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Q. Tntrocuction

Projections such as L2 - or Ritz-spproximaetions arc formulatod
in a Hilboert-space-setting, tnerefore crror estimates are primeyiis
avallable In Sonolev norms. The derivation of Lwnosuimatus is &
famous questlon. We mention the case in which the approximatio:n
space consists of trigonometric polynomials of degree n o ond
tne result of Faber (see Lorentz (17, p.96): The L_-norm of any

sveh projection is (at least) of order 1n n.

The situation 1s better if splines or finite elements uare
need instesd of trigonometvric functlons, zs was shown in
IMitsche [1] for linecar splines in one dimension and generaslined
by Deouglas-Dupont-Wheeler [l], Wanlbin [l], and YWheeler [15. Tn
hirther dimensions some results are known for uniform resp.
roctangular meshes, see Bramble-Nitsche--Schatz, Bramble-Schatz [1%

[21, Douglas-Dupont-Wheeler [171 and Strang-Fix [1].

A first L -error estimate for Ritz-approximations and linear
finite elements on a general mesh was given by Nitsche [27, but
vilth a lozs of convergence-rate depending on the dimension. Tnig
was improved by Clarlet-Raviart [2],.still with a loss but
independent of the dimension. Natterer [1] gets in two dimensions
convergense with a power 2-¢ of the mesh-size h . Also in two
dimensions but for general finite clements Scott [1] derives
optimal L -error estimates. His method consists in a careful

analysis of the approximability of Green's funection in the Ll-norm.

In this paper we show in §2 the uniform boundedness of L2~
projections in the L _-norm. The idea is - similar to Natterer -

first to work with weighted Sobolev-norms. In order to illustrate



the power of this method we derive in §3 for Ritz-approximations

a corresponding boundedness result from which optimal pm—estimates
follow. The case of linear finite elements (for Ritz-approximations
to second order problems) is excluded here, in this case

logarithmic factors appear,



1. Notations, finite elements

In the feollowing Q ¢ RY denotes a bounded domain with
boundary 30 sufficilently smocoth. For any o' c a 1in the
Sobolev spaces H (') = wg(o') we will consider besides
the usuazl norms also welghtced semi-norms - with a positive

bweight—factor P -
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We 6mit the subsecript o' in‘case of ' =0 . By Fh a
subdivislion of g 1into generallzed simplices Ay is meant,
1.e. Ai i® a simplex in ecase Ai and afi have in common
at most a finite number of points and otherwise one of tihe
faces may be curved, Ph is called y-regular if for any

py €I, there are twq spheres with radii i'lh and % h
such that Ay contains the one and is contained in the

other.

1
By Hk

such that the restriction of v to any Ay € Ty is in Hk(“i) .

= HQ(Ph) we denote the space of functions Vv ¢ LE(Q)

Parallel to (1) we introduce the 'broken' semi-norms

r Pedy

1o _ 1,2 1/2
(2) “V”P“Qﬁh“”” | A
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We will consilder finite element

order m : Any X € Sn 1s in ¢c%gq

Ai € Fh is a polynomial of degrce

< AW a] o 3 = « ™
spaces 8 uh(lh

)

ol

3 and the restriction to

< m-1 . In case of

egsent

boundary conditions as dilscussed in section 3 we think of

isoparametric elements as discussed by Clarlet-Raviartc [1]

and Zlamal [1] .

A family of welght-factors [pp(x)} 1s said to be in clas

f =~ if

Y ye.m

(2) sup p1(x) | D% (x)] =y o71® for o] =m .
xeq ° P

The standard approximation and Inverse properties of finite

¢lements may be transferred to estimates in weighted norms

(see Natterer [1]).

Lemma 1: Tet T be a y-regul

h

{pp} belong to cless GY .
= ( =
v CV(Y,K:m) 1Y) 1’2:3) S

C
h < Cl° the statements are

ar subdivislon and
There are constants
uch that whenever

true:

(1) To any v ¢ Hi with 1 <m there is

a y € Sn according to

(4) 9 (vl = ¢ BTK oty

! O k
b (0 < k ¢ 1)

(11) For any X € S, Bernstein-type inequalities

hold:

2
-4

3

S

-
{



(5) Hleﬁé < Cy k-1 Hvklné (0O<k<1l<m)

With a proper approximation resp. interpolation X 1t is

well-known

Kk 2 2(1-k) ., 1 .2
o™ (v=x) |5 <c, h oV
Ly(ay) = %1 | ILE(Ai)
with a constant ¢, = cl(u,m) . From this we get with

py = inf {p(x)[xenr}
py = sup {p(x)|xea,}
immediately
(6) I (-012 < (By/p)% o) 02 ety

Now there are X, X € sy with p, = p(x) , Bi = p(X) .
Since |x-x|< x h and |Dp| <y p-l 61 in A, we get

— ] —

The choice C; = (2ny)_1 guarantees Ei/gi =2 if h=Cpp .
Summation over all A, € I, in (6) gives (4). The proof of (5)

follows the same lines.

Remark 1: 1In the proof condition (3) was used only with |of =1 .

Remark 2: If p > O fulfills (3) with |a| = 1 then also

p'1 does.



2. L2—projections

Let Ph be the L2—projection onto the finite element

space Sh defined by

v, = Pues,

(u,x) for X ¢

11

n

(w5 %)

We first show the boundedness of Ph with respect to welghutcd

norms., With any Y € Sh we have

lugiis = 7/ oy

[

JI vw (pu-x) ~ [/ ulpu,-%) + /) puuy
With the help of
/] puw, s 3 // o v g /] pup

and
|// vw s {//p v2}1/2 (// p"1w2}1/2

-1
$6 [/ v+ g [/ 0w

for any & > O we get (g = %)



? 12 _ 2
anllp = 20ty + lhanlip) + 2 fovg-xi”.y

or

2 o ? L -
“uh“p =0 “u“p ! 8 “pun X”p.l *

Now let ¥ be an approximation to pu, according to lemma 1

with the weight-factor p"l . Then

; m m
Hpuh-XHp~1 <C, h" |iv (puh)H;_l .

In by € rh the function Uy, is a polynomial of

degree < m-1 *). By Leibniz' rule we get

(o - -8 B
D ) = ; D ) D
(Puh Béa ¢ ( p) u,
\s|sm-1

and because of (3)

1

m-1 ik .k

(7) va(puh)ﬁé_l fc¢, T op lv u

L=

Now we make use of the inverse propertiles (5) and come to

-1
Ilpuh—xnp_1 < e h o7 gl

*)

In case of isoparametric elements the m-th derivatives are
linear-combinations of the lower ones, therefore (7) is valid.



with ¢, = ¢,(y,»x,m) . If we choosec h < C, p with
2 .

>
1 _1 ‘' oire
Cy = Min (Cl, & C3 ) we get thercflfore

(8) gl = 2 -

Theorem 1: Let rh be a y-regular subdivision and

the weight-factor be of class rY . For h < CM(Y’“’m) 0

- « T
the L2 projection Ph e T

Ly = Sn is wniformly bounded.

In order to derive I, -estimates for Pl,1 we gspecifly the

functions p . Let X € O be such that

(9) uh(xo) = I huh” Q)

(without loss of generality we can take the positive sign).

Then we define

(10) p () = ([x-x4|% + o°) 72

with any a > N/2 , f.i. we take a = N ., Obviously conditicn (%)

is met with y = y(m). Because of

p (x) = (|x—><o|N + oN)2

we can estimate

il <04HU.\L () J(H Ty



or

(1) el = o5 0™l () -

Because of the standard inverse inequality

\\VXHLOO(Q) < cgh IHX"‘LO‘O(Q)

(cg = cg(n,m)) we find using (9)

1

(12) u (%) = uuhan(Q) {1 - ¢ h-l‘x_xOU .

The volumen of the intersection between (@ and the sphere
with center in X, and radius cél h 1s bounded from below

by o7 nN . With th~2 help of (12) we get therefore with

cg = cgly,u,m) > 0

o o Huh”]io(ﬂ) < nuhug :

Comparing this and (11) with (8) we get finally

plly, (q) = cg(xsm) @ ol (o)

For any given h we take now o = Cilh . Then the factor g/h

depends only on x,m :

Theorem 2: Let T, be a x-regular subdivision. Then the

h
L2-projection Ph : L2 - Sh has uniformly bounded norm

in yw(n) .



Tne inequality - sce Alexitis[1]
lu-Pull < (1 + {|P[) inf fu-xl
XESy,
in connection with the approximation properties cf finite

elements gives

Corollary 1: Let u ¢ wﬁ(n) with n < m . Then
(13) [[u-P, ull < ¢, n" |uf

with 05 = CS("’m) .



3. Ritz-approximations
Now we consider the Dirichlet problem

(14) - pu =T in  ,

u =20 on an .

Let Sh fulfill the boundary condition. Then the Ritz-

approximation R is defined by

h

= Rhu € Sh R
(15)

H

D(3,x) = (f,¥%) for X € S,

with the Dirichlet-form

(6,00 = 1 { B }
D(%,%x) = T ¢ X, ¢+t dx .
a 11 (1 Mi

We may also insert u and write
(16) D(3,%) = D(u,X) for x €58, .

Besides the weight-factor pp (10) with X, € 0 to be fixed

later we introduce

(a7) ay(x) = (|x-x,]% + 5



We will also write only b and g

In analogy to theorem 1 we have In the pregent situation

Theorem %: Assume

(1) Ty, is a x-regular subdivision of q ,
o
(11) S, 1s of order m > 3 and contained in Hl(Q) ;

h
(11i) p,q are defined by (10), (17) with
N/2 < a < N/2+1
(iv) h and p are connected by h < Cg ©

with C6 = C6(n,m) .

Then the Ritz-approximation & = Rhu 1s bounded in

the sense
(18) el + lioell, = ol + boully)
with C7 = C7(x,m) .

The proof 1s divided in three steps. First in estimating the

gradient of § we use the identity
2 1 2
Ivell, = D(s,p2) + 5 // 200

The second term on the right hand side is bounded by C]o”¢“§

because of Ap < cipd - The first term 1s handled similar



to the L _-case. So we [ind

2
<

(19 lveily = ey (am) {Héﬂi + nvuns} .

Next we introduce an auxiliary function w defined by

(20) - pW = q} in g

w =20 on  3Q
by means of which we get
2
Hq’”q = (é’ —-/‘~W) = D(Q’W) .
Because of (16) the equation
2 .
H@Hq = D(g,w-x) - D(u,w-x) + D(u,w)

holds with y ¢ Sh arbitrarily chosen. The last term can be
replaced by [/ qus . Applying Schwarz inequality in an

appropriate way we come to

Uéni < Huui + Hvuug + GHVQHi + (1+5-1) HV(W-X)HE-l

-1

11 and combine the last ilnequality

Now we choose § < ¢

with (19):

(1) Jels + vell < cpp {nuni+uvun§+nv<w-x>u§_l} :


file:////vu/Q

- 14 -

Since m > 3 we get with lemma 1

(22) llv (w-x) peedul
p

| , <c.,
pl 15

o
Remark 3: Since & ¢ Hl(g) and q € C7(q) we have

w e Hy(a) .
The final step from (21) to {(18) is done by the

Lerma 2: Assume N/2 < a < N/2+1 . Let w be defined

by (20). Then

E(felly + loelly)

(23) loPwll _y = ¢y o0
p

with a humerical constant 014 .

The proof of the lemma is highly technical and is not

given here. It only remains to ccuple p and h in order to

- 2 2 o -h
have - see (21) - (23) - 1o cl} cyy hoop <1

Parallel to the L,-case we derive now from (18)

lell, () * Blivelly,_(qy = Cglum) {Iully (o) + nliwally, ()} -

The final result is

Corollary 2: Assume the order m of the finite elements

used is at least 3 . Let u € wg(n) with l<nsgsm .



- 15 -

Then
llu-R, uj < Cq h'lju
Ry, ule(Q) g Tjjull By

|[u-Ryuli

)
Q
0]
o3
£
=

1,
W_(q)

Remark #4: 1In case m = 2 the best choice 1s

Inequality (22) is to be replaced by
2
(22') flo(w=-3)1l _; = cyz bllviwll 4
P p
and similarily (23) by
(231) lvow <oty o~ ame/? el
J v “p—l = Y9y P Mo Ile q

In this way logarithmic terms "come in" .
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