John M. Franks
 Homology of the Zeta Function for Diffeomorphisms

Publications des séminaires de mathématiques et informatique de Rennes, 1975, fascicule S4
«International Conference on Dynamical Systems in Mathematical Physics », , p. 1-14
http://www.numdam.org/item?id=PSMIR_1975___S4_A7_0
© Département de mathématiques et informatique, université de Rennes, 1975, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

HOMOLOGY AND THE ZETA FUNCTION FOR DIFFEOMORPHISMS

by John M. FRANRS

Institut des Hautes Etudes Scientifiques
 35, route de Chartres
 91440 BURES-SUR-YVETTE - France

One of the interesting problems in smooth dynamical systems is to relate the dynamics to the geometry or topology of the manifoid on which it occurs. In the case of discrete time systems, i.e. diffeomorphisms, an important invariant in this study is the zeta function of Artin and Mazur [1]. This is defined by $\zeta(t)=\exp \left(\sum^{\infty} \frac{1}{m} N_{m} t^{m}\right)$, where N_{m} is the cardinality of the fixed point set $\mathrm{mm}=1$ of f^{m}. If, as frequently happens, this is a rational function, then finite set of complex numbers, the zeroes and poles of G determine all of the numbers \mathbf{N}_{m}.

We consider here diffeomorphisms of compact manifolds which satisfy Axiom A and the no-cycle property, which are described below, and survey the relation of their zeta functions and homological invariants.

We will not consider the closely related topics of the entropy confecture or the generalized zeta function of Ruelle; however these are discussed In the remarks of Maning and Ruelle respectively, in these proceedings.
51.- AXIOM A DIFFEOMORPHISMS WITH THE NO-CYCLE PROPERTY.

We wish to study the structure of diffeomorphisms which satisfy Axiom A of smale [12] and the no-cycle property, so we now briefly describe this class of diffeomorphisms.

Let $f: M \rightarrow M$ be a C^{1} dffeomorphism of a compact connected manifold M. A closed f-invariant set $\Lambda \subset M$ is called byperbolic if the tangent bundle of M restricted to Λ is the Whitney sum of two Df-invariant bundles, $T_{\Lambda} M \neq E^{u}(\Lambda) \oplus E^{s}(\Lambda)$, and if there are constants $C>0$ and $0<\lambda<1$ such that

$$
\left|D f^{n}(v)\right| \leq c_{\lambda}^{n}|v| \text { for } v \in E^{s}, a>0
$$

and

$$
\left|D f^{-n}(v)\right| \leq C \lambda^{n}|v| \text { for } v \in E^{\mathfrak{u}}, n>0 .
$$

The diffeomorphism f is said to satisfy Axiom A if a) the nonwandering set of $f, \Omega(f)=\left\{x \in M: U \cap \bigcup_{n} f_{0}^{n}(U) \neq \emptyset\right.$ for every neighborhood U of $X\}$ is a hyperbolic set, and b) (f) equals the closure of the set of periodic points of f. If f satisfies Axiom A, one has the spectral decqmposition theorem of smale [12] which says $\Omega(f)=\Lambda_{1} \cup . . \cup \Lambda_{\ell}$ where Λ_{1} are pairwise disjoint, \hat{f}-invariant closed sets and $\left.f\right|_{\Lambda_{i}}$ is topologically transitive.

These Λ_{i} are called the basic sets of f and because f is topologically transitive on each basic set, the restrictions of the bundes E^{8} and E^{u} to Λ_{i} have constant dimension. The fiber dimension of $E^{u}\left(\Lambda_{i}\right)$ is called the index of Λ_{i} and will be denoted u_{i}.

The basic sets Λ_{1} have considerable structure which we illustrate by describing the structure of zero dimensional basic sets.

If A is an $n \times n$ matrix of zeroes and ones we define
$\sum_{A} \subset \prod_{Z}\{1,2, \ldots, n\}$ by $\sum_{A}=\left\{\left(x_{i}\right)_{i=-\infty}^{\infty} \mid x_{i} \in\{1, \ldots, n\}\right.$ and $A_{x_{1}} x_{i+1} \quad 1$ for all 1$\}$, If $\{1, \ldots, n\}$ is given the discrete topology and Σ_{A} a topology as a subset of the product then Σ_{A} is a compact metrizable space.

The shift homomorphism $\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ is defined by o($\left.x_{1}\right)$) (x_{i}^{\prime}) where $x_{i}^{\prime} * x_{i+1}$ (here $\left(x_{i}\right)$ denotes the bi-infinite sequence whose ith element is x_{i}).

A result of Bowen [2] shows that on any zeromdimensional basic set A, f is topologically conjugate to some shift $\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ (the matrix A is not unique however),

The no-cycle property $[13]$ implies that is possible to find submanifolds (with boundary and of the same dimenston as M),

$$
\begin{aligned}
& M=M_{2} \supset \ldots \supset M_{1} \supset M_{0}=0 \text { such that } \\
& M_{i-1} \cup f\left(M_{i}\right) \in \operatorname{Int} M_{i}, \text { and } \\
& \Lambda_{i}=\cap_{m \in Z} f^{n}\left(M_{1}-M_{i-1}\right)
\end{aligned}
$$

Henceforth we will consider only diffeomorphisms which satisfy Axiom A and the no cycle property and all theorens will be assumed to include this as part of the hypothesis waless otherwise stated.

The following resule is valid without the no cycle property and is the basis of our subsequent remarks.

Theorem: (Guckenheimer [6], Manning [7]).

If $f: M \longrightarrow M$ satisfies Axiom A then its zeta function is rational.

In fact the proofs show that the zeta funtion is the quotient of two Integer polynomials with constant terms 1 and that the same holds true for the zeta function of f restricted to a singie basic set.

52.- FILTRATIONS AND ZETA FUNCTIONS.

Since all periodic points are contained in the basic sets $\left\{\Lambda_{1}\right\}$ it is useful to restrict our atcention to the zeta function of f restricted to a single basic set Λ_{i}.

Definition $: \zeta_{1}=\zeta\left(\left.f\right|_{\Lambda_{1}}\right)=\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} N_{m} t^{m}\right)$, where N_{m} cardinality of $\operatorname{Fix}\left(f^{m}\right) \cap \Lambda_{1}$.

Example: If $f: \Lambda_{i} \rightarrow \Lambda_{i}$ is topologically conjugate to a subshift of finite type $0: \Sigma_{A} \rightarrow \Sigma_{A}$ described above, then a theorem of Bowen and Lanford [3], says $\zeta_{i}=\zeta(O)=\frac{1}{\operatorname{det}(I-A t)}$.

A function closely related to ξ_{i} is defined as follows

$$
r_{i}=\exp \left(\sum_{m}^{\infty} \frac{1}{w} \widetilde{N}_{m} t^{m}\right)
$$

where

$$
\tilde{N}_{m} \sum_{x \in F i x\left(f^{m}\right) \cap \Lambda_{i}} L\left(f^{m}, x\right)
$$

and

$$
\mathrm{L}\left(\mathrm{f}^{\mathrm{m}}, \mathrm{x}\right)
$$

is the Lefgchetz index of the fixed point x of f^{m}. In our aituation one can show $L\left(f^{m}, x\right) \pm 1$ depending on the sign of $\operatorname{det}\left(I-f_{x}^{m}\right)$, so if this sign were always + , one would have $G_{i} T_{i}$. The advantage of T_{1} ia that by means of the Lefschetz fixed point formula it is easily computed in terms of hom mological invariants of f. A proof of the following proposition can be found $\operatorname{in}[5]$.

Proposition : $\eta_{I}(t)=n \operatorname{det}\left(I-f_{* k} t\right)^{(-1)^{k+1}}$, where $f_{* k}: H_{k}\left(M_{i}, M_{i-1} ; R\right) \longleftrightarrow$ is induced by f.

Thus relationships between ζ_{i} and η_{1} relate the orbit structure of f on Λ_{i} to homological invarianta of f.

We will say that f satisfies the orientation assumption on Λ_{1} if the bundle $E^{4}\left(\Lambda_{1}\right)$ is orientable and $D E$ preserves this orientation. In fact, much of the following goes through with minor changes if df reverses orientation, but there are serious difficulties if $E^{\mathbf{U}}\left(\Lambda_{1}\right)$ is not orientable or orientation is preserved for some parts and reversed for others. The following result can be found in [12] or as (2.5) of [5].

Theorem (Smale): The orientation assumption implies that

$$
\zeta_{i}=r_{1}^{(-1)^{u_{i}}}
$$

where u_{i} is the index of Λ_{i}.

Thus in this case the zeroes and poles of ζ_{i} are the reciprocals of the eigenvalues of $f_{*}: H_{*}\left(M_{i}, M_{i-1} ; R\right) \longleftrightarrow$.

In [2] Bowen shows that the radius of convergence of ζ_{i} is e^{-h} where h is the topological entropy of f restricced to Λ_{1} (see [2] for a definition). In fact uslag techniques of bowen and of wanning [8] it follows that the rational function ζ_{i} has poleat e^{-h} and that this is the closest pole to 0 . Thus e^{h} is an eigenvalues of $f_{\#}: H_{*}\left(M_{i}, M_{i-1} ; R\right) \longleftrightarrow$ by the remarks above, when the orientation assumption holds.

In [10], Ruelle and Sullivan give a very beautiful explicit construction of this eigenclass and show that it occurs in dimension u_{i}.

Theorem (Ruelle-Sullivan) : The orientation assumption implies that e^{h} is an eigenvalue of $f_{\#}: H_{u_{i}}\left(M_{i}, M_{i-1} ; R\right) \longrightarrow$, where h is the topological entropy.

This theorem was generalized by Shub and Williams in [11] to obtain an eigenclasa in the homology of a relative double cover without the orientation assumption.

The following theorem from [5] gives another approach to ellminating the orientation assumption.

Theorem : The following are equal :
a) The rational function $\zeta_{1}^{(-1)^{u}}$ with all coefficients reduced mod 2 .
b) The rational function n_{1} with all coefficients reduced mod 2 .
c) $\quad \prod_{k=0}^{n} \operatorname{det}\left(I-f_{*_{k}} t\right)^{(-1)^{k+1}}$ where $f_{*_{k}}: H_{k}\left(M_{i}, M_{1-1} ; Z_{2}\right) P_{\text {is induced }}$ by f.

Thus the theoren of Smale remains true modulo 2 even without the orientation assumption. This motivates the following,

Definition : The reduced zeta function Z_{i} of the basic set Λ_{i} is the rational function ζ_{1} with its coefficients reduced mod 2 .

This makes sense because G_{1} is of the form $P(t) / Q(t)$ where both P and Q are polynominls with integer coefficients and constant term 1 .

The theorem above can then be interpreted as saying that the zeroes and poles of z_{i} (in the algebratc closure of z_{2}) are the reciprocala of eigenvalues of $f_{*}: H_{\#}\left(M_{i}, M_{i-1} ; Z_{2}\right) \longleftrightarrow$.
33. - ZETA PUNCTIONS AND $H_{*}(M)$.

Thus far we have related S_{i} to homological invariants of the filtration manifolda M_{i}. It is much more valuable to establish relationships with $\mathrm{f}_{*}: \mathrm{H}_{*}(\mathrm{M}) \longrightarrow \mathrm{H}_{*}(\mathrm{M})$, since it is not always easy to determine the filtration manifolds or their homology, the following theorem is a combination of results of [4] and [5].

Theorem : If $f: M \rightarrow M$ satisfies Axiom A and the no-cycle property then
 is induced by f.
b) If the orientation assumption holds for all basic aets then $\Pi \zeta_{1}^{(-1)^{u_{1}}}=\prod_{k=0}^{n} \operatorname{det}\left(1-f_{H_{k}} t\right)^{(-1) k+1}$, where $f_{H_{k}}: H_{k}(M ; R) \longrightarrow$ is induced by f :

Part a) of the above theorem implies that $\Pi Z_{1}^{(-1)^{u_{1}}}$ depends only on the homotopy type of f, and this leads to partial answers to several interesm ting questions :

1) When can an isotopy remove a basic set Λ_{i} of f while leaving all others unchanged? A necessary condition is that $\mathbb{Z}_{i}(f)=1$.
2) When can an isotopy "cancel" two basic sets Λ_{i} and Λ_{j} leaving all other unchanged? A necessary condition is $z_{i}^{(-1)^{u_{1}}} \cdot z_{j}^{(-1)^{4} j}=1$.
3) When can an isotopy of f to g change a basic set $f: \Lambda_{1} \rightarrow \Lambda_{1}$ to a different basic set $g: \Lambda_{i}^{\prime} \rightarrow \Lambda_{i}^{\prime}$, leaving, others unaltered ? A necessary condition is $z_{i}(f)^{(-1)^{u_{i}}}=z_{i}(g)^{(-1)^{u_{i}}}$.

All of these problems can be seen as a generalization of the problem of stmplying a Morse function by cancelifing critical points.

One can also obtain a necessary condition for a collection of abstract basic sets to be the basic sets of a diffeomorphism of manifold M in any homotopy class.

Theorem [5]: $\Sigma(-1)^{u_{i}}{ }^{\operatorname{deg} Z_{i}}=-X(M)$, where $X(M)$ is the Euler characteristic of M.

34. - MORSE INEQUALITIES.

There are further relations between zeta functions and the homology of M which are analogous to the Morse inequalities which relate the number of critical points of a Morse function on M and the dimension of the homology groups of M, (see, for example [9]).

Recall that these inequalities say

$$
C_{q}-C_{q-1}+\ldots \pm C_{o} \geq B_{q}-B_{q \sim 1}+\ldots \pm B_{o}
$$

where C_{j} is the number of critical points of index f and B_{j} is the dimension of $H_{j}(M ; R)$.

To prove similar results we need dimension restrictions on the \mathbf{A}_{1} or on their global stable and unstable manifolds $W^{U}\left(A_{1}\right)$, (see [12] for a definition). Specifically, we will say that f satisfies the dimension restrictions for q, if it is true that each basic A_{i} with index $u_{i} \leq q$ gatisfies dim $W^{u}\left(\Lambda_{1}\right) \leq q$ and each basic set Λ_{j} with index $u_{j}>q$ satisfies dim $W^{s}\left(\Lambda_{f}\right)<n-q$, where $n=d i m M$. Roughiy these restrictions guarantee that the basic sets can be divided into two groups those which contribute only to homology in dimensions greater than q and those which contribute to homology only in dimensions less than or equal to q. It is shown in $[5]$ that the dimension restrictions are satisfled for sil q if dia Λ_{1} o for all i .

If we now consider an elgenvalue A on homology and set

and

$$
C_{j}(\lambda)=\Sigma \text { dim eigenspace for } \lambda \text { in } H_{j}\left(M_{j}, M_{i-1} ; R\right) \text {, }
$$

where the sum is over all i such that the index $u_{i} m j$, then we have the following result.

Theorem : If the dimension restrictions hold for q, then

$$
\begin{aligned}
& C_{q}(\lambda)-C_{q-1}(\lambda)+\ldots \pm C_{0}(\lambda) \geq B_{q}(\lambda)-B_{q-1}(\lambda)+\ldots \pm B_{0}(\lambda) \\
& \text { if dimension } A_{i}=0 \text { for all },
\end{aligned}
$$

We can consolidate these inequalities by considering the alternating products over k of the terms $(1-\lambda t) C_{k}(\lambda)$ and then the product over λ of the results. The analogous product for the $B_{k}(\lambda)$ can be formed and one sees that it differs by polynomial. In this way we can obtain the following result.

Theorem [5] : If the dimension restrictionshold for q, then there is an integer polynomial $P(t)$ such that

$$
p(t)^{(-1)^{q}} \prod_{u_{i} \leq q} n_{1}=\prod_{0 \leq k \leq q} \operatorname{det}\left(I-f_{* k} t\right)^{(-1)^{k+1}}
$$

where $f_{*_{k}}: H_{k}(M ; R) \longleftrightarrow$ is induced by f.

Uaing this result we can directly relate the S_{1} to the homology of M. Por example if orientation assumptions hold then by the theorem of Smale above $\eta_{i}=\zeta_{i}^{(-1)^{L_{i}}}$ so we have

$$
p(t)^{(-1)^{q}} \prod_{u_{i} \leq q} \delta_{i}^{(-1)^{u_{1}}}=\prod_{0 \leq k \leq q} \operatorname{det}\left(I-f_{n_{k}} t\right)^{(-1)^{k+1}}
$$

Some applications of these inequalities can be found in [4].

Inequalities relating Z_{i} to $H_{*}(M)$ which do not require orientation assumptions can also be obtained from the theorem above by reducing mod 2 and using the equality $z_{i}^{(-1)^{u_{1}}}$. the mod 2 reduction of η_{1}. The details of this can be found in [5].

REFERENCES.

1. M. Artin and B. Kazur, On Periodic Points, Annals of Math. (2) 81 (1965), 82-99.
2. R. Bowen, Topological Entropy and Axiom A, Proc, Sympos. Pure Math. 14, Amer. Math. Soc. Providence R.I., 23-42.
3. R. Bowen and O. Lanford, The Zeta Function of Subshifts, Proc, Sympos. Pure Math. 14, Amer, Math. Soc. Providence R.I.
4. J. Franks, Morse Inequalities for Zeta Functions, to sppear in Annals of Math.
5. J. Franks, A Reduced Zeta Function for Diffeomorphisms, to appear,
6. J. Guckenheimer, Axion A and no cycles imply S(f) rationsl, Bull. Amer. Math. Soc. 76 (1970), 592-594,
7. A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3(1971), 215-220.
8. A. Manning, There are no new Anosov Diffeomorphisms on Tori, Amer. Jour. of Math. 96 (1974), 422-429.
9. J. Milnor, Morse Theory, Annals of Math, Studies 51, Princeton Univ. Press, 1963.
10. D. Ruelle and D. Sullivan, Currents, Glows, and Diffeomorphisma, Preprint I.H.E.S., 084, 1974.
11. M. Shub and R.F. Williams, Entropy and stability, to appear in Topology.
12. S. Smale, Differentiable Dynamical Systems, Bull. Amer. Math, Soc. 73, . (1967), 747-817.
13. S. Smale, The R-8tability Theorem, Froc. Sumpos. Pure Math., 14 (1970), 289-297.
