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A Reduced Zeta Functlon for Diffeomorphisms

by

John M. Franks*

In [1] Artin and Mazur introduced the zeta function for a
diffeomorphism in analogy with the Weil zeta function in algebralc

oo
geometry. It is defined to be {(t) = exp( = %.Nmtm) where N 1is
m=1

the cardinallty of the fixed point set of ™.  This has proven to
be an important invariant for the study of the orblt structure of

a large class of diffeomorphismslof compact manifolds -~ those which
satisfy Axiom A and the no-cycle property. Thls class is defined
and described in $2 below, but we mention that it is open in the

C1 topology, contalns a representative of every isotopy class [13],
and is, in fact, dense in the CO topology [9].

For these diffeomorphisms the zets function is raticnsl and
in fact the quotient of integer polynomials with constant term 1.
(see [5], [8] or (3.4) below). Thus for these diffeomorphisms a
finite amount of data determines all of the numbers N,

In this article we consider a weakening of this invariant
which still contains considerable information and has the advantage
of being closely related to homologlcal invariants of f.

In the following we assume that A, 1s a basic of f (see

* Research supported in part by NSF Grant GP42329X. AMS subject
classification number 56F20.



2 tor deiiniltion)

Definitiov: The reduced zeta function ¥, of T on A, is defined

to be the rational function C(f%A ) with all 1its coefficients re-
N

duced mod 2.
One of our main results ((5.8) in the text), relates the re-

duced zet: functions to homological invarlants of .

Theorem. Suppose f: M = M satisfles Axiom A and the no-cycle

property, and has basic sets Ay.---.Ay» Lhen the following are

equal:

.
(-1) *

2
a) n 2z,

where u, = fiber dim Eu(ki}
'j a1 l T—

b) ne reduction mod 2 of

I (~1) k+1
n{fy R) = T det(l - f*kt) where
k=0 W
fg HK{M; R} is induced by f.
n ] ‘r’-l\ k”’f'.}
c) nif; Z5) = T det(I - Ty ) / where
3 k=0
fuyt He (M3 Z,) © 1is induced by .
The function n{(f; R) in b) (before reduction) is sometimes

called the false or homology zeta function since it can be obtained
by replacing N_ in the definition of ¢ bty L(f"), the Lefschets
number of M.

This theorem has lmmediate applications to what one might call
the global bifurcation problem: namelv how can baaiﬁ sets be
“honged as £ 1s isotoped to a new Axiom A, no-cycle diffeomorphism,

For example, it's clear that if iwo basic sets, Ay and A’ can be



cancelled leaving other baslc sets unchanged then
u

11
i 4
z§”1> -z%'l) Y e,

topy which does not alter other basglic sets or introduce new ones

Also 1f a basle set can be removed by an 1so-

then 1t must have reduced zeta function 1. Examples of these
phenomena are given in §6. This general problem can be viewed
as an extension of the problem of simplifying a Morse function by
cancelling critical points.

The reduced zeta functions also glve a necessary condition for
a collectlon of abstract baslic sets to be the baslec sets of a dif-
feomorphism (in any homotopy class) on a manifold M. This is

(5.10) in the text.

Proposition. If f: M- M Satisfies Axiom A and the no-cycle pro-
u-!
perty, then 5(-1) “degzﬁmny(M} where y(M) 1s the Fuler character-

istic of M.

Here degree means the degree of the numerator minus the degree

of the denomlinator.

[

It is important to emphasize that 1 contains more information
than Just the parlty of set of fixed points of ™ on Ay For ex-
ample if we consider a full two-shift (see 86 for definition) and

a8 single orbit of pericd 2, then both these examples satiszsfy

N, ® Omod 2 for all m but thelr zeta functions are 1/1-2t and
1/1-t° respectively (see {2.6) and (6.1)),s50 thelr reduced zeta
functiohs are different. Also note in the provosliticn above that
the Z1 and the numbers uy determine the Buler characteristic (not
Just the Euler characteristic mod 2).

The thecorem above (5.8) is in fact a speclal case of more

veneral results (5.4~7) which are generallzatlons of the Morse



inequalities relating the Betti numbers of a manifold M to the
number of critical polnts of a Morse function on M. In fact our
(5.7) and (5.8) are simply the mod 2 anslogues of Theorems 1 and 2
of [4]. The reduction med 2 gives somewhat weaker results, but
is appllicable to & much larger c¢lass of diffeomorphisms, as no
assumptions about orientability need be made.

The heart of the proof of all these results 1s a local version
of the mein theorem above which has the same hypothesis and 1s
(4.1) in the text. Here p, will denote a basic set of f and
Mi’ Mi-l the elements of a filtration for f (see §3) such that

Ay © Mi" Mi-l'

Theorem: Suppose Ay 1s_a basic set of f and u = fiber dim Eu(Ai),

then the following are eqgual:

a) Z(

b) The mod 2 reduction of

n (”11’ ,j‘*’l
T det(l = f*jt) -/ where

n,(f3 R) =
1 2

f*Jg Hj(Mi’ My ;3% R)& 1s induced by f.

-1yt
‘ where

ARG i NS,

n
e) ﬂi(f; 22) ujgodet(l - f*Jt)(

f*J: HJ(Mi’ Mi-l; 22);>>is induced by F.

It 1s 8 pleasure to achknowledge helpful conversations with
K. Dennlis, L. KEvens, M. Stein, and B. F. Williems durins the

preparatlion of this article.



§1. Preliminaries

n

(1.1) Definition: IfV = 9 vV, is a graded vector space over any
— 1=0

field and 1¢ V= V a gradation preserving linear map (Tis vy » Vi)

~ n (*"1) 1+l
then we define ({7} = 0 det{(I =~ Tit) .
1=0
E(T) is a rational function of t and in fact a quotient of
polynomiale p(t)/q{t) with both p and q having coefficients

in the field of V and constant term 1.

The following 1s a slight generalization of the classical

Lefschetz~Hopf trace formula.

n
(1.2) Lemma. If C = iisci and ai: Cy » Cy_q 18 a chaln complex of

finlte dimenslonal vector spaces and T¢ C - C is a chaln map then

(1) = T(r.,) where 7,: H{C) - H, (C) is the map on homology induced

by r.

Proof: Suppose we have a commutative dlagrem of vector spaces

O - vy ui”> vy M§_> vj - 0
; a 58 ’Y
V4 \ W
1 J
OV, —>V, 4>V, 0

where the horizontal rows are exact. Then chcosing a bhasis for VQ
which begins with a basls of 1(vl) we can repregsent 8 by a matrix

of the form



where Al 1s a matrix which represents o (with an appropriate
basis) and A, is a matrix which represents . From this it
follows that

det(I - Bt) = det(I ~ At)
= det(I ~ Ajt)det(I - A,t)

= det(I - at)det{l - vt)

For notational simpliclity we will henceforth denote
det(I ~ tt) by P(7t) for any vector space endomorphism . Thus
we have shown for the endomorphisms a, B, and ¥y in the diagram
above P(8) = P(a)P(v). We apply this result to two short exact
sequencés from the chain complex C. Letﬂg?i = ker(3,) nnd
B, = im(3;,,) then

3

.._...}_.)}3 -

0= ;21 = C 1.1

1

and O = B, - )2; - Hi(c) = 0 agre exact and on each of the vector
spaces in these sequsnces there 1s an endomorphism induced by the
chain map 7.

Applying the result above to these two cases we obtaln
P(rici) = P(T(j?i)?(ngiul)

and P(Ti;%;) = P(TiBi)P(w*IHi(C))- Thus



=3

P(ric,)

) = P(mH,(C))P(r|B,)P(r|B

iul)'

Hence

. 1
) = 1 p(rlc,) (=) *
1=0

n (P(r, |H (c))\(‘l}i+l n (P(r|B,)P(7|B ))(“1’i+1
1=0 A 120 1 1-1 ’

but since everything cancels in the product of the P(TfBi), we

have

- n ‘ (_1) I+ ~
F(r) = T p(ny 1, (0)) < Tr).

g.e.d.

An important speclal case of thls result which will be used
subgequently 1s the following.

3, 3
2> v, 1

(1.3) Corellary. If 0=V, eV —=>=01s an

exact sequence of vpctor spaces and 7 V, #+ V, are endomorphisms
A  TFT

° = ) -1 =
such that 3, ° 7, =7, , » 3, then 1§0 det(I - 7 t)( = 1.
n
Proof: C = 2 Ovi together with {3,] is a chain complex with
H(C) = 0 and 1 = @7, 1s a chain map. Thus
m o det(l - r,t)} = £{T) = C(7,) = 1 since H,(C) = O. q.e.d.

1=0



(1.4) l.emma: Suppose T: C = ¢ ip s chaln map on a finitel
~ emmaz  JUppose 18 Y

ey

generated free chain complex, and a = v ® 1d: C ® RD and

B = 1@ 1d: CO 7,5, then {lo) with all coefficients reduced

mod 2 is equal to Z(B};

Proof: Since € 4is a free chain complex we can pick a basis
80 that the matrix of Qy = Ty ® id: (‘:,.L ® R - Ci ®# R 1s the same
integer matrix representing 7,: C1 -+ ﬂi and such that the matrix
. o 2 [s]
of B4: Cy ® 2y = C, O 4y is the matrix of 7, reduced mod 2. lence

det(I - ai) reduced mod 2 1s equal to det(l - 31 Y. Now,

- n ( 1}1’%"1 -~ n (~1)i+1
(o) = 1 det(Il = aiz)‘" and {(8) = M det(I -~ 8,t)
1=0 1=0 -

where n = dim C. Thus E(a) with 811 coefficients reduced mod 2

is equal to Z(B). g.e.d.

We wish to consider Z(f*) where £, is the map on the homology
of a space induced by a continuous map of the space. Since it will
be necessary to consider different fields of coefficlents we will

use the following notation.

(1.5) Definition: If £: (X,A) = (X,A) 1s a map of a topological

pair to itself and F 1is a field then »(f; F) = Z(f*) where

fot H (X,A; F) » H,(X,A; F) is _the mav induced by f on the homology

of (X,A) with ccefricients in F.

(1.6) Corollary. If f: (X,A) = (X,A) is a continuous map of a

finite simplicial palir then n{f; R) with all coefficients reduced

mod 2 is equal to »{(Tf: 22).




gggggp Let C Dbe the free oriented simplicial chaln complex of
(X,A) and let 7: C = C be a chain map arising from a simplicial
approximation to f. Then H, (X,A; R} is the homology of the com-
plex ¢ ® R and H, (X,A; Z,) 1s the homology of C @ Z,. The maps

induced by f are induced by the chain maps

=1 3d» COR =» C@®R
and

B=r1® 4id:r C© 22 - Ce 22.‘

Hence by Lemmas (1.2) and (1.4), m(f; R) with all coefficients
reduced mod 2 is equal to n(; ZQ). a.e.d.
For later use we cite one other well known fact and give its

proof since it is quite short.

(1.7) Proposition. Suppose A is an n x n real matrix then

o0
exp( = tr A™™) = 1
m=1 det{I ~ At)
s 1
Proof: 2 = A™™ 18 the formel power series for - log(I - At),
me==],

(the series will of course converge for t near 0). It is also

a well known fact that for any matrix B, exp(tr B) = det exp(B).

i

Hence exp(Z % tr A™™M) exp{trs % A" = exp[tr(=-log(Il - At))] =

1

det[exp(-log(I - At))]
det(I - At)

i

g.e.d.



§2. Axiom A Diffeomorphisms with the No-Cycle Property

We wish to study the structure of dlffeomorphisms which satlsfy
Axiom A of Smale [13) and the no-cycle property, 20 we now briefly
descrihne this class of diffeomorphisms.

Let f: M =» M be n Cl diffeomorphism of a compact connected

manifold M. A closed f-invarisnt set A © M 1s called hyperbolic

if the tangent bundle of M restricted to A is the Whitney sum

of two Df-invariant bundles, T,M = E'(p) ® E®(p), and 1if there are
t

constants € > © and 20 < A < 1 such that

Ioe(v) | < exlv] for wvek®, n > 0

and

-----

IDE™Mv) | < cAlv! for verE®, n » O.

The diffeomorphism f 415 seld to satisfy Axiom A if a) the
non-wandering set of £, Qf) = {xeM: U N 1) f“(u) # ¢ for every
neighborhood U of %} 13 a hyperbolic sgi? end b) () equals
the closure of the set of periodic points of £, If  satisfies
Axiom A, one has the spectral decomposition theorem of Smale [11]
‘which says of) = Ay U st U A, where A, are palrwise disjoint,

feinvariant closed seis and fi, is torologleally trensltive.
ib}

These A, are called the basic sets of f. We consider dif-

feomorphlsms which in addition to Axiom A satisfy the no-cycle pPro~
perty [12] whilch we now define. If Ay 1s a basic set of f then

its stable and unstable manifolds {({6] or [9]) are defin:.d by



[ =3
[

WE(A) = (xeM]a(£7(x), A;) » 0 a8 n » =)
and
whAy) = [xeMla(£™(x), A;) » 0 as n = =].
One says Ay < Ay if w“(AJ)‘n ws(Ai) £ ¢, If this extends to

a total ordering on the baslc sets Ays then £ 1s said to satisfy
the no-cycle property and we re-index so thet A < AJ when 1 < J.

If Ay 1s a baslc set of f: M = M then we define the index u,
of A, With respect to f to be the fiber dimension of E'(A).

We review briefly the filtrations of [12] associated with a
diffeomorphism which satisfies Axiom A and the no-cycle property.
In fact the purposé of imposing the no-cycle condition is to obtailn
this filtration. It 1s possible to find submanifolds (with boundary
and of the same dimension as M),

M= M‘ D oree M D MO = & such that

1

U £(i,) € int M

M1 12

Ay = N fm(M - M, .), and
i me? i 1-17"

WA UMy =M U N (M

)Q
mZO 1

Henceforth £f: M~ M will be a diffeomorphism of » . ...pact
'menifold satisfying Axlom A and the no-cycle property and
M=M DM D+ DMy = 7 will be a filtration for f.

(2.1) Definition: If Ay &M, - My 5 15 a basic set of f then we
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141
-1y
define ni(f) mjnﬁﬁet(l - Jt‘( where f,J: HJ(Mi,Mi_l; R) -

HJ(Mi’Mi-l’ R) is the map induced by f. Alternatively
ny(£) = T(£,) where 1, = of, ,.
The function "y is sometimes called the homology or false zeta
function of £ on Ay because (as the foliawing propogition shows)
it can be cobtained by taking the definition of the zeta function and
replacing the number of fixed points of £ by the number of fixed

points seen by homology, i.e., the Lefschetz number of £™,

) o "~ o~
(2.2) Proposition: ni(f) = exp % 1 N t where N = L(f™ M, oM, 1) =
m=l M m =

2(-1) tr f xy 2nd and T, x4t HJ(Mi’Miul; R)o 1s the map induced by f.

Proof: We compute

«© - o
exp( = LN t" = exp( £ I (3(-1)Jer £ )"
m=1 ' m=)
n o 1
= 1 exp[(’_~l)J b tr f gt my
J=0 m=1 ™
n 1)J+l
= T det{I - £, u)‘ by proposition (1.6
30
= ﬂi(f). q.etdu
We remark that ﬁh is egunl toZ I(ps fm) wvhere the ...m is taken

over all fixed points of £" in Ay and 1{p; ™) 1s the 7. schetz in-
dex of the fixed point p under f" (see [3] and Lemma * of (4] for
this). This shows than ﬁm 18 independent of the cholce of filtration

elements M, and M, , so we have the following.


http://eqt.il

1z

(2.3) Corollary: ny (f) 1is independent of the cholce of filtration

for £f.
It should be noted however that =, 1s not an invariant of A,
and f restricted to Ai’ but depends on how Ai is embedded in M

and how [ extends to M.

(2.4) Definition: If g 1is a basic set of f, we say f preserves

(or reverses) a u-orientation on A Aif the bundle Eu(A) is

orientable and Df preserves (or reverses) this orientation.

When f preserves or reverses a u-orientation on a baslic set
there 1s a close relationship between »n and the zeta function of

f restricted to the basic set.

(2.5) Theorem (Smale): Suppose hy is a basic set of £ and
Ci denotes C(f!Ai), then

Ci(t) 1f f preserves a u-orientation on Ay

ci(-t) if ¢ reverses a u-orlentation on A,,

u
where g = (-1) * and u, = fiber dim E'(y,) 1s the index of A,.

Proof: Smale [11] actually proved this result only for Anosov dif-
feomorphisms (i.e. when Ay = M)}, but the proof is the same forlthis
case. Since 1t is short we give it. By a result of Smale (11,

P 767], if chix(fm) N A4 then the index of p I(ps £7) = Am(ul)ui .
At where Am 1s + 1 depending on whether or not o preserves or re=

verses u-orlentsatlion on Ay Thus 1f N 1s the cardinality of
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Fix(fm) N Ay and Rﬁ = LI(p; £©) with the sum taken over all
peFix(fm) n Ay we have N = A1y Now if f preserves u-orienta-

tion on Ay then A =1 for all m 8o

[ 4]

¢ (t) = exp( 2 3
M=

m
l-ﬁNmt)

= exp{e
m=1

i 48

1o .m
m Nmt )

(o}
“i'

On the other hand if f reverses u-orientation on Ai then

Ay = (=1)" =0,

Ci(“t) ;;“ Nm(-l)mtm)

i

o]
exp( %
m=1

-}

exp(a =
m=1

L

o m.m

Hir

e
. 1 oo.um o
mey MM i

(2.6) Proposition: Let f: M -+ M be a diffeomorphism with all

periodlc points hyperbblic, then as formal power serles,

a) §(f) = n(1 - tp(Y))“l where the product is taken over all
y

periodic orblts v and p{v) denotes the least period of .

. - p(v) (*-1)“!("")4.-l
b) n{f; R) = 5{1 - Ayt )

p(y), u
peRt Y B

where A, is 1 if

- Ei preserves orlentation for xev and -1

otherwise, and u{y) = fiber dim ES.




If £ satisflies Axiom A the game formulas hold for Ci and ny 32

the product is taken over all periodic orblts v < Ai'

Proof: Since every periocdle point is hyperbolic and we assume M
1s compact it follows that [x|xev and p(v}) < n} is finite for any
fixed n. If v 1s a single periodiec ordbit of period p then it
1s easy to check C(f,v) = (1 = tp)'l. We now fix an integer n and

let [Yl,...,vsl be the set of periodic orbits wit? p?riod
s PlY
i

-]
p(vi) {nand X = 1glv1, then t(f{x) = y©h.

s
m(1=~t
1=1

But Nn(f) is equal to Nn(f‘K) since any fixed point of f° is

in X. Thus the coefficlent of t" in {(f) = exp(Z % Nm(f)tm) is the

it

same as the coefficient of " in {(fly) = exp(Z %-Nm(f‘x)tm) -

p{v,) _
1 ) L, However, since (1 = Py~ 21 4 tP 4+ 7P 4 cee,

plv,)
1y-1

S
T(1~t%
1=1

S
the coefficient of t™ in 1 (1L -t is the same as the

i=1
coefficient of t" in {1l - tp(Y))“l vwhere the product is taken over
v .

2ll perlodic orbits v. Thus we have shown the coefficlent of T

in {(f) and N{(1 - tp(V))"1 are the same, so this proves a).

y
The proof of b)) 4is similary; we use the result of Smale

{11, p. 767] that 1f v has period p and xey then the Lefschetz

index I(x,fP) 1s (-1)u(v)ﬁv where A = + 1 1f prP: Eg o preserves

orientation and l.\Y = = 1 1f orientation 1s reversed. Now

o
n(fy R) = exp( = %»L(fm)tm) and L(£™) zEII(x,fm) where this sum 1is
m=1

over all chix(fm). Let X Dbe as above and define

p = exp(Z % Lm(K)tm) where Lm(K) is the sum of I(x,fm) for all
xeFix(f™) N K. Then for m < n we have L (K) = L(f") since all
points of perlod { n are in K. Thus the coefficlent of t? 1in p

15 the same as the coefficlent of t” in n{f; R).



3
But Lm(K) = iz,Lm(Yi) where Lm(vi) mill(x,fm) where the sum

1 m
= Lm(vi)t }. Since

&4

3 o0
is over xey, NFix(f"). Hence o = T exp( Z
1=3 m=1

0 ifm¥ 0 mod ply)
Lm(v) - one checks
. ( /
p(v)(wl)u&V)Am/p‘v) if m = % mod p(vy),

&

s plvy)
easily that o = 1 (1 - Ay t 1 ﬂ;ﬁ. Thus, as before, the co-
i=1 1

16

efficient of tn i p 1s also the same as the coefficient of " in

uiyyed

y

(1 = Aytp(v))él, and b} 1is proved. The proof for f restricted

to a single basic set is similar. g.e.d.
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$3, The Relative Double Cover for a Basic Set

In the case when the bundle Eu(A) is orientable and Df pre-
serves or reverses this orientation the zeta function is calculable
from homological information using Theorem (2.5). However for
many important examples things are not so nlice and one must resort
to other technigues. This problem was handled first by
Guckenheimer [5] in his proof of the raticnality of the zeta funce
tion for Axiom A diffeomorphsims satlisfyling the no-cycle property
which was based on previous work of Williams {14].

Thg ides of Guckenhelimer was to try to work in a double cover
which orients E® and where f has a 1ift which preserves u-orien-
tatlon., Such a double cover exists over a neighborhood of A but
thls neighborhood is not £ invariant. Hence to define s 1ift of
f 1t is necessary to add to the double cover all points in fil-
tration levels below A and let them coverﬂﬁhemselves singly. The

precise result we need 1s the following theorem implieit in [5] and

explicitly worked out in the very nice appendix of [10].

(3.1) Theorem: BSuppose A 1s a basic set of a diffeomorphism f

satisfying Axiom A and the no-cycle property. Then there 1s a rela-

tive manifold (X,A) and a relative double cover N: (X,A) -+ (X,A)

such that

1) There exists a filtration for f with X = My, A=M_,

for some 1 and A © X -~ A,

2) The bundle EYA) extends to a bundle Y over X - £(A) and

Df extends tc a bundle map
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u \

E1 B IR

\/ Vi
£ .

XA == X=£(A)

where Eg.is the restriction of E° to X = A.

%) There is a map T: (X,K) » (X,K) covering ¢£.

4) The bundle E' on X ~ A 1ifts to an oriented bundle T on

X - & and for any xeﬂ“l(A) DT, : B - BY preserves
: X X T(X) St
orientation.

5) Then there 1s a unique covering transformation T of the

double cover NM: ¥ -~ A+ X ~ A which reverses the ofienta-

tion of EY.
We will alcso need the following lemma.

(3.2) Lemma: Suppose A 1s a basic set and T: (X, K) - (X,A) is

a_relative double cover as above. Then if xep N Fix(f), T fixes

the two points of n'l(x) if and only 1f Df preserves the orientation

of E, otherwise 1t switches them.

Proof: Let yen”l(x} and supposerf(y) = y. Then DII: f? -» E; satis~
fies DNeDI = Df+DN so DF and Df restricted to E; and E; are conju=-
gate. Since DT preserves orieﬁtation of EX (by (4) of Theorem (3.1))
1t follows that Df  also preserves orientation.

Conversely if Dfx preserves the orientation of Eg then T(y) = y
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because, 1if ﬁot we can define % = T*T where T 1s the non-trivial
deck transformation and then ?(y) = y and ny will reverse the
orientation of E;. Since % also covers I the same argument used
above to.show Dfx preserves orlentation, now shows Dfx reverses

orlientation which is a contradiction. g.e.d.

(3.3) Proposition: Suppose A i3 a basic set for f and

n: (X,K) » (X,A) is a relative double cover for A. Then if

for He(X,43 R) D and T,: H, (X,A; R)© are the maps induced by f
and T, u = fiber dim E%(A), and T = 1"%(p), the following equalities

hold:

- v o~
(e T T = Y (D L .

. u
Proof: The proof of the equality c(?;)('l)

= ;(?}x) is exactly
the same as the proof of Theorem (2.5) (recall that T preserves
u-orientation on }). To prove the other equality we note that if
A = Ay then C(£,) = n,(f) (definition (2.1)) end hence by

m Lol
Proposition 2.2 and the remark following G(f,) = exp( £ = N t™)
m=1

where ﬁh 15 sum of indexes of the fixed points of f" restricted to A-
Thus if we let N = cardinality of Fix(fM) N A and N, =
cardinality of Fix(?m) N A, we have
o R el ~
exp( 2 = N t7)sexp( = (—l)uNmtm)

=1 ™ m=1

il

C(f,A)Z(f*)(”l)u

=4

= exp( I & (N + (=1)'F )t™)

| m
and C(T!TJ = exp({ ¥ E’Nhﬁ )
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So it suffices to prove Nﬁ = N+ (-l}uﬁm,

By the result of Smale [11, p. 767] the index 1(p,fm) of &
fixed point of f = 5(~l)u where A 1s + 1 depending on whether
or not Dfm preserves or reverses orlentation. Thus if we let N; be
the number of fixed polints of ™ where Df preserves orlentation and

.- + H - e 8 - u“ 2= + L) -
N, =N - N then since N mz,I(p,fm) we have (=1) N, = N - N
+ - T e YN o ont

Since N = N + N- it follows that N+ ( 1)“Nm 2N .

On the other hand Lemma (3.2) applied to fi says that

A . b

Nﬁ = 2N , and hence we have N+ (=1) N, = N& as desired. q.e.d.

As & by-product we have essentlially proved the following ree
sult of Guckenhelmer (indeed by a method very c¢lose to that of

[5] and [14]; see also Manning [8]).

(3.4) cCorollary {Guckenheimer): If f: M -+ M satisfies Axiom A

and the no-cycle condition then ((f) is a rational function. 1In

fact it is a quotient cof polynomials with integer coefficients

and constant term 1. The same 13 true for the zeta function of f

restricted to a basic set.

Proof: One checks easily {or see [11, p. 76€]) that

A
() = 1 C(ff } so 1t suffices to prove the result for A = A,.
1=1 Ay M

But since it is clear from the definition that Z(f*) and quotients
of integer polynomlials with constant terms 1, it then follows from

Proposition (3.3) that c{f!A) also has this property. qg.e.d.
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§4, The Reduced Zeta Function

We can now relste the reduced zeta functioh of a basic set to
homologlcal invariants of f. Since this is really the heart of all
our results we glve two quite different proofs. As before 1f‘Ai
18 a basic set, then Mi and Mi-l will denote the elements of a fll=-
tration for f such that Ay © Mi - M1

-y’

4,1 Theorem: Suppose f: M-+ M satisfies Axiom A and the no-cycle

property and ﬁi is a basic set of index u, then the followlng are

equal:

Y
a) C(f[h )('*) with all coefficients reduced mod 2, 1i.e.
1

(-1)"

2, ()

b) The function obtained by reducing mod 2 all coefficlents
1) gt L
of ni(f; R) = jnO det (I = f*Jt)("l) where
f*J’ HJ(Mi,Mi; R} is induced by f.
n (wl>j+l

¢) The function ni(f; %) = 1 det(l = £, ,t) where

Rt

f*J: HJ(Mi’M1~15 Z5)> ig induced by f£.

Topologlcal proof: The fact that b) 4g equal to ¢} was proved

in Proposition (1.6), hence 1t suffices to show that a) 1is equal
to ¢)

We first choose a relative double cover for Ai’ as in §3,
n: (X,R) »+ (X,A) and then a filtration such that My = X, My q = A
The pair (X,A) can be triangulated and the triangulation lifted to

a triangulation of (¥,K) so that each simplex ~ which intersecte



X = A 18 covered by two simplices ¢y and Te where T 1is the
covering transformatlon which reverses orilentation of .

Let C be the oriented simplicilal chain complex for the pair
(X,A) and let T the oriented simplicisel chain complex for the
pair (X,R). The.map T induces a chain map U,: C = C. Let
D = ker I, so we have the short exact sequence of chain complexes
0+ D+ T-less c» 0, The chain maps induced on C end T by
f and T will be denoted by T and 7T respectively. We then

define

mw?§M:D®RwD®R

p=mia: Ce R+TeR

v = 1Qid: C® R+ Ce&® R

"Now H,(C e R) = H, (X,A R}, H,(C ® R) = H,(X,A; R) and, o
and y represent T, and f, on the chain level. Since
0~ DJ ® R = ﬁd @ R = CJ ® R » 0 1s exact an application of
Corollary (1.3) shows det(I = ajt)(det(l - pdt))"ldet(l - ydt) = )

so det(I =~ pjt) = det(l - a,t)det(l - yjt) and it follows that
C(e) = C(a)e(v).

Since {(p) = E(T;) and E(v) = E(f,), by (1.2) it follows from
)("l)a
| MO
1s the index of p,. Thus C(f{A )('1) reduced mod 2 1s equal to
ifig

Proposition 3.3 that C(o) = Q(f! where u = fiber dim‘Eu(Ai)

E(a) reduced mod 2 which by Lemma (1.4) is equal to E(B) where
g="T|p® 1d: D® Z, » D& Z,. So it will suffice to show that



T(B) = ny(£3 2,).

To prove this we note that chains in D are precisely those
chains in T which satisfy the condition that the coefficient of
FJ equals minus the coefficient of T(ﬁj). Hence chains in D ® Z,
are the chalns with the coefficlent (in 22) of FJ equal to the
coefficient of T(FJ). It 1s now essy to see that the map
m: C® Z, = De Z, defined by m(nj) = Fj + T(EJ) is a chain iso-

/ ' '
morphism. Also it 15 clear that 8em = e¢*t where v = 101id: C © 22;
Thus C(8) = C(t ) but by Lemma (1.2) C(7') = G(f,) where
£t H, (X,As 22) and this is precisely ni(f; Ze). q.e.d,

Algebralc Proof: We agaln appeal to Proposition (1.6) for the

equality of b) and c¢) and then show directly that a) 1s equal
to b). By Proposition (2.6) we have

. | *]
ny(es Do n e PN ana ¢ (2], ) = 1 ge(v)y-
Yc f\i i VCAi

where both products are taken over all periodic orbits in Ai‘
Clearly these should be the same when reduced mod 2 1f we can make &«
of the infinite products. We do this by considering formal power
series.

Let Z[t] be the ring of integer polynomials and let 8 be the
multiplicative set 1 + tZ[t). Then S~ 2[t] will denote the ring of
fracfions of Z{t] by S. Since for the inclusion Z[t] » Z[{[t]] into
formal power serles the image of each element of S 1is invertible
there 1s a unique extension of the inclusion to a homomorphism

=TT 711611 (see [7, p. 66-69] for this).

Similarly we have Z50l%3s <an ygoglimetinn at (£), Z.[t],.. and
an extension of the inclusion Zg[t] - ﬁgiftﬁl to B: Ze[t}(t) - Zei[tl

The homomorphism 8 1s injective since it is injective on poly=-

nominls.



Let o 2[t] » Zp[t] » Z,t], 2 S7'2(t] » Z,[¢] ) end

ol
e: zZ[[t]] - ZQ[{t]] all denote reduction of coefficients mod 2.

Then we have the following commutative dlisgram of homomorphisms

7 Sulz{t} ‘\\\:\ﬁ\\\ﬂN
‘ Y
2[t] ‘ ; > 2[[t]]
Jf” I
Z,(t] - {3 Z,((t]]

\\\\“*-N\N J /////////,/
> Zp[t] (4 ?

where the unlabelled arrows are the natural inclusions. The
diegram is commutative because 1t commutes for polynomials. By
(2.4) and (3.4) the rational functions ¢y and ny are in s‘lz[t1,
The assertion of our theorem is that ¢(n,) = w(Ci("l)u). Con-
sidering the diagram and the fact that 8 1s inJective, it suffices
to show that 6°a(n§”l)u) - eea(ci).

To do this we show they have the same coefficient of t". Let
{vl,...,ys) be the set of perlodic orbits in A, with p(v,) < n.
Then the coefficient of t" in a(ng'l)u) is the same as that in

s
a(p) where p = 1 (1 - A, tp<vi))"1. Likewise the coefficient of
1= -

n . A n 8 p(y;)y-1
t in a(Ci) is the same as that in a(p) where p = 0 (1 - ¢t :
i=1
A ‘ ~ A
But ¢(p) = ¥(0), so Bea(p) = Be¥ (o) = Bey () = fea(P) and it fol-
u ;
lows that the coefficient of t" in Boa(ng"l) ) is equal to the

coefficient of t" in e«a(ci). q.e.d.



$5. Morse Inequalities

(5.1) Definition: We define the partial homology zeta function

? =T (£,) to be det(I - £, t)~L where £, : H (M; R) » H_(M; R).
q 7 Fqttx/ 2022 DERIE = g WAPER *vg' Yg q

Thus ¢ = ¢(f,) = 1 Cé'l) where n = dim M.

= g=0 —

In order to prove Morse inequalities we will need a standing
hypothesis on the dimension of the basic sets {or on.ﬁhe dimen-
sion of the global unstable manifolds). Recall that the index
u; of a baslc set Ay = fiber dim Eu(Ai).

(5.2) Definition: If f: M~ M satisfies Axiom A and the no-cycle

property we will say that the basic sets of f satisfy the dimen-

slon requirements for an integer ¢ 4if it 1s true that each basic

set Ay with index u; € g satisfies dim wu(ni)‘g q and each basic

. set AJ with uJ > q satisfles dim WS(AJ) < n~q where n = dim M.

(5.3) Remark: It is shown in Lemma 5 of [4] that
ni
dim Ay + uy > dim W ()y) end similarly dim Ay + (n-uy) > dim ws(,\d).
‘Hence the dimension requirements above are satisfied if
dim Ai £q =« uy when uy < q and dim Aj < uJ - g when uJ > q. From

this it is clear the dimension requirements are satisfied for all

q if dim Ai = Q0 for all 1.

o n J

Recall that n,(f) = 1 det(I - f*dt)("l) where
3=0

£y gt HJ(Mi’ Mj_15 R) & and py My - M, ;. We wish now to relate

these functlons to the partial homology zeta functions Eq.

(5.4) Proposition: Suppose f: M - M satisfies Axiom A and the

no-cycle property and the basic sets of f satisfy the dimension




(-1)¢ d =(a1)k
requirements (5.4) for q. Then P el m, = ¢
i k
uigg k=0

where P(t) is a polynomial with integer coefficients and constant

term 1.

Proof: Suppose M =M, DM, , D *** DM DM, g ¢ki§ a filtration

for f. Define nq(M M) = 1T det(I - ¢ t)('l) '
. 1779 k=0 *k

P Hk(Mi,MJ; R) @ is the map induced by f. Consider now the

exact sequence 0 -» B = Hq(MJ) - Hq(Mi) -» Hq(Mi’MJ) - Hq~1(MJ) >t

where B = ker(i,: Hq(MJ) - Hq(Mi)) and the remainder of the se-

quence is the exact segquence of the pair (Mi’MJ)' Note

f*q(B) € B and let P,, = det[I - (f*qIB)t]. Then applying

Corollary (1.3) to this exact sequence and the endomorphisms of

its elements induced by f we obtain

q+l - -
p{=D ™ e ) Len®(ay) enT(, 1) 7 = 1. Thus, 1f we set § = 1-1

and denote Pi,i-l by Pi we have,

: g+l
ﬂq(Mi’M—i_.l) = P:g ) "ﬂq(Mj_) 'ﬂq(Mi,_l) l-

4
Taking a product over 0 £ 1 < £ we get I ﬂq(Mi,M1 1) v
nd(M,) en(M) " 1 gf'l’ = 23 ep(*1) 77 yhere P = 1 Py,
i=1 i=1

since'M‘ = M and My = @, Notice P vis a polynomial with integer
coefficients and constant term 1.

By hypothesis if Ai is a baslic set with uy < g then
dim W'(py) < @ so by Lemma 6 of [U4], £+ H (MM, 43 R)D 1s
nilpotent if k > q. That is, det(TI - f*kt) = 1 1f kK > g {the
characteristic polynomial of & matrix A 1is tkh(%) for some X
where h(t) = det(y - At)). (i follows that nl(M M, ,) =
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ny o= I det(l - f*kt) , whenever uy < q.
k=0 -

On the other hand when uy > a, dim ws(AJ) <n - q 8o, sgain
by Lemma 6 of [4], we have fyy 38 nilpotent if k¥ < q. So a similar
a - ,
argument shows = (MJ’M§~1) = 1 4f uJ > Q.
Thus
)Q"?‘l

4
P(.l nq(M) = 1 nq(Mi,Mi_l) =

Ny »
1=1 ung %

Since by definition,

q k Q ~; a3k
nd(M) = 1 det(I~f*kt)('l) = 1 cl({ 1)
k=0 k=0

we have the desired result:

n( 1)k

q
P(-l) H ‘."\..¢ = 'k

_ i g.e.d.
w<q ¢ k=0

(5.5) Corollary: If f: M- M satisfies Axiom A and the no=cycle

property and has basic sets Al"'"’hz’ then

A o
1 ﬂi C( = ‘n(f; R)
i=1

Proof: This 1s easily pvoved dlrectly, however as remarked in

(5.1), C(£y)

it

H C( 1> where n = dim M, and 1f we now apply
k-'.._

Proposition (5.4) with ¢ = n and ¢ = n + 1 we see that there are
polynomlals Pl and P? such that
n+l z

n, = &(fy) and pl e = 6(f.).
-1 1 e *



It follows that Pl = P2 = 1 80 we have the desired result. Note

the dimension requirements are always satlsfied. g.e.d.

(5.6) Corollary: If f: M- M satisfies Axiom A and the no-cycle

property and its basic sets satisfy the dimension requirements

a -
for g and q -~ 1, then P 1 ﬂ§~1) = Cq for some integer poly-

uimq

nomlial P.

Proof: Take the equality of (5.4) for q and divide by the
equality of (5.4) for g - 1. g.e.d.

We can now obtain the Morse inequalities for the reduced
zeta functions Zi' The following result is analagous to Theorem 2
of [4], but uses the reduced zeta functions and thereby obviates

the necessity of the hypothesis about orlentability.

(5.7) Theorem: Suppose £: M= M satisfles Axiom A, the no-cycle

property and the dimension requirements (5.2) for ¢g. Then there
T
1

is a polynomialipezz[t] such that p T 2,” is equal to the mod 2
o ~ u,<q -
Cq. Cq‘e o r in-«. q+ui
reduction of - - » where 1, = (=1) and
[} . s “
€a-1"%q-3

u, = fiber Qim Eu(Ai).

Before gilving the proof we comment on the relation of this.to
the Morse inequalities for a Morse function. If f is the timee
one map of the flow obtalned by integrating minus the gradient of
a Morse function then f satisfies Axiom A, the no-cycle property
and the dimension requirements for all q. The equality above then

: T

1mn11esvthat the degree of 1l zii 15 less than or equal to the
u, <q
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Z ‘Z ~ LI 3 )
degree of the mod 2 reduction of —tediZ . One checks that
ccz”l. cq3 .- e

these inequallities are exactly the classical Morse inequalities

relating the Bettl numbers of M and the number of critical points

of a Morse funection.

Proof of (5.7): 1If we take the equality of (5.4) and raise it to

the power (~1)% we obtain

é 1)K+q i zq.cq—E ves '
Cq..l.cq_j LR

g g -
P ﬂ§-1) = ¢
uy <4

§

By Theorem (4.1), ny With coefficlents reduced mod 2 is equal to

u
1
z{"1) 7. Hence 1f p 1s equal to P with coefficients reduced

. o v
mod 2 we have pe I Zii = mod 2 reduction of -2 q:2

uif;_q anl‘ ¢

. q.ecdo

q-3

Applying the same type of argument to the equality of (5.5)

we obtaln the second of our main thecrems.

(5.8) Theorem: Suppose f: M = M satisfies Axiom A and the no-

cycle property, and has £ |Dbasic sets, then the followlng are

equal:

Loyt u
a) 1 2 where u, = fiber dim E (Ai).

1=1 —— _
k+1
b) The reduction mod 2 of »(f; R)

]

n
M det(I - f;kt)("l)
k=0

where f,,: HK{M; R) & 4s induced by f.

n ‘ (ml)kﬂ%l
c) n(f; Z,) = S det(I - £, t)

where £, : ty (Mg 22) o

1s induced by f.
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Proof: The fact that b) 4is equal to ¢} 1s a consequence of
Corollary (1.6). From (5.5) we have 1§1n1 = n(f& R) and from
Theorem (4.2) ny reduced mod 2 is equal to Zg"l) 1. It follows
that a) 1is equal to b). qg.e.d.

(5.9) Proposition: If f satisfies the dimension requirements

for q and q - 1 (E.g. if all bagic sets of f have dimension

0) then there is a polynomial peze[t] such that

p Il Zi = mod 2 reduction of det(I - t‘*ct)"l where f*q: Hq(M; R) 2
u,=q :

i
is induced by f.

Proof: If u, = q then by (4.1) Z, 1s the mod 2 reduction of
q
n_,(L"l) . By (5.6) there is an integer polynopial P such that
' 1yd -
P~nn( 1) = Cq = det(I =~ f*qt) 1. Reducing mod 2 gives the re-

sult. q.e.d.

The following proposition glves a necessary condition for a
collection of "abstract” basic sets to bé embedded as the basic
sets of any diffeomorphism f of M (no matter what the homotopy
class of f). By the degree of a rational function we mean, of
‘course, the numerator minus the degree of the denominator. The
following result was inspired by the remark of Smsle [11] that
the degree of the homology zeta function (our n(f3; R)) is minus

the Euler characteristib of M.

(5.10) Proposition: If f: M - M satisfies Axlom A and the no-

cycle property, and has basic sets Aysee-shy With
i ) u id
u, = fiber dim Eu(A ), then = (-1) 1deg Zy = - %(M) where y(M)
1 1 2 1 where
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is the Euler characteristic of M,

Proof: From Theorem (5.8) we have

n k+1
modet(1 - £,,t) ("D,

i T k=0

where f,: HK(M; Z5) < 1s induced by f. The degree of the
2 u

left hand side of this equation is S (-1) © deg 2, Now
1=1

fart He(M; Z2,) © 1is an isomorphism so the degree of det(I - fayt)
n k+1
is rank Hk(M; Z?). So the degree of I det(I - f*kt)(*l) is
- k=0

n
- = (-1)* rank H (M Z,) = - y(M) and the result follows.  g.e.d.

=]
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§6. The Global Bifurcation Prohlem: Examples and Questions

We are interested in the problem of how the baslc sets can
change when one Axiom A, no-cycle diffeomorphism is isotoped (or
even Qz?otoped) to another. From Theorem (5.8) we have that
nzg‘l) = n(L} ZQ) and since n(f; 32) depends only on the homotopy
type of £, it follows that 1f f and g are homotopic then

ui UJ
nzi(f)(“l) - nzd(g)(“l) .

Several special cases of this give partial answers to in-

teresting questions:

1) When can an isotopy remove a basic set Ai of f while
leaving all others unchanged? A necessary condition is

that Z,(f) = 1

2) When can an isotopy "cancel" two baslc sets Ay and AJ
leaving all others unchanged? A necessary condition is

ui ‘\.1'
zg"l) -zg‘l) I 1

3) When can an isoteopy of f to g change a basic set
t .
£ Ai - Ai to a different basle set f: Ai -3 Ai, leaving

others unaltered? A necessary condition 1s

4 F 3
7, (0) 1) 7o g (g 1) T

In order to gilve several examples wlth zero dimensional basic sets
we review briefly the structure cof these basic sets.

f G 1s an n x n matrix of zeroes and ones we define

4

5, eniy,2,...,n) 2y 2, = L5 i X4 €1y ooy} and

A

Lo



A = 1 for all 1}. If {(1,...,n} is given the discrete
XX
171+l
topology and ZA a topology as a subset of the product then EA
is a compact metrlzable space.

!
The shift homomorphism a: %, » Z, is defined by o((x,)) = (x,)

]
where Xy = Xy4q (here (xi) denotes the bi-infinite sequence whose

ith element is %) .

A result of Bowen [2] shows that on any zero-dimensional
basic set t, f is topologically conjugate to some shift na: EA g ZA
(the matrix A 1s not unigue however).

It is not difficult to check that Nm(n), the number of fixed

points of a": T, > I, ls tr A", Hence we have

N - my 1 momy 1
C(n) = exp(2 = N t7) = exp(Z = tr A7t7) =

by (1.7).
det(I - At)

(6.1) The Full Shift: If A is the n x n matrix with all en-

tries 1 then a: I, » 2, is called the fuli n-shift. This can be

A
embedded as a basic set of dliffeomorphlsm of 82. Figures 1 and

2 1llustrate this for n = 2 and 2.

D,

Flgure 1

In both cases a disk is mapped into itself., In Filgure 1 the

diffeomorphism will have as basic sets a fixed point source (not
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shown), the fixed point sink p, and a full two shift (see [11] for
an analysis of this). This diffeomorphism can be isotoped to re-
move the two shift without disturbing the fixed points by altering
i1t so the disk 1s mapped into itself and everything tends to p.

One checks easily that if @ 18 the 2-ghift homeomorphism
C{n) = T%?f so Z(e) = 1 as 1s necessary. Exactly the same analysis

works for the full n-shift 4f n 1is even.

-
(e

D

D

Flgure 2

For the full 3-shift the basic sets are two fixed point sinks
99595, the 3-shift and a fixed polnt source {(not shown). In this
case an lsotopy can replace the shift by a single hyperbolic fixed

point (Figure 2) without disturbing the fixed point source and sinks.

Filgure 3
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Also {(a) = I%3f 50 Z(n) = T"%“f’ the same as the reduced zeta
function of a'single point. For any full n-shift with n odd one

can do the same kind of construction and lsotopy.

(6.2) Example: We give now an example of a shift which occurs a
basic set of a diffeomorphism of SQ, but which cannot occur with all

other basic sets as fixed points. Let ¢ be the shift based on the

matrix (? %) y» 1.e. the square of the shift based on i é ).
One computes easily that Z(gs) = 3 . Since for any dif-
1+ t+t
feomorphism f of 82 n{(fs 22) = z«u—iwyg s 1t is not difficult to
1+t

see that we cannot have n(f; Z,) = Hz{l if one of the Z,'s is Z(n)
and all others are I"%“f (the reduced zeta function of a fixed

uy
point). The simplest way to have 1 = HZ§'1) is as follows:
(1L + t)
Let 2, = ---1-3, w =0 ( a sink of period 3)
1+t
_ 1 2 1
Zy = =ty = 1 (the subshit for (5 1))
Z3 & If%—f, u3 = 2A ( a fixed point source).
Yy
Then nzg'l) = ( X i since (1L + t)7 = (L + t)(1 + t + £2y.
1+t

In [11] Smale gives a picture of a realization of this diffeoc-

morphism which we reproduce in Figure 4.

A G- g
XY




The disk 1s mapped into 1teelf as shown. - The points pl,pz,,p3
are an orbit of period 3 which is an attractor. The other basic
sets are a point source (not shown) and the shift described (some

indication of this can be found in [11]).

(6.3) Example: In [15] R. F. Willlams showed that any shift

a: Z, % Z, which 1s topologically transitive can be realized as a

A A
basic set of a diffeomorphism of 83. We give an example of a
shift which éannot be reallzed as a basic set of a diffeomorphism
of any 57 in such a way that all other basic sets are finite (i.e.
periodic orbits).

If

0 1 0O
An(O()l)

\1 1 ©

then go: ZA - ZA is a topologically transitive shift and

2(n) = 3 5 . It 35 easy to check that in Z,[t], (1 + £2 &+ t°)
14+ t° 4+t 2
7

is an irreducible factor of 1 + t', and hence in the algebralce
closure of 22 its foots are three of the seven seventh roocts of

unity. On the other hand if Ay is a basic set which 1s a point of
period p then Z, = — . In the algebraic closure of Z,,
SR S 2

1+ tP must have as roots, either no seventh roots of unity or all

seven of them, Hence it is impoessible to have

u
i .
HZ§'1) = n(f} 22) 1f all basic sets are periodic except the one

. 3 3 ) » e 1 ”
conjuga@e to ot Z; » I,, because n(f Z,) m-z{f:fgyg or 1 for any

diffeomorphism £: s" » s".
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(6.4) Shoes (after Zeeman [16])

We have emphasized the reduced zeta function because it is an
invariant of an abstract basic set, that is, the topological con-
Jugacy type of f restricted to the baslic set and does not depend
on the embedding of the basic set or the extension of f to M.
However, 1f one knows extra data it may be possible to compute the
functions ni(f; R) which are stronger invariants and (5.7) and
(5.8) can then be replaced by éS.h), (5.5) and (5.6). For example

from (5.5) we have n{f3 R) = I ul which shows that a necessary
1=1

condition for an isotopy to cancel hasic sets Ay and Ad is that
ﬂiﬂd = 1, or if a baslc set Ai can be removed, then Ny = 1, ete.

In [16] Zeeman describes a framework for studying diffeomorphisms
with zero dimensional basic sets, and a simple way of describing
what amounts to the germ of an extension of f on the basic sets.
What he calls a shoe 1s determined by two positlive integer matrices
Af (the positive intersection matrix) and A~ (the negative inter-
sectlon matrix) and the index u of the basic set. The diffeomor-
phism on the basle set is topologlcally conjugate to the shift
o ZA’» ZA where A = A: + A" {see [16] for more detall). Also

from (2.2), ny, = exp( =
=1

n Ay. 1t 1s not difficult to show that

1 - ~
= N‘mtm) where N is 5I(p,f") and the sum
is over all psFix(fm)

ﬁm = (-l)utr A" where & = AV - A~, and hence ni(f; R) =

~ (..l)IH“l
det(I - At) by (1.7). Thus in this framework, where one

knows both AT and A", the functions ny are easlly computable and

it 1s more appropriate te use them than the reduced zeta functions.
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