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Q» Introduction 

The purpose of this paper is to study the topological 
entropy of semigroups of continuous commuting maps (c.c.nu) 
acting on a compact Hausdorff space. The semigroups 

d d 
considered are those isomorphic to or IR^ or factors 
of these where d is a positive integer. Because of this 
isomorphism we shall speak sometimes of d--dimensional 
semigroups or d-dimensional sent if lows. If the maps are 
homeomorphisms, i.e* if the semigroups are groups, the 
statements become sometimes sharper* Therefore results 

d d 
on groups of transformations isomorphic to HB> or JR 
or a factor of one of these are stated as well. 
Measure-theoretic entropy of groups of invertifole measure-
preserving transformations acting on a Lebesgue space was 
investigated by several authors (Conze jHsJ, Follmer £8~j# 
Katznelson-Weiss jjiSj, Pickel-Stepin £18J, Thouvenot £20]]) • 
We refer to their work in sections 4, 5 and 6* 
In £ 2 1 3 , C 2^] a r M* the fundamental variational principle 
for HZ^ actions is treated. Topological entropy is a special 
case of the notion of pressure discussed there. 
S e c t i o n c o n t a i n s basic definitions and properties. It is 
of particular interest to know if and how the entropy of 
subsemigroups is related to that of the semigroup itself. 
Some' answers to this question are given in section 2* 
Furthermore a first product theorem is proved there. In 
section 3 we state a number of results that are well-known 
theorems in the case d * A $ i.e. in the theory of topological 
entropy of a single continuous map* Being familiar with 
sections 1 and 2 it is an exercise to translate the original 

• proofs from the one-dimensional case to higher dimensions. 
Therefore almost all proofs are omitted* The only exception 
is Theorem (3,10) stating that the entropy of a semigroup 
equals the entropy of its restriction to the nonwandering set* 
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Since thc> combinatorial part of Bowen*s proof in dimension 
A (see £2^) becomes somewhat different in higher dimensions 
the interested reader will find a full proof in an appendix 
at the end of the paper* Section 4 is devoted to an extension 
of the notion of sequence entropy. In section 5 semigroups 
isomorphic to or a factor of it, i.e. d~dimensional 
semiflows, are considered. The first part of section 6 
consists of the computation of the entropy of a d-dimensional 

A d shiftflow S ~ (S.). . operating on a space L (JR ) 
XL XL JUK 

of £o #1 J-valued functions which satisfy a Lipschitz condition. 
The one-dimensional version of this space appears in Jacobs 
[12], Eberlein £?J and Denker-Eberlein j~6[]. We will use this 
flow in the second part of section 6 where we make an 
excursion to d~dimensional flows of measure-preserving 
transformations acting on a Lebesgue space (Slt &,m) * 
Using a d~dimensional Rokhiin theorem due to Lind C l ^ X w e 

state an existence theorem for generators (of the & - algebra 
% ) with rather regular orbit properties. Via these generators 
we get the following results Every d~dimensional flow of 
measure-preserving transformations acting on a non-atomic 
Lebesgue space can be considered - up to an isomorphism -
as a d-dimensional flow of homeomorphisms operating on a 
compact metric space. More precisely the flow of homeomorphisms 
is a subflow of the shiftflow considered at the beginning of 
this section• 
J would like to thank L. Goodwyn and P. Walters for some 
useful remarks and M. Misiurewicz for an improvement in 
section 2. 
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K Definitions and basic properties 

Let X be a compact Hausdorff space. Given an open cover 

Ot of X we denote by N { OL ) the cardinality of a minimal 

subcover of OC . II ( Oi ) = log N( Oi) is called the 

entropy of Ot * log is taken to the base 2• For two 

covers Oi 9 £ we write 

a v J& - ( A A B J A d 01 F B * J5 J . ^ is 

called finer than Ot , in symbols OL < !& , iff every 

set of -& is contained in a set of OL . For basic properties 

of the functions N and H with respect to 11 v n and 11 <; " 

see Q 1 j | * I n particular H is subadditiye in the sense 

H ( a v ¿5 ) * H ( OL ) + H ( £ ) . 

*2> denotes the d-dimensional lattice with its group 
J? 

structure, «25 the subset of elements having all coordinates 

non-negative. p stands for arbitrary subsets of % with 

finite cardinality which is denoted by I pM • <f stands 

In particular given 1 = (1 5 #...,1,) 6 *25 

we denote by ^ ^ the n-dimensional rectangle 

[ k = (k r...,k d) e <2£d | 0 * k i <• 1 4 (1*i*d) J . 

Given 1 and j> it is clear that 1 + 9 means [1+k | k € J> J 

We write I o& if min 1. oo „ 
1^i^d x 

Let <|>̂  d^i^d) be continuous commuting maps (c•c.m•) 

of X into itself then <j) - <* $<{'••*'<j>d ^> denotes 

the abelian semigroup generated by ^ (1~i-d) under 

d 

composition. There is a natural homomorphism <f\ of r Z + 

onto given by 
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Thus <| is isomorphic to T Z ^ or a factor of it. 

If the transformations <j>/ O-i-d) are homeoxnorphisnis' 

then <j> = <^ <^,... f ^ x is an abelian group isomorphic 

d 

to rS» or a factor of it. 

Now fix for the rest of this chapter a semigroup 

^ ~ <^ , * . . , ì)^ ^> acting on X. Given a finite 

subset ^ c and an open cover OL of X we write 

k ejT 

(1.1) Lemma. Let £? be an open cover, (l n) a sequence 

d n ul) rilî en.§ i OB a 1-/ 
in *TZ+ , 1 > «° , then for any^rec Ea ngle and £. > 0 

we have for n sufficiently large 

1 

Proof: Cover ^ ̂  n by translates k -f of J> ̂  and use 

subadditivity of H . 

(1.2) Proposition: For any open cover ^ of X and any 

sequence (1^) in rzf such chat l n —<•> o* 

exists and is independent of the sequence (l n) . 

Proof: Let (l n) , be two sequences then by ( 1 . 1 ) for any m 

Tim l ^ 3 n ! ^ 1 H( 0 1 ^ n > - I j f ^ l " 1 H * CJt $> 'ím> • 

If ra goes to infinity we get 

U S l?inl ~ 1 IK Ot o" i n) é lim | p } - m | ~
1 H( O t o ^ ) 

!

Symmetry in (l n) , (l n) yields existence and equality 

of the limits* 
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(1.3) Definition: h(<j),0t) : = liir. J ^ n ] ~ 1 i H O C ^ n } 

is called the entropy of withr_-respecti to the 
semigroup j) • 

Using subadditivity of H v;e get for any n 

(6 t^ n ) ~ H{(%) • Thus h(<f>,C?l) is a value in the 
interval C°*H^0Ull * 
If <p is a group of homeomorphisms and we take a different 
system of generators for f) , say <|L # *» * f then this 
corresponds to applying an automorphism A of rZT * A transforms 
n~d.imensional rectangles jp^n into parallelotopes and we 
see immediately using the same argument as in' (1 *1 ) that 
h{^fOl) does not depend on the generators for the group ^ 

It is clear that 0l < & implies M<j),Ot) £ h(f . 

There is another way to compute h which will turn 
out to be useful. It is not necessary that the coordinates 
in (l n) go simultaneously to infinity, Consider for some 
d ^ d the sub semigroup f - <C^^ $ * • » 9 D e n o t e 

T s v t ^ i M 4 M t i ^ > * ^et (1 ) be a sequence in 

H&l , I n * ° , and k e-T£+ d~ d ) * Consider for ®Lg ~ ^ (fy0)"1*^ 

h<$, % k ) ^ lirn^J^nj- 1 H ( ^ n f"\9t f k) . 

(1.4) Proposition; For every sequence {km} in 
A — (d-d} , m * ^ 1Z ; , k oo we have 

-t-

h<$,(St) = lim I f ^ l " 1 h($, ft^ir.) . 
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Proof: First observe that for any fixed kP' 

| ? l t.| -< „<$, a^, | f ( 1 » k B ) ! - 1 „ « y $ - x <V 
l£<? k 

(1.1) implies that for any pair (1 fk
 v) 

>(l n,k ) A l n , k m ) 

Both relations together yield 

hi$,OL) * Urn |o | ~ 1 ftp ) • 
m-~*,c*>

 JK i l Jk 

To get the reverse inequality we note that again by (1.1) for 

every 1 

'k 71 x fe. a. n J k 

Thus for any pair (l n,k m) £ 21^ 

If (l n,k m) —> oo we get 

H i | p m | " 1 h<$, O U m ) * h(<|),0l) . 

(1.5) Definition: 

h (j)) - sup [ h(|> , ¿1) | d open coverj is called topological 

entropy of 

Let \ - <^ \ ,. . • , ^ d ^ * ^:>e a n o t ^ e r semigroup acting on 

a compact Kausdorff space Y . (Y f \ ) is called a homomprphic 

image of (X,$>) iff there is a continuous surjactive map 

: X ~~> Y such that tj o ̂  = <| (1^i^d) •• It is 

clear that under these conditions h(|>, ^ ^ { 01)) ~ h( V , QL ) 



_- 7 -

for every open cover Ol of Y * This implies 

(1.6) Property: If (Y, \ ) is a homomorphic image of 
(X,<j» then h( V ) * h«f» . 

(Yf V ) is isomorphic to (X,<|)) , in symbols (Y* V ) ~ (X,<j)) , 
iff the map above is a homeomorphism. 

(1.7) Property: 

(X,f> <Y, \ ) implies h(f) « h{ V ) . 

A sequence ( CC ) of open covers of X is refining iff 

(1) Oi n < ^ ^ and (2) for every open cover i? there 

exists on (X such that J& < Ot . The following n n 
property is an immediate consequence of the monotonicity 
of the function h(tjy) and simplifies the compu tation of 

h((j» . 

(1.8) Property: If ( Ot- ) is a refining sequence of open 
covers then 

h($) « lim h(^>, a } • 
n—^-oo n 

An open, cover is called a one-sided (topological) generator 

for <f> iff for every collection (A, 2 + ^ ° ^ elements 

of 01 f~ l , M a", consists of at most one point. In 
1 € 2ZJ X l 

case is a group, ^ is called a (topol o g i c al) g en e r a tor 

for (|) iff the same holds with instead of TK^ 

Rewriting Lemma 2.1., 2.3. and 2.5. in [~ 1C] i n o u r situation 
of semigroups and groups of transformations yields the 
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following result 

(1.9) Theorem: If (X is a one-sided generator or in case of 
<$> being a group a generator then 

h«j» - h(4> 01 ) ; 

The problem of existence of generators is solved by Keynes 
and Robertson [^14]. There is a one-sided generator iff <|> is 
positively expansive and in the group-case, there is a generator 
iff <j) is expansive. 

(1.10) Example: Let E be a finite set, | e | = H. 

X « j^x|x: TB^ —> E J endowed with the product topology 
is a compact metric space, The shiftgroup S « ( S ^ J ^ ^ d 

given by 
(S1(x))(k) = x(k+l) (k,l € <2Zd) 

group of homeomorphisms y 

x^^^^rphic^to .Consider C&130 = f x I x(0) « e } , 

then 0 t Q ~ i C e D Q \ e € e ) is a generator for S. Thus 

h (S) * h (S, 0tQ) . An easy computation shows h (S, OL^) « log N 

which implies 
hCS) « h(S, OL. ) = H( 01 ) ^ log N . 

o o 

Exactly the same holds if we consider X - { # J x : *25d — * k J 

together with the corresponding semigroup(S^)^^ ^ d on it. 

(1.11) Example: Let Y be a compact Hausdorff space and 
cj> a homeomorphism of Y onto itself. Consider 

X - [ x I x : ™ * y ] with the product topology and the 

shiftgroup S « ^ si^i€ 7 5 d acting on it. Define a homeomor ph ism 
^ of X onto itself by 

<j>. (x) (k) - u> (x(k5} (k € 75 d) . 

The elements of S commute with . We claim the group 
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(j)1 » < ^ S ̂  ^> satisfies 

h « h( j ) . 

To see this define the projection Htf : X Y by 

Tfo (x) - x (0) . I f is an open cover of Y then 

1 { j§ ) covers X . Consider for a cl € 12. the covering 

"q-1 

£ q » V ( I T 1 & ) then 

H ( Z ) = K( ir"1 ( V cp " j £ )) - n < P ~ j £ ) . 

Observe that h (S, jg ) * H< ) . 
q q 

Therefore h{ j , % ) = lim q~ 1 H{ £ r ) = lim q~1 h(S, JS ) « 

- h($ f, nr~1 & ) 

where the last equality follows by (1.4) . 

Taking the sup over all j& we get 

h( j ) * h (?)}') . 

Given any open cover OL of X then by the definition of the 
wllrdiniensional y ^ 

product topology there is a'^rectangle J in and an open 

cover Xr of Y such that a < V s ~ k ( tt~ 1 # ) . 

This implies 

h « b \ 01) * h(b> , V S" k( Tf" 1 X - )) = h«j>\ i f " 1 J5 ) = h{ f , OS ) 
T kef ° ° J 

and we get h(^') ~ h( j ) . 
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2. Subsemlgroups 

In this section we study subsemlgroups (j) ~ \ ,...,<{> ^> 
of a fixed semigroup <j> « <T t ̂ > of C . C J . • The 

i d 
vectors 1 HZ^ ( i ^ i ^ q) are assumed to be linearly 
independent, i.e. they cannot be written in the form 

-4 ^8 i i i 
kl J » k 1 for positive integers k and k • 

Define the following equivalence relation on <j) : ^ ^ 
iff there exist <|)k, $k% € f such that (j)1 * (j)k « (j)1' » <|>k\ 
The factorspace with respect to ^ is again a semigroup. 
We consider first the case of finite index. 

1 1 1 d • « 
Let p(j) » . < ^ <JT ,<|r > (l x € ne ; , 1 ^ i £ d) be a 
subsemigroup of finite index p and z p its inverse image 
under the natural homomorphism A. • We choose a complete 

d o 
system of representatives in the factor semigroup r~22^/Zp , 
say Q p , by taking out of each equivalence class the element 
lying in the d-dimensional parallelctope P ( r } 

A d 
spanned by the vectors 1 ,«,»,1 (In the case of elements 

A & 
on the boundary of P{1 ) take the smaller ones). 
Define comp(Z p) « z p 4- Q p and comp(p<f>) ~ X (comp(Z p)). 
comp(p<f>) is a semigroup which in general does not have 
generators. We note that it is a priori not clear how to 
define the entropy of the semigroup comp (P^)) . But since 
we have chosen d~dimensional rectangles ^ n with l n — * oo 
for the semigroup $ itself it seems natural to take d-dimensional 
parallelotopes p c nz** with boundaries parallel to those of . d 
P(l ) and which cover comp*(z p ) as n—-> oo # Then 
the same argument as in (1.2) shows that h (comp(p<j))} is 
independent of the sequence p and equals h(§) . 

1 d 
(2.1) Theorem: If p<|) = < (j)1 ,<j>X > (I 1 € TB^)'': 
is a subsemigroup with finite index p then 

h(p<|)} - p h(<j» . 
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Proof: Since h(<J)) « h(comp(p<j))) it is enough to consider 

the case p<j> « < C 4>*1 > • • • ,<t^ d ̂ > for p i > 0 (1 £ i £ d ) . 
Define 1 (p) « (P>l ?»* • #P<3) and let fx(p) b e t ^ e c o r r e s P o n c * i n 9 
d-dimensional rectangle. Then | ̂ ( p ) ^ ~ P>j * * * P d - P • 

I For any open cover OL of X we write ^ p \/ <b~*0L 
d
 = 1 c ? i ( p ) ¥ 

Given any £ > 0 , k s we get with the same argument as 
in (1.1) for sufficiently large n on one side 

which implies p h(<|>, Q ) £ h(p|>, C|p) and on the other side 

Iftnh 1 h ^ V ^ ( ^ r 1 a p > ^ p|? kl" 1 H C i ¥ S k f x o u 

which implies h(p<}>f Qfp) £ p h(<j>, Qt) • So we have equality. 
Taking the supremum over all open covers Q we obtain 
p h(<j)) ^ h(p*}>) . But given any open cover X * we conclude 
h<p<j>f#) * h(p<j),iSp) - p h(<p,£) . Taking again the 
supremum over all open covers yields the reverse inequality* 

Now we turn to subsemigroups (j) « • <p ' r • • • #9 
(I 1 € T 5 d (1 ̂  i ^ q) ) with infinite index, i. e* q < d . 
It is not hard to show directly that h(<|>) ^ h(<f>) • It 

/A 

should be emphasized that h {(j)) of course means the entropy 
of the q-dimensional semigroup <f) • We prove a stronger result. 

(2.2) Theorem; Let $ = < ,. .. , { > l 9 > (l i€ (1 ^ i * q)) 
be a subsemigroup with infinite index then h(§) > 0 implies 
h(|) c*5 . 

Proofs Consider first the particular case |) * ^ f^q ^ 
for some q < d. Remember f c means the semigroup 
< ^ g ^ f ^> • If (k m) is a sequence in r z | d " " q ) 

such that k m —5* and Ol an open cover of X then writing 

<X<jkm * k V ^ m C $ ° ) ^ k a we get by (4.4) 
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h«|>,a) « n i i m o |^k«n|~y? h ( f , a ^ j . 

Since h(<|>) > O we can find a cover Q such that h($,OL) > O. 
Now {^jj*1!^ 0 0 as m~> 00 and therefore h(<j>, $^ym) 
is an unbounded sequence. We conclude h('$) •« oo # 

In the general case <j) * \ 9 <p ***** we choose 
vectors l q - H , . • •, l d in T K J such that I'1 ,..., l q , I 9*' 1, •. ., l d 

4r are linearly independent vectors. Then if = <j)** , . • • #^>^ ^ 
has finite index, say p, in <j> and by ( 2 * ^ ) h{<p) * p h(<|>). 

* ***** 

h(<|>) > 0 implies therefore h{$) > 0 • But with respect to 
% the subsemigroup § has just the form required at the 
beginning. 

(2.3) Corollary: If h ( ^ ) < 0 0 for some i € £l,... ,d j 
(d ^ 2) then h«j>) « O • 

Warning: h(<{)) ~ 0 does not imply h($) < ô > or even 
h(<j>) « 0 for subsemigroups ^ of infinite index. See (2.5) 
for a counterexample. 

Now we prove a first product theorem. Let <{> * <^ ^> 
be a semigroup actinq on X and V - <^ \ ^> 

d d f 

be another one acting on Y . Given i e n E + , kerz we 
define the map $ X x > k of X * Y into itself by 

x > k ) (x,y> « ( • 1 x , V k y ) ( (x,y> c X x Y) . 

Denote by <{> • V the semigroup consisting of the family 
of maps £ 4*1 x V k i 1 e r a j , k <s HB+'J * $ od V can 
be written in a different way* Namely if 1^ and I y are 
the identity maps on X and Y respectively then 

<|)<D"Y « < ^ t i x I Y ' - - - ^ d * f . # I x * V d . > . 
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(2,4) Theorem; h(<|> • Y ) = 0 , 

Proof: Given an open cover f of X x Y there exist open 
covers CI of X and of Y such that £ < C l * X r 
(see [-1] p. 312). Take sequences (l n) in n z j , i n — > ©«? , 
(k n) in , k n--*o*>. Then 

h(4> «v, e) * h«j> ©v, avis) 

« ' n i m I p M n .n.i - i H ( V < b " 1 a ^ . Y n ¥~ k £) 
n - ^ o o i > (1 ,k )l 1 € ̂  n r k 6 n 

* Ijk"!"1'!?!"!"1 » < i Y y i n f l a » + 

In both limits the first factor converges to 0 whereas 
the second expression converges to the finite values 
h« p , a ) resp. h(\9&) * Therefore h«{> & \ , t) ~ 0 . 
Since £ was arbitrary we get h(( |)®V) ~ 0* 

(2«5) Corollary; h((f)) = 0 does not imply that there 
is an i e £ / | , . . . , d J for which M ^ ) < oo (of course d > 2) • 

Proof: Let X , Y be compact Hausdorff spaces and 
^ : X — > X , : Y — > Y be continuous maps both having 
infinite entropy. Consider the productsemigroup 
<j) » <( (<JX I y) , (I x X V ) ^ > on X x Y . (2.4) implies 

h(<$>) = 0 . On the other hand the producttheorem im [ 9 J 

(Theorem 2} (see also (3 . 7 ) later) yields 

h( x I y) ~ h(^) « and 
h(I x x > ) * h(V) ^ °* • 
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3 . General theorems 

The following three statements are well-known results in the 

case of a single continuous mapping y of a compact Hausdorff 

space X into itself C O * Their generalization to semi­

groups <j) « <C <j>̂  , . • • r^d^> of continuous commuting mappings 

of X into itself is straightforward. 

(3.1 ) Propositions Let X ^ , X ^ be closed subsets of X such 

that X « X . ̂  X 0 and b l x . e X . (x, s X . ,1* T Z ^ , i**1 ,2) • 
I dé jL X X J. *T* 

Then 

h(f>) « max [ h<14>) ,h(24>>3 
i 

where <b denote the restrictions of è to X . (i»1 #2) • 

(3.2) Corollary: Let be a closed subset of X such 

that <()lx1 e x 1 (x1 & X ^ U H j ) then h(1<{» * h(<j>) . 
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(3.3) Proposition: Let ~ be an equivalence relation on 
X compatible with <f> in the sense x ^ y implies 

(J^x ~ <j)iy (1^i^d) . Define a semigroup $ ^ \ ^ # •. • / 

on x / ~ by ^ V ~ -jf (1^i^d) where T?" is the 

projection of X onto x/~ . Then 
h (?) ^ h (4) . 

Given a directed set Z? let ^ X i ^ i e j b e a £ a m ^ y °^ compact 
Hausdorff spaces on each of which acting a semigroup 

8 8 C # • • • r ^ ^ a ^ ° ^ continuous commuting transformations 

ki 
such that for j - k (X^, <j>) is a homoiuorphic image of 

(Xj,i<J>) under a map ^ ^ a n d the are consistent. 

Define 

X - { x - ( X . ) i f c j ? £ 7 S X ± I " ^ 3 k ( X 3 } = X k f ° r j ' k ° ' j - k J * 

X is compact with the topology that is induced by the product 
topology. Define a semigroup ^ of continuous commuting 
maps of X into itself by 

( f ^ x ) ^ - ( i|» 1{x i) (x^X,i £-17 . 

(X,<|)) is called the inverse limit of ^ i ^ f j ^ j • 

(3.4) Theorem: h ((j)) ̂  sup hCx<j)) and if the maps A,, . 

are surjective then h(<j>) ~ lim h(x<j>) . 
i & 3 

The proof is analog ous to £ 9 3> Theorem 1 . 

Now we turn to a particular inverse limit* Let (j) be a 



- 16 -

semigroup acting on X . Consider the directed set T! d 

where 1 ^ k iff 1 ~ k € 7 ^ . Let (X*,|>*) be the 

inverse limit of ^ x ' ^ I ^ ^ w h e r e * x i ' 1 ( ^ ~ 

for all 1 €~ T S^ and the A. l k (l*k) are given by (j) 1^ * 

The reason for this construction is, that <j>* is a group 
of homeomorphisms. 

Define 3t - f l . (j)1 (X) and denote by the restriction 
1 IZ^ 

of (|> to X • The semigroup <|> consists of surjective maps 

of "XT onto X^ • Similar to proposition 5 in Qg 3 o n e 

proves• 

(3.5) Property; h((f» » h((|)) . 

Since ((X)*,($)*) = (X*,<f>*) w e 9ct combining the second part 
of (3.4) with (3.5) 

(3.6) Property: h «}>*) » h (<|>) . 

The following product theorem is essentially due to Goodwyn £9 
in the case of a single map tj> . 
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(3»7) Theorem; Let X and Y be compact Hausdorff spaces 
and ф « < Ф 1 # - - - , ф й > and > в < > 1 м . м ! Г а > 
semigroups of c.c.m. of X respectively Y into itself* 
Define the product semigroup ф >c\ ~ < ф^ *\^, • •. #фс1 * V d > 
of X Y into itself by 

( Ф ± х \)(х,У) - ( ф 1 х , > 1 у ) (x,y) e XxY , 

Then Ь ( ф х > ) * Ь(ф) + h(V) . 

The proof runs analogously to [э] . (3.7) has the following 
generalization. See [9] , Theorem 3 for a proof. 

(3»8) Theorem: Let ( Ф ) ^ € К be an arbitrary family of 

semigroups Nj) = <C • • • rN^ ^> acting on compact 
Hausdorff spaces ^ ^ ^ ^ к respectively. Define 
X » jM R X^ endowed with the product topology and 

Ф : X —> X by (ф{х)) к * Ц(*к) ix e X, к e К) 
then 

Ь(ф) - Ь( кф) * 
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For the rest of this section we assume X to be compact 
metric. 
•A group <j) » <^ .. '^d^ °^ C O I T O l u t i n < 3 homeomorphisms 
acting on X is called an expansive group iff there is an 

€ > 0 such that given x #y e X either x » y or there 

is a 1 6?TZ and a (4>x,4> y) > E v If $ is only a 
semigroup of continuous commuting maps then (j) is called 
a positively expansive semigroup iff the same holds with 

1 <& TZ^ . In both cases £ is called an expansive constant. 

Note that <j) is an expansive group if one of the <j>̂  is 
expansive in the usual sense of expansiveness*for homeomorphisms. 
An analog ous observation can be made in the semigroup case* 

Let 1 » (1^,...,!^) TS^ be given. We write 

1 1 d 1 
F i x ^ 1 , . . . ^ / ) N F i x O ^ 1 ) , 

where Fix(f) means the set of fixed points of a mapping f . 
Then the following result can be proved using the ideas of 
Proposition (2.8) • 

(3.9) Theorem: If <j> is an expansive group of commuting 
homeomorphisms or a positively expansive semigroup of continuous 
commuting maps acting on a compact metric space X then 

l n l n 

h«|» ^ llm \o n | ~ 1 log | Fix (^ 1 ,.. • I 
H—^oo -'I 

where (l n) is any sequence in rZS^ such that l n — > oc> m 

Note that for the d-dimensional shift (Example ( 1 . 1 0 ) ) indeed 

l n i n 

h(̂ ) lim | ~ 1 loglFix # . ,t d
d) | . 

A point x 6 X is called a wandering point of the semigroup 

$ ^ $ 1 ' 9 • # there is a neighborhood U of x such 
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that U r> | j ^ "S j - 0 ; otherwise x is 
ler2Z,d\(o] 

called nonwandering * The set of nonwandering 

points is closed and invariant {^jGL c for 1 £ • 

Note that wandering points of $ are wandering points of 
d 

(j^ for every i 6 [ 1 ,.. . ,d j * Therefore jQUtj)) ^ j^J, • 

The following theorem states that as far as entropy is 
concerned the only interesting part of X is the nonwandering 
set j Q . . 

(3.10) Theorem: Let $ * <C ^ # • • • b e a semigroup 
of continuous commuting maps of a compact metric space X into 
itself. If denotes the set of nonwandering points of <j> 
then 

where $ 1 X 1 is the restriction of <f> to .XL. . 

Proof: see the appendix . 

Two semigroups » ,... ,$ d^> and V = . < V j ,..., V d ^ > 

acting on compact metric spaces X and Y respectively 
are -GL-con jugate iff there is a homeomor phi sin <p of 
X2.(<j)) .onto XX. { V ) such that y o (j> = V A ° (1*i*d) . 

(3.11) Corollary: 
If <j> and V a r e X/_ -conjugate then 

h(<j» * h( V ) • 

(3.12) Corollary: 
If X L (<{>) is a finite set then 

h(<|» = 0 . 
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4» Sequence entropy 

Let X be a compact Hausdorf f space and (j> » $ • • • $ 
a semigroup of c.c.m. of X into itself. Throughout this section 
A will always denote a subset of TS^ and L » [l n} a sequence 
in r z " such that 1 « — e x ? • We write A(l) ~ A n ? i a n d 

define for any open cover (X of X 

h A 585 S U p f h A L ^ r ^ Ct open cover J 

is called the topological sequence entropy (t.s,e>) of with 
respect to A and L« Define 

d(A,L) - | A d 1 1 ) ! " 1 | ? 1 n | 

and denote for k > 0 ~fk - [ l e T Z d | JlJ < k {1«i^d)J . 
A subset A of rZ5^ is said to have bounded gaps iff there exists 
a k > 0 such that A + fk » d ' T K J . d(A,L) is a 
finite value for any subset A with bounded gaps. 

(4.1) Lemma: If d(A,L) is finite then 
'*»A L<4>#«> «f d(A,L) h«j ) , a ) . 

Proof: h A L(<J>fG[) = 

- „ S i . | A < i n ) i - 1 l ? 1 n | l h n ! " 1 H < j y A ( 1 „ ) f 

* d(A,L) nl^m a l^nl""1 K ( a ^ n ) - d(A,L) h(j),a).> 

(4.2) Theorem: Let <j) = <C ^1' • • *'^d ke a semigroup of 
c.cm. of X into itself and A c r a ^ a subset having bounded 
gaps then 

hA,L ( < t > ) * d ( A ' L ) h { < t ) ) • 
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Proof: Choose k > 0 such that A + ^ D and r e ""ZŜ  
such that r + (A + <^ k) c s,^ then 

d(A,L) h(f,a) - d (A,L) h(^,4>"rOl) * 

^nliL fA(l n)| H ( l e V A { 1 n ) + f 2 k f 1 ^ ) -

- hA,L<T ' lYf 2 k • * -

Taking the supremum over all open covers 01 we get 
d (A,L) h(^>) ^ h A L (̂>) • The reverse inequality is clear by 
( 4 . 1 ) . 

Whereas h(<|>) does not depend on the sequence L ~ ( l n } used 
in its definition, theorem (4.2) shows that h^ ^C^) i n general 
depends on L since there are simple examples for subsets 

d 
A r 2 + for which d(A,L) depends on L* 

Furthermore we note,that theorem (4.2) partially covers theorem 
(2.1) since a subsemigroup ~ < ^ #.. • ^> (p^e 1 + ) 
of finite index p corresponds to a subset h with bounded gaps 
such that d(A,L) = p for any L and h A L(<j>> *» Mp<j>) • 

Measure-theoretic sequence entropy (m»s»e#) is defined in a 
similar way as t.s.e.. Let (XL, $,m) be a probability measure 
space and § « <^ f ^ . • *>$<j^> a. semigroup of measure-
preserving transformations of X I onto itself. If 01 » [a^ #a 7 #..J 
is an at most countable partition of X X into measurable sets 
then Hm(0t) « m(a^) log m(a^) is called the entropy of 
01 # For any 01 such that K (QL ) < oo we define 

m 
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\,L,m{^ ~ S U P ( V l ^ ' ^ I a Petition, H m(a ) < o o j 

is called the m.s.e. of ̂ ) with respect to A and L. The 
following result is an extension of Goodwyn's theorem ( [ 1 0 ] , 
[/J1J) • The proof follows that of Misiurewics [24] . 

(4.3) Theorem: Let X be a compact Hausdorff space and 
<J> * <C 4̂  * • • ^ a semigroup of cc.m. of X into itself. 
Then for any ^-invariant C^^i^d) normalized Borelmeasure 
*a on X 

A,L #m r AfL T 

Proof i Let « £ a,t,... ,a g j be a Borel partition then 
for any £ > 0 there exist compact sets b^ c a^ M^i^s) 
such that m t ^ (a 1 \ ) < £ and m ( 01, & c ) ~ 
H m { a | A V + H m { ^ o l a } < 1 w h e r e # b 86• ( bo' bi'-*-' bs) 
with b Q « X \ ^ b. and f m ( # # &Q) is the metric on 
the space of partitions as defined in [19], 6.1 
£ * C ^ b^, •.. ,b u< b \ is an open cover of X and we get o » o S J 

Hm<kVA(in) r k ^ 0 ) * log r k ^ c ) * 

log N( k X(l n ) + |A(ln) j log 2, 

Therefore h- T m(4>, £ L ) - h_ T ((f), £ ) + log 2. Now using 
the fact that 

K , L , m ( < M > - h A , L | r o ( f ^ 0 ) I " ?m< a'*o> 

which can be shown as in f*19J# 8.6. , we get 
hA,L,m<<» * h A , L < < » + 1 o * 2 + 1 ' 

If (JO i n , l&n

fmn) denotes the n-fold product measure space 
with components { £1, &,m) and n$> ~ <' n(J>̂  ,. * ^ 
the productsemigroup on it, i.e. 
n $ i ~ ^i * * • • x ^i : ^~-n ^ n 9 then a direct computation 
shows h„ - n(n(l)) « n h„ T (<b) . Later (4.7) we shall /\ i jl #m 1 Afju.m* 
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state that the same formula holds for the t.s.e. of the 
product semigroup of a semigroup of c.c.rn. • Therefore 

n hA,L,m(4» ~ n hA,L^ + log 2 + 1 . 
Dividing by n and letting n -> &o we obtain the result. 

d n 1 For any subset A c T Z + and any sequence L « [l J such 
that l n—> c*? we define the quantity 

K<A,L) - ullm { n S | A { l n > r 1 |A{ln)-fA ! J 

where ^ « { 1'* T s J j 0 £ 1 ± < k (4^i^d)J • Note that 
the expression in brackets is always greater or equal than 1 
and K(A,L) itself is the limit of an increasing sequence 
and can be infinite. 

(4»4) Proposition : Let (j) ~ <C ^ $ * • * tfy^ ^> be a semigroup 
of measure-preserving transformations on a Lebesgue measure 
space (JQL, & ¥m). then 

f K {A,L) hm(<f*) if K(A,L) 0 <hm($) < OO 
hA,L,m ( < l » * \ ° i f - ° 

oo if iri {(b) ~ or 
*- 0 < hm(<j>) < 0 0 , K(A,L) - <*> . 

Proof: Let Oi be a partition such that H (01) <r o© and write . . . . • rn 
a » 4> . Then 

* nTim |A(ln)l | A ( l n ) + f. I h ( ( l ) , a ) 

where the last inequality follows from the fact {proof analogous 
J2&] Lemma 2) that for any finite subset S c TZ,^ and any 
partition Oi such that H^(ft)< oo 
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Therefore h A # L # m ( * > * ^ ^ ^ ^ ( M " ) 

K(A,L) hm(4)f6r() if K(A,L) is finite. 
Taking the supremum over all Oi we get the result. 

Combining (4.3) with (4,4) we obtain 

(4.5) Corollary: Let X be a compact Hausdorff space and 
~ * C 9 • • * ^> a semigroup of c.cm. on it then 

f K(A,L) h((j» if K(A,L) < oo , 0 < h(<j>) < 
hA,L ( (t ) } ~ \ 0 i f h ( * ) " 0 

o& if h ($>) ~ c x d or 
^ O < h(<f>)<oo, K(A,L) » oo, 

There is another approach to t.s.e. that was first given 
by Bowen ( [3] f see also [22J ) • Let X, $ and A be as before 
and Ol an open cover of X. A set E c X is (A,^, (X) -
separated (with respect to <|») iff for any x, y e E , x # y 
there is a k A(l) such that (j)kx e u & 01 implies 
<[)ky 4 u • If K c X is compact then we write s(A,^, Cl,K) 
for the largest cardinality of a (A,^ ,C?}-separated set 
in K. Given a sequence L ~ (l nJ in tz J , ln-*oo write 

K ~ s(A,L, OtfK) - Tim I A ( l n ) | ^ y 1 log siA^.n, Cl,K) 
and 

J h^ L(<j>,K) « sup £ s(A #L, C£,K) ! Of open cover} . 

A set F c X J|Af ̂  , €£) - spans a set K (with respect to (j)) 
iff for any x e K there is a y e F such that given 
k € A(l) there is a U € 01 with <j)kx, $>ky e U . For any 
compact set K c x we write r(A,^(X#K) for the smallest 
cardinality of any set which {A,^, Oi)-spans K and 
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< r(A,L , a,K) - Urn I A(l n)| " l og x(h,Q.nt <2 ,K) . 

It is easy to see that taking the supremum over all open covers 
we get the same quantity as above, i.e. 

< h A L(^),K) ~ sup ( "r(A,L, Ot,K) | Of open coverj . 

Rewriting the proof of Proposition 2 . 3 in [ 2 2 ] in our 
situation yields 

If A is the full set rs'f we shall omit the A in the 
notation. In this case the right side is nothing but h{<|>) . 
In other words hL(^),X) does not depend on L. This can be 
shown directly too. We state 

(4.6) Proposition ; For any compact, invariant (i.e. ^ K c K 
( L « T S J ) ) subset K of X hL(<j)rK) does not depend on L . 

In the following sections where we shall use Bowen's definition 
of topological entropy X will always be metrisable with 
metric dl . In this case it is convenient to consider covers 
of £Hballs. We shall say a set E c X is (^, E)-separated 
iff for distinct x, y e E there is a k € 9, such that 

ik ik 
dl (<f) x,<f> y) > e and a set F c X (£,,£)-spans a set K c X 
iff for each x e K there is a y e F such that 
dl (<}>kx,<|>ky) * £ for all k € j} . 

Finally we state a result on the t.s+e. of a productsemigroup. 
The proof is analogous to Proposition 2.4 [ 2 2 J . 

(4.7) Proposition 1 Let X be a compact Hausdorff space, 
$ ~ <C $1 ' • • •' $ d ^> a semigroup of c.c.m. on X then the 
productsemigroup <j> x <f> * <^ ̂  x ^ ,... #<|>d x satisfies 
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5, Semiflows of dimension d 

Let (X,d| ) be a compact metric space. The set of 
continuous mappings of X into itself is a semigroup under 
composition. A family <j> « (<|>t) ^ g -ĵ d contained in this 

set is called a continuous semiflow of dimension d (or 
continuous d~dimensional semi flow) iff the mapping t —^ (J)fc is 
a semigroup homomorphism and the mapping (x,t) ~» <b x of the 

d 
product space X *JR, into X is continuous. 
<j> * (<t>. ) x. a -m<2 is called a continuous flow of dimension d 
iff the same holds with 3R instead of 3 ^ . 

d 
For any rem we define ( r ) ^ 3R by 

<(r) ±). - ( R 1 = J 
1 3 I o i 4- j . 

<J> can be considered to be generated by the one-dimensional 
semiflows $ x » ^ r e - T R < 1* l s r d> w h e r e ^ 1 = + (r) 
Given t = (t. t * • • tt<s 3R we consider now the discrete 

1 d *r 
subsemigroups 

(5 .1 ) Theorem; Let 4 ~ 4̂t*t £ 3R d b e a c o n t i n u o u s 

semiflow of dimension d , then for any t « (t^,... ft^)€ 3R + 

d 
l t 1 ; 1 * V d i»1 1 U ' 1 u ' d 

If <{) « (<j> } _ d is a continuous flow then the same 
holds for all t £ with jt^j instead of t,̂  on the 
right side. 

(5.2) Remark: If t^ « 0 for some i and 
^ ^ < C ^ ( 1) ' • * * (1) * 555 ̂  t h e n t i i e product on the right 
side is understood to be 0 since the left side is 0 in 
this case. 
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By means of (5.1) it makes sense to define the entropy of 
(j) as follows 

(5,3) Definition: Let <fc « + - t D d b e a continuous 
semiflow of dimension d then 

h«f>) :» h( < C < t > ( 1 ) ^ - - ^ ( 1 ) d > ) 

Proof of (5*1) We shall abbreviate t(j) - /> \ \ ^ 
n ' l d

 1 V d ^ 
Then given s « (s^.,. , 8 ^ ) and t ~ (t ,. „. r t^) in 3R + 

such that s i , t^ 4 0 f o r a l i 1-i~d we shall prove 

hC^j)) ( f f t j ( f f s , ) r 1 h( Sd» • 

This implies the result. 

Given 0 we can choose (f^> 0 such that 
d l ( * u ( x ) ' • u

( y ) ) < £ . f o r a U u € Qs JJp>'aJ 
whenever d| (x,y) <c </" . 
Let 1 « (l^...,^) <= be given and E be a set of minimal 
cardinality that ( , </*) -spans X with respect to s(j> 
Then E ( o ,£)-spans X with respect to ^ for all 

d d d 

k = (k 1 f...,k d) € 3 + such that J I C 0 ' t w i l l C T T E 0 ' 3 ! 1 ; } . ! ] • 

Therefore if = (k* ) is the sequence in defined 

by k£ » n <1«'i<*d) and L 1 ~ (l n) the sequence defined 

by lj = C t

i

s

i " 1 n D + 1 we get 

This implies 
, d . 

r. (L.,£,X) Hin ri T T C t 4 s ~ nl + D r (L, , ©T,X) 
^ K n -» <*> i • 1 x 1 ~ °<j) A 

* ( ff t.) ( f f s . ) " 1 h<S(j>,X) . 

For £ 0 we get the desired inequality. 
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(5*4) Remark: For flows there is a more general formulation 
of (5.1). <{> can be considered as real vector space with 
base > • • • 9 Any real d-dimensional matrix M 

1 ' 1 K 1 d 
maps the basevectors on vectors M(<j>* ) d^i^d) 

* i 
If (j>M denotes the discrete subgroup of <j> generated by 
these, i.e. $ M :« <>!{<{> ( 1 ) ) #... ,M«j> ( 1 } ) > then 

h«))M) « jdet M| ^(<4 n> 1 — r < f ) ( D d > ) • 

Knowing (5.1) the proof of this equation runs as in 
[ X ] Theorem (6.1) • 

_ 
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6., An example and an embedding theorem 

Given a real number A > 0 we consider the following space of 
d 

real-valued functions on IR : 

L A ( » d ) « [ h : B d -> [0> 1 I ! ||h(s 1,... #s d) - h(t 1 #...t d) j * 

d *\ 
^ A max | s. - t, I for all ,s ,,) , (t 1 ,.•. ,t J 6 E j . 

-j ^ D • X XF L U L U 

Let ~ £-k,k^f* denote the cube whose sides have length 2k, 

then 
DO V 4-1 

dl (h,g) = > 2 ~ K + L sup |h(s) - g(s)| 
k=l s«Q k 

A d 
defines a metric such that (L ( 1" ) , d! ) is a compact metric 
space. The d-dimensional shiftflow S - ^ st^t€JR d * s g i v e n b ^ 

(S.h) (s) - h(s+t) (s,t € jR d, h c L A ( 3Rd)) . t 
S is a d-dimensional flow of homeomorphisms generated by the 

flows S x « ^(tJ^tcJR ^ ~ l * z d ) w h e r e tt) ±€ 3Rd is defined by 

<<t) \ - I fc i s 1 

( 6»1 ) Theorem: 

h(S) h( < ^ S ( 1 ) ' • • * ' s n ) ^ J 385 C > ° * 

Proof: We consider first the case d ~ 2. Given integers 

k,m Sft 1 we shall define a set ^ of ( m A ) - separated 

functions in L / v{ B 2 ) where « D 3 / k L 2 c * 

Divide the interval Q),k£ into n = 2Kl*k intervals (1^) ̂ ^^^ n 

of equal length 2 *n * Consider the system P of piecewise 
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linear, continuous functions f on Q>,k£ s.t . f(0) » l * 2 ^ ~ M A 

for some 1 i0^1^2m ^ A ^ 3 a n d
 s*t • f has constant derivative 

+A or - A on each I. • ([X3 denotes the largest integer 
smaller or equal than a ) , Clearly 

|F| - C 2 m^ 1A"" 1^ + 1) 2 n . 

2 
Given f e F we define a function h f on 1R in the following way 

f(0) (x#y) e jj^ 0 0' 0!! * 3 1 

h f(x,y) - \ fix) (x,y) € [0,k[; x 3R 
[ f 00 (x,y) £ Ck,«*>£ * K 

Define for (x,y) € Q-2~m, 2~m3]2 the two "disturb-functions" 

<T +(x,y> « A ( 2 ~ m - jx| ) 2 m | y | 

<f~(x,y) - A { |x! - 2~ m)2 m |y l . 

We say f <£ F has a pike at the point i*2 m (1^i^n~1) iff f has 
derivative +A on 1 ^ and - A on Î -̂j (positive pike) or - A 

on 1 ^ and + A on (negative pike) , Then the number of 

pikes of any fe p is between 0 and n ~ 1 . 
Let f e F with pikes at i,2~ m ,..•,i f c2 m be given. For any 
ij/j € [1 1 *••ft} and any i £ [l,,.,,n-1} we shall define a 
new function h f((i.,i)) by "disturbing" h f inside the square 

S q(i,,i> » C ( i j - l ) 2 * m , ( i j+1 ) 2 ~ m 3 ^ C ( i-1 ) 2 " I \ ( i+1 ) 2 ~ m 3 . 

If the pike at m is a positive one put 

r h f ((i.-1) •2" m,y) + <f*"(x-i. ,2"m,y-.i.2~m) 

h f ((i.,i)) (x,y) « 4 (x,y) £ S (i.. ,i) 

h f(x #y) elsewhere , 

if it is a negative pike use cT in this definition. In an 
analogous way we can disturb h^ simultaneously on k squares 

(k * t(n -1} ) to get functions h^((i. # ^ ) , . . . , (i. , 1 * , ) ) . If 
f 3 1 1 3k k 

two of the k squares overlap, i*e* if we consider neighbors 
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( i ^ 2 ^ m
# i - 2 w m ) and (i^ " 2 ~ m , (i+1) *2~ m) then let the 

disturbed function have constant value h J C({i.-1)2 m,y) 
f 3 

on the overlapping part. The result of this procedure 
(including the case of 0 disturbances) is a family of 
functions jf^ such that 

If we take all h~ s.t. f (0) « f (0) and f has t pikes we get 
a family of functions |^(t) and 

|? f(t)| « 2 . 2 t ( n - 1 ) ( n - 1 ) t 

Considering all h£ s.t. f(0) = f(O) the procedure yields 
a family of functions 

s : f £ t t ) s.t. 
t*o c 1 

' t=0 r 

Finally summing over all f 6 F we get a family of functions if 
and 

| £ | - C 2 r a " 1 A " 1 3 + 1) 2<2 n~ 1 + 1 ) n _ 1 . 

We want to estimate the number of functions in j[ that have % 

values outside the interval Q),1~|. 

Let l^tl^ be integers f 1^ < ^2 a n < * ̂ e ^ n e 

F ( l r i 2 ) * [ f e p | f(0) * l ^ 2 1 ^ m A , f(k) * l 2 - 2 1 " " m A J , 

i.e. F(l^,l^) are those functions in F that have in 

-1 
n^"« n2 + (^-l-j) intervals ^derivative +A. Set nj - n - n^-

Clearly | F ( l i r l . ) | * (" ) « ( ! ? ) • Those functions of * n ̂ 2 

Fd^.lj) that have derivative +A in 1^ can have at most 
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2n 2 pikes (call this family F (1^ ,1^)} and those 

f 6 F ( 1 1 # 1 2 ) with derivative -A in 1^ have at most 2 r * 2 ~ 1 pikes 
(call this family p " d 1 # l 2 ) ) . 

Disturbing functions h f(f€ F (1^ , 1^)) by the procedure 
given above yields a family (l^ ,1^} s.t. 

[?] [ V ] 

" 2 2 j-(n - 1 ) n ~ 1 n . ~ 1 " 2 ~ 1 ( 2 j + 1 ) <n~1) r - 1 n - 1 

- S I 2 < 1.j m A > + 2 Z 2 < j ) ( 1 > 

n —> *| «». JL Yi •* 1 
< 2 1 ( n r 1 ) 2 ( 2 2 ( R " 1 )

+ 1 ) 2 ( 2 2 ^ ~ 1 >

+ 2 n ~ 1 ) . 

Here we used the following inequality 
n.,-1 n - 1 - ^ n.,-1 
( 1 ) * ( r-n.j-1-|) <(n 1-1) ^ 2

 1 <a*j*nv-1) . 
j L"2~*J 

Disturbing functions h f(fe F~ (1^,1 2)) yields a family 
£~(l^,l2) s.t. 

2 n 2 ~ 1 

\fa ,i )\ . " > ~ ~ 2 t ( n - 1 ) ( r ' r n ) ( r 2 n ) 

< 2 n 1 _ 1 ( n i - 1 ) 2 ( 2 2 < n " 1 , + 1 ) n 2 1 ( 2 n ~ 1 + 1 ) . 

If f ( l r l 2 ) := f +(l. t ,1 2) " f""(l1 ,1 2) we get 

r 1 - n 1 
| f ( l r l 2 ) | < 2 B 1 " ( ^ - 1 ) " 2 ( 2 2 ( n - 1 )

+ 1 ) J ' 2 " ( 2 n - 1 + 1 ) 2 #. 

Define F(l) « ( f £ F | f<0) & l - 2 1 ~ m A , f (k) > l - 2 1 " m A j 
then 

n.2" 1 , 

1 2>1 1 2>1 
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-1 -1 Remember « n.2 + (l^l^) « n*2 4-j and 

Disturbing functions h^(fCF^) we get a family of 

functions 

- 1 -! 
. ( 2 n " 1 + 1) 2<(n-2" 1) 2 2 n * 2 - 1 ( 2 2 ( n ~ 1 ) - M ) n * 2 ~ 1 { 2 n " 1 + 1 ) 2 , 

•<]E j ( ( 2 2 ( n - 1 )
+ 1 ) " 1 2 ) j ) 

- n" V ' 2 ~ 1 + 2 " 1 ( 2 2 < n ' - 1 )
+ 1 ) n - 2 " 1 ( 2 n - 1

+ 1 } 2 . ( 2 2 ( n - 1 ) ~ 1 ) - 2 

In the last equality we used the formula ^ "n jx^ = 
j-t 

« X(1-x)" 2 for jxl<1 . Let F(l) « ( f € F | f(0) * lr21 """A , 
max 

max f (r) > l-21~mA } > 

One easily sees that |F (1)| * 2|F(1)| . 
max 

Define 

then |Fr 0 j 1-ji * 2 J F * 4jF(l)| for 1 - p m~ 1A~ 1 I] • 
If Z£q -Ĵ J denotes the family of functions got by disturbing 

h|(f6 -̂j ) one can show using the inequality above 

Now consider ^ ~ %o L A( JR 2 ) » F -\ £|~0 -̂j then 

- 1 _i 
_ n 2 2(n+5)2 ( 2 2 { n - 1 ) + 1 ) n - 2 ( 2 n - 1 + 1 ) 2 ( 2 2 ( n - 1 ) _ 1 ) - 2 
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- i _i 
a ( 2 n - 1

 + 1) n- 1[;(|:2 i n- lA- 1>1)2-n 2 2 { N + 5 ) 2 ( 2 N " 1

 + 1 ) 3 * 

. ( 2 2 ( n ~ 1 ) -1)™23 
* • ( 2 n " 1 + 1 ) n ~ 1 c{n} . 

It is clear by the construction of $ that 9j - ^ {k,m} is 

a ( p k i 2 A) - separated set in L'(p ) . Therefore 

his) - lim Urn k*~2 log \Q\ 

Now log J<$! ^ log ( 2 N ~ 1 * 1 ) ^ + log c(n), c(n) & 1 for n 

sufficiently large since [ j 2 m~ 1A~ 1 3 4 1 ~ 1 a n d t h e second 
product in c(n) converges to Q* Therefore log c(n) is a 
non-negative value for n large-
Remember n ~ 2 m*k * We get 

log ( 2 n ~ 1 + 1 ) n ~ 1 « (2 mk-1) log ( 2 ^ + 1 ) * ( 2 * V l ) 2 . 

This implies JTim 3k^ 2log 2 2 m and finally 

h (s ) ~ lim 2 2 m * 0 0 . 
m—> oo 

For d > 2 we proceed by induction in the following way. Take 
the family |* from the case d-1 as the new F, construct 
functions h^ in the same way, i.e. h^ does not depend on 
the last coordinate and then disturb h r using the given 
procedure. 

Now we consider d-dimensional flows on measure spaces. 
Let (-CL, *^,m) be a Lebesgue measure space, non~atomic 
and of total measure one and f an invertible measure-
preserving transformation of iX onto itself. (For details 
on this notions see for example [ j9 j ) . The set of these 
transformations forms a group imp (XTl, & ,m) under composition. 
^ d-dimensional measure-preserving flow (dim d m.p. flow) 
on (-Q-, & ,m) is a family of transformations d) « (dr ) . _.,d 

1 * t t € JH 
contained in imp (£1, fm) such that the mapping 
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from 3R d into imp(jQ-, ,m) i s a group homomorphism and 

the mapping ( g j »t) 3» of the product measure space 

jCL ̂  into X X is measurable^* 

Given two dim d m.p* flows (j) and V on measure spaces 

( .H,&,m) and ( £ 1 * g , m f ) respectively we say they are 

isomorphic iff there exists a bijection >̂ : J T L ~ m ^ > ~£X^ 

where J C L , X X 1 are measurable subsets of jTX resp* -TLf 

having measure one such that <j and ^ are measurable, 

<^m « m 1 and <| a <J>t ~ Vt ° ^ (teJR d) . 

For certain purposes (see e.g. C&3) o r i e is interested to 

embed a dim d m.p. flow of arbitrary (measure-theoretic) 

entropy isomorphicly in a compact metric space with a flow 

of homeomorphisms operating on it. (Measure-theoretic) 

entropy is an isomorphism invariant. Therefore by theorem 

(4.3) a candidate for such an embedding procedure has to 

have infinite topological entropy* (6.1) says that the 
A d 

shiftflow on L (JR ) is such a candidate. We outline 

in the following how the embedding is done. 

A dim d m.p. flow <j) i s called aperiodic i f f there is a 

set of measure 0 N e & such that i f <̂  4 N and t + O, 

then <f>̂ oo f c ° • For semiopen d-dimensional rectangles 

0 c 3R d and sets B € ¡5 we consider <j)nB : « tLj^ §tB . 

)̂qB is called d is jo int if the sets (f̂ B (t <~ Q) are 

disjoint. We recall the following theorem due to D. Lind. 
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Theorem Ql 7]]: 
Let <|> be an aperiodic d~dimensional measure-preserving flow 
on a non-atomic Lebesgue measure space ,m) of total 

d 
measure one. Then for any rectangle Q C TR and £ > 0 f there 
is a set F E ^ 6 such that <^F is disjoint, measurable and 
m(^Qp) > 1~£ . Furthermore on <j)gF the measure m is the 
completed product of a measure on F with Lebesgue measure on Q * 

Let <s B cXI then we put 
1 (B * °J) == sup min j I. I 

QeR(oj) l ^ d 1 

d 
where R(oa) is the family of all rectangles Q ~ I^x... xI^cIR 
(I. intervals) such that O e Q and <j)Q̂  ^ B . 1(B) * inf l(B,oo) 

the minimal lenathy %
 W W € B , 

" N ^ " B I R ~a "time-interval" the flow (J) stays inside B after having 
entered the set B . 

0 d Given a vector t - ( t l M . M t J e IR we write < t., •.. ,t. > 
1 d «j 1 a 

for the discrete subgroup of 3R generated by the vectors 
(0|r««• /1 ̂  * • * • #0) f i* e• 

< t l M . . , t d > = (t e 2R d | t = ( k l t 1 , . . . r k d t d ) for 

(k 4j f * • • ?k^) £ r2i • 

(6«2) Definition; 

A partition *7T" of X I into measurable sets is called a 
generator of finite type for the dim d rrup. flow § iff % 

(1) there exists a t° € T R u such that \ / <j>fcfr * Xr a.e 

t € <^t^ , • . * *t^> 

(2) 1(B) > 0 (B € Tf ) 

(3) For any rectangle Q c IRC^ and a.e* oj &jOL §q^} n s ¥ $ 

for at most a finite number of sets B & IT . 
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Now we observe that Lind fs theorem above yields just the 
d-diiuensional version of the representation of <j> that is 
the starting point for our iterative construction of a 
generator of finite type in £ 7 23* T h e construction 
itself can be generalized to higher dimensions with some 
obvious modifications. We get 

(6 .3theorem: 
For any aperiodic d-dimensional measure-preserving flow on a 

ion~atomic Lebesgue space (JCL, 5(5 ,xn) there exists a countable 
generator of finite type. 

(6.4}Remark: 
0 d Actually we get more. Given any t - (t^,,..,^) £ IR such 

that each f 0 there exists a generator of finite type 

corresponding to the subgroup <^t^,...,t^^> 

i.e. V $ If « & a.e. 
t & <t.j , • . * r t^> 

Once we have the existence of a generator with very regular 
orbit properties we get 

(6.5)Theorem: „ _ ^ . t nop"-atomig> 
Every d-dirnensional measure-preserving flow on a Lebesgue 
measure- space is isomorphic to a d~dimensional flow of 
homeomorphisms operating on a compact metric space. 

A d 
Proof: Take as compact metric space the space L ( JR } 
with the d-dimensional shiftflow S on it and modify our 
embedding construction in J j7] ;Satz ( 3 . 1 } ; to d dimensions. 

There is probably an easier way to get theorem ( 6 . 5 ) . 
In the 1-dimensional case U . Krengei £ 16 j[ studied a type 
of generator with similar orbit-properties v/hose existence 
can be seen in a more elementary way. After [ 7 ] was 
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written he pointed out to me that the embedding construction 
works as well with this type of generator. It should be 
not too hard to prove a d-dimensional version of his generator 
theorem. Also I thank U. Rrengel for sending me an embedding 
construction for the periodic part of the flow. Such a 
construction was not explicitly given in £ ? 3-
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Appendix 

Here we give a full proof of Theorem (3.10) r compare 
C 2 3 , p. 25: 
Let O l £ be a finite open cover of j O i having diameter 
less than £ for some c > 0 . We will construct a 
finite open cover Jtfe of X having diameter less than 
3 £ with the property 

h(4> , > ̂  h(<j>l X L , O t c ) f £ . 
This implies using (1.8) 

h<<» « Urn h«|>,. <g ) * lira hOHXX, <^,) « h ( ( ( ) | I l ) 

The reverse inequality is true by (3.2) . 

We proceed with the construction of J%s « Let 

OC^ m fK ,.9.th { and c = N ( V ) where 
) l n 

l n « (n,...,n) 6 ne^ * Choose N large enough such that 

I ̂  N ' "*1 log cN < h«|> | H , ) + £ 

and « > o such that dl «|) x,*j) y) < £ for all 1 e j> N 

whenever x,y s X and dl (x,y) < tx • Let 

U « f y 6 x | d l (y,XL) < oc j and B̂ , - £ y e U | d| < y , A ^ < £ j 
d^j^s) . Let E = jf ( i ^ } ^ ^ ] ij & (l,...,s}J be a set 

? 1 N 

of arrays such that f C] h~lI\. } ( ! . ) - € E 3 
1 

is a minimal subcover of \/ <j) , i,e, | E | ~ c* 

For every wandering point x let N be an open neighborhood 
'X. 

of x having diameter less than 3 £ and such that 

N v n 1„ ! <t̂"N ~ 0 * Choose a finite subcover 
x l€'i d\(0j x 



- 41 -

N
x ' • • • ' N

x J ^ o r x ^ U a n ( ^ put 

« f B 1 - * - B s ' N
X l ^ f t ^ N x t J * 

Let n ~ 2t' . I n order to obtain a suitable upper bound 

for N( \/ |> 1 ^ £ ) we define a subcover of \/ <f> 1 Jfcf£ 

Let x 6 X be an arbitrary point. We shall define (C-)~ 
1 

with <s JSf such that x 6 6 First observe 

that for 1,1' £ >̂ n , 1+1', iĵ 'x and (j)1 x cannot occur in 

tl i 1' 
the same N . For suppose <P x and © x were both 

x i 
contained in the same N , then (b1* e cjf1""1'* (A 1 *x) c < J > 1 ~ 1 ' N V 

x i x i 
N n N ^ 0 contradicting the choice 

x i x i 
of N . Consequently we ge t <{>*x e U except for at most 

x i 

t' values l x * ( I ^ . M I J ) e j> n (l^i^t*} . Let 

1 t 1 t f 

1 , J , . . . , 1 , J be the different values among 1^,.••,1^ . We can 

1 2 0 t»fl assume 1 J < 1 ^ < .. * < l!J" • Define 1^ « - 1 , lj 1 » n and 

?i " f 1 " < l 1 ' - - - ^ d ) € J n l X1 < J l 3 <1*i*t+1> . 

Then if 1 e p for some i we have <jAx e U • We put 

4-4-1 
r. - 1 - - 1 then 3> r. » n - t . r, and n can 
i 1 i fST 1 x 

be written in a unique way ~ p^N 4- and n ~ pN + q 

such that 0 ~ ^ i ' ^ <" N 
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Now we fill the rectangle < t̂ with disjoint cubes having 
equal volume N** . Let 

Q i(m 1 /.,.m d) « (1^ + 1 4- m 1 N r m 2 N , . + y N 

where 0 ~ < f^, 0 mu < p (2^j^d) 

Note that there are p^p ' such cubes. Since for 

X « (1^ + 1 + m-N,nuN f. . . ,m nN) d^x 6 U we can choose a 

point m . e; X I such that dl (y* m . , (j>3x) < 

By the choice of ex we get for all 1 e ^ N 

* < - a > i * 1 + I x > < e • 

Suppose yV . s

n 0 T ^ A . for some (1,), ̂  _ € E 
~* 1 -'I 

x € B. for all 1 is o M* W e define for these 1 

^T+l 5 8 8 B i • T o complete the definition of the subcover of 

1 ^ O \ Q 1 (m, ,. .. ,m,) C be an 
J l n O^m^-p^ x 

arbitrary B. containing . This construction yields 

the following inequality 
t+1 (d -1) 

1 s 

where ~rr (n) - t(dN + Dr.0*"1 . Therefore 

h( <|> , % c ) & 

t+1 
Urn n " d { ~ p . p ( d ~ 1 ) l o g c „ +TT(n) log (s+ f ) ) 
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—~- -d ^il ~1 -1 d-1 

« lim n Hi ^(n~t) log c N « 
n —>c*> 

» N ~ d log c N < h{ <|> | .XI , Ot£ ) + S . 

Remark: We do not formulate explicitly an analogue to 
Lemma 2 .1JJ2 j| . But it is clear that a d~dimensional version 
of this lemma together with its proof is implicitly given 
by the proof above. 
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