PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

Omer Adelman

Cats

Publications des séminaires de mathématiques et informatique de Rennes, 1975, fascicule S4
«International Conference on Dynamical Systems in Mathematical Physics», , p. 1-2
<http://www.numdam.org/item?id=PSMIR_1975 \qquad S4_A1_0>
© Département de mathématiques et informatique, université de Rennes, 1975, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CATS

Omer Adelman

Consider the following : there are cats in some of the places of a two gided infinite sequence. Then start step by step, this process ; at each step each cat jumps, independently of che others, with probability $\frac{1}{2}$ to each of the two neighbouring places. If two cats land on the same place, they disappear (imagine each second cat to be an anti-cet).

Define $A \equiv\{0$ is visited ∞ times $\}$.
Question : $p(A)=$?
(there are some versions of this problem, that can be handed in a very similar way).

The answer depends, of course, on the initial distribution of the cats.
We can imnediately get $p(A)=1$ and $p(A)=0$ in the cases of oda and even number of cats, respectively.

Denote by $i(n)$ the initial number of cats in the block $1, \ldots, n$, and suppose the negatives are initially empty. Then in the omoats case in which $\frac{i(n)}{n} \rightarrow 0$ simple examples can be found for which $p(A)=1$, as well as other for which $p(A)=0$.

The general case $\overline{\lim } \frac{i(n)}{n}>0$ is unsolved yet, but there is a large class for which the answer can be proved to be $p(A)=1$. This class contains, as a typical sub-class, those sequences in which there is some n such that there are infinitely many n_{k} 's such that the block $n, \ldots, n+2 n k$ is, in the beginning, symmetric with respect to reflection about $n, \ldots, n+n_{k}$ (the sequence in which all the naturals are initially occupied $\left(\frac{i(n)}{n}=1\right)$ is, of course, contained in this subclass).

The proof to the last claim is rather long, but its basic idea is the same as that in the following proof of $p(A)$ being 1 when there is one cat only. Suppose the cat is in the n'th place. By symmetry, there is probability $\frac{1}{2}$ that $2 n$ is visited before 0 . If that happens, then there is probability $\frac{1}{2}$ than 4 n is visited before 0 , and so on. But $\left(\frac{1}{2}\right)^{\infty}=0$, so 0 will a.s. be visited, so it will a.s. be visited \propto times.

In the case of finite number of cats, a similax method can be applied to the n-dimensional proanalogous problem ($p(A)$ found, as is known, to vanish for $\mathrm{n}>2$), but I don't know how to treat the general n -dimensional mocats problem (excluding some special cases).

