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A Reduced Zeta Function for Diffeomorphisms 

by 

John M. Franks* 

In [1] Artin and Mazur introduced the seta function for a 
diffeomorphism in analogy with the Weil zeta function in algebraic 
geometry. It is defined to be C(t) » exp( 2 ~ N mt m) where N m is 

m~l 
the cardinality of the fixed point set of f1**. This has proven to 
be an important invariant for the study of the orbit structure of 
a large class of diffeomorphisms of compact manifolds - those which 
satisfy Axiom A and the no-cycle property. This class is defined 
and described in §2 below, but we mention that it is open in the 
C 1 topology, contains a representative of every isotopy class [ 1 3 ] , 

0 

and is. in fact, dense in the C topology (9J• 
For these diffeomorphisms the zeta function is rational and 

in fact the quotient of integer polynomials with constant term 1 . 

(see [ 5 h [8] or (3.4) below). Thus for these diffeomorphisms a 
finite amount of data determines all of the numbers N . 

m 
In this article we consider a weakening of this invariant 

which still contains considerable information and has the advantage 
of being closely related to homological invariants of f. 

In the following we assume that ^ is a basic of f (see 
* Research supported in part by NSF Grant GP42329X. AMS subject 
classification number 5BF20. 
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§2 loi définit i. in\) 

Definition; The reduced zeta function Z± of f on A ± , is defined 
to be the rational function Ç(f |. ) with all its coefficients re-..... — i Ai — — • — • 
duced mod <1. 

One of our main results ((5-6) in the text), relates the re
duced zet< functions to homological invariants of f. 

Theorem. Suppose f : M ~* M satisfies Axiom A and the no-cycle 
property, and has basic sets « * *f\^ 9 then the ^ 
equal: 

t ui 
a) n zj" 1^ where ujL - fiber dim E u(» i) 
b) Trie reduction mod 2 of 

n , 1 v k*l 
n(f; R) - n det(I - t ) ^ ~ i ; where 

f*R: HR(M; R)p is induced by i\ 
n / * x k*l 

c) n{fi Z 2) - H det(I - f\fct) where 

The function n(f; R) in b) (before reduction) is sometimes 
called the false or homology zeta function since it can be obtained 
by replacing in the definition of Ç by L{f^) f the Lefsehetz 
number of f»\ 

This theorem has immediate applications to what one might call 
the global bifurcation problem: namely how can basic sets be 
-hinged as f is isotoped to a new Axiom Af no-cycle diffeomorphism. 
For example, it's clear that if two basic sets, ̂  and Aj can be 
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cancelled leaving other basic sets unchanged then 

U j U j / t V 1 / i \ «j 
Zl ^ ~ 1- Also if a basic set can be removed by an iso~ 
topy which does not alter other basic sets or introduce new ones 
then it must have reduced zeta function 1 . Examples of these 
phenomena are given in §6. This general problem can be viewed 
as an extension of the problem of simplifying a Morse function by 
cancelling critical points.. 

The reduced zeta functions also give a necessary condition for 
a collection of abstract basic sets to be the basic sets of a dif~ 
feomorphism (in any homotopy class) on a manifold K. This is 
(5.10) in the text. 

Proposition. If f: M M satisfies JVxiom A and the no-cycle pro-
u, 

perty, then 2(~1) degZ^ ̂  -y(M) where y (M) is the Euler character ~ 
istic of M. 

Here degree means the degree of the numerator minus the degree 
of the denominator. 

It is important to emphasize that 2^ contains more information 
than Just the parity of set of fixed points of f m on ̂ . For ex
ample if we consider a full two-shift (see §6 for definition) and 
a single orbit of period 2, then both these examples satisfy 
N m a o mod 2 for all m but their zeta functions are 1/1-2t and 
1/1-t^ respectively (see (2.6) and (6 .1 ) ) ,so their reduced zeta 
functions are different. Also note in the proposition above that 
the and the numbers u^ determine the Euler characteristic (not 
just the Euler characteristic mod 2 ) . 

The theorem above (5*8) is in fact a special case of more 
general results (5*^~7) which are generalizations of the Morne 
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inequalities relating the Betti numbers of a manifold M to the 

number of critical points of a Morse function on M. In fact our 
(5 .7) and (5.8) are simply the mod 2 analogues of Theorems 1 and 2 

of [4 ]• The reduction mod 2 gives somewhat weaker results, but 
is applicable to a much larger class of diffeomorphisms, as no 
assumptions about orientabillty need be made. 

The heart of the proof of all these results is a local version 
of the main theorem above which has the same hypothesis and is 
(4 .1) in the text. Here will denote a basic set of f and 
M i # Ml~l t h e e l e x n e n * s o f a filtration for f (see §2) such that 

Theorem: Suppose is a basic set of f and u « fiber dim E U ( A 1 ) > 

then the following are equal; 

.> « i - i , u 

b) The mod 2 reduction of 
n { 

n,(f; R) « n det(l - f. , t ) { " X } ' where 

f+ji Hj(Mi, M 1 <_ 1; R)«o is Induced by f. 

c) n,(fj Z j - n det(I - f^.t)^ 1-' where 
1 2 ^ = 0 *j 
f # H^(M1> M j - ; L; Z2)~> is induced by f. 

It is a pleasure to achtanowledge helpful conversations with 
K. Dennis, L. Evens, M. Stein, and R. P. Williams during the 
preparation of this article. 



§ 1 . Preliminaries 

n 
( 1 . 1 ) Definition; If V * © V, is a graded vector space over any 

x . , ^ 
field and T: V •* V a gradation preserving linear maj> V^) 

^ n 7^ ̂ JLf+T~ ~ 
then we define C(T) * n det(I - r,t) V~ X ; 

1*0 1 

C(t) Is a rational function of t and in fact a quotient of 
polynomials p(t)/q(t) with both p and q having coefficients 
in the field of V and constant term 1 . 

The following is a slight generalization of the classical 
Lefschetz-Hopf trace formula. 

n 
C 1 * 2 ) Lemma. If C * © C± and -> Is a chain complex of 
finite dimensional vector spaces and ft C •* C is a chain map then 
C(T ) « C(T») where ^ (C) -* (C) Is the map on homology induced 
by T • 

Proofs Suppose we have a commutative diagram of vector spaces 

J a 3 Y 
\> v v 

where the horizontal rows are exact. Then choosing a basis for V 2 

which begins with a basis of i(V.j) we can represent 9 by a matrix 
of the form 
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f h x \ 

No j ^ / 

where is a matrix which represents a (with an appropriate 

basis) and ̂  is a matrix which represents Prom this it 

follows that 

det{I - St) « det(I - At) 

- det(I - A1t)det(I - Agt) 

« det(I - at)det(I - Yt) 

For notational simplicity we will henceforth denote 

det(I - T T ) by P(T) for any vector space endomorphlsm T . Thus 

we have shown for the endomorphisms a, &, and Y In the diagram 

above P(8) « P(a)P(Y). We apply this result to two short exact 

sequences from the chain complex C Let % ^ « ker(ò1) and 

= ^(^i+i) then 

o - Z ± -. C l A . > B 1 _ 1 - o 

and 0 •+ •* "* (C) ** 0 are exact and on each of the vector 

spaces in these sequences there Is an endomorphism induced by the 

chain map T. 

Applying the result above to these two cases we obtain 

?(r\c±) - P(T ! ^ Ì ) P ( T ! B 1 - 1 ) 

and P ( T * P ( T Ì B 1 ) P ( T # J H^C)) . Thus 
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P(T|C ±) - P{T #lH i(C))P(TiB i)P(TiB 1^ 1)-

Hence 

C(T) - n ?(r\CA){"-L) 

1=0 1 

- n ( P ( T J h ± ( C ) ) ) ^ 1 ; n ( P ( T | B 1 ) P ( T | B 1 ml)Vml) , 
1=0 1 1=0 1 x x 

but since everything cancels in the product of the P ( T | B ^ ) , we 
have 

„ n / «\1+1 „ 
C(T) - 0 P C T J h . C C ) ) ^ 1 ^ - C ( T J . 

1=0 1 

q.e.d. 

An Important special case of this result which will be used 
subsequently is the following. 

(1.3) Corollary. If 0 -> V —.£-> v . - » . . . « • v. —i-> -» 0 is an 
' —- •—— n n—i X ——-

exact sequence of vector spaces and T .: V. -* V, are endomorphisms 
such that 5^ 0 » » then det(I - ̂ t) ("̂  » 1. 

n 
Proof: C « e V together with {&.) is a chain complex with 
• 1-0 1 x 

H*(C) = 0 and T « © T ^ is a chain map. Thus 
n i -\\ 
n det(I - T , t ) v i ; « C{T) » C ( % ) « 1 since %(C) » 0. q.e.d. 
i«0 1 
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(1 ) Lemjnâ * Cuppoae n 0 ~> C 1« a _chainjroap_ nPl^n.A1^AnA^AX 
generated t free chain complex! and a » t © id; C ̂  R p and 
0 » T © id: C ft , then C(a) with all coefficients reduced 
mod 2 is equal to C(B)« 

Prooft Since C is a free chain complex we can pick a basis 
so that the matrix of a i « ® id: © R -* <? R is the same 
integer matrix representing T 1 : -* and such that the matrix 
of cj_ ® z 2 "* ci ° z 2 i s t h e matrix of reduced mod 2 . Hence 
det(I - a^) reduced mod 2 is equal to det(I - B^t). Now, 

n f -\\ n t -\\ i"*"̂  
C(.a) m n det(I - a,z) '•"•Lj and C(P) « n det(I - p^TR*"4-' 1=0 - i«0 
where n - dim C. Thus C(a) with all coefficients reduced mod 2 

is equal to C(S). q.e.d. 

We wish to consider C(f#) where f* is the map on the homology 
of a space induced by a continuous map of the space. Since it will 
be necessary to consider different fields of coefficients we will 
use the following notation. 

(1.5) Definition: If f: (X,A) -* (X,A) la a map of a topological 
0* 

pair to itself and F is a. field then «(f; F) « C(f*) where 
f»: H^(X,A; F) -* (X,A; F) is the map induced by f on the homology 
of (X,A) with coefficients in F. 

(1.6) Corollary. If f: (X,A) •* (X,A) is a continuous map of a 
finite simpllcial pair then n(f; R) with all coefficients reduced 
mod 2 is equal to -n(f; Z2)« 
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Proof; Let C be the free oriented simpllcial chain complex of 
(X,A) and let TJ C -> C be a chain map arising from a simpllcial 
approximation to f. Then H*(X,A; R) is the homology of the com
plex C © R and H*(X,A; Zg) is the homology of C • Zg. The maps 
induced by f are induced by the chain maps 

o = T ® id: C O R •• C « R 
and 

3 - T to Id: C © Zg -» C » Z 2. 

Hence by Lemmas (1 .2) and (I.2*), <n(f; R) with all coefficients 
reduced mod 2 is equal to n(f;. Zg). q.e.d. 

For later use we cite one other well known fact and give its 
proof since it is quite short. 

(1.7) Proposition. Suppose A Is an n x n real matrix then 

exp{ S tr A mt m) . 1—— . 
m=l det(I - At) 

00 
Proof: 2 - A m t m is the formal power series for - log(I - At), 

~" m=l 
(the series will of course converge for t near 0) . It is also 
a well known fact that for any matrix B, exp(tr B) * det exp(B). 
Hence exp(Z | tr A mt m) - exp(trZ | A mt m) - exp[tr(-log(I - At))] . 
det[exp(-log(I - At))] = . q.e.d. 

det (I - At) 
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We wish to study the structure of diffeomorphisms which satisfy 
Axiom A of Smale [13] and the no-cycle property, so we now briefly 
describe this class of diffeomorphisms. 

Let ft M •+ M be a Cx diffeomorphism of a compact connected 
manifold M. A closed f-invariant set ^ c M is called hyperbolic 
if the tangent bundle of M restricted to A is the Whitney sum 
of two Df-invariant bundles, T^M * Eu(^) © E s(^), and if there are 
constants C > 0 and 0 < X < 1 such that 

|DrA(v) j < CXn|v| for vcE s, n > 0 

and 

|Pf~n(v) j < CXn!v| for vcE u, n > 0. 

The diffeomorphism f is said to satisfy Axiom A if a) the 
non-wandering set of f, fi(f) - f xeM: U n tj fn(U) / 0 for every 

n>0 

neighborhood U of x) is a hyperbolic set, and b) fl(f) equals 
the closure of the set of periodic points of f* If f satisfies 
Axiom A, one has the spectral decomposition theorem of Smale [11] 

which says 0(f) « /î  U U ^ where ^ are palrwise disjoint, 
f-invariant closed sets and f I . is topological!?/- transitive. 

These f\± are called the basic sets of f\ We consider dif-
feomorphisms which in addition to Axiom A satisfy the no-cycle pro
perty 112] which we now define. If ^ is a basic set of f then 
its stable and unstable manifolds ([6] or [9]) are defined by 
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Ws(AjL) « {xcM!d(fn(x), A i) + 0 as n <»} 

and 

WU(Ai) - CxcMJd(f~n(x), A t) ^ O a s n ^ ) , 

One says 1 i f Wu(Aj) H W s(A i) ^ 0* If this extends to 
a total ordering on the basic sets then f is said to satisfy 
the no-cycle property and we re-index so that A i < Aj when i < j. 

If a^ i s a k&sic set of ft M . -> M then we define the index u i 

of A t with respect to f to be the fiber dimension of Eu(AjJ • 

We review briefly the filtrations of [12] associated with a 
dlffeomorphism which satisfies Axiom A and the no-cycle property. 
In fact the purpose of imposing the no-cycle condition is to obtain 
this filtration. It is possible to find submanifolds (with boundary 
and of the same dimension as M), 

M * M| r> * • • r5 r> M Q * 0 such that 

Ml~l U c j L n t Mi> 

A ± » H f^M^ ~ U±mml), and 
mc2 

w u ( A l ) U M , . , - u ^ f""(M l). 

Henceforth f: M "* M will be a dlff eomorphism of a < npact 
manifold satisfying Axiom A and the no-cycle property and 
M = r> M J T - 1 r> • * • Mq » 0 will be a filtration for f. 

(2.1) Definition; If c Mj_ - M 1 - 1 is a basic set of f then we 
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define ̂ (f) « n det(I - f*jtp~ x ; where f # ̂  H^(M 1,M j L - 1; R) -» 
Hj^ Mi' Mi-l* R^ " L s t n e m a P induced by f > Alternatively 
ni(f) « C(f») where f* « e f * j " 

The function is sometimes called the homology or false zeta 
function of f on because (as the following proposition shows) 
it can be obtained by talcing the definition of the zeta function and 
replacing the number of fixed points of f*5 by the number of fixed 
points seen by homology, i.e., the Lefschetz number of 

(2.2) Proposition; r\Af) - exp £ A K t m where N « L(f*% M, ,M. -) -
m»X 

2(-l)hr fjfj and f^t HjCM^M^; R) p Is the map Induced by f, 

Proof; We compute 
00 00 

exp( £ I V 0 1 ) . exp( Z | (S(-l)^tr fjjt"') 
m-1 ' m--l 

- n exp((-l)J S A tr f^t*1] 
,1=0 m - 1 ra J 

= H det(I - f^t)* X 1 by proposition (1.6 

- )« q.e.d. 

We remark that N is eqt.il to2l(p; f"1) where th»- t;..m is taken 
over all fixed points of f1" in fa and I(p; f m) is the 3 < schetz in
dex of the fixed point p under> (see p ] and Lemma 3 of [4] for 
this). This shows than N m is independent of the choice of filtration 
elements and M^., so we have the following. 

http://eqt.il
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(2.3) Corollary? ?>i(f) Is Independent of the choice of filtration 
for f. 

It should be noted however that' is not an invariant of ^ i 

and t restricted to A ± , but depends on how A l Is embedded in H 

and how f extends to M. 

(2.4) Definition: If is a basic set of f, we say f preserves 
(or reverses) a u~orientatlon on /\ if the bundle Eu(^) is 
orlentable and Df preserves (or reverses) this orientation* 

When f preserves or reverses a u-orlentation on a basic set 
there is a close relationship between r\ and the zeta function of 
f restricted to the basic set. 

(2.5) Theorem (Smale): Suppose is a basic set of f and 
denotes C(f!a^)> then 

C^(t) if f preserves a u-orlentatlon on ft 
"i -

' Ci(-t) If f reverses a u-orlentation on A i * 

where rt = (-1) and « fiber dim E (^) Is the Index of 

Proof. Smale [11] actually proved this result only for Anosov dlf-
feomorphisms (I.e. when ^ = M), but the proof is the same for this 
case. Since it is short we give it. By a result of Smale [11, 
p. 7673, if pcFlx(fm) n a, then the Index of p I(pj f m) » Aw(~l) 1 « 

verses u-orientation on Thus if N m is the cArdinal**y 
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Pix(fm) D ^ and N m « SI(p; f m ) with the sum taken over all 
pcPlx(fm) ft we have N m « A mrrN m» Now if f preserves u-orienta-
tlon on t h e n ^ m « 1 for all m so 

C l(t) - exp( S | Nmt») 

ra=x 

n 

On the other hand if f reverses u-orlentation on then 
& m " (-l)m so, 

00
 •» 

C±(-t) - exp( 2 | N m(-l) mt m) 

* exp(,r 2 A N t m) « r£. q.e.d. 

(2.6) Proposition! Let f: M *» M be a diffeomorphism with all 
periodic points hyperbolic, then as formal power series, 

a) C(f) ** H(l - ) - 1 where the product Is taken over all 
v 

periodic orbits v and p(y) denotes the least period of y. 
_ / \ / ,vU(Y)+1 

b) tt(f; R) = n(l - A t p ^ Y V ; where A is 1 if 
Y Y 

D fp(v). k u -* 

preserves orientation for xcv and - 1 

otherwise, and u(y) - fiber dim e \ 
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If tt f satisfies Axiom A-the same formulas hold for and ^ if 
the product Is taken over all periodic orbits Y c Ai* 

Proof: Since every periodic point is hyperbolic and we assume M 
is compact it follows that Cxjxey and p(y) < n} is finite for any 
fixed n. If Y is a single periodic orbit of period p then it 
is easy to check C(fjy) « (1 - t p ) W e now fix an integer n and 
let ( y i m ^ i v J be the set of periodic orbits with period 

s s p(y^) -I 

p(Yj < n and K - U y,, then C(f U « n (1 ~ t 1 ) . 
x ~~ l«l 1 !* 1 - 1 

But Nn(f} is equal to Nn(f f
K) since any fixed point of f n is 

In K. Thus the coefficient of t" In C(f) = exp(S I »m(f)tm) la the 
same as the coefficient of t n in {(f „) = exp{2 i N (f L)t m) « 
S P ( YJ ) •) n -, n On 
n (1 - t 1 ) However, since (1 - t p ) " = i + t p + r + 

s p(Y ) 
the coefficient of t n in fl (1 - t 1 ) m l is the same as the 
coefficient of t n in n(l - t ^ ^ h ' 1 where the product is taken over 

v 
all periodic orbits v« Thus we have shown the coefficient of t n 

in C{f) and f!(l - t p( v^) are the same, so this proves a). 
V 

The proof of b) is similar; we use the result of Smale 
[ 1 1 , p. 76?] that if y has period p and X C Y then the Lefschetz 
index I(x,fp) is ( - l ) U ^ A Y where A Y * + 1 if Dfp: ^ £> preserves 
orientation and A » - 1 if orientation Is reversed- Now 
T>(fj R) - exp( Z i L(f m)t m) and L{fm) « Sl(x,fm) where this sum is 

m=l 
over all xcFix(fm). Let K be as above and define 
p » expfS i L (K)tm) where LjK) is the sum of lix,^) for all 
x<Fix(fm) H K. Then for m < n we have Lm(K) = Lff"1) since all 
points of period < n are in K. Thus the coefficient of t n in p 
is the same as the coefficient of t n in r>{f; R). 
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3 
But I^(K) - 2 Ln(y^) where I^v^ =Si(x , r ) where the sum 

s 0 0 i 
Is over xey, OFix(fjn). Hence p * n exp( 2 ~ L (y, )t m). Since 

1 1=1 m«l m m x 

0 if m ¥ 0 mod p(v) 
L_(y) « one checks 

p(v)(-l) u< v )A m / p< v ) if m « 0 mod p(y), 

easily that p « H (1 - A., t )l . Thus, as before, the co-
i=l Yi 

efficient of t n in o is also the same as the coefficient of t n in 
and b) is proved. The proof for f restricted 

y y 

to a single basic set is similar. q.e.d. 
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§3. The Relative Double Cover for a Basic Set 

In the case when the bundle Eu(/\) is orientable and Df pre
serves or reverses this orientation the zeta function is calculable 
from homological information using Theorem ( 2 . 5 ) . However for 
many important examples things are not so nice and one must resort 
to other techniques. This problem was handled first by 
Gucfcenheimer [5] in his proof of the rationality of the zeta func
tion for Axiom A diffeomorphsims satisfying the no-cycle property 
which was based on previous work of Williams [ 1 ^ ] . 

The idea of Guckenheimer was to try to work in a double cover 
which orients E u and where f has a lift which preserves u-orien-
tation. Such a double cover exists over a neighborhood of ^ but 
this neighborhood is not f invariant. Hence to define a lift of 
f it is necessary to add to the double cover all points in fil-
tratlon levels below ^ and let them cover themselves singly. The 
precise result we need is the following theorem implicit in [5] and 
explicitly worked out in the very nice appendix of [10] . 

(3*1) Theorem; Suppose ^ is a basicset of a diffeomorphism f 
satisfying Axiom A and the no-cycle property. Then there Is a rela
tive manifold (X,A) and a relative double cover II: ()T,A) -> (X,A) 
such that 

1) There exists a filtration for f with X « U±$ A » 
for some i and & c x - A. 

2) The bundle EU(A) extends to a bundle E U over X - f(A) and 
Df extends to a bundle map 
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V V 
X-A — > X-f(A) 

where E^is the restriction of E u to X - A. 

3) There is a map 7: (X*,K) -* (X\ft) covering f. 

*0 The bundle E u on X - A lifts to an oriented bundle on 
X" - I' and for any x€u""1(/i) D ? : Ê J «+ # preserves 
orientation. 

5) Then there Is a unique covering transformation T of the 
double cover IT: X" - A -+ X - A which reverses the orienta
tion of EP. 

We will also need the following lemma. 

(3*2) Lemma; Suppose y\ is a basic set and If; (X,A") -* (X,A) is 
a relative double cover as above. Then if xc A fi Plx(f), 7 fixes 
the two points of i T^x) if and only if Df preserves the orientation 
of E J J , otherwise it switches -them. 

Proof; Let y€n"*1(x) and suppose 7(y) = y. Then DIls ly -* satis
fies DTI'D? = Df»DII so D? and Df restricted to iJJ and EJJ are conju
gate. Since Df" preserves orientation of if* (by (4) of Theorem (3 .1 ) ) 

it follows that Df also preserves orientation. 
Conversely if Df x preserves the orientation of EJJ then T(y) « y 
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because, if not we can define f :f*T where T Is the non-trivial 

deck transformation and then f (y) » y and Df y will reverse the 

orientation of Since f also covers f the same argument used 

above to show D£ preserves orientation, now shows Df v reverses 
X X 

orientation which is a contradiction. q.e.d. 

(3.3) Proposition: Suppose A la a basic set for f and 

n5 (X\Â") •* (X,A) is a relative double cover for A. Then if 

f#t H*(X,A; R)p and 7*: (7,A; R)p are the maps Induced by f 

and T, u » fiber dim Eu( A)» and X » n " 1 ( A ) , the following equalities 

hold; 

C ( f | A 5 C ( f J
( " 1 ) U - ~t(?«)(ml)XX « C ( 7 | x ) . 

Proof? The proof of the equality C(f~*)v~ ' « C(^|jr) is exactly 

the same as the proof of Theorem (2.5) (recall that 7 preserves 

u-orientation on J) . To prove the other equality we note that if 

A. » A4 then C(f») = r|.(f) (definition (2.1)) and hence by 
« . . . 

Proposition 2.2 and the remark following C(f*) » exp( S ~ N mt
m) 

m=l 

where N m is sum of indexes of the fixed points of f
m restricted to /y. 

Thus if we let N m « cardinality of Pix(f
ln) ft /[ and TTm = 

cardinality of Pix(?m) H J, we have 

C(f . K ( f J ( - 1 ) U « exp( S iN mt
m).exp( Z i (-l)uNtm) 

A m=X m m m=l m m 

m-l 

and C(T\T) * exp( X A \ t n ) 
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So It suffices to prove JTm . NR.. + (-1)^. 
By the result of Smale (11, p. 767] the index 1(р,^) of a 

fixed point of f"1 - A ( - l ) u where л is + 1 depending on whether 
or not Df*11 preserves or reverses orientation. Thus if we let be 
the number of fixed points of frn where Df preserves orientation and 
N" « N - N* then since IT «2 I(p,fm) we have ( - l ) " l L * С - С -m m m m 4 4 m m m 
Since N * И* + С it follows that N + (-1)^ « 2N+. 

m m m m 4 ' m m 
On the other hand Lemma (3.2) applied to f01 says that 

1ST ж 2Nl, and hence we have N + (-1) N * W as desired. q.e.d. ш иг m 4 m m 

As a by-product we have essentially proved the following re
sult of Ouckenheimer (indeed by a method very close to that of 
[5] and [14]; see also Manning [8]) . 

(3.4) Corollary (Ouckenheimer); If f: M + M satisfies Axiom A 
and the no-cycle condition then C(f} Is a rational function. In 
fact it is a quotient of polynomials with Integer coefficients 
and constant term l. Thesame is truefor the zeta function o f f 
restricted to a basic set* 

Proof: One checks easily (or see [11, p. 766]) that 
A 

C(f) * П C(f . ) so it suffices to prove the result for д « д . 
1=1 л 1 1 

But since it is clear from the definition that C(f*) and quotients 
of integer polynomials with constant terms 1, it then follows from 
Proposition (3*5) that C(f|д) also has this property. q.e.d. 
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§4, The Reduced Zeta Function 

We can now relate the reduced zeta function of a basic set to 

homological invariants of f. Since this is really the heart of all 

our results we give two quite different proofs. As before if A4 

is a basic set, then and M i_ 1 will denote the elements of a fil

tration for f such that A-j c M

x - ̂ l-i ' 

4.1 Theorem? Suppose f : M •* M satisfies Axiom A and the no-cycle 

property and A^ is a basic set of index u, then the following are 

equal; 

( M u 

a) C(f L ) v x with all coefficients reduced mod 2 , I.e. 

z 1(f)(-
1 ) U 

b) The function obtained by reducing mod 2 all coefficients 

of n, (f; R) m n det(I - f^t) - j where 

f#jî H^(Mi,Mi; R)p is induced by f. 

n / 
c) The function r\±(f% z 2) «= n det(I - f«.t)K~±} where 

3=0 
f*jï Hj( Mi» Mi„x» z 2 ^ is induced by f. 

Topological proof: The fact that b) is equal to c) was proved 

in Proposition (1.6), hence it suffices to show that a) is equal 

to c) 

We first choose a relative double cover for â , as in §3, 

Iïî (Y,"K) -* (X,A) and then a filtration such that » X, M.^ ** A. 

The pair (X,A) can be triangulated and the triangulation lifted to 

a triangulation of (X*,Â") so that each simplex rr which intersects 
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X - A is covered by two simplices o and where T is the 
covering transformation which reverses orientation of 

Let C be the oriented simpllcial chain complex for the pair 
(X,A) and let Ü the oriented simpllcial chain complex for the 
pair (X\A~). The map n induces a chain map %; 'S -* C Let 
D * ker n # so we have the short exact sequence of chain complexes 
0 *• D C* - n* > C •* 0. The chain maps Induced on C and C* by 
f and f will be denoted by T and 7 respectively. We then 
define 

a » 7 D©idí D © R •+ D ® R 

p => ?©id: IT © R •* TT © R 

Y = T®id: C © R *• C © R 

Now H>(C © R) « ( 1 , 1 ; R), H»(C © R) * H»(X,A; R) and, p 
and y represent 7* and f̂  on the chain level. Since 
0 -* Dj ® R ** "C,j «5 R ~* Cj © R -* 0 is exact an application of 
Corollary (1 .3) shows det (I - o^t) (det(X - p^t) .J^detCl - Yjt) = 1 

so det (I - p.t) « det (I - aJ!t)det(I - y M and it follows that 

C(P) » C(a)C(v). 

Since C(P) - C ( 7 « ) and C ( Y ) « C(f»), *y (1 . 2 ) it follows from 
Proposition 3 .3 that C(a) - C(fL )^"^ where u » fiber dim E u(a 4) 

r l^ u 

is the index of ^,. Thus C(f , reduced mod 2 is equal to 
C(a) reduced mod 2 which by Lemma (1 .4) is equal to C(B) where 
0 - T J D © id: D © Z 2 -* D © Z 2. So it will suffice to show that 
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C ( P ) - ^ ( f i Z2). 

To prove this we note that chains in D are precisely -those 
chains in U which satisfy the condition that the coefficient of 
fTj equals minus the coefficient of T(oFj), Hence chains in D « Z 2 

are the chains with the coefficient (in Z g) of equal to the 
coefficient of T(rTj). It is now easy to see that the map 
ms C ® 2 2 -* D ® Zg defined by =» rfj + T(i?j) is a chain iso-
morphism. Also it is clear that 8*w « <p»T where T « f®id: C ® Z 2 ; 
Thus C ( P ) * C(t') but by Lemma (1.2) C(T') * C(f*) where 
f*: H*(X,A; Z 2) and this is precisely ili(f» Zg). q.e.d. 

Algebraic Proof; We again appeal to Proposition (1.6) for the 
equality of b) and c) and then show directly that a) is equal 
to b). By Proposition (2.6) we have 
r^(f; R) ("••*•) . n (1 - hyt*W)ml and C ^ f | A ) - n ( 1 _ tP(v)}-l 

Yc i Y^ A ̂ 
where "both products are taken over all periodic orbits in A^* 
Clearly these should be the same when reduced mod 2 if we can make s< 
of the infinite products. We do this by considering formal power 
series. 

Let Z[t] be the ring of integer polynomials and let S be the 
multiplicative set 1 + tZ[t]. Then S~XZlt] will denote the ring of 
fractions of Z[t] by S. Since for the inclusion 2[t] + Z[[t]] into 
formal power series the image of each element of S is invertible 
there is a unique extension of the inclusion to a homomorphism 
: ~ % ?rrt11 (see [7, p. 66-69] for this). 

Similarly we have Z 2 u 3 , locally*!** *>t (t\t Z,Jt]/4.% and 
an extension of the inclusion Z2[t] Z2[[t]J to fk Zg[t](t) ~> Z2£tt] 
The homomorphism 0 is injective since it is inactive on poly-
noml&\s. 
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Let m Z[t] -* Z2{t) -* Z 2[t], S^Zft] -> Z g f t ] ^ and 

6î Z[[t]] -* Z2[(t]] all denote reduction of coefficients mod 2. 

Then we have the following commutative diagram of homomorphisms 

Z[t] : ~ — — ~> 2£[t]J 

|o * I6 
^ ; * v 

z2[t] _ — i — — — • > z2[[t]} 

z 2 r t } ( t ) ^ ^ 

where the unlabelled arrows are the natural inclusions. The 

diagram is commutative because it commutes for polynomials. By 

(2.4) and (3.4) the rational functions and TI 4 are in s"
,1Z[t], 

The assertion of our theorem is that •(n1) » )* C o n ~ 

slderlng the diagram and the fact that 8 is lnjective, it suffices 

to show that 6«a(n£ ' ) « 9«a(Q±). 

To do this we show they have the same coefficient of t n. Let 

( v ^ f . ^ Y G ) be the set of periodic orbits in ̂  with p( YJ_) < n. 

Then the coefficient of t n in <x(vi'1^ ) is the same as that in 
s / ^ 

<x(p) where p « n (1 - a t p W T 1 . Likewise the coefficient of 
î 2 X i ^ p ( Y ) X 

t n in a(Ç. ) is the same as that in <x( o) where $ = n (1 - t * ^ * 

But * ( p ) - *(p), so e«a(p) - P « * ( p ) « P » * ( p ) - 8»a(p) and it fol-

lows that the coefficient of t in 8«a(r^ ' ) is equal to the 

coefficient of t n in 8»a(C^). q.e.d. 
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§5. Morse Inequalities 

(5.1) Definition; We define the partial homology zeta function 
C q - C q(fJ to be det(I - f # q t ) - 1 where f # q: Hq(Mj K) - Hq(M> R). 
Thus C • C(f*) = n Cx" } where n = dim M. 

q=0 q * 

In order to prove Morse inequalities we will need a standing 
hypothesis on the dimension of the basic sets (or on the dimen
sion of the global unstable manifolds). Recall that the index 
u^ of a basic set A x - fiber dim E u(A i)• 

(5.2) Definition; If f: M -» M satisfies Axiom A and the no-cycle 
property we will say that the basic sets of f satisfy the dimen
sion requirements for an integer q if it is true that each basic 
set A,£ with Index u± < q satisfies dim W u(A i) < q and each basic 
set Aj with Uj > q satisfies dim Ws(Aj) < n - q where n - dim M. 

(5-3) Remark; It is shown in Lemma 5 of [4] that 
dim A ± + \ > dim W U(A ±) and similarly dim A.j + (n-Uj) > dim Ws(/\j) • 
Hence the dimension requirements above are satisfied if 
dim A^ < Q - when u i < q and dim Aj < u^ - q when u^ > q. Prom 
this it is clear the dimension requirements are satisfied for all 
q if dim A* - 0 for all 1 . 

Recall that TI, (f) » n det(I - f^.t)^"1^ where 

Hj^ Mi* Mi-1* R^ ^ m ^ ^1 c Mi "* Mi-1* W e w * s n n o w *° relate 
these functions to the partial homology zeta functions Cq« 

(5.4) Proposition; Suppose f: M -* M satisfies Axiom A and the 
no-cycle property and the basic sets of f satisfy the dimenslon 
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requirements (5.4) for q. Then P ^ - 1 ^ n » n CI" 1^ 
ul<q 1 k«=0 K 

where P(t) is a polynomial with integer coefficients and constant 
term 1. 

Proof; Suppose M * r> r> 3 ̂  D !^ « iJ is a filtration 
N **" q / 1 \ k+1 

for f. Define T]q(M, ,M.) - n det(I - f#.t) * L ; where 

*"*kJ Hk^ Ml' MJ* R^ i s * n e m a p i n d u c e d b v f* Consider now the 
exact sequence 0 -» B -* Hq(Mj) -» H^N^) -» H q(M i,M J) •» H q - 1(Mj) -> • • • 
where B « ker(i*: Hq(Mj) -* H (M^)) and the remainder of the se
quence is the exact sequence of the pair (M^Mj). Note 
f*q( B) <= B and let P l i * det[I - (f # q|B)t]. Then applying 
Corollary (1.5) to this exact sequence and the endomorphisms of 
its elements induced by f we obtain 

p["^ q + l^ q(M J) ,* : L-'n q(M i)^ q(M l,M 1) ," : L - 1. Thus, if we set j « i-1 
and denote P i by P i we have, 

i. v ^ , ^ / - •«n q(M 1).r, q(M 1, 1)- 1. 

Taking a product over 0 < 1 < t we get n *n (Mi»Mi»l) m 

i»l "" 
^ q(M 1)«n q(M n)- 1 n P/" 1^ » T> q(M)-P (~ l ) q + 1 where P - HP,, 

* u i«l 1 1=1 1 

since « M and M Q = 0. Notice P is a polynomial with Integer 
coefficients and constant term 1. 

By hypothesis if ̂  is a basic set with u^ < q then 
dim W U(A i) < q so by Lemma 6 of [4 ] , f*fc; H k(M j L,M 1 - 1; R) P is 
nilpotent if k > q. That is, det(I - f,fct) » 1 if k > q (the 

k 1 
characteristic polynomial of a matrix A is t h(^) for some k 
where h(t) « det(i - At)). H follows that * q( Mi#%_i) ~ 
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n / n v k+1 
r\, ~ II det(I » f-vt) ̂ " a ; , whenever u. < q. 

1 k=0 K 1 ~ 
On the other hand when > q, dim W s(Aj) < n - q so, again 

by Lemma 6 of [4 ] , we have f # k is nilpotent if k < q. So a similar 
argument shows n°(Mj,M4 ,) = 1 If u, > q. 

Thus 

P ( " 1 ) Q F V ( M ) = H T>q(M,,M, , ) - It r, . 
1=1 1 x " x ut<q 1 

Since by definition, 

* q(M) - n d e t C T - f ^ t ) ^ 1 ^ . n c i " 1 ) k 

k=0 K k=0 K 

we have the desired results 

c t\q q w •»\k 
? { ~~ } n r». « n Ci" ; . q.e.d. 

u j < ^ * k = t ° 

(5*5) Corollary; If fj M ~* M satisfies Axiom A and the no-cycle 
property and has basic sets A}>••* > > then 

n n, « C(fJ - ti(f; R) 
1=1 A 

Proof; This is easily proved directly, however as remarked in 
*» n „ / t ̂  k 

( 5 . 1 ) , C(f*) = n Cv"x' where n = dim M, and if we now apply 
k=0 K 

Proposition (5-4) with q = n and q = n + 1 we see that there are 
polynomials P^ and Pp such that 

/ 1 "i n X «, /«! \ n-f 1 i „ 
P}~ X / n ru « C(f*) and P^" 1' n TI. « . C ( f # ) . 

1-1 1«1 1 
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It follows that P^ » P 2 - 1 so we have the desired result. Note 
the dimension requirements are always satisfied. q.e.d. 

(5-6) Corollary; If f: M •+ M satisfies Axiom A and the no-cycle 
property and its basic sets satisfy the dimension requirements 
for q and q - 1, then P« TI ro ' ~ Cn for some integer poly-

u.«q x q 

nomlal P. 

Proof; Take the equality of (5.4) for q and divide by the 
equality of (5.4) for q - 1. q.e.d. 

We can now obtain the Morse inequalities for the reduced 
zeta functions Z^. The following result is analagous to Theorem 2 
of [4], but uses the reduced zeta functions and thereby obviates 
the necessity of the hypothesis about orlentability. 

(5*7) Theorem; Suppose f: M -* M satisfies Axiom A, the no-cycle 
property and the dimension requirements (5.5) for q. Then there 

T. ~~ 
is a polynomial pcZ2[t] such that p n Z. is equal to the mod 2 

~ ~ u.<q •'• 
C »C0 p * " q + U 1 

reduction of — * where T. = (-1) A and 
t ^ i 

u A • fiber dim E u(A i). 

Before giving the proof we comment on the relation of this to 
the Morse inequalities for a Morse function. If f is the time-
one map of the flow obtained by integrating minus the gradient of 
a Morse function then f satisfies Axiom A, the no-cycle property 
and the dimension requirements for all q. The equality above then 

T i 
imnlies that the degree of II Z. is less than or equal to the 

u.,<q 



29 
*m mm 

degree of the mod 2 reduction of — - — — r ^ — — • One checks that 
C n * C * • • * 

these inequalities are exactly the classical Morse inequalities 
relating the Bettl numbers of M and the number of critical points 
of a Morse function. 

Proof of (5.7): If we take the equality of (5*^) and raise it to 
the power (-1)^ we obtain 

p n 1 } . n d - 1 ' « / q : 2 — . 
ui<* ^ ° Cq~l*Cq-3 

By Theorem (4.1), RIJ with coefficients reduced mod 2 is equal to 
u. 

(-1) 1 

Z> ; . Hence if p is equal to P with coefficients reduced 
t " t *C o •*" 

mod 2 we have p* IT Z, 1 * mod 2 reduction of ~ — , q.e.d. 
i~ vq-l Q-3 

Applying the same type of argument to the equality of (5*5) 
we obtain the second of our main theorems. 

(5*8) Theorem; Suppose f: M •* M satisfies Axiom A and the no-
cycle property, and has t basic sets, then the following are 
equal; 

I ui 
a) n z f" 1 ^ where u, - fiber dim E U ( A . ) . 

i=l A ~ 1 1 

n / n x k+1 b) The reduction mod 2 of n(f; R) = II det(I - f«i,tr ' 
k=0 

where f # k; Hk(M; R) p is Induced by f. 
n , , vk+1 

c) n(f* Z 2) - H det(I - f # k t ) ^ " A ; where f*R: Mf_(M* Z 2) p 
k^Q 

Is indueed^by _ jp» 
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P R O O F . The F A C T T H A T B ) T S E Q U A L T O C ) I S A C O N S E Q U E N C E O F — , — ^ 

C O R O L L A R Y (1.6). P R O M (5.5) W E H A V E n N . » N ( F ; R ) A N D F R O M 
1=1 1 U. 

T H E O R E M (4.2) R E D U C E D M O D 2 I S E Q U A L T O Zj" ; . I T F O L L O W S 

T H A T A ) I S E Q U A L T O B ) . Q . E . D . 

(5.9) P R O P O S I T I O N ; I F F S A T I S F I E S T H E D I M E N S I O N R E Q U I R E M E N T S 

F O R Q A N D Q - 1 ( E . G . I F A L L B A B I C S E T S O F F H A V E D I M E N S I O N 

0) T H E N T H E R E I S A P O L Y N O M I A L P C Z 2 £ T ) S U C H T H A T 

P N = M O D 2 R E D U C T I O N O F D E T ( I - F ^ T ) " 1 W H E R E F* QJ H Q ( M ; R ) P 
UJ=*Q 

I S I N D U C E D B Y F. 

P R O O F ; I F u^ m q T H E N B Y (4.1) Z^ I S T H E M O D 2 R E D U C T I O N O F 
(ml)** 

N £ ' . B Y (5.6) T H E R E I S A N I N T E G E R P O L Y N O M I A L P S U C H T H A T 
( ~ i 

P * N R , I ** CQ = D E T ( I - F * Q T ) . R E D U C I N G M O D 2 G I V E S T H E R E 
S U L T , Q . E . D . 

The F O L L O W I N G P R O P O S I T I O N G I V E S A N E C E S S A R Y C O N D I T I O N F O R A 

C O L L E C T I O N O F " A B S T R A C T " B A S I C S E T S T O B E E M B E D D E D A S T H E B A S I C 

sets O F A N Y D I F F E O M O R P H I S M F O F M ( N O M A T T E R W H A T T H E H O M O T O P Y 

C L A S S O F F ) . B Y T H E D E G R E E O F A R A T I O N A L F U N C T I O N W E M E A N , O F 

C O U R S E , T H E N U M E R A T O R M I N U S T H E D E G R E E O F T H E D E N O M I N A T O R . T H E 

F O L L O W I N G R E S U L T W A S I N S P I R E D B Y T H E R E M A R K O F S M A L E [11] T H A T 

T H E D E G R E E O F T H E H O M O L O G Y Z E T A F U N C T I O N ( O U R N ( F J R ) ) I S M I N U S 

T H E E U L E R C H A R A C T E R I S T I C O F M . 

(5.10) P R O P O S I T I O N ; I F FT M -» M S A T I S F I E S A X I O M A A N D T H E N O -

C Y C L E P R O P E R T Y , A N D H A S B A S I C S E T S ^ * ••* # A/, W I T H 

mx » F I B E R D I M E U ( A I ) , T H E N ^ ( - L ) U I D E G Zx « - Y ( M ) W H E R E Y ( M ) 
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Is the Euler characteristic of M. 

Proof; Prom Theorem (5.8) we have 

4 y ,vul n , ^k+l 
n zj~ i ; » n det(I - f^tr" 1' , 

1=1 1 k=0 ' * 

where f^s H^(M; Z 2) P is induced by f. The degree of the 
if U. 

left hand side of this equation is 2 (-1) " deg Z . Now 
1=1 1 

f*V H,_(M; Z0) P is an isomorphism so the degree of det(I - f̂,. t) 
K K ^ n / ,*k+l K 

is rank Ht(M; Z„). So the degree of n det(I - f^tr" 1' is 
n k - 2 (-1) rank Hlr(M; Z 0) = - y(M) and the result follows. q.e.d. 
k=0 K 
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§6. The Global Bifurcation Problems Examples and Questions 

We are Interested in the problem of how the basic sets can 
change when one Axiom A, no-cycle diffeomorphlsm is isotoped (or 
even homotoped) to another. Prom Theorem (5-8) we have that 
n z i 3=5 J Z 2) and since rv(f; Z g) depends only on the homotopy 
type of f, it follows that if f and g are homotopic then 

ui u1 
n z ^ f ) ^ . I l Z ^ g } ^ . 

Several special cases of this give partial answers to in
teresting questions: 

1) When can an isotopy remove a basic set ̂ of f while 
leaving all others unchanged? A necessary condition is 
that Z±(f) - 1 

2) When can an Isotopy "cancel" two basic sets and ^^ 
leaving all others unchanged? A necessary condition is 

u 4 u 4 

z[-» ^ 3 - 1 
3) When can an isotopy of f to g change a basic set 

f: ^ -» A i to a different basic set f: •* leaving 
others unaltered? A necessary condition is 

Z 1 ( f ) ^ 1 ) * - z i{g) (" 1 ) ". 

In order to give several examples with zero dimensional basic sets 
we review briefly the structure of these basic sets. 

If G is an n x n matrix of zeroes and ones we define 
S A c nfl,2,...,n} *y 2 A = !i^'LJxicfl'**,'n} a n d 
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A = 1 for all 13. If (l,...,n} is given the discrete 
xi xi+l 
topology and E A a topology as a subset of the product then 2 A 

is a compact metrizable space. 
The shift homomorphism n: £ A *• 2 A is defined by n((x^)) » (x^) 

where x^ = x^+i ( n e r e ) denotes the bl-lnflnite sequence whose 
ith element is x^). 

A result of Bowen [2] shows that on any zero-dimensional 
basic set f is topologically conjugate to some shift ,TJ 2 A «• S A 

(the matrix A is not unique however). 
It is not difficult to check that Nm(,r), the number of fixed 

points of * m: S A -> S A is tr A m. Hence we have 
C(rr) - exp(S I If/) - exp(sitr A mt m) - -1 by ( 1 . 7 ) . 

m m m det(I - At) 

(6.1) The Full Shift: If A is the n x n matrix with all en
tries 1 then n: 2 A -* £ A is called the full n-shift. This can be 

o 

embedded as a basic set of dlffeomorphism of S". Figures 1 and 
2 illustrate this for n. ~ 2 and 3. 

m * ' III . II I -.-III I - - I " I I I! |,||| V- " • ' f 1 *• II I Til r.|<r III HT ,1.11 « . • « ! ! • » , . • • ! -

l ^ . B / 
Figure 1 

In both cases a disk is mapped into itself. In Figure 1 the 
dlffeomorphism will have as basic sets a fixed point source (not 
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shown), the fixed point sink p, and a full two shift (see [11} for 
an analysis of this). This dlffeomorphism can be isotoped to re
move the two shift without disturbing the fixed points by altering 
it so the disk is mapped into itself and everything tends to p. 

One checks easily that if n is the 2-shift homeomorphism 
C ( T ) * X-2t s o 2 ^ 13 1 a s i s necessary. Exactly the same analysis 
works for the full n-shift if n Is even. 

Figure 2 

For the full 3-shift the basic sets are two fixed point sinks 
2-shift a n d 8 fixed point source (not shown). In this 

case an lsotopy can replace the shift by a single hyperbolic fixed 
point (Figure 2) without disturbing the fixed point source and sinks. 

Figure 3 
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1 1 
Also C(<?) = ij}t 3 0 88 Y"T"T' " t n e s a m e R S the reduced zeta 

function of a single point. For any full n-shift with n odd one 
can do the same kind of construction and Isotopy. 

(6.2) Example? We give now an example of a shift which occurs a 
p 

basic set of a dlffeomorphism of S , but which cannot occur with all 
other basic sets as fixed points. Let a be the shift based on the 
matrix , i.e. the square of the shift based on (J J ̂ . 
One computes easily that Z(cr) » » . Since for any dif-

1 + t + t 
feomorphism f of n(f; 2«) - ~—«• , it is not difficult to 

* (1 + t r 
see that we cannot have n(f j Z 2) «* HZ^ 1 if one of the Z 1

,s is Z(nr) 
and all others are ^ * (the reduced zeta function of a fixed 

1 r-l^U^" 
point). The simplest way to have —«• = HZ} ; is as follows: 

(1 + t r 

Let Z. * =—r, u. » 0 ( a sink of period J) 
1 + f l 

%2 * ——g-, Up = 1 (the subshift for ^ ) 
1 + t + t 

Z j 83 X' V u 3 23 2 ( a fixed point source). 

ui 
Then nzj"1^ « — — r r , since (1 + t ) 5 - (1 + t)(l + t + t 2 ) . 

1 (1 + t)d 

In [11] Smale gives a picture of a realisation of this dlffeo
morphism which we reproduce in Figure 4. 

lC(~ . ' f ig Z =^J N | B 
*><) 
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The disk is m a P P e d into itself as shown. The points Py.^.P, 

are an orbit of period j5 which is an attractor. The other basic 
sets are a point source (not shown) and the shift described (some 
indication of this can be found in [ 1 1 ] ) . 

(6.3) Example: In [15] R. P. Williams showed that any shift 
a: £ A •* S A which is topologically transitive can be realized as a 
basic set of a dlffeomorphism of . We give an example of a 
shift which cannot be realized as a basic set of a diffeomorphism 
of any S n in such a way that all other basic sets are finite (i.e. 
periodic orbits). 

If 

A * ( 0 0 1 ) 
\l 1 0 / 

then tjt S A -» 2 A is a topologically transitive shift and 
Z{rt) = n r • It is easy to check that in Z9[t], (1 + t + 1 r ) 

1 + td + \? d 

7 

is an irreducible factor of 1 + t , and hence in the algebraic 
closure of Zg its roots are three of the seven seventh roots of 
unity. On the other hand if is a basic set which is a point of 
period p then Z 4 » . In the algebraic closure of Z«, 

i 1 -f t p 2 

1 + t^ must have as roots, either no seventh roots of unity or all 
seven of them. Hence it is impossible to have 

u. 
nZ|~ t » n(f» Z 2) if all basic sets are periodic except the one 
conjugate to at £ A •* £ A, because r\(f'9 Z 2) » ~ — p or 1 for any 

(1 + t) ~ 
dlff eomorphism f: S n -» S n. 
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(6.4) Shoes (after Zeeman [16]) 

We have emphasized the reduced zeta function because it is an 
invariant of an abstract basic set, that is, the topological con-
jugacy type of f restricted to the basic set and does not depend 
on the embedding of the basic set or the extension of f to M. 
However, if one knows extra data it may be possible to compute the 
functions rt̂ (f; R) which are stronger invariants and (5*7) and 
(5.8) can then be replaced by ( 5 .4 ) , (5*5) and (5*6). For example 
from (5*5) we have RT(f; R) - n <n. which shows that a necessary 

1-1 1 

condition for an isotopy to cancel basic sets fr± and Aj i s t h a t 

^i^j 88 o r ^ a ^ a s ^ c s e * c a n ^ e removed, then m 1> etc* 
In £16] Zeeman describes a framework for studying diffeomorphisms 

with zero dimensional basic sets, and a simple way of describing 
what amounts to the germ of an extension of f on the basic sets. 
What he calls a shoe is determined by two positive integer matrices 
A (the positive intersection matrix) and A" (the negative inter
section matrix) and the index u of the basic set. The diffeomor
phism on the basic set is topologieally conjugate to the shift 
rrt S A •* 2. where A « A + A~ (see [16} for more detail). Also 
from (2.2), T>, = exp( X ~ N__tm) where N is2l(p,fm) and the sum 

1 m=l m m m 

is over all peFix(fm) 0 ^ . it is not difficult to show that 
N m - (-l)utr A m where "k ~ A+ - A"*, and hence r\±(U R) -
det(I - At) v ; by ( 1 . ? ) . Thus in this framework, where one 

+ -
knows both A and A , the functions are easily computable and 
it is more appropriate to use them than the reduced zeta functions. 
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