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0. Introduction

The purpose of this paper is to study the topological
entropy of semigroups of continuous commuting maps {(C.cC.m.)
acting on a compact Hausdorff space. The semigroups
considered are those isomorphic to ﬁ£3 or 333 or factors
of these where d is a positive integer. Because of this
isomorphism we shall speak sometimes of d-dimensional
semigroups or d-dimensional semiflows. If the maps are
homeomorphisms, i.e. if the semigroups are groups, the
statements become sometimes sharper. Therefore results

on groups of transformations isomorphic to G%d or JR@

or a factor of one of these are stated as well,
Measure~theoretic entropy of groups of invertible measure-
preserving transformations acting on a Lebesgue space was
investigated by several authers (Conze [ 5], Féllmer [8],
Katznelson-Weiss [13], Pickel~Stepin [18], Thouvenot [20]).
We refer tc their work in secticns 4, 5 and 6.

In [21], [24] and [27] the fundamental variaticnal principle
for ﬁz; actions is treated. Topoliogical entropy is a special
case of the notion of pressure discussed there,

Section:1 contains basic definitions and properties, It is
of particular interest to know if and how the entropy of
subsemigroups is related to that of the semigroup itself,
Some answers to this qguestion are given in section 2.
.Furthermore a first product theorem is proved there. In
section 3 we state a number of results that are well-known
thecrems in the case d = 1, i.e. in the theory of topclogical
entropy of a single continuous map. Being familiar with
sections 1 and 2 it is an exercise to translate the original
- proofs from the cne-dimensional case to higher dimensions.
Therefore almost all proofs are omitted. The only exception
is Theorem (3.410) stating that the entropy of a semigroup
equals the entropy of its restriction to the nonwandering set.



Since thr combinatorial part of Bowen's proof in dimensicn

1 (see [2]) becomes somewhat different in higher dimensions
the interested reader will find a full proof in an appendix
at the end of the paper. Section 4 is devoted to an extension
of the notion of sequence entropy. In section 5 semigroups
isomorphic to JR? or a factor of it, i.e. d-dimensional
semiflows, are considered., The first part c¢f section 6
cdnsists of the computation of the entropy of a d-dimensional
shiftflow & = (st)tealnd operating on a space LA(JRd)

of [O,1]*valued functions which satisfy a Lipschitz condition.
The one-dimensional version of this space appears in Jacobs
(12], Eberlein [7] and Denker-Eberlein [6]. We will use this
flow in the second part of section 6 where we make an
excursion to d-dimensional flows of measure-preserving
transformations acting on a Lebesgue space (£, G,m).

Using a d~dimensional Rokhlin theorem due to Lind [47] we
state an existence theorem for generators (of the ¢ - algebra
%) with rather ;egular orbit properties., Via these generators
we get the following result: Every d-dimensional flow of
measure-preserving transformations acting on a non-atomic
Lebesgue space can be considered - up to an isomorphism -

as a d-dimensional flow of homeomorphisms operating on a
compact metric space. More precisely the flow of homeomorphisms
is a subflow of the shiftflow considered at the beginning of
this .section,

J would like to thank L. Goodwyn and P. Walters for some
useful remarks and M. Misiuvrewicz for an improvement in
section 2.



1. Definitions and basic properties

Let X be a compact Hausdorff space. Given an open cover
X of X we denote by N{ @) the cardinality of a minimal
subcover of & . O( X&) = log N{ X) is called the
entropy of M . log is taken to the base 2. For two
covers X, % we write

avzﬂ{AﬁBiﬁﬁa, B e 5 } £ is

»

called finer than @ , in symbols (& < 5 , iff every

set of £ is contained in a set of Ol . For basic properties
of the functions N and H with respect to "v" and "< "

see [_1]. In particular H is subadditive in the sense

H( A v )=n(d) +u( ).

’Ed denotes the d-dimensicnal lattice with its group
structure, qu the subset of elements having all coordinates

non-negative. }5 stands for arbitrary subsets of :md with

- finite cardinality which is denoted by ij?l - § stands
\“%5§$¥%%%§%%§%§2 In particular given 1 = (11,...,ld} & ﬁzd

we denote by ¢ , the n-dimensional rectangle

1
(k=g € 2% o=k, <1, (1=i=d) ) .

Given 1 and ?’ it is clear that 1 + §' means {1+k i k e_? }
We write 1 —» 0@ if min 1, —>» oo .,

1=i=d
Let ¢1 (1£i<d) be continucus commuting maps {(c.c.m.)
of X into itself then @ = < é?""'éd':y denotes
the abelian semigroup generated by ¢i {(1£i%4d) under

d

composition. There is a natural homomorphism i of Z

onto @ given by

1,
Aoil= 1.0 - 4)1: _ 4)111 5 r-e0 4,(;1 .

1



. : , d .
Thus ¢ 18 isomorphic to ﬂz* cr a factor of it.

1f the transformaticns @i {1£4=d) are homeomorphisms
then ¢ = <: ¢1,,.., ¢d > is an abelian group isomorphic

to mzd or a factor of it.

Now fix for the rest cf this chapter a semigroup
¢ = < ¢1,n.., @d > acting on X. Given a finite

subset ?’c: @l and an open cover @ of X we write

a"" = \“u/ é)mk a

(1.1) Lemma: Let < be an open cover, (1) a sequence

a n wimdimensional ‘ :
in %, , 1 —> ©2, then for any¥rectangle 1 and & >0
we have for n sufficiently large

l§’1“§ 1 g C’Z?In} = Eyli "1 g ey ) + €

Proof: Cover §3n by translates k + 91 of ,?l and use

subadditivity of H

(1.2) Propesition: For any open cover Y of X and an
z k:

sequence (191) in 1z$ such that 1% - oo
, -1 -
81t R | i ("o
1 ‘g R o € 19)

n o~ DO

) . . n
exists and is independent of the seguence (1) .

Proof: Let (1) ' (fni be two mequences then by (1.1) for any m
lim %“eim% o A mej n} * l ‘3’1:%‘ o H C}L.?'}:m) .
Ti i OO . 1 A L

If m goes to infinity we get

— -1 ‘ : -1
N ¢ we oo b vlim | on < .
nli‘fl . ‘ ‘f-)ln i iy C g in) m}; .LIE \ S’lm ‘ H{ OLJQ a-im)

Symmetry in (1“} ; (In} yvields existence and equality

i of the limits.




(1.3) Definition: h($,0) := 1lim i(‘)ln% *xz{&flm
n -j’*}CXD
is called the entropy of (4 with respect to the

senigroup ¢ .

Using subadditivity of H we get for any n

Lglnlmq H(@A?ln) < H({) . Thus h{$,(Ly 1is a value in the
interval [o,8(8)] .

If @ is a group of homeomoxrphisms and we take a different

system of generators for § , say ¢1.@..,¢m , then this
corresponds teo applying an automorphism A ©f TEd . A transforms
n-dimensional rectangles hyln into parallelotopes and we

see immediately using the same argument as in (1.1} +that

h(@,cﬂ) does not depend on the generators for the group @ T

It is clear that (L < fr implies h($,0) ¢ n(¢,5H) .

There is another way to compute hif, ) which will turn
out to be useful., It is not necessary that the coordinates

. n ; .
in {17} go samultaneﬁus;y to infinity. Consider for sone

d £ @ the subsemigroup @ «’@ ,,u.,@d . Dencte

PN Let fl be segquenae i
¢ a <:¢d+qf ’¢d:>‘ . i ") e a sequ in \wf ne s
&, . L 300, and x e%, "%, Consider for af% 165£(¢c) v

A - ' T
n(g, Olgy) = lim fginf™ m;e{ﬁln b lv@(‘fk} .

N oo !

(1.4) Propocsition: For every sequence (km) in

A

(d-a)
TE+

m

¢ kK >0 . we have

,,.1 Al \
h (4){ &) = 1im }fkrn! h {¢\, (_D( g}kr{‘; .

moer O




Proof: First observe that for any fixed k™

l -1 “ -1 ~

hi¢, dp ) = 1i : | -1
gS’k"‘ (4 S’ T | Famam ! ucy ¢
lqgn

(1.1) implies that for any pair (1n,km}

-1
hed, ) £ ¢  Taca )
g“jukm) ﬁln!km}
Both relations together yield

<« $ 1 L (
g @ = Lin g |7 n, ey

i3 O3

To get the reverse inegquality we note that again by (1}1) for

every 1t

N P -1 11 »
h{d, OIJ;m) = {anl VAR m?km}

] € S)] n

Thus for any pair (17,k") e Ii
-1 a

hip, A <

lgkm‘ (9 j;m) ‘?(ln’km)

| ~tue @'10!5, n

1€y k
gljz

If (ln,km) —> 00 we get

Tim -
n«-»oo‘?kml

1 s -
R (g, Qg m) = nep,ay .

{(1.5) Definition:

h (P) = sup [ h(@ ,tl}i a open cover} is called topological
entropy of i

Let ¥ = <<' %1,..~, %é:>‘ be another semigroup acting on

a compact Hausdeorff space ¥ . (Y , ¥ ) is called a homomorphic

image of (X,@) iff there is a continuous surjective map
- Wby g} o= ' “ i & s
:f : X - Y such that 48£3¢i = TFi_n f {(1=i&d) . It is

clear that under these conditions h($, ?“1( iy = h{ Q‘, a)

xg n)



for every open cover W of Y . This implies

{1.6) Property: If (Y, ¥y is a homomorphic image of
(%,$) then h( %) = h({¢) .

(Y, %) is isomorphic to (X,§), in symbols (Y, ¥ ) = (X,4) ,
iff the map ¢ above is a homeomorphism,

{1.7) Property:

(x.$) = (¥, ¥ ) implies h(§) = h(¥ ) .

A sequence ( { ) of open covers of X is refining iff

W a. < 0

n ¥

n+1 and (2) for every open cover Jr there

exists on C?n such that 5 <'C%1 . The following

property is an immediate consequence of the monotonicity
of the function h(¢f) and simplifies the compu tation of

nig) .

(1.8) Property: 1If ( 6kn) is a refining sequence of open

covers then

h(¢) = lim h(p, @) .

e e

An open cover is called a one-sided (topological) generator

3
for @ iff for every collection (Ail}lé-:Zi &of elements

of (L ‘ % @ﬁl A, consists of at most one point. In
d i
leZz, 1

case @ is a group, Ol is called a(tmpolmgical}generator

for ¢ iff the same holds with "E& instead of 'mi .

Rewriting Lemma 2.1., 2.3, and 2.5. in [ 14] in our situation
of semigroups and groups of transformations vields the



following result

(1.9) Theorem: If (X ig a cne-sided generator or in case of
¢ being a group a generator then

h(dp) = ned, @y .

The problem of existence of generators is solved by Keynes

and Robertson [ 14]. There is & one-sided generator iff { is
positively expansive and in the group-case, there is a generator
iff @ is expansive,

{1.10) Example: Let E be a finite set, e} = n.

X = {fxlx: 'Ed ~9'EJ} endowed with the product topology

is a compact metric space. The shiftgroup S = (Sl)lﬁ‘zd

given by
(5, ((Kk) = x(k+1) (k,1 € 2%

group of homeomorphisms /g _
is¥isomorphic to 2% . Consider LGJD = {‘X ‘ x{(0) = E.} '

then 610 = { [é:% | e ¢ EQ} is a generator for S. Thus
h(S8) = h{(s, CHO). An easy computation shows h({(§, Clo) = log N
which implies

v { = his Y = Y 0 =
h{s) his, CZO; He Q) log N,

! o
Exactly the same holds if we consider X = {x ix : ﬁzf — EJ

e
o
~d

1) 4 on it.

together with the corresponding semigroup ( 1€ g°
¥

{1.11) Example: Let ¥ he a compact Hausdorff space and

ﬂ? a homeomorpiiism of ¥ onto itself., Consider

X = {:xl X 3 z ¢ w%~Y} with the product topology and the

shiftgroup & = (Sl)le 15& acting on it. Define a homeomorphism
¢1 of X onto itself by

brx 0 = @ (x (k) kez .

The elements of § commute with %1 . We c¢laim the group



4)' = <:S,¢1> satisfies
h ($") = h(g) .
To see this define the projection "FT'O : X = Y by
. {x) = x(0) . If % is an open cover of Y then

o

’”’0“1 { &) covers X . Consider for a d4€%Z, the covering
vy LV L
q j\=/o 4)1 S } then

H( B) = B( a7 (q\;’1
- ' T .

) g-1
=3 yy = e\ -3
¢ ) = u{ 2y .
g Nog

Observe that h(S, Zq) = H( ﬁﬂq) .

#
i

Therefore h( $ L) = lim q«‘i H( _‘ﬁq)

lim q_1 his, 5 )
g oo g

q> oo
=ng, W' L)

where the last equality follows by (1.4).
Taking the sup over all & we get
h(p) £ np?)
Given any open cover (I of X then by the definition of the
whedimensional 4

product topology there is a¥rectangle 9 in z 4 and an open

cover & of ¥ such that X < \\/ S_k( "ﬂ’;q Ly .

7e0
K&}

This implies

hid', (L) = nip', \/ 57K ( fw;‘zi )) = h(tt)'."'r'f:iﬁ ) = hig, L)

Keg
+

and we get h(@‘) £ h b }



- 10 -

2. Subsemlgroups

P 1 q
~In this section we study subsemigroups ¢ = <ij ¢l‘,...,¢l :>
of a fixed semigroup ¢ = < ¢qs..uid, > of cicume . The
vectors 1% e "ai (1 £ i € g) are assumed to be linearly
independent, i.e. they cannot be written in the form

ki? = ;g; kili' for positive integers k and~ki.
i43
‘o . ' ; 1 1!

Define the following equivalence relation on ¢ : ¢ ~ ¢

L : ? '
iff there exist ¢k, @k € q; such that ¢l a ¢k = ¢1 o ¢k .
The factorspace with respect to ~ is again a semigroup.
We consider first the case of finite index.

Let P =~}<¢14,..,,¢]"cf> (116"233,1-415@ be a
subsemigroup of finite index p and 2P its inverse image
under the natural homomorphism A . We choose a complete

- system of representatives in the factorsemigroup '”Zf/zp .

say Qp » by taking out of each eQuivalence class the element
lying in the d-dimensional parallelotope P(14,....ld}

spanned by the vectors ‘11,.0.,1d (In'the case of elements

on the boundary of P(l4,...,ld) take the smaller ones).
Define comp(zp) = zP + Qp and comp(p¢) = 7\(comp(zp)).
comp(p¢) is a semigroup which in general does not have
generators, We note that it is a priori not clear how to
define the entropy of the semigroup comp(p¢) . But since .
we have chosen d~dimensional rectangles gln: with 1P —> oo

for the semigroup ¢ itself it seems natural to take d-dimensional
parallelotopes P, < ﬁmf with boundaries parallel to those of
P(ld,...,ld) and which cover compizp) a3 n-—» oo , Then

the same argument as in (1.2} shows that h(comp(p¢}) is
independent of the sequence p_ and eguals h($) .

' 1 d

‘ a

(2.1) Theorem: If p¢ = <: @l ,...,@1 :> (li € ﬁz+)
is a subsemigroup with finite index p then

ntPdy = p ) .
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Proof: Since h(¢) = h(comp(F$)) it is enough to consider
P P
the case P$ = <:.¢11,..., ddq:> for p, >0 @“£ i £€d).

Define 1{p) = (pq,...,pd) and let ?l(p) be the corresponding
d-dimensional rectangle., Then | ?1(F>! = pqy Py = P .

i For any open cover (I of X we write P = \/ @nlﬁl .

2
L€ 91(p)
we get with the same argument as

Given any £ > O , k & sz
in (1.1) for sufficiently large n on one side

‘?ln' - H(l\é/?]n ¢-10{-} € (Pi?kt)-4 H(l\/ (?1))"1(:}{{3) + €

€9

which implies o] h(¢,CE) < h(pﬁ,{Ip) and on the other side

\?ln|-1 mly *h Lt ary £ ple, |7 H(l\,\é/ p7tay + e
bk Sx

which implies h{Pd, OF) = p h(d, ®) . So we have equality.

Taking the supremum over all open ccvers (0 we obtain

p hip) = h(p¢) . But given any open cover £ we conclude

hPp,2) € n®p, 25 = p h(@;lﬁ) . Taking again the

-supremum over all open covers yields the reverse ilnequality.

. 4 g

N

Now we turn to subsemigroups ¢ = <<: @l ,...,¢1 :>

(1'emzl M2 i € q)) with infinite index,i.e. g < d .
AN

It is not hard to show directly that h($) € h(d) . It

. N

should be emphasized that h(@) cf course means the entropy
FaAY

of the g-dimensional semigroup ¢ . We prove a stronger result,

~ 4 14 .
(2.2) Theorem: Let & = < ' ... 01 > ezl 11 ¢ 1 2q)
be a subsemigroup with infinite index then h(¢) > O implies

h(§) = oco.

.
’ ,
for some ¢ < d. Remember ¢c reans the semigroup

< ¢q+1lio' o¢d > . If U\.m) is a sequence in ,_Eid"'(ﬁ
such that k™ —» o0 and Ul an open cover of X then writing

($C)“k5& we get by (1.4)

Proof: <Consider first the particular case $ = </‘¢1""'¢q >

a?km = ke?km
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- FA
h(‘b:a) = m’l_%f%o's)km' 1 h(‘bca?km} .

‘Since h(¢) > 0 we can find a cover U such that h{¢,q) > o.
Now l?kle oo as m-> @ and therefore h(@, a%m,

is an unbounded sequence. We conclude h($3 = oo,
~ 4 q
In the general case ¢ = < ¢l ,...,@l > we choose
b A -
vectors 1q+1,...,ld in ”zf such that 14,.,.,1q,1q+ ,...,ld

» 1
i are linearly independent vectors. Then '&‘ = 4)1 P ,¢ld >
has finite index, say p, in b and by (2.1) h(aﬁ = p h(¢).

et
h($) > 0 implies therefore h(¢) > O . But with respect to

'$ the subsemigroup $'has just the form required at the
beginning. :

(2.3) Corollary: If h($;) <o° for some 1 € [1,...,d}
(@ 22) then h($) =0 .

Warning: h($) = O does not imply h(@) < o» or even

A
h($) = 0 for subsemigroups $'of infinite index. See (2.5)
for a counterexamnple.

Now we prove a first product theorem, Let ¢ = ¢4""'¢d >
be a semigroup acting on X and ¥ = Waeeror Ygo >

3¢
be another one acting on ¥ . Given I.E“Ef ’ keﬁa+ we

define the map ¢1 b H}; of X xY into itself by
(¢1 x'vk)(x,y) = (¢lx,wky) ({x,y) e X>x¥) .

Denote by ¢ ® ¥ the semigroup consisting of the family
of maps {¢1ﬁ‘t'kl lemi,kfa"zi'} . ¢ ® % can
be written in a different way. Namely if IX and IY are
the identity maps on X and ¥ respectively then

¢®.‘r _ <¢1XIY"...,¢d x IY'IXX .‘f/' '.."Ixx .erl>-c



.._13.,.

(2.4) Theorem: h(pe¥) = o .

Proof: Given an open cover € of X x Y there exist open
covers (! of X and &5 of Y such that € < A~ 5

(see 51] P 3%2). Take sequences (ln) in 'Tzf ’ ln~%>C",
(kn) in ﬁzf ‘ k" — oo ., Then

hip 2%, €) £ nibel¥, Ux2)

-
=

Y =k 1y

-1 -1 .
L S LN H(l\é/gln‘b a >y [

nN—3p0

£  lim ‘?kn{“1(|§aln['1 u(l\}z/ﬁn bty o+

o 1T IV
+n3;§*mw! ?1“! (!?kn' H(kES’knl‘r Ly
In both limits the first factor converges to O whereas
the second expressicn converges to the finite values
h(¢, ) resp. h(¥, %) . Therefore hidoy,¥€) = o,
since € was arbitrary we get hi¢ey) = 0O,

(2.5) Corollary: h(¢) = O does not imply that there
is an i € (4,...,d] for which h(fbi) < oo (of course d * 2),

Proof: Let X , Y be compact Hausdorff spaces and

’ tg: X X, ¥: Y—>Y Le continuous maps both having
infinite entropy. Consider the productsemigroup

¢ = < (9xIy , (I, X%)> on X x¥ . (2.4) implies
h(d) = © . On the other hand the producttheoren im [91
{Theorem 2} (see also (3.7) later) yields

it

hi ¢ x 1y)
h{I, x %)

h(f) = 2 agnd
hi{y¥) = oo

i
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3. General theorems

The following three statements are well-known results in the
case of a single continuous mapping ¢ of a compact Hausdorff
space X into itself [ 1] . Their generalization to semi-
groups ¢ = <f¢1,...,¢d:> of continuous commuting mappings

of X 1into itself is straightforward.

1,X2 be closed subsets of X such
and ¢tx, e X, (xyex .lezd, 1=1,2) .

{3.1) Proposition: Let X

that X = X1 o 1{2

Then
h(P) = max { h(1¢))h(2@)}

where i¢ denote the restrictions of ¢ to X, (i=1,2) .

(3.2) Corollary: Let X1 be a closed subset of X such
that @H1e X WQe'%'l&%&) then h“¢)élﬂm .

1



..15-.

(3.3) Proposition: Let ~ be an equivalence relation on

X compatible with ¢ in the sense x ~y implies

B

et —
¢ix ~ ¢iy (1£i=d) . Define a semigroup ¢ =< ¢1""'¢dj>
on X/~ by 15;1f = ¢i (1€i%d) where -7¥ is the

projection of X onto X/~ . Then

h(®) < h(d) .

Given a directed set 7 let (Xi) - be a family of compact

ie7
Hausdorff spaces on each ¢f which acting a semigroup

1b = <'1¢1,..., 1¢d:> of continucus commuting transformations
such that for 3 2 k (Xy,k¢) is a homomorphic image of

(xj,j¢) under a map “"jk and the :kjk are consistent.

Define

o= = WT = - 3 =%
X {x (xi)ieif € 3gf3xit ’?\jk(xj) Xy for j,ked,3 k} .

X is compact with the topology that is induced by the product
topology. Define a semigroup ¢ of continuous commuting
maps of X into itself by

d

PRI

(@l(x))i = (i¢)1(xi) (xeX,ied ,1le z

(X,9) is called the inverse limit of (Xi'l¢)iej .

(3.4) Theorem: hi{) = sup h{l¢) and if the maps 7&13
ied

are surjective then n{$) = 1lim h(‘d) .
: ield

The proof is analog ous to [ 9], Theorem 1 .
St

Now we turn to a particular inverse limit, Let ¢ be a



-.16.—

semigroup acting on X . Consider the directed set ﬁai

where 1 = k iff 1 - k « "}Zf . Let (X*,ﬁb‘) be the

inverse limit of (X,, $),._d where (X,,%0) = (x,$)
:.lp lé% =28 ¢ l’ 14

+
for all 1 e Z¢ and the »,, (1=k) are given by ¢*7% .

The reason for this construction is, that @k is a group
of homeomorphisms.

e

Define X = r“1d &l(X) and denote by ¢ the restriction
1<~:~"E+ .

of ¢ to X . The semigroup ¢ consists of surjective maps

of ¥ onto ¥ . Similar to proposition 5 in [9 7] one

proves.
o

(3.5) _Property: hip) = hid) .

Since ((23’,(63*) = (x*,¢%) we get combining the second part

of (3.4) with (2.5)

(3.6) Property: hig*) = h(p) .

The following preduct theorem is essentially due to Goodwyn [ 9 ]
in the case of a single map P .

—
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{3.7) Theorem: Let X and Y be compact Hausdorff spaces
and ¢ = < ¢4,...,¢d':> and ¥ = <i-yﬁ,...,zfd >
semigroups of c.c.m, 0of X respectively Y into itself,
Define the productsemigroup ¢ x% = < c{),lxjr,‘,...,{)dxlrd >
of X » ¥ into itself Ly

0; = ) (x,y) = (%, ¥ v) (X,¥) € XxY .

Then h(¢>%) = h(P) + hi¥y) .

The proof runs analogously to l}}. (3.7) has the following
generalization. See [9], Theorem 3 for a proof.

{3.8) Theorem: Let (k(b)kEEK be an arbitrary family of

semigroups k¢ = < k¢1,...,k¢d > acting on compact
Hausdorff spaces (xk)keK respectively. Define

X = ie& Xk endowed with the product topology and

b x—x by )y, = b (x & X, k & K)

then -
hp) = 2 00 .
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For the rest of this section we assume X to be compact
metric.

A group ¢ = <:'¢1,...,¢d:> of commuting homeomorphisms
acting on X 1is called an expansive group iff there is an

€ >0 such that given x,y € X either x =y or there

isa 1 «z%ana a (Q)lx,‘bly) > ¢ . If ¢ is only a

semigroup of continuous commuting maps then ¢ is called
a positively expansive semigroup 1ff the samc holds with

le 123 . In both cases £ 1is called an expansive constant.

Note that ¢ 1is an expansive group if one of the ¢i is
expansive in the usual sense of expansiveness for homeomorphisms.

An analog ous observation can be made in the semigroup case.
v

Let 1= (1,,...,1,) e 28

+ be given. We write

11 ld ;H 1,
Fix(qt1 peeerdy?) i= i | Fix(¢il) '

where Fix(f) means the set of fixed pcints of a mapping £ .
Then the following result can be pro ved using the ideas of
Proposition (2.8) [ 2] .

(3.9) Theorem: If ¢ is an expansive group of commuting

homeomorphisms or a positively expansive semigroup of continuous
commuting maps acting on a compact metric space X then

‘ 1 1
o -1 1 a
nig) = nnmoo \91n$ log | Fix 4, ,...,¢vd y |

where (ln) is any sequence in ﬁmf such that 17 —» oo .

Note that for the d-dimensional shift (Example (1.10)} indeed

n ln

- 1
h($) = lim ’l?l“‘ ' 1og | Fix RS

A point x € X is called a wandering point of the semigroup

$ = <:¢1,...,¢é> iff there is a neighborhood U of x such




that U n L,) @lU = ¢ ; otherwise x 1is
leﬁzd\{q}
called nonwandering. The set Qo= .£21¢} of nonwandering

points is closed and invariant ($ (2 c L2 for le'ﬁzf) .
Note that wandering points of ¢ are wandering points of

a
¢i for every i € {1,...,d} . Therefore £)4¢)13%;% 114¢i) .

The following theorem states that as far as entropy is
concarned the only interesting part of X is the nonwandering

set L2 .

(3.10) Theorem: Let ¢ = < ¢1,...,¢d:> be a semigroup
of continuous commuting maps cof a compact metric space X 1into

itself. 1f () denotes the set of nonwandering points of- ¢
then

hip) = nidp1 L2y

where ¢l.f1.is the restriction of ¢ to L1 .

Proof: see the appendix .

Two semigroups ¢ = <:¢1,...,¢a:> and § = <f"§j,..., 2fd:>

acting on compact metric spaces X and Y respectively
are J:L~conjugate iff there is a homeomorphism ¢ of

L2(9) onto L1 (%) such that ¢ © ¢, = &, % (1=i<q) .

£3.11) Corollary:
1If ¢ and & are L) -conjugate then

h{$) = n( 4 .

{3.12) Corollary:
If 'qf2_(¢) is a finite set then

nip) =0 .
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4. Sequence entropy

Let X be a compact Hausdorff space and ¢ = <:¢1,.,.,¢d:>

a semigroup of c.c.m., of X into itself. Throughout this section
A will always denote a subset of ﬁzf and L = {1"} a sequence
in ﬁzi such that 1% ~—» oo , Wé write A(l) = A"?l and

define for any open cover @ of X

, — n -1 -
hy b0 =\ TE _Jau”) H(jé/A(ln) yiay .
hA,L(¢) = sup {hA'LH’jp a) | a open cover }

is called the topological sequence entropy (t.s.e.) of @ with
respect to A and L. Define |

e -1 1
a1 = 1m | aa™|” |on|
and denote for k> 0 ©o = [‘lfiﬁzd ; 1.l <k (1=i= ‘}
®x = : lllié k {1=i=q)} .
A subset A of ﬁzi is said to have Lounded gaps 1ff there exists
ak>0suchthat A+3 = L1 () o 2? . am,m isa

finite value for any subset A with bounded gaps.

{(4.1) Lemma: If d{(A,L) 1is finite then
hy L0, Q) < da,L) hip,a) .

Proof: hA'L(Q'CI) =
— -1 -1 ’ ~I¢
= Shm, [aa™ienl lgnl H(jfymln) ¢

< amn  um leal™! H(Oon) = a(a,L) hp,a) .

(4.2) Theorem: Let ¢ = < ¢1""’¢d;:> be a semigroup of -
c.c.m, of X into itself and A < TZ, a subset having bounded
gaps then

hy L) = da,n hd) .
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Proof: Choose k > 0O such that A + ?ﬁ o ﬁzi and r € WE?

such that r + (A + §5k) < “Ef then
d(A,L) h(p, o) = d(a,L) hip,$7F) =
b"lCK) =

-*n-:-w n o~
= n.l.i‘};, lA(l )I H(lc r+§>n

"

JR— - -
im Fa™) .n ¢ lay =

/
}”1e>@Au‘%+%k
- I
= hA,L<¢,ly§2k¢ @ Fa .

Taking the supremum over all open covers U we get

d(A,L) h(@) = hA L(4)). The reverse inequality is clear by
4
(4.1).
Whereas h(@) does not depend on the sequence L = {ln} used

in its definition, theorem (4.,2) shows that A L(¢)) in general

depends on L since there are simple examples for subsets

A % naf for which d{(a,L) depends on L,

Furthermore we noteg,that theorem (4.2) partially covers theocrem
. )

(2.1) since a subsemigroup E@ = < ¢g1,.,.,¢§df:> {piesﬁz+)

of finite index p corresponds to a subset A with bounded gaps

such that a(a = : : = h(Fy) .

u a (A,L) p for any L and hA'L(¢) h(*d)

Measure~theoretic sequence entropy (m.s.e,} is defined in a

similar way as t.s.e., Let (L), £ ,m) be a probability measure

space and @ = ¢1,...,¢df> a semigroup of measure-
preserving transfoxrmaticns of £2 onto itself. If O = {aﬁ,az,..}
is an at most countable partition of .L) into measurable sets
then Hm(CR) = %22 m(ai) log m(ai) is called the entropy of
Ol, For any (I such that B (A) < oo we define

. S e i -1 -~k ,
ha, ) = Tm o fanh Hm(keyml“)‘qr" ar .



hA,L,m(¢) =  sup th L, m\¢,6k)’ A partition, H (Q)< oo}
is called the m.s.e. of @ with respect to A and L. The
following result is an extension of Goodwyn's theorem ([10],

[117]). The proof follows that of Misiurewic: [24]

(4.3) Theorem: Let X be a compact Hausdorff space and

¢ = < Q1""¢d > a semigroup of c.c.m, of X into itself.
Then for any ¢iminvaxiant {4 £i=d) normalized Borelmeasure
m on X

hA,L,m(b} = hA,L(M .

Proof: Let O = [ad,...,asj e a Borel partition then

for any ¢ > 0 there exist compact sets bi < ai (1=1=53)
such that m(JlJ, (a;\ b)) < & and gm:m, 5) =
H (OU18) + B (5 Q) <1 where % = (b, b reeesb )

= 1S AL €
wit.h b, X \ H b, and ?m((:}l‘ 2‘}9) | is the metrlc on
the space of partitions as defined in [19], 6.1 .
€ = {:bou'b4,...,b0u bs} is an open cover of X and we get

V -k AV ~k w
e daqm § Lo lea NG Yygn 78 <
K
log N(ké\/;(ln) )y + |ad™ ] 1log 2.

g - ) ) - ~ . .
Therefore hA,L,m(¢’““b) hh,L(¢'t') + log 2 Now using
the fact that

Bpm$e ) = by 20 € gcan, By
which can be shown as in L19J, 8.6.,, we get
hA,L,m€¢) = A, L @ + log 2 + 1

If (ﬁ?f“.ﬂﬁ,mn) denotes the n~f{old product measure space
-y n - n ngy o~
with components (O, %L,m) and " = < ¢%,... ¢d">
‘the productsemigroup on it, l.e.
n¢i = §yx ... x éi : {07 s A", then a direct computation
n e 3 ) atey .7 s ]
shows hA,L,mn( @) n JA,L,m{¢) . Later (4.7) we shall



state that the same formula holds for the t.s.e. of the
productsemigroup of a semigreoup ¢f c.o.m. . Therefore
= S 2 i S
n hA,L,m(¢) n bA'L(¢) + log 2 + 4 |
Pividing by n and letting n -—» oo we oktain the result,
d

For any subset A c VE+ and any segquence L = iln} such

that 1™ oo we define the gquantity

> - ‘ : e n | n o
kam = e (0w ™l aa 1+ | )
where § = {1ew%? | 0£1, <k (4€i£d)}] . Note that

the expression in bkrackets is always greater or equal than 4
and K(A,L) itself is the limit of an increasing sequence
and can be infinite,

{4.4) Proposition : Let ¢ = < @T""'¢d':> be a semigroup
of measure~preserving transformations on a Lebesgue measure
space (f2,5,m) then
[ K(A,L) h_(§) Lf K(A,L) <o, 0<h (§) < oo
b ! . .
co if b (§) = 00 or

0 < h (§) < o®, K(A,L) = 00,
Proof: Let O be a partition such that nmiél)<:co and write
aX = \44 ¢ Lor ., Then

: -1,
hA,L.vm((t” ar = o, laa™l” (16\4\(1“)+§k4’ a)

s TIiT n,j -1 n,, s ;. g
nLim laca™mE faa™se L ow by a0
where the last ipnequality follows from the fact (proof analogous

@GJILemma 2} that for any finite subset § ¢ ﬁmf and any
partition U such that B (00) < oo

(10 c}»“lcu a';sg n (g, 00 .



>
Therefore hA,L,m(¢} = oplm by o m(¢ ok

i 4

s T Laonl = et ] b

[

K(A,L) hm(zb,czz) if K{(a,L) is finite,
Taking the supremum over all O we get the result.

Combining (4.3) with (4.4) we cbtain

(4.5) Corollary: Let X be a compact Hausdorff space and
¢ = ¢1""'¢d:>' a semigroup of c.c.m, on it then

"K(A,L) h($) if K(A,L)< 00, O < h(P) < oo
hy L) = (o if () = o
oo if hi(P) = oo or
0 < hi}) <oe, K(A,L) = oo,

There 1is another approach to t.s.e. that was first given

by Bowen ([?], see also 5)2]) . Let X, § and A be as before
and U an open cover of X. A set E < X is (A,Qlj<1)-
separated (with respect to ¢) iff for any %, ye€ E , x ¥y
there is a k € A(l) such that ¢y € U e (L implies

¢ky 4 U. If Kc X is compact then we write s(a, Q1+ LK)
for the largest cardinality of a (A, yl,LX) separated set

in K. Given a seguence L = {ln} in ﬁmf , 1Ms 00 write
- e n, -1
and
'€;"hA,L(¢’K) = sup {jﬁ(A;L,C%,K} | o open cover} .

A set Fc X (A,Ql,(l) spans a set K (with respect to @)
iff for any x € K there is a y ¢ F such that given

k € A(l) there is a U €@ with @kx, @ky e U ., For any
compact set K <« X we write r(A,gr(}ﬂﬂ for the smallest
cardinality of any set which (A,gl,CK)wspans K and



H

K-‘mr(A,L,O?,K) nl»gmm ]Au 317 log r(A,yln,C’l,K) .
It is easy to see that taking the supremum over all open covers

we get the same quantity as above, i.e.
i{L~—~hA’L(¢,K) = sup { Y&A,L,ﬁﬂ,x}llﬁ open cover} .

Rewriting the proof of Proposition 2.3 in [?2] in our
situation vields
ha, (%) = hy ()

If A is the full set ﬁmi we shall omit the A in the
notation. In this case the right side is nothing but h(@) .
In other words hL{¢,X) does not depend on L. This can be
shown directly too. We state

(4.6) Proposition : For any compact, invariant (i.e. élxc:K
(].efmf)) subset X c¢f X hr(¢,K} does not depend on L .

In the following sections where we shall use Bowen's definition
of topological entropy X will always be metrizable with
metric dl . In this case it is convenient to consider covers

of g-balls. We shall say a set E ¢ X is (gl.E)-separated
iff for distinct x, v € E there is a k € S1 such that

di (¢kx,¢ky)> € and a set F < X (¢y,€)-spans a set K c X
1ff for each x € K there is a y € F such that

dl (¢kx.¢ky) €& for all k€9 .

Finally we state a result on the t.s.e. ¢f a productsemigroup.
The proof is analogous to Proposition 2.4 [227 .

(4.7) Proposition: Let X be a compact Hausdorff space,

¢ = <: ¢1""’¢d >> a semigroup of c.c.m, on X then the
productsemigroup ¢ > ¢ = <, x ¢1,...,¢dv< ¢d:>' satisfies

hA,L(é}Kq)) WAL



5, Semiflows of dimension a

Let (X,d}]) be a compact metric space. The set of
continuous mappings of X into itself is a semigroup under
composition. A family = (¢ ) d contained in this

“’ t't € R

set is called a continuous seniflow of dimension d (or
continuous d-dimensional semiflow) iff the mapping t ~9-¢t is
a semigroup homomorphism and the mapping (x,t) - ¢tx of the
product space X xJRi into X is continuocus.

$ = (¢t regd 15 called a continuous flow of dimension &

iff the same holds with JR instead of ij .

For any r €M we define (r)ie .'LIRdL by

((r),), = x 1
173 { o) i

¢ can be considered to be generated by the one~dimensicnal
semiflows @i = {1=i=d) where @i

-
e L

(¢r)re~IR = ¢(r)i '
Given ¢t = (t1,...,t ) e JR we consider now the discrete
subsemnigroups

< ¢(t1)1 4)“@’& > .

(5.1) Theorem: Let ¢ = (¢t)tfélhd be a continuous
e

semiflow of dimension d , then for any t = (t 1 e IR

1'-.qu
h(<¢<t1)1""'4}<td>d'>) TT ¢ M<¢(1> "“"’m >’ :
1f ¢ = (Cbt)t “IP x¢ a continuous flow then the same

holds for all te WY with lt;] instead of t, on the
right side.

(5.2) Remark: If t; =0 for some i and
h('<:¢(1) ""'¢(1) t;>) = O then the product on the right
1 d

side is understood to be O since the left gide 1s O in
this case.



By means of (5.1) it makes sense to define the entropy of
¢ as follows

(5.3) Definition: Let ¢ = (p.), . :mf be a continuous

semiflow of dimension d then

h(§) := h 4‘4)("’1"“'(")(“@}) .

Proof of (5.1) : We shall abbreviate t¢ z‘<i¢(t ) ""’¢(t )
171

d

Then given s = (31,...,sd) and t = (t +

1!°I0ytd) in ,:]F.
such that s, , t, 4 0 for all 1i=i=d we shall prove

: d
(") = ¢ ﬁ £ (
1= ’

This implies the result.
Given E) 0 we can choose Cf> 0 such that

d
d (b, x) , ¢ (1)) LE for all ue g := ﬂ[:o,si]

whenever d| (x,y) < Cf .

Let 1 = (11""'1d) e”%f be given and E be a set of minimal
cardinality that (j:l,dw*apans X with respect to s¢ )

Then E (3>k,E;)~sp&ns X with respect to t¢ for all

d d
k= (kyseensky) € :zf,‘1 such that ;C[.[O,tikij C i'&[o,silij .

s )7 n’h) .
1=1

Therefore if LP = (kn) is the sequence in jﬂf defined

by kg = n {1=i=d) and Ll = (1™  the sequence defined
n _ -1 .

by li = [:tisi nj + 1 we get

r, ( , X) €r | e .S
tq) fkn &, S(i) yln’ ’[
This implies

por P S il ot e -1 y
rt‘p(Lk, E,X) = lim n rf (Ltis’i nj + 1} x Q)(Ll' 1 X)

n —3 oo i1 s
d ‘ﬁ -1 S

= JT e [ s gfxr
i=1 i=1 ]

For E — 0 we get the desired inequality.

—~—
d./
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(5.4) Remark: For flows there ig a more general formulation

of (5.1). ¢ can be considered as real vector space with
base ¢ ,...,¢ . Any real d-dimensional matrix M
(1)1 (1)d

maps the basevectors on vectors M( ) (1=1i£d) .
(),

If ¢M denotes the discrete subgroup of ¢ generated by
these; l1.e, (bM HE <M(¢(1)1)‘&hopb’1<¢(1)d)> then

h(p,) = |det M| h(‘:‘?(ﬂ,""’(‘)(ﬂd}) .

Knowing (5.1) the proof of this equation runs as in
[5] Theorem (6.1) .

<
L
¥
~ ¥

Vi g BB
Kl

-t



6. An example and an embedding theocrem

Given a real number A > O we consider the following space of
1
real-valued functions on R*:
A d d " - kY .
tPeY) = {n: 1o 0] |ntsgieisg - Bty | oE

. w4
£ A 12?2d ] sy - til for all {51""’Sd)' (t1,...,td) € R } .

Let Qk = E*k,krﬁ denote the cube whose sides have length 2k,

then .
L) &
a (h,g) = > 2 ot sup } his) -~ g(s)|
k=1 seQ,

defines a metric such that (LA(.md), d') is a compact metric

space. The d-dimensional shiftflow § = ( d is given by

[od
Yt'teR

(5,1) (s) = h(s+t) (s,t € B, nerP(m),

5 is a d-dimensional flow of homeomorphisms generated by the

i = =i ) d
flows 8° = (S(t)i)i;&nk (1£i=d) where (t)i e IR is defined by
t o i=j
YOy o
eyl {o ity .

{ 6,1) Theorem:

h(5) ::h(<8”}1 rene By >) = oo .

Proof: We consider [irst the case d = 2. Civen integers

m.

k,m 2 1 we shall define a set 'ﬁ of {(0,,2 "A) ~ separated

. ) — o .
functions in Lh(jm“) where gk =[O,k "« é{

Divide the interval {0,k into n = 2™.k intervals (1) 4e4en

- MR 14 - . .
of equal length 2 % ., Conslder the system F of piecewise



linear, continuous functions £ on [0,k s.t . £(0) = 1.2

for some 1(0515[2m~1A”1:band s.t . f has constant derivative
+A or -A on each I, . ([a]] denotes the largest integer
smaller or equal than a). Clearly

iF’ - (Ezm“1A~13 + 1) 27 .

Given f ¢ F we define a function hf on LRZ in the following way

£(0) (x,y) e J-°2,0} x R
he (x,y) = 9 £(x) x,yyel[o,x[ >*m
£ (k) (x,y)e [k,eo[ =R

Define for (x,y)e [-27™, 2~m]2 the two "disturb~functions”
J+(XIY)
d x,y) = a0 Ixl = 27 jyl .

a2™™ ~ xl 2%yl

We say £€F has a pike at the point i'z—m(Ttiﬁn*1) iff £ has

derivative +A on I, and -A on L4 {positive pike) or -A

on I, and +A on Ii+1 (negative pike). Then the number of

pikes of any £f¢ F is between O and n-1.

Let feF with pikes at 112*m,...,it2_m he given. For any
ij,je {1,...,t} and any 1 ¢ {1,...,n—1} we shall define a
new function hf((ij,i)) by "disturbing" hf inside the square

Sy tiyr) = [‘ijunz"’“,(ij+n2"“‘]x[;(i—1)2““,(1+1)2"‘“j .

If the pike at 1j-2”m is a positive one put

B

he((1,-1) 227" y) + & xmiy 2 y-g 027

3
hf((ijri))(xry) % {x,v) € Sq(ij,i)

hf!x,y) elsewhere ,

if it is a negative pike use d” in this definition. In an
analogdous way we can disturb hf simultaneocusly on k squares

{k € t(n-1)) to get functions hf((ij ,11),...,(ij ,ik)). If

1 k

two of the k squares overlap, i.e. if we consider neighbors



(1j‘2“m,i'2"m) and (ij-z“m,(i+1)'2”m) then let the

disturbed function have constant value hf({ij—1)2mm,y)

on the overlapping part. The result of this procedure
(including the case o0f O disturbances) is a family of
functions ff such that

- Zt(n@1} )

FAE “w”") =,

If we take all h? s.t. %&0) = £(0) and flhas t pikes we get

a family of functions gﬂ(t) and

TACI R

Pl
Considering all hg s.t. £{0) = £(0) the procedure yields
a family of functions

5oy
(t) 5.6,
=0 £

n-1
7 n-1 n-1
:E ()Y} = 2¢2 1 .
't*O é} l +1)

Finally summing over all feF we get a family of functions @9
and

121 = @™ A 1 2@ s Tt

We want to estimate the number of functions in gythat have
values outside the interval [0,17].

.

Let 11,1 be integers, 11< 1, and define

2 2

Fl,,1,) = (fer|t©o = 1,2"™, g0 = 1,2 ),

i1.e. F(11,l?) are those functions in F that have in

-1

n1'= n? + (12~11) intervals Iiderivative +4. Set n, =n-n
Clearly |F(1,,1,)] = (1:) = { } . Those functions of
. 3 1,

F(l1,12) that have derivative +A in I, can have at most

1
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2n, pikes (call this family F+(l1,12)) and those

feAF(l1,12) with derivative ~A in I1 have at most 2n2w1 pikes
(call this family F-(11,1 )) .

Disturbing functions h (fe F (11,1 }} by the procedure
given above yields a fami’y f (1,,1,) s.t.

2n

2
| £, .1,] = §5¥ 2t n=1r
ot

n1~1 n2~1

o Y e ) =
Eilliey

n - n,=1 . - _ -
2. 23+{n-1) n, 1 n,~1 2 (23+1)(n M n,~1 n. -1

= 2 1 2
= 2 G =27 R

it

j—

n, -1 - n.,~1
< 2! - 2 2Ny 2 patnen) ety

Here we used the following inequality

n,-1 n,-1 -3 a0

(' )£ (pni-19 <nmn 22t
[

Disturbing functions hf(fe F"(11,12)) yields a family
£ a1 sk

(0£j5n1*1) .

4n2~1

=~ -1
sl - ey o

t=1

- 21 - n,~1 -
< 2™ -1 @27 2 @V

L

4 -
1 1,1, = (11,12)‘4 £7(1,.1,) ve get

1
n, =1 . = “'1
P NP 2{n- 1) -
‘gg(l.‘,lz)‘ <2 fl‘L,"‘H (? ) (2" l+1)2

Define F(1) = {fe_pl Fo) £ 1-27 A L Fag > 1e2" M }

then

- ‘l |
2
F(1)| = EE F(1,,1) => > |ra VR I
lr] oS} [Feay25)] =T T lr 23011
1,51 1,51
12 1 =



...34 -

Remember n, = n.2 '+ (1,-1,) = n+2” '+j and

FEREL

n2 = n*n1 = ned =]

Disturbing functions hf(fe Fl} we get a family of

functions f(l) s.t.

n.2 -1
Re -1, _ <L =
Wl ¢ > 5 272 #37 g hhgag) T Zp2 1) gyne2” 51,
j:.‘:‘]
n-1., 2 1.7 3 n-2"1-1 _2(n~1) . ne2 =1, n~1 .2
7N <ne2™h 2 (2° +1) 2" e
m -
I T EEA i IR P I
3::.1 .
- % ne2 427" 2(n-1) L one2”' ne1 2 _2(n-1) ..-2
=n %2 (2 +1) 2" e c. 2 ~1)
In the last eguality we used the formula S jxj =
5=
= x(1-x) 7% for |xl<1 . Let F(1) = [feF]| £(0) « 127 M ,
max
mas £(x) > l'21~mA } .
re[ 0,k
One easily sees that |F (L)| £ 2|r (1] .
' max
Define
0,17 = {£er| £ €e[0,1], £(x) ¢ [0,1] for some re ok |
- —n ] -1
then |F b2 jr ()] #4lr)l for 1 = [2™ 74 .
[0 “] ‘mdx ‘ 1 :]

It éo[:o 1] denotes the family of functions got by disturbing

®
; |70 e ~ 1 3 Y H y .
hf.(f‘& o,17] } one can show using the inequality above

| €00, 7l € s G0

Now considex g: fn L‘h‘(mz} {\ t[o 1_J then

!?i W‘ WEO ﬂlh (C2 a1+ 1y2(2n™ ot

, (n+5) 2 -1 -1

-n (22(11“-1) TR 2

(2™ V41 (22‘““" -1) 74



b

- = .y aun L -y " “1 . o .
> (Zn 1+1)n 1L([2m TA 1J+1}2*n 22(m+5)2 (2P 1+1)3
(22(n~1)w1)*2]
= 2™ ¢y
. . @ W
It is clear by the construction of { that ‘6} = g’(k,m) is

a (?k,zwmh) - separated set in LA(:mgj . Therefore

his) * Lim Tim k2 log |9] .
R PO e O ’

Now log “g' 2 1og (27T 4 log cin). c(n) & 1 for n

sufficiently large since E2m01Aqu + 1 * 1 and the second
product in c¢(n}) converges to O. Therefore log c{n) is a
non-nedative value for n large.

Remember n = 20:k . We get

m

n-1 2k

log (2™ V1) = (2™-1) log (2° K41y 2 (2™e-1)% .

This implies ﬁggmk”zlog \g§a-22m and finally

hig) 2 1im 2°0 = oo,
[Timeid O
For d > 2 we proceed by induction in the following way. Take
the family ? from the case d¢-1 as the new F, construct

functions hf in the same way, i.e. h. does not depend on

£
the last cocordinate and then disturb h, using the given
A

procedure.

Now we consider d-dimensional flows on measure spaces.

Let ({1, % ,m) be a Lebesgue measure space, non-atomic

and of total measure one and y an invertible measure-
preserving trarnsformation of Ll onto itself. (For details

on this notions see for example [19)). The set of these
transformations forms a group imp (L1, % ,m) under composition.
A d-dimensional measure-preserving flow (dim d m.p. flow)

d

on {2, & ,m) is a fawily of transformations ¢ = (¢t)t€]R

contained in imp ({2, % ,m) such that the mapping
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from JRd into imp{fl,lﬂ,m) is a group homomorphism and
the mapping (co .t} —~—> d%&u cf the product measure space
O >®Y into £) is measurable.

Given two dim d m.p. flows ¢ and % on measure spaces

(2, 5,m) and (L', %',m') respectively we say they are
isomorphic iff there exists a bijection g?: .J:Lo“”‘a.J:Lé
where wﬁlwu, .fl& are measurable subsets of () resp.

. -1
having measure one such that ﬁ and f are measurable,

tfm = m' and u)ﬁ Q 1)1; = 2n7 *f (tE-LIRd) .

For certain purposes (see e.q. Eﬁ]) one is interested to
embed a dim d m.p. flow of arbitrary (méasure-theoretic)
entropy isomorphicly in a compact metric space with a flow
of homeomorphisms operating on it. (Measure-theoretic)
entropy is an iscmorphism invariant. Therefore by theorem
(4.3) a candidate for such an embedding procedure has to
have infinite topological entropy. (6.1) says that the
shiftflow on LA(]Rd) is such a candidate. We outline

in the following how the embedding is done.

A dim & m.p. flow ¢ 1is called aperiodic iff there is a
set of measure 0 Ne Y sguch that if «w ¢ N and t % 0O,
then ¢tuJ ¥ w . For semiopen d-dimensional rectangles
Qt:JRd ‘and sets Be b5 we consider ¢Q& : = &E& ¢tB .
@QB is called disjoint if the sets @ts {(t & Q) are

disjoint. We recall the following thecrem due to D. Lind,



Theorem [ 177}

Let ¢ be an apericedic d~dimensional measure~preserving flow

on a non~-atomic Lebesgue measure space ({1, ,m) of total

measure one. Then for any rectangle Qc:JRd and € » O , there

is a set Fe B such that @QF is disioint, measurable and
m(bQF)‘> 1-€& . Furthermore on @QF the measure m is the
completed product of a measure on F with Lebesgue measure on Q .

Let w eBcf2 then we put

1(B,«w) = . sup min IIi‘
QeR{vJ) 1£i£4
where R{w)} is the family of all rectangles ¢ = I1x... xIdCZRd
(I, intervals) such that OeQ and %w €B . 1(B) = inf 1{B,w)
the minimal ien th , wWeR,
=he R £

of a "time-interval” the flow ¢ stays inside B after having
entered the set B .

Given a vector to = (t1,.,.,td)e,2Rd we write <:t1""'td:>
for the discrete subgroup of IRd generated by the vectors
(Oyevestysen.,0) , ive.

J

'<t1l""ltd>: (t&m t="“ (k1t1'on¢'kdtd) fOr

(kysorirkpezd ] .

(6.2) Definition:

A partition -7 of (2 into measurable sets is called a
generator of finite type for the dim d m.p. flow ¢ iff

-

(1) there exists a t° ¢ T such that \V/ ¢£Tr =dra.c
’ té(t“g-;-'td)

(2) 1(B)> © (B € 7))
(3) For any rectangle ( ﬁJRd and a.e. w €2 ¢Quwn B ﬂf

for at most a finite number of sets B € 7.



Now we observe that Lind's tlieorem above yields just the
d-dimensional version of the representation of ¢ that is
the starting point for our iterative construction of a
generator of finite type in [ 7 _|. The construction
itself can be generalized to higher dimensions with some
obvious modifications. We get

(6.3)heoren:

For any aperiodic d-dimensional measure-preserving flow on a
ion~atomic Lebesgue space ()., & ,m) there exists a countable
generator of finite type.

(6.4 Remark:

0

Actually we get more. Given any t~ = (tT,...,td)EéIRd

such
that each ty f O there exists a generatoxr of finite type

corresponding to the subgroup <:t1,...,td:>

i.e. V . ¢tﬂf = & a.e.
t & byreeity>

~Once we have the existence of a generator with very reqular
crbit properties we get

(6.5 heorem:

non~atomics
Every d-dimensional measure-preserving flow on a'Lebesgue

neasure. space is isomorphic to a d-dimensional flow cf

homeomorphisms operating on a compact metric space.

Proof: Take as compact metric space the space LA(.md)
with the d-dimensional shiftflow S on it and modify our

embedding construction in E7],5at3 (3.1), to d dimensions.

There is probably an easier way to get theorem (6.5).
In the 1-dimensional case U. Krengel [ 16 | studied a type
of generator with similar orbit-properties whose existence

can be seen in a more elementary way. After[: 7 ] was



...39 -

written he pointed out to me that the embedding construction
works as well with this type of generator. It should be

not too hard to prove a d-dimensional version of his generator
theorem, Also I thank U. Krengel for sending me an embedding
construction for the periodic part of the flow, Such a
construction was not explicitly given in [ 7 .
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Appendix

Here we give a full proof of Theorem (3.10), compare

C270 p. 28:
Let . be a finite open cover of .(2 having diameter

less than ¢ for some & > C ., ¥We will construct a

finite open cover Jﬁ; of ¥ having diameter less than

3& with the property
nd , L) £l L2, Aoy v+ €
This implies using (1,8)

hd) = Lim hed, &) £ lim WP 1L, Ay = I .
£->0 £-30

The reverse inequality is true by (3.2) .

=

We proceed with the construction of %, . Let
CZ% = [A1,.,.,AS; and ¢, =N ;;V/ ¢~l 615 ) where
_ %ln

a
1? = n,...,n) & "Z: . Choose N large enough such that

4

‘?1Nl ™! 1og op < n@lLY, Gy v €

and & > 0 such that di (¢lx,¢ly)<'£ for all 1 € f N

1
whenever x,y € ¥ and d (x,y) < &« . Let
4] = {:y e X ! d (y, ) < or‘} and Bj = {yeU ld’ (Y’Aj),<£J

(1j%s) . Let E = [iil“'lc?mi ire {1,...,8}]] be a set

of arrays such that f‘ (] ¢ ‘ (13)1€A & E }
LJ_( N - ?N
l 1
is a minimal subcover of \/ ¢’l ng , d.e. |E] = Cy -
lE?M
,1"

For every wandering point x let Ny be an open neighborhood

£

of x Dhaving diameter less than 3 €& and such that

Nx 'a 1~M£ . ¢1Nx = ¢ , Choose a finite subcover
1ez9\o} © °



{uN ,...,N } for XNy and put

I

‘Z {B looa'B ;l\ ,n..,?\.
! *1 Hp

Let n 2 2t' . In order to cbtain a suitable upper bound

for N{ \/ ¢ .éf } we define a subcover of \/ ¢~
1e?ln 16_?:1

Let xe X be an arbitrary point. We shall define (Cl)
ley n
1

with Cl e lfa such that =x ¢ (ml @ 1 . First observe
le&
§in

4
that for 1.1‘5,?11, 1$1t, @%x and @1 %¥ cannot occur in
1
o 1 1 1 .
the same Nx . For suppose ¢ ¥ and @ x were both
i

-l ! L] P I |
contained in the same Nx : then ¢lx e &1 1 )(¢l x)c:¢>l 1 N

'l ¥
This would imply ¢1 1k

L

n N, ¥ @ contradicting the choice

Xy Xy
of Nx . Consequently we get ¢lx ¢ U  except for at most
i

1 i — i i ) Y 1

t values 17 = {(17,...,13) ¢ o (1£1i5+t') . Let
1 d jln

1 t ‘e o t!
11,...,1 be the different values among 11,...,11 . We can
assume 1} <12 < ... <1t . pefine 11 =-1, 1" = n ana

¢, = (1= (1},H.,1d).§f1nt L7 1 <1l ) psiseeny

Then if 1 € ¢ for some i we have ¢1x e U . We put
Fi :

) +41
e 1k _ qi-1 v  — - - ;
r, = 11 11 1 then §i1 ry n £t . r, and n can
be written in a unigque way r, = piN + q, and n=mN + g

such that O #£ qi,q < W



...42 .

Now we fill the rectanyle 94 with disjoint cubes having
equal volume Nd . Let

i _ i . _
Q (m1,...md) = (l1 + 1+ m1N'm2N""'mdN) + ?1N

where O % m1<?pi, 0 = mj*<p (259=a) .

{d=1)

Note that there are pjp‘ such cubes. Since for

T = (1? + 1 4+ m N,m N,..,,mdN) ¢1x € U we can choose a

1 2

point yj{m ) e L2. such that d (yi(m p (blx) < =

1,oon'md 1,-.."17\(1)

By the choice of x we get for all 1 & ? N
1

1 1+1 B
dl( ¢Y(m1'.oa'md) { ¢ X) = E ¢

i G ( ! ~1 . :
Suppose y1m1,..,,m,) 1e " ¢ Ail for some (:Ll)l&?N ¢ E
d Sl ] 1
1+7. . , ) ) . ¢
then ¢ X € B, for all 1 e .» wWe define for these 1
iq 5’1”

QI+1 = Bi . To complete the definition of the subcover of
1

1 é{? n b-l_Z%: we let for all
1

l e N > R in(m yees M) C, be an
2 LN Prer il ! d 1
1 i
Ofmj< p{2%3=3Q) .
arbitrary Bi containing ¢1x . This construction yields

the following ineguality
1 p(d«?)
L

ne D I A - (sreny D)
1l e - * '

gln

—

where —T{(n) = L{dHd + 3)ndm1 . Therefore
h(d , &) 4
s _-a 2l a-qy
£ 1im n (> p,P loy ¢y + T (n) log (s+t'))

Tie=3 00 § e
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t+1
s Tim 0 9G e v h e 10y o
n - 0o i=1

= lim n-1N"d(nwt) leg ¢, =

n = 00 N

N¢ log ey < htPlLL, .+ €

it

Remark: We do not formulate explicitly arn analogue to

Lemma 2.1(2 7] . But it is clear that a d-dimensional version
of this lemma together with its proof is implicitly given

by the proof above.
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