J. A. Nitsche

L_{∞}-Convergence of Finite Element Approximation

Publications des séminaires de mathématiques et informatique de Rennes, 1975, fascicule S3
«Journées «éléments finis »», , p. 1-17
http://www.numdam.org/item?id=PSMIR_1975__S3_A6_0
© Département de mathématiques et informatique, université de Rennes, 1975, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

L_{6}-CONVEROENCE OF FINITE ELEMBNT APPROXIMATION J.A. Nitsche

2. Conference on Finite Elements Rennes, France
May 12-14, 1975
o. Jntrocuation

Projections such as L_{2} - or Ritz-ipproximations are Pomulatud in t Hilbert-space-setting, therefore error estimates alo primus: avallable in Sobolev norms. The derivation of L_{∞} ostimates is a fanous question. We mention the case in which the approxintion space consists of trigonometrio polynomials of dogree n and tho resuli of Faber (see Lorentz [1], p.96): The To norm on any suen projection is (at least) of order in n.

The situation is better if splines or finite elements ane wed insted of trigonometric functions, as was shown in fitsche [1] for linear splines in one dimension and enereliped by Douglas-inpont-Wheeler [1], Wanlbin [1], and Wheeler [1]. Tr niffer dimensions some results are known for unfform resp. protangular meshes, see Bramble-Nitsche-schatz, Bramble-sontz [i], [27, Douglas-Dupont-Whecler [1] and Strang-Fix [1].

A first L_{∞}-error estimate for Ritz-approximations and lineai finfte elements on a general mesh was given by Njtsche [2], but With a loss of convergence-rate depending on the dimension. This was improved by Clarlet-Raviart [2], scill with a loss but independent of the dimension. Natterer [1] gets in two dimensions convergence with a power $2-\varepsilon$ of the mesh-size h. Also in two dimensions but for general finite clements Scott [1] derives optimal L_{∞}-crror estimates. His method consists in a careful analysis of the approximability of Green's function in the L_{1}-romm.

In this paper we show in $\S 2$ the uniform boundedness of $L_{2}-$ projections in the L_{∞}-norm. The idea is - similar to Natterer first to work with weighted Sobolev-norms. In order to illustrate
the power of this method we derive in $\$ 3$ for Ritz-approximations a corresponding boundedness result from which optimal L_{∞}-estimates follow. The case of linear finite elements (for Ritz-approximations to second order problems) is excluded here, in this case logarithmic factors appear.

1. Notations, finite elements

In the followinp $\Omega \subseteq \mathbb{R}^{N}$ denotes a bounded domain witn boundary $\partial \rho$ sufficiently smooth. For any $\Omega^{\prime} \subseteq \Omega$ in the Sobolev spaces $H_{k}\left(\Omega^{\prime}\right)=W_{2}^{k}\left(\Omega^{\prime}\right)$ we will consider besides the usuel norns also weighted semi-norms - with a positive weight-factor p-

$$
\begin{equation*}
\left\|\nabla^{1} v\right\|_{p . \Omega^{\prime}}=\left\{\sum_{|\alpha|=1 .} \int_{\Omega^{\prime}} p\left|D^{\alpha} v\right|^{2} d x\right\}^{1 / 2} \tag{1}
\end{equation*}
$$

We omft the subscript Ω^{\prime} in case of $\Omega^{\prime}=\Omega$. By Γ_{n} a subdivision of Ω into generalized simplices Δ_{1} is meant, 1.e. Δ_{1} is a simplex in case Δ_{1} and $a \Omega$ have in comon at most a finite number of points and otherwise one of the faces may be curved. Γ_{n} is called x-regular if for any $\Lambda_{1} \in \Gamma_{n}$ there are two spheres with radii $x^{-1} n$ and $n n$ such thet Δ_{i} contains the one and is contained in the otner.

By $H_{k}^{\prime}=H_{k}^{\prime}\left(\Gamma_{h}\right)$ we denote the space of functions $v \in L_{2}(\Omega)$ such that the restriction of v to any $\Lambda_{1} \in \Gamma_{h}$ is in $H_{k}\left(\Lambda_{1}\right)$. Parallel to (1) we introduce the 'broken' semi-norms
(2)

$$
\left\|\nabla^{I} v\right\|_{p}^{\prime}=\left\{\sum_{\Delta_{i} \in \Gamma_{n}}\left\|\nabla^{I} v\right\|_{p \cdot \Delta_{1}}^{2}\right\}^{1 / 2}
$$

We will consider finite element spaces $S_{n}=S_{n}\left(\Gamma_{h}\right)$ of order $m: A n y \quad x \in S_{n}$ is in $C^{O}(\Omega)$ and the restriction to $\Delta_{1} \in \Gamma_{h}$ is a polynomial of degree $\leq m-1$. In case of essential boundary conditions as discussed in section 3 we think or isoparametric elements as discussed by Ciarlet-Raviart [1] and Zilamal [1].

A family of welght-factors $\left\{p_{0}(x)\right\}$ is said to be in class $\widetilde{T}_{\gamma}=\tau_{\gamma \cdot m}$ if
(3) $\quad \sup _{x \in \Omega} p_{0}^{-1}(x)\left|D^{\alpha} p_{p}(x)\right| \leq y_{0}^{-|a|}$ for $|\alpha| \leq m$.

The standard approximation and inverse properties of finite elements may be transferred to estimates in weighted norms (see Natterer [1]).

Lemma 1: Let Γ_{h} be a x-regular subdivision and $\left\{p_{p}\right\}$ belong to class E_{γ}. There are constants $C_{v}=C_{\nu}(\gamma, k, m)(\nu=1,2,3)$ such that whenever $\mathrm{n} \leq \mathrm{C}_{1} \rho$ the statements are true:
(1) To any $v \in H_{1}^{\prime}$ with $1 \leq m$ there is a $x \in S_{h}$ according to
(4)

$$
\left\|\nabla^{k}(v-x)\right\|_{p}^{1} \leq c_{2} n^{1-k}\left\|\nabla^{1} v\right\|_{p}^{\prime} \quad(0 \leq k<1)
$$

(ii) For any $x \in S_{h}$ Bernstein-type inequalities hold:
(5)

$$
\left\|\nabla^{I} x\right\|_{p}^{\prime} \leq c_{3} h^{k-1}\left\|\nabla^{k} 1\right\|_{p}^{\prime} \quad(0 \leq k<1<m) .
$$

With a proper approximation resp. interpolation x it. is well-known

$$
\left\|\nabla^{k}(v-x)\right\|_{1_{2}}^{2}\left(\Lambda_{1}\right) \leq c_{1} n^{2(1-k)}\left\|\nabla^{1} v\right\|_{L_{2}}^{2}\left(\Lambda_{1}\right)
$$

with a constant $c_{1}=c_{1}(x, m)$. From this we get with

$$
\begin{aligned}
& \mathrm{p}_{1}=\inf \left\{p(x) \mid x \in \wedge_{1}\right\}, \\
& \bar{p}_{1}=\sup \left\{p(x) \mid x \in \Lambda_{i}\right\}
\end{aligned}
$$

immediately

$$
\begin{equation*}
\left\|\nabla^{k}(v-x)\right\|_{p}^{2} \leq\left(\bar{p}_{i} / \underline{p}_{i}\right)^{2} c_{1} n^{2(1-k)}\left\|v^{1} v\right\|_{p}^{2} \tag{6}
\end{equation*}
$$

Now there are $\underline{x}, \bar{x} \in \Delta_{i}$ with $\underline{p}_{i}=p(\underline{x}), \bar{p}_{i}=p(\bar{x})$. Since $|\bar{x}-\underline{x}| \leq x h$ and $|D p| \leq \gamma \rho^{-1} \bar{p}_{1}$ in Δ_{i} we get

$$
\overline{\mathrm{p}}_{1} \leq \underline{p}_{1}+\mu \gamma \mathrm{h}_{\rho}^{-1} \overline{\mathrm{p}}_{1}
$$

The choice $C_{1}=\left(2 x_{\gamma}\right)^{-1}$ guarantees $\bar{p}_{i} / \underline{p}_{i} \leq 2$ if $n \leq c_{1} \rho$. Summation over all $\Delta_{1} \in \Gamma_{h}$ in (6) gives (4). The proof of (5) follows the same lines.

Remark 1: In the proof condition (3) was used only with $|a|=1$. Remark 2: If $p>0$ fulfills (3) with $|a|=1$ then also p^{-1} does.
2. L_{2}-projections

Let P_{h} be the L_{2} projection onto the finite element space S_{h} defined by

$$
\begin{array}{rlr}
u_{n} & =P_{n} u \in S_{n} \quad, \\
\left(u_{n}, x\right) & =(u, x) \quad \text { for } x \in S_{n} .
\end{array}
$$

We first show the boundedness of P_{n} with respect to weighted norms. With any $x \in S_{h}$ we have

$$
\begin{aligned}
\left\|u_{n}\right\|_{p}^{2} & =\iint p u_{n}^{2} \\
& =\iint u_{n}\left(p u_{n}-x\right)-\iint u\left(p u_{n}-x\right)+\iint p u u_{n}
\end{aligned}
$$

With the help of

$$
\iint p u u_{n} \leq \frac{1}{2} \iint p u^{2}+\frac{1}{2} \iint p u_{n}^{2}
$$

and

$$
\begin{aligned}
\left|\iint v w\right| & \leq\left\{\iint p v^{2}\right\}^{1 / 2}\left\{\left.\iint p^{-1} w^{2}\right|^{1 / 2}\right. \\
& \leq \delta \iint p v^{2}+\frac{1}{4 \delta} \iint p^{-1} w^{2}
\end{aligned}
$$

for any $\delta>0$ we get $\left(\delta=\frac{1}{4}\right)$

$$
\left\|u_{n}\right\|_{p}^{2} \leq \frac{3}{4}\left(\|u\|_{p}^{2}+\left\|u_{n}\right\|_{p}^{2}\right)+2\left\|p u_{n}-x\right\|_{p}^{2}-1
$$

or

$$
\left\|u_{n}\right\|_{p}^{2} \leq 3\|u\|_{p}^{2}+8\left\|p u_{n}-x\right\|_{p-1}^{2}
$$

Now let x be an approximation to u_{n} according to lemma. 1 with the weight-factor p^{-1}. Then

$$
\left\|p u_{n}-x\right\|_{p}-1 \leq c_{2} n^{m}\left\|\nabla^{m}\left(p u_{n}\right)\right\|_{p^{-1}}^{1}
$$

In $\Delta_{1} \in \Gamma_{n}$ the function u_{n} is a polynomial of degree $\leq m-1 *$). By Leibniz' rule we get

$$
D^{\alpha}\left(p u_{n}\right)=\sum_{\mid \beta \leq \alpha \leq m-1}^{\beta \leq} c_{\beta}\left(D^{\alpha-\beta} p\right) D^{\beta} u_{n}
$$

and because of (3)

$$
\begin{equation*}
\left\|\nabla^{m}\left(p u_{n}\right)\right\|_{p^{-1}}^{\prime} \leq c_{2} \sum_{k=0}^{m-1} \rho^{-m+k}\left\|\nabla^{k} u_{n}\right\|_{p}^{\prime} \tag{7}
\end{equation*}
$$

Now we make use of the inverse properties (5) and cone to

$$
\left\|p u_{n}-x\right\|_{p^{-1}} \leq c_{3} n \rho^{-1}\left\|u_{n}\right\|_{p}
$$

[^0]with $c_{3}=c_{2}(\gamma, x, m)$. If we choose $n \leq c_{2} 0$ with $C_{4}=\operatorname{Min}\left(C_{1}, \frac{1}{6} c_{-3}^{-1}\right)$ we get therefore
\[

$$
\begin{equation*}
\left\|u_{\mathrm{n}}\right\|_{\mathrm{p}} \leqslant 2\|u\|_{\mathrm{p}} \tag{8}
\end{equation*}
$$

\]

Theorem 1: Let Γ_{n} be a x-regular subdivision and the wefght-factor be of class π_{γ}. For $\mathrm{h} \leq \mathrm{C}_{4}(\gamma, \mu, \mathrm{~m})$ o the L_{2}-projection $P_{h}: I_{2} \rightarrow S_{h}$ is uniformly bounded.

In order to derive I_{∞}-estimates for P_{n} we specify the functions p. Let $x_{0} \in \bar{\Omega}$ be such that

$$
\begin{equation*}
u_{h}\left(x_{o}\right)= \pm\left\|u_{n}\right\|_{L_{\infty}(\Omega)} \tag{9}
\end{equation*}
$$

(without loss of generality we can take the positive sign). Then we define

$$
\begin{equation*}
p_{0}(x)=\left(\left|x-x_{0}\right|^{2}+0^{2}\right)^{-a} \tag{10}
\end{equation*}
$$

with any $a>N / 2$, f.i. we take $a=N$. Obviously condition (3) is met with $y=\gamma(m)$. Because of

$$
p_{0}(x) \leq\left(\left|x-x_{0}\right|^{N}+0^{N}\right)^{-2}
$$

we can estimate

$$
\|u\|_{p}^{2} \leqslant c_{4}\|u\|_{L_{\infty}}^{2}(\Omega) \int_{0}^{\infty} \frac{d \tau}{\left.(\tau+0)^{N}\right)^{2}}
$$

or

$$
\begin{equation*}
\|u\|_{p} \leq c_{5} \rho^{-N / 2}\|u\|_{L_{\infty}}(\Omega) \tag{11}
\end{equation*}
$$

Because of the standard inverse inequality

$$
\begin{gather*}
\|\nabla x\|_{L_{\infty}}(\Omega) \leq c_{6} n^{-1}\|x\|_{L_{\infty}}(\Omega) \\
\left(c_{6}=c_{6}(x, m)\right) \text { we find using (9) } \\
\text { (12) } \quad u_{n}(x) \geq\left\|u_{n}\right\|_{L_{\infty}}(\Omega)\left\{1-c_{6} n^{-1}\left|x-x_{0}\right|\right\} \tag{12}
\end{gather*}
$$

The volumed of the intersection between Ω and the sphere with center in x_{0} and radius $c^{-1} h$ is bounded from below by $a_{7} \mathrm{~h}^{\mathrm{N}}$. With the help of (12) we get therefore with $c_{8}=c_{8}(\gamma, x, m)>0$

$$
c_{8} \rho^{-2 N} h^{N}\left\|u_{n}\right\|_{L_{\infty}(\Omega)}^{2} \leq\left\|u_{n}\right\|_{p}^{2}
$$

Comparing this and (11) with (8) we get finally

$$
\left\|u_{\mathrm{h}}\right\|_{\mathrm{I}_{\infty}(\Omega)} \leq c_{9}(x, m)\left(\frac{0}{\mathrm{~h}}\right)^{\mathrm{N} / 2}\|u\|_{\mathrm{I}_{\infty}}(\Omega)
$$

For any given h we take now $0=C_{4}^{-1} n$. Then the factor o / h depends only on x, m :

Theorem 2: Let Γ_{n} be a x-regular subdivision. Then the L_{2}-projection $P_{h}: L_{2} \rightarrow S_{h}$ has uniformly bounded norm in $L_{\infty}(\Omega)$.

The inequality - see Alexitis [1]

$$
\left\|u-P_{n} u\right\| \leq(1+\|P\|) \inf _{x \in S_{h}}\|u-x\|
$$

in connection with the approximation properties of finite elements gives

Corollary 1: Let $u \in W_{\infty}^{n}(\Omega)$ with $n \leq m$. Then
(13)

$$
\left\|u-P_{n} u\right\|_{L_{\infty}(\Omega)} \leq C_{5} n^{n}\|u\|_{W_{\infty}}^{n}(\Omega)
$$

with $C_{5}=C_{5}(x, m)$.
3. Ritz-approximations

Now we consider the Dirichlet problem
(14)
$-\Delta u=f$
in Ω,
$u=0$
on 2Ω.

Let S_{n} fulfill the boundary condition. Then the Ritzapproximation R_{h} is defined by

$$
\begin{equation*}
\Phi=R_{h} u \in S_{h}, \tag{15}
\end{equation*}
$$

$$
D(\Phi, x)=(f, x) \quad \text { for } x \in S_{n}
$$

with the Dirichlet-form

$$
D(\Phi, x)=\iint_{\Omega}\left\{\sum_{i=1}^{N} \Phi_{i 1} x_{i j}\right\} d x
$$

We may also insert u and write

$$
\begin{equation*}
D(\Phi, \chi)=D(u, x) \quad \text { for } \quad x \in S_{h} \tag{16}
\end{equation*}
$$

Besides the weight-factor p_{ρ} (10) with $x_{0} \in \Omega$ to be fixed later we introduce

$$
\begin{equation*}
q_{p}(x)=\left(\left|x-x_{0}\right|^{2}+p^{2}\right)^{-a-1} \tag{17}
\end{equation*}
$$

We will also write only p and q.

In analogy to theorem 1 we have in the present situation

Theorem 3: Assume
(i) Γ_{n} is a x-regular subdivision of Ω,
(ii) S_{h} is of order $m \geq 3$ and contained in $\stackrel{\circ}{H}_{1}(\Omega)$,
(iii) p,q are defined by (10), (17) with
$\mathrm{N} / 2<\mathrm{a}<\mathrm{N} / 2+1$
(iv) h and p are connected by $h \leqslant C_{6}$ o with $C_{6}=C_{6}(x, m)$.

Then the Ritz-approximation $\Phi=R_{n}{ }^{u}$ is bounded in the sense

$$
\begin{equation*}
\|\Phi\|_{q}+\|\nabla \Phi\|_{p} \leq c_{7}\left(\|u\|_{q}+\|\nabla u\|_{p}\right) \tag{18}
\end{equation*}
$$

with $C_{7}=C_{7}(\kappa, m)$.

The proof is divided in three steps. First in estimating the gradient of Φ we use the identity

$$
\|\nabla \Phi\|_{p}^{2}=D(\Phi, p \Phi)+\frac{1}{2} \iint \Phi^{2} \Delta p
$$

The second term on the right hand side is bounded by $c_{10}\|\Phi\|_{q}^{2}$ because of $\Delta p \leq c_{10}{ }^{q}$. The first term is handled similar
to the L_{2}-case. So we find
(19) $\quad\|\nabla \Phi\|_{p}^{2} \leq c_{11}\left(r, m_{i}\right)\left\{\| \|_{q}^{2}+\|\nabla u\|_{p}^{2}\right\} \quad$.

Next we introduce an auxiliary function w defined by
(20)

$$
\begin{aligned}
-\alpha W & =q & \text { in } \Omega \\
W & =0 & \text { on } \quad \partial \Omega
\end{aligned}
$$

by means of which we get

$$
\|\Phi\|_{G}^{2}=(\Phi,-\mu W)=D(\Phi, W)
$$

Because of (16) the equation

$$
\|i\|_{q}^{2}=D(\Phi, w-x)-D(u, w-x)+D(u, w)
$$

holds with $x \in S_{h}$ arbitrarily chosen. The last term can be replaced by \iint qui . Applying Schwarz' inequality in an appropriate way we come to

$$
\|\Phi\|_{\mathrm{q}}^{2} \leq\|u\|_{\mathrm{q}}^{2}+\|\nabla \mathrm{u}\|_{\mathrm{p}}^{2}+\delta\|\nabla \Phi\|_{\mathrm{p}}^{2}+\left(1+\delta^{-1}\right)\|\nabla(w-\chi)\|_{\mathrm{p}}^{2}-1
$$

Now we choose $\delta<c_{11}^{-1}$ and combine the last inequality with (19):
(21) $\|\Phi\|_{q}^{2}+\|\nabla \Phi\|_{p}^{2} \leq c_{12}\left\{\|u\|_{q}^{2}+\|\nabla u\|_{p}^{2}+\|\nabla(w-x)\|_{p-1}^{2}\right\} \quad$.

Since $m \geq 3$ we get with lem na 1
(22)

$$
\|\nabla(w-x)\|_{p-1} \leq c_{13} h^{2}\left\|\nabla^{3} w\right\|_{p-1}
$$

 $w \in \mathrm{H}_{3}(\Omega)$.

The final step from (21) to (18) is done by the

Lemma 2: Assume $N / 2<a<N / 2+1$. Let w be defined by (20). Then

$$
\begin{equation*}
\left\|\nabla^{3} w\right\|_{p-1} \leq c_{14} \rho^{-2}\left(\|\Phi\|_{q}+\|\nabla \Phi\|_{p}\right) \tag{23}
\end{equation*}
$$

with a numerical constant c_{14}.

The proof of the lemma is highly technical and is not given here. It only remains to couple ρ and h in order to have - see (21) - (23) - $c_{12} c_{13}^{2} c_{14}^{2} n^{4} \rho^{-4}<1$.

Parallel to the I_{2}-case we derive now from (18)

$$
\|\Phi\|_{L_{\infty}(\Omega)}+n\|\nabla \Phi\|_{J_{\infty}}(\Omega) \leq C_{8}(x, m)\left\{\|u\|_{L_{\infty}(\Omega)}+n\|\nabla u\|_{L_{\infty}(\Omega)}\right\}
$$

The final result is

Corollary 2: Assume the order m of the finite elements used is at least 3 . Let $u \in W_{\infty}^{n}(\Omega)$ with $1 \leq n \leq m$.

Then

$$
\begin{aligned}
& \left\|u-R_{h} u\right\|_{L_{\infty}(\Omega)} \leq c_{8} h^{n}\|u\|_{W_{\infty}^{n}(\Omega)} \\
& \left\|u-R_{h} u\right\|_{W_{\infty}(\Omega)} \leq c_{8} n^{n-1}\|u\|_{W_{o \rho}(\Omega)}
\end{aligned}
$$

Remark 4: In case $m=2$ the best choice is $a=N / 2$. Inequality (22.) is to be replaced by

$$
\begin{equation*}
\|v(w-x)\|_{p^{-1}} \leq c_{13} n\left\|v^{2} w\right\|_{p^{-1}} \tag{22'}
\end{equation*}
$$

and similarly (23) by
(23')

$$
\left\|\nabla^{2} w\right\|_{p}-1 \leq c_{14}^{1} \rho^{-1} / 1 \cdot u_{\rho} /^{1 / 2}\|\Phi\|_{q} .
$$

In this way logarithmic terms "come in".

Literature

Alexitis, G.
1 Einige Beiträge zur Approximationstheorie
Acta Scientiarum Mathematicarum, XXVI (1965), 212-22.
Bramble, J.H., J. Nitsche, and A. Schatz
1 Maximum norm interior estimates for Ritz-Galerkin methods (to appear)

Bramble, J.H. and A.H. Schatz
1 Interior maximum-norm and superconvergence estimates for spline projections (to appear)
2 Higher order local accuracy by averaging in the finite element method
(to appear)
Ciarlet, P.G. and P.A. Raviart
1 The combined effect of curved boundaries and numerical
integration in isoparametric inite element metnods
Proc. of Conf. "The mathematical foundations of the
finite element method with applications to partial. differential equations"
Acad. Press (1972), 409-474
2 Maximum principle and uniform convergence for the finitc element method
Comp. Meth. in Appl. Mech. a. Eng. 2 (1973), 17-31
Douglas, J., T. Dupont, and M.F. Wheeler
1 An L^{∞} estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials
(to appear)
Lorentz, G.G.
1 Approximation of functions
Holt, Rinehart and Winston, New York 1966
Natterer, F.
1 Uber die punktweise Konvergenz finiter Elemente (to appear)

Nitsche, J.
1 Orthogonalreinenentwicklung nach linearen Spline-Funktionen J. Appr. Th. 2 (1969), 66-78

2 Lineare Spline-Funktionen und die Methoden von Ritz fir
elliptische Randwertprobleme
Arch. rat. Mech. Anal. 36 (1970), 348-355

Scott, R.
1 Optimal L^{∞} estimates for the finfte element method on irregular meshes (to appear)

Wanlbin, L.
1 On maximum norm error estimates for Galerkin approximations to one dimensional second order parabolic boundary value problems (to appear)

Wheeler, M.F.
1 Los estimates of optimal order for Galerkin methods for one-dimensional second order parabolic and hyperbol.ic equations
SIAM J. Numer. Anal. 10 (1973), 908-913
Zlamal, M.
1 Curved elements in the finite element method, part I : SIAM J. Numer. Anal. 10 (1973), 229-240 part II: SIAM J. Numer. Anal. 11 (1974), 347-36?

[^0]: *) In case of isoparametric elements the m-th derivatives are linear-combinations of the lower ones, therefore (7) is valid.

