , i.e. T. < ~ , 
we obtain the stability of the corresponding scheme. Suppose now that 
is choosen such that T ^ X n < a 1 < a f and thus r(-^^ N) = <5 < 1 , then 
for sufficiently small we have 

g 1 = R
A s r ( - T i X i ) ^ d 1-g. = 1 - R£,r^" T1 xl J = 0 ( x i ) * i > e-

strong stability. B 

We assume now that L and L are not symmetric. Then it is no longer possible 
to write 

gj =max | R A > R ( - T . X . ) | ; 

However according to a theorem of Von-Neumann [8, pp. ], because 

(Lv,v) > y0||v||2 or (Re(Lv.v) I yQ\\v\\2) , 

it is still possible to write that 

(19) 9, i sup |R (-1,2)1. 
J Re(z)>y 0 *' r J 

This important contribution is however conservative, in the sense that it res
tricts the results to those methods where |R0 ^(-z)| 1 1 for Re(z) > 0 , i.e. 

x,r -
methods that are by definition A-stable. 
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For the Pade table, Ehle [9], has proved that when £ = r , r - 1 , r - 2 , then 
|R0 ( - 2 ) | £ 1 , for Re(z) > 0 . Furthermore for I < r-2 , this property is 
not true in general. 

Thus we can state 
THEOREM 4 
Suppose L is not symmetric, i.e., a(v,w) ^a(w,v) for some v,w 6 M and let 
(Al), (A2), (A3)' be satisfied, then 
(i) The Pade under diagonal schemes I = r-1 ,1 = r-2 , are strongly stable, 
(ii) The Pade diagonal schemes r are weakly stable. 

PROOF 
Using (19), and Ehle results, we have if £= r-1 , r-2 , 

g. < sup- |R R ( - T _ . 2 ) | < 1 
J Re(2)>Y Q ** R J 

Following a proposition of Crouzeioc [8, p. 31] , there exists a positive cons
tant Y-| such that 

sup |R« R ( - T - 2 ) | < expf-Y.T.) 
Re(2)^Y 0

 J 3 

Using theorem 1, we obtain therefore strong stability. This proves the first 
part of the theorem. For the second part, it is a well-known result of Birkhoff 
and Varga [10] that 

sup |R ( - 2 ) | < 1 for I = r , 
Re(2)^0 *" r 

with t Rjl,r (" 2 )' = 1 • i f 1 = i y • 

This immediately yields the weak stability. • 
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2.2. Application to error estimates 

2.2,1, Preliminaries 

We are now prepared to obtain error estimates for the methods described in §1 . 
We shall consider successively the cases I i r = 1 and A < r = 2 . The first 
case has been analyzed by many authors ([11], [12], for example) ; our analysis 
will be based on the results obtained in §2.1., and the V-projection of u. , 
k i 1 , on M . Specifically we define ir G M , such that 

j 
(20) a(Uk,v) = a(uk,v) V v G M , 0 a <s max(£,r) 

J J 
~k 

It is known that U. satisfies best approximation .properties. We shall then compare e|j = u'j - [ft , with £ = - uj . From (1), we need to define J J J J J J 

0 j(t) = aj'r(x,t) = u(x;tj A >,t^,t) . 

It can be also easily proved that 

(21) >f u G C A + r + 1((0,T) ; H) , then a. G C((0,T) ; H) . 
J 

We*shall also need the divided-difference 

(22) Au. = ( u j + 1 - u . ) / T . . 

Note from (20), that 

a(Vl" V V ) = a ( uj+l " u j , v ) * V V e M 

and hence 

(23) a(AU.,v) = a(Au.,v) V v G M . 
J J 

If a depends on t this property is no longer true. 
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2.2.2. The case £ = 0 , r = 1 

We have then 

U. , - U. i f*j+l 
( _ i i l _ l > v ) +a(O j + 1.v) = (f j + 1.v) + (AUj -A U j.v) + £ J (tj+1-s)(aj,v)ds VvG M 

j 3 tj 
and therefore 

( 6 J + T . 6 j » v ) + a( ej+i? v) = ( A e j « v ) + { J + 1(t j + 1-s)(a j,v)ds , Vv6 M 

i.e. 

< I + T J L ) e i + l = e J + T J ' ? J 

where 

l f tJ + 1 

*j = A 6 j + T: J ( t j + i " s ) - 5 j ( s ) d s • a n d Hfjll - H A 6 j l l + Tj s f p a 

From theorems 3 and 4 and from (21), we can state 
THEOREM 5 

2 
Under the assumptions of theorems 3 and 4, and if u G C [(0,T); H] then 
there exists y Q > 0 such that for all T , and h , 

I I U j - U j I i exp(-y0tj) l | U 0 - U 0 | ! + ̂  |sup||A( U j-0^)11 + T j sup . 

and therefore 

(24) ||Uj - UJI i \\u. - 0 j | | + exp(-y0tj) ||U 0-U 0|| + ±- sup|[|A(uj - U.)|| + x ||a.|| } 
0 j 
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2.2.3. The case I = r = 1 (Crank-Nicolson) 

Similarly we have here 
U. , - U. 

( _ J ± L _ A V ) +^a(U j + 1+U j i v) = 
- \ ( f j + l + f j ' V ) + (AUJ-AUJ.V) + J- j J + (t j + 1-s)(s-t j)(a.,v)ds W G M 

and therefore 

(!^Av) ̂ a
 VeJ+l'v) =

 (AVv)
 + T 7 L J + 1(Vr S , ( $- TJ ) ( OJ' V ) D S • 

yielding 

1 f J + 1 

with f. = AG j + j ( t j + 1 - s)(s-tj) Oj(s)ds , 
j lj 

thus Ipjl < ||AGj || + T 2 supl^H . • 
3 

Theorems 3 and 4 allow us to state 
THEOREM 6 

3 
Under the assumptions of theorems 3, 4 and if u G C [(0fT) ; H] , then : 
(i) if i = 0(h a m) , a £ 1 , and L is symmetric, there exists a positive 

constant \1Q such that 
(25) IIUj-UjH i ||u.-U.|| + exp(-y0tj) \\UQ-UQ\\ + ± {sup||A(u.-U.)|| + T 2 sup \\c.\\^ 

0 j 3 

(ii) Otherwise, if x = 0(h a m) , a < 1 or L is not symmetric, then 

(26)' HUj-UjH < Huj-Ujll + ||U0-U0|| + ̂  [sup ||A(Uj-Uj)|| + x 2 sup ||0j|| } . 
3 3 
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2.2.4. The case Л = 0 > r = 2 

We have here 

j 
i Л и 

+ _L (t. + 1-s) (a.,v)ds V v 6 M . 
J J 

with 
(u],v) + a(U j ev) = (fj.v) + (e],v) V v 6 M . 

Thus we may write 
tj+l 

j J j 

and (ej.v) + a(ej,v) - (fi].v) 

so that t 

^ * ^ -4 • *v^ir(tJ*-I)l*i.i$ 

J J 

1 , c 1 

and V L W 

The last two equations give 
2 

with .tj+l 2 _ Ti - 1 

and e. + 1 = R 0 í 2 (-T.L) е. + t. g\ 
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with g. - %T2H.L) №. + ± | J + ( t j + r s ) 2 a. ds] + \ K^^. ) T j L * J + 1 
J j 

Let Q(z) = | R 0 f 2(-z) . 

Then from maximum principle considerations it is easily verified that, 

|Q(z)| < 1 for Re(z) > 0 . 

So that, \\g.\\i HAUj-AUjH + T 2||O.|| + || u ] + 1 - 0 ] + 11| . 01 

Thus we may state 
THEOREM 7 
Under the assumptions of Theorems 3, 4 and 6 there exists y Q > 0 such that 
for all x and h we have 

l l y U j H < e x p ( - p 0 t j ) ||Uo-0o|| + ̂  sup {llAUj-AUjH + T 2 J I ^H + | |u ] -u] | | } 

and therefore, 

(27) HUj-UjH i Huj-UjH + exp( -y 0 t j ) ||U^-Oj|| + 

+ ^ S f {llAUj-AUjH • Hojll } + Hu j -U j l l j . 

The same study can be made to the 

2.2-5- The case I = 1 , r = 2 

We write directly in this case 

V i •*i.2<-V->V t j ' j 
2 t. 

with s . (1+?Lk+If tV1
 fa + i { ctjtl-s>^V?ids + s V f U 
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and ||g.|| < ||AUj - A 0 . | | + T]||O.|| + | | G ] + 1 | | 

since it is also easily verified here that 

| 2 / 6
 0 1 < 1 for Re(z) > 0 T 

1+22/3 + 2V6 

thus we can state : 
THEOREM 8 

4 
Under the assumptions of theorems 3, 4 and if u 6 C [(0,T) ; H] , there exists 
y Q > 0 , such that for all T and h we have 

Pj-Ujll i e x p(-y o t j ) | | U o - 0 o | | + ^ supJHAUj-AUjI + T V J I I + ||u]-u]||} 

and therefore 
II - "j II i II U j - Oj || + exp(-yQtj )|| Uj - Uj || + ± sup{|| A U j - AUJI + x 3 || + || uj - uj ||} . C 

and finally we look at 

2 . 2 . 6 . The case I = r = 2 

We have e j + 1 - ^ ( - T J L ) e. + T j g.. 

where 2 t 
Ti Ti 2 - 1 f - I f 3 + 1 2 2 - 1 - 1 1 Sj - d + f L+T^L 2) 1 H + T 7 J t №J+T»r (s-tj)2 a. d s + ^ x . L A G . } , 

with l | g j l l i l | A 6 J | | + tJlojH + T . | | A S ] I I , 

which allows us to state 
THEOREM 9 

5 
Under the assumptions of theorems 3, 4 and if u 6 C [(0,T) ; H] , then if 
(i) L is a symmetric and x = 0(h o t m) , a £ 1 , there exists PQ > 0 f such that 



- 20 -

||U. - U.|| < e x p(-u o t j)||U o - 0 o | | + ̂  sup[||Au. -AU.|| + T 4 llojll + T|[AU] - A u ] | | } 

and 

IIUj-UjH ̂ Iluj-Ujl + exp(-y0tj)||U0-Uj| + isupjllAUj-AUjH + T 4 ||aj| + T.||AU]-AUJ||} 

(ii) Otherwise, 

P j - O j H S | | U 0 - U 0 | | + t. Sup{||AUj - A U j H + T 4 | | 0 J | | + T | | A U J - A U ] | | } 

and 

l l U j - U . y i Iluj-Ojll + ||U 0-UJ| + t. sup {||AUj - ABjl +' x4 ||o-|| +x||Au] - A u ] | | } . fl 

REMARK 
In theorems 5-8 f the estimates depend on Au. -AU. , and in theorem 8 also 

1 - 1 on Au.-AU. . It is not difficult to estimate these. 
J j 

REMARK 
In theorems 5-8 , the estimates depend on Au.-AU. , and Aul-Aul (as in 

J J J J 
theorem 9). To estimate these, we shall see that the regularity of u(t) (with 
respect to the space variables) imply that of Au^ . We shall prove 

LEMMA 2 
k+1 

Let W be a closed and dense subspace in H , with [ML » t h e n u 6 C £(°>T) JW] 
k 

implies that Au^ 6 W . 

PROOF 
It is sufficient to note that 

t. , 
tak.-Lf J u<k+,>(s) ds 

1 J J tj 
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and therefore 

l|A"-IL i *"P l l u ( k + 1 )(s)|| , 

which yields our assertion. • 

Let us then assume that W = HS(Q) , M = M(h,p) C W C V and for v 6 W C V 

inf |||v-z|| + h|||v-z|||} < Chs||v|| s < p+1 , 
z6M 1 } w 

We shall prove 
LEMMA 3 
Assume u G C2[(0,T) ; W] , then 

|iAu - AU || i Ch s sup ||u'(.t)||w , s < p+1 
J J Olt$T w 

and HAul-AU1!! i Ch s sup ||u"(t)|| ,s < p+1 
J J 0<t<l 

PROOF 
The proof of this lemma follows easily from lemma 2, equation (23) and a similar 
one for Au. , specifically, 

a(Au],v) = a(AuLv) V v € M . 
J J 

The estimates in the lemma become then striaghtforward. 

Replacing these estimates in theorems 5,6,7,8 and 9, plus the (same) correspon-
k -k 

ding one for û . - U. , k = 0,1, we get the expected order of convergence, 
namely [0(hs) + 0(x^ r)] . 
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3. EFFICIENCY WITH RESPECT TO THE REGULARITY OF .-THE INITIAL CONDITION 

In parabolic equations, the regularity of the initial condition can affect the 
accuracy of the method at the first stages of the computation. Even if the me
thod is unconditionnaly stable and with a high order of convergence, the first 
and second stages of the computation may exhibit a loss in accuracy. This has 
been recently observed by Zlamal [12], with respect to firts order, one-step 
methods. 

To simplify our study, let us consider the case when 

(i) L is symmetric 
(ii) the homogeneous case f = 0 

We consider the one-step discrete scheme that corresponds to the rational func
tion R(x) , provided by a Padé scheme or by others (for example a Runge Kutta 
method). Let T. = x , Vj , and let us consider the exact and approximate solu-j 
tions at the first time step. We write first 

(28) u] = exp(-TL)uQ 

Ju, - R ( - T L ) U 0 

and the identity 

(29) u 1 - U 1 = [exp(-xL)-R(-xi)] U Q + exp(-iL) [ U Q - U Q J + [exp(-xL) - exp(-xL)] U Q . 

Clearly the first term of the right hand side corresponds to the time discreti
zation, while the second and the third correspond respectively to the discreti
zation of the initial condition and to that of the operator L , and therefore 
indépendant of R(x) . 

Thus for methods that have the same order of accuracy, and for any type of ini
tial condition, there will be a gain in accuracy when 

||exp(-xL) - R(-xL)|| is minimized. 
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Clearly, under our above assumptions 

(30) ||exp(-xL)-R(-xL)|| = max |expf-xA.) - R(-xA.)| 
Ai 

where A. is any eigenvalue of L . Therefore, if we put no restriction on x , 
a good estimate that follows from (30) is 

(31) .||exp(-xL)-R(-xL)|| < sup |exp(-x) - R(-x)| . 
0<x«» 

On the other hand if x AKl <; M , then 

(32) ||exp(-xL)-R(-xL)|jl sup |exp(-x) - R(-x)| . 
0£x<M 

Since (31) does not depend on x , and since we are considering unconditionally 
stable schemes, we shall use it to define an index that will indicate a gain or 
(loss) of accuracy at the initial stages of the computation. 

DEFINITION 
Let R(x) be the rational function associated with a one-step discrete scheme 
for solving the evolution equation (2) ; the starting index, S R , of this 
scheme, is defined by* 

S R = sup |exp(-x) - R(-x)| . 
0jSx<« 

Hence, we shall look for high order methods with low starting indices. Clearly, 
the Crank-Nicolson and the Pade diagonal schemes cannot be "good starting" me
thods since for these S R = 1 .On the contrary the Pade underdiagonal schemes 
have substantially better indices. In table 1, we show S R for H r i 3 , 
and in table 2, the abcisse x^ 6 (0,°°) at which S R is attained. These have 
been obtained numerically by Gerald Wanner at Geneva University. 

* S is also the Chebyshev constant. See Varga R.S., "Functional Analysis and 
Approximation Theory in Numerical Analysis", SIAM Publication 3. 
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r 

0 1 

1 0.208 1 

2 0.068 0.098 1 

3 0.027 0.024 0.064 1 

Table 1 : Values of S R for £ = r£ 3 

_r 
0 oo 

1 3 

2 3 8 

3 3 7 18 oo 

Table 2 : Values of x M G ( 0 , » ) , 
where S R is attained. 

Next, we consider first order methods that correspond to R(x) = R Q(x) = il̂ i-e')/' ' 

Note that for 6 = 0 and 9 = 1 , one obtains respectively the Pad§ ( 0 , 1 ) and 
( 1 . 1 ) . 

Estimating numerically |exp(-x) - R Q(x)| , for 0 i x i 100 , Wanner found this 
quantity minimized for 6 = 0.122 , which is close to the 9 = 1 given by Zlamal. 

Hence, there appears to be a considerable advantage in using Pade underdiagonal 
schemes since they nave low starting indices and thus will improve the accuracy 
at the first stages of the computation. Moreover as we shall see in the next 
section, they are quite efficient from the computational point of view. 
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4, EFFICIENCY WITH RESPECT TO COMPUTATION 

This has been discussed already in [6] . We shall briefly review it here. As 
it is known already, the Pade (0,1) and (1,1) do not present any problem since 
they involve only linear factors. However the Pade (0,2), (1,2) and (2,2) in
volve the quadratic factors, 

2 2 2 
(I + T L + ~ - I2) , ( I + | L2) , and (I + ̂ -L L2) , (respectively). 

Unfortunately, there have complex conjuguate roots, and necessitate the use of 
complex arithmetic if one is to avoid working with full matrices. Let us suppose 
we are to solve the system 

x 2 2 
(33) (1 + iL + ~ L ) 2 - Y , 

as in the PadS (0,2). By considering the roots a and a of the polynomial 
(l+z+|- ) , with a = 1+i , we can rewrite (33) as 

\ (a + T.L)(a + T L ) Z = Y 

which decomposes into 

(a + xi.) Z ] = Y 

and (a + xL)Z = 2Z 1 . 

Noting that in the last equation Z is real ; then by equating its real and 
imaginary parts we obtain 

which reduces (33) into the solution of one complex system of equations, namely 
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(a + T L ) Z 1 = Y and Z « J ^ J lm{l}) . 

Thus, using this technique one proves that the Padé (0,2),,(1,2) and (2,2) require 
the solution of one complex system of sparse linear equations at each time step. 
See [6], [7] for details and numerical results. 
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