John M. Franks
 A Reduced Zeta Function for Diffeomorphisms

Publications des séminaires de mathématiques et informatique de Rennes, 1975, fascicule S4
«International Conference on Dynamical Systems in Mathematical Physics », , p. 1-39
http://www.numdam.org/item?id=PSMIR_1975___S4_A8_0
© Département de mathématiques et informatique, université de Rennes, 1975, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

John M. Franks*

In [1] Artin and Mazur introduced the zeta function for a diffeomorphism in analogy with the Weil zeta function in algebraic geometry. It is defined to be $\zeta(t)=\exp \left(\sum_{m=1}^{\infty} \frac{l}{m} N_{m} t^{m}\right)$ where N_{m} is the cardinality of the fixed point set of f^{m}. This has proven to be an important invariant for the study of the orbit structure of a large class of diffeomorphisms of compact manifolds - those which satisfy Axiom A and the no-cycle property. This class is defined and described in $\$ 2$ below, but we mention that it 1 s open in the C^{1} topology, contains a representative of every isotopy class [13], and is, in fact, dense in the C^{O} topology [9].

For these diffeomorphisms the zeta function is rational and in fact the quotient of integer polynomials with constant term 1. (see [5], [8] or (3.4) below). Thus for these diffeomorphisms a finite amount of data determines all of the numbers N_{m}.

In this article we consider a weakening of this invariant which still contains considerable information and has the advantage of being closely related to homological invariants of f.

In the following we assume that Λ_{1} is a basic of f (see

[^0]82 tor (iftindem

Definition: The reduced zeta function Z_{1} of I on ${ }_{1}$ is defined to be the rational function $C\left(f_{\Lambda_{1}}\right)$ with all its coefidefents reduced mod 2.

One of our main results ((5.8) in the text), relates the rem duced zet: functions to homological invaxiants of f.

Theorem. Suppose $f: M \rightarrow M$ sattsfies Axiom A and the no-cycle property, and has basic sets $A_{1} \cdots A_{p}$. then the following are equal:
a) $\prod_{1=1}^{2} z_{1}^{(-1)^{u_{1}}}$ where $u_{i}=$ fiber dim $E^{u}\left(A_{1}\right)$
b) The reduction mod 2 of

$$
\begin{aligned}
& n(f ; R)=\prod_{k=0}^{n} \operatorname{det}\left(I-f_{* k^{t}}^{\prime}(-1)^{k+1}\right. \text { where } \\
& f_{* k}: H_{k}(M ; R) D \pm s \operatorname{Lnduced} b y i^{*}
\end{aligned}
$$

$$
f_{*}: H_{k}\left(M_{i} Z_{2}\right) \text { is incuced by } t^{*}
$$

The function $n(f ; F)$ in b) (before recuction) is sometimes called the false or homology zeta function slnce it can be obtained by replacing N_{m} in the definition of ζ by $L\left(f^{m}\right)$, the Lefsehetz nuaber of f^{m}.

This theorem has fimediate applications to what one mifht call the global bifurcation problem: namely how can basic sets be -hanged as f is isotoped to a new Axiom A, nomeycle diffeomorphism. For example, it's ciear that if two basle seta, Λ_{1} and A_{y} can be
cancelled leaving other basic sets unchanged then
 topy which does not alter other basic sets or introduce new ones then it must have reduced zeta function 1. Examples of these phenomena are given in $\$ 6$. This general problem can be viewed as an extension of the problem of simplifying a Morse function by cancelling critical points.

The reduced zeta functions also give a necessary condition fox a collection of abstract basic sets to be the basic sets of a diffeomorphism (in any homotopy class) on a manffold M. This is (5.10) in the text.

Proposition. If $f: M \rightarrow M$ satisfies Axiom A and the no-cycle property, then $\Sigma(-1)^{\mathcal{L}_{1}}$ deg $_{\perp}=-\gamma(M)$ where $x(M)$ is the Euler characterIstic of M.

Here degree means the degree of the numerator minus the degree of the denominator.

It is important to emphasize that Z_{1} contains more information than just the parity of set of ilxed points of f^{m} on Λ_{1}. For example if we consider full two-shift (see $\% 6$ for definition) and a single orbit of period 2 , then both these examples satisfy $N_{m} \equiv 0 \bmod 2$ for all m but thef zeta functions are $1 / 1$-2t and $1 / 1-t^{2}$ respectively (see (2.6) and (6.1)), so their reduced zeta functions are different. Also note in the proposition above that the Z_{1} and the numbers u_{1} determine the Euler characteristic (not fust the Euler characteristic mod 2).

The theorem above (5.8) is in fact a special case of more "eneral results (5.4-7) which are generajlations of the Morse

Inequalities relating the Betti numbers of a manifold M to the number of critical points of a Morse function on M. In fact our (5.7) and (5.8) are simply the mod 2 analogues of Theorems 1 and 2 of [4]. The reduction mod 2 gives somewhat weaker results, but is applicable to a much larger class of diffeomorphisms, as no assumptions about orientability need be made.

The heart of the proof of all these results is a local version of the main theorem above which has the same hypothesis and is (4.1) in the text. Here Λ_{1} will denote a basic set of f and M_{1}, M_{1-1} the elements of a filtration for $f($ see $\$ 3$) such that $\Lambda_{1} \subset M_{1}-M_{1-1}$.

Theorem: Suppose Λ_{1} is a basic set of f and $u=11 b e r d i m E^{u}\left(\Lambda_{1}\right)$, then the following are equal:
a) $Z_{1}^{(-1)^{u}}$
b) The mod 2 reduction of

$$
\begin{aligned}
& n_{1}(f ; R)=n_{j=0}^{n} \operatorname{det}\left(I-f_{* j} t\right)^{(-1)^{j+1}} \text { where } \\
& f_{* j}: H_{j}\left(M_{1}, M_{i-1} ; R\right) p \text { is induced by } f .
\end{aligned}
$$

c) $n_{1}\left(f ; Z_{2}\right)=\prod_{f=0}^{n} \operatorname{det}\left(I-t_{j} t\right)^{(-1)^{j+1}}$ where

$$
f_{* j}: H_{j}\left(M_{1}, M_{1-1} ; Z_{2}\right) \Longrightarrow 1 s \text { induced by } f .
$$

It is a pleasure to achknowledge helpful conversations with K. Dennis, L. Evens, M. Stein, and R. F. Wlllams during the preparation of this article.
\$1. Preliminaries
(1.1) Definition: If $V=\bigoplus_{1=0}^{n} \mathrm{~V}$ is a graded vector space over any $\frac{\text { fleld and }}{} \tau: V \rightarrow V \frac{\text { agradation preserving inear map }}{n}\left(T_{1}: V_{1} \rightarrow V_{1}\right)$ then we define $\tilde{\zeta}(r)=\prod_{i=0}^{n} \operatorname{det}\left(I-r_{i} t\right)^{(-1)^{1+1}}$.
$\tilde{c}(t)$ is a rational function of t and in fact a quotient of polynomials $p(t) / q(t)$ with both p and q having coefficients in the field of V and constant term I.

The following is a slight generalization of the classical Lefschetz-Hopf trace formula.
(1.2) Lemma. If $C={ }_{1=0}^{n} C_{1}$ and $\partial_{1}: C_{1} \rightarrow C_{1-1}$ is a chain complex of finite dimensional vector spaces and $T: C \rightarrow C$ is a chain map then $\tilde{\zeta}(\tau)=\tilde{\zeta}\left(T_{*}\right)$ where $T_{*}: H_{*}(C) \rightarrow H_{*}(C)$ is the map on homology induced by T.

Proof: Suppose we have a commutative diagram of vector spaces

$$
\begin{aligned}
& 0 \rightarrow v_{1} \xrightarrow{1} v_{2} \xrightarrow{I} v_{3} \rightarrow 0 \\
& \operatorname{La}^{a} \|_{v} \\
& 0 \rightarrow v_{1} \xrightarrow{1} v_{2} \rightarrow v_{3} \rightarrow 0
\end{aligned}
$$

where the horizontal rows are exact. Then choosing a basis for V_{2} which begins with a basis of $i\left(V_{1}\right)$ we can represent β by a matrix of the form

$$
A=\left(\begin{array}{ll}
A_{1} & X \\
0 & A_{2}
\end{array}\right)
$$

where A_{1} is a matrix which represents a (with an appropriate basis) and A_{2} is a matrix which represents v. From this it follows that

$$
\begin{aligned}
\operatorname{det}(I-B t) & =\operatorname{det}(I-A t) \\
& =\operatorname{det}\left(I-A_{1} t\right) \operatorname{det}\left(I-A_{2} t\right) \\
& =\operatorname{det}(I-a t) \operatorname{det}(I-\gamma t)
\end{aligned}
$$

For notational simplicity we will henceforth denote $\operatorname{det}(I-T t)$ by $P(T)$ for any vector space endomorphism τ. Thus we have shown for the endomorphisms $a, 8$, and y in the diagram above $P(\beta)=P(\alpha) P(\gamma)$. We apply this result to two short exact sequences from the chain complex C. Let $\mathcal{Z}_{1}=\operatorname{ker}\left(\partial_{1}\right)$ and $B_{i}=\operatorname{lm}\left(\partial_{1+1}\right)$ then

$$
0 \rightarrow \mathcal{R}_{1} \rightarrow c_{1} \xrightarrow{\partial_{1}}{B_{i-1} \rightarrow 0}
$$

and $0 \rightarrow B_{1} \rightarrow \mathscr{R}_{1} \rightarrow H_{1}(c) \rightarrow 0$ are exact and on each of the vector spaces in these sequences there is an endomorphism induced by the chain map τ.

Applying the result above to these two cases we obtain

$$
P\left(\tau \mid c_{1}\right)=P\left(\tau \mid \mathscr{H}_{1}\right) P\left(\tau \mid B_{1-1}\right)
$$

and $P\left(T \mid \mathscr{X}_{1}\right)=P\left(\tau \mid B_{1}\right) P\left(T_{*} \mid H_{1}(C)\right)$. Thus

$$
P\left(\tau \mid C_{1}\right)=P\left(\tau_{*} H_{1}(C)\right) P\left(\tau \mid B_{1}\right) P\left(\tau \mid B_{1-1}\right)
$$

Hence

$$
\begin{aligned}
\tilde{\zeta}(\tau) & =\prod_{1=0}^{n} P\left(T \mid C_{1}\right)(-1)^{1+1} \\
& =\prod_{1=0}^{n}\left(P\left(T_{*} \mid H_{1}(C)\right)\right)^{(-1)^{1+1} \prod_{i=0}^{n}\left(P\left(T \mid B_{1}\right) P\left(T \mid B_{1-1}\right)\right)^{(-1)^{1+1}},}
\end{aligned}
$$

but since everything cancels in the product of the $P\left(T \mid B_{1}\right)$, we have

$$
\ddot{\zeta}(\tau)=\prod_{1=0}^{n} P\left(\tau_{*} \mid H_{1}(C)\right)^{(-1)^{1+1}}=\ddot{\zeta}\left(\tau_{*}\right)
$$

q.e.d.

An important special case of this result which will be used subsequently is the following.
(1.3) Corollary. If $0 \rightarrow V_{n} \xrightarrow{\partial_{n}} V_{n-1} \rightarrow \cdots \rightarrow V_{1} \xrightarrow{\partial_{1}} \rightarrow 0$ is an exact sequence of vector spaces and $T_{1}: V_{1} \rightarrow V_{1}$ are endomorphisms such that $\partial_{1} \cdot \tau_{1}=\tau_{1-1} \cdot \lambda_{1}$ then $\prod_{1=0}^{n^{1}} \operatorname{det}\left(1-r_{1} t\right)^{(-1)^{1+1}}=1$.
 $H_{*}(C)=0$ and $T=\theta \psi_{1}$ is a chain map. Thus
$\prod_{i=0}^{n} \operatorname{det}\left(I-\tau_{i} t\right)^{(-1)^{i+1}}=\tilde{\zeta}(\tau)=\tilde{\zeta}\left(\tau_{*}\right)=1$ since $H_{*}(0)=0$. q.e.d.
(1.1) Lemma: suppose $r: C \rightarrow 0$ ia chain map on a fintteiy generated iree chain complox, and $a=10$ 1d: C o $R P$ and $\beta=T * 1 d: C O Z_{2}{ }^{*}$, then (a) wth all coefficients reduced mod 2 is equal to $\bar{\zeta}(8)$.

Proof: Since C is a free chain complex we can pick a basis so that the matrix of $\alpha_{1}=T_{1} \otimes i d: C_{1} \otimes R \rightarrow C_{1} \Leftrightarrow R$ is the same integer matrix representing $X_{1}: C_{1} \rightarrow C_{1}$ and such that the matrix of $S_{1}: C_{1} \otimes Z_{2} \rightarrow C_{1} Q Z_{2}$ is the matrix of T_{1} reduced mod 2 . Hence $\operatorname{det}\left(I-a_{1}\right)$ reduced mod $21 s$ equal to $\operatorname{det}\left(I-B_{1} t\right)$. Now, $\bar{\zeta}(\alpha)=\prod_{1=0}^{n} \operatorname{det}\left(I-a_{1} z\right)^{(-1)^{1+1}}$ and $\tilde{\zeta}(\beta)=\prod_{1=0}^{n} \operatorname{det}\left(I-\beta_{1} t\right)^{(-1)^{i+1}}$ where $n=$ dim C. Thus $\bar{\zeta}(\alpha)$ with $i l l$ coefficients reduced mod 2 is equal to $\tilde{\zeta}(B)$. q.e.d.

We wish to consider $\bar{\zeta}\left(f_{*}\right)$ where f_{*} is the map on the homology of a space induced by a continuous map of the space. Since it will be necessary to consider different fields of coefficients we will use the following notation.
(1.5) Definition: If $f:(X, A) \rightarrow(X, A)$ is a map of a topological pair to itself and $F \quad$ is a field then $\eta(f ; F)=\vec{\zeta}\left(f_{*}\right)$ where $f_{*}: H_{*}(X, A ; F) \rightarrow H_{*}(X, A ; F)$ is the map induced by f on the homology of (X, A) with coeftictents in F.
(1.6) Coroliary. If $f:(X, A) \rightarrow(X, A)$ is a continuous map of a finfte simpliciel pair then $n(f ; R)$ with all coefficients reduced $\bmod 21 s$ equel to $n\left(f ; Z_{2}\right)$.

Proof: Let C be the free oriented simplicial chain complex of (X, A) and let $t: C \rightarrow C$ be chain map arising from a simplicial approximation to f. Then $H_{*}(X, A ; R)$ is the homology of the complex $C \otimes R$ and $H_{H}\left(X, A ; Z_{2}\right)$ is the homology of $C \otimes Z_{2}$. The maps induced by f are induced by the chajn maps

$$
\begin{aligned}
& a=T \theta 1 d: C \theta R \rightarrow C \otimes R \\
& \beta=T \otimes 1 d: C \theta Z_{2} \rightarrow C \otimes Z_{2} .
\end{aligned}
$$

Hence by Lemmas (1.2) and (1.4), $(f ; R)$ with all coefficients reduced mod 2 is equal to $n\left(r ; z_{2}\right)$. q.e.d.

For later use we cite one other well known fact and give its proof since it is quite short.
(1.7) Proposition. Suppose A is an $n \times n$ real matrix then $\exp \left(\sum_{m=1}^{\infty} \operatorname{tr} A^{m} t^{m}\right)=\frac{1}{\operatorname{det}(I-A t)}$.

Proof: $\quad \sum_{m=1}^{\infty} \frac{1}{m} A^{m} t^{m}$ is the formal power series for $-\log (I-A t)$, (the series will of course converge for t near 0). It is also a well known fact that for any matrix $B, \exp (\operatorname{tr} B)=\operatorname{det} \exp (B)$. Hence $\exp \left(\Sigma \frac{2}{m} \operatorname{tr} A^{m} t^{m}\right)=\exp \left(\operatorname{tr} \Sigma \frac{1}{m} A^{m} t^{m}\right)=\exp [t r(-\log (I-A t))]=$ $\operatorname{det}[\exp (-\log (I-A t))]=\frac{1}{\operatorname{det}(I-A t)}$. q.e.d.
82. Axiom A Dipfeomorphisms with the No-Cycle Froperty

We wish to study the structure of diffemorphisms which satisty Axiom A of Smale [13] and the no-cycle property, so we now briefly describe this class of diffeomorphtsms.

Let $f: M \rightarrow M$ be a C^{2} affeomorphism of a compact connected manifold M. A closed f-invariant set $\Lambda \in M$ is called hyperbolic if the tangent bundle of M restricted to λ is the Whitney sum of two Df-Invariant bundes, $T_{A}=E^{\prime \prime}(A) \oplus E^{s}(N)$, and if there are constants $\mathrm{C}>0$ and $0<\lambda<1$ such that

$$
\left|D f^{n}(v)\right| \leq \lambda^{n}|v| \text { for } v \in E^{s}, n>0
$$

and

$$
\left|D r^{m n}(v)\right| \leq c \lambda^{n}|v| \text { for } v \in E^{u}, n>0 \text {. }
$$

The diffeomorphism f is satd to satisfy Axtom A if a) the non-wandering set of $f, f(f)=\left(x \in M: U \cap \cup f^{n}(U) \neq \varnothing\right.$ for every neighborhood U of x Is a hyperbolsc set, and $b) S(t)$ equals the closure of the set of periodic points of f. If f satisfies Axiom A, one has the spectral decomposittion theorem of Smale [11] which says $X f(f)=\Lambda_{1} \cup \cdots U \Lambda_{2}$ where Λ_{1} are pairwise disjoint, f-invariant closed sets and $\left.f\right|_{\Lambda_{1}}$ is torologically transitive.

These λ_{1} are called the basic sets of f. We consider diffeomorphisms which in addition to Axiom A satisfy the no cycle property [12] which we now define. If Λ_{1} ls a bacic set of f then its stable and unstable manffolds ([6] or (9]) are defined by

$$
W^{s}\left(\Lambda_{1}\right)=\left\{\operatorname{xeM|d}\left(f^{n}(x), \Lambda_{1}\right) \rightarrow 0 \operatorname{as} n \rightarrow \infty\right\}
$$

and

$$
W^{u}\left(\Lambda_{1}\right)=\left\{x \in M \mid d\left(f^{-n}(x), \Lambda_{1}\right) \rightarrow 0 \text { as } n \rightarrow \infty\right)
$$

One says $\Lambda_{1} \leq \Lambda_{j} \perp i W^{u}\left(\Lambda_{f}\right) \cap W^{s}\left(\Lambda_{1}\right) \neq \varnothing$. If this extends to a total ordering on the basic sets Λ_{1}, then f is said to satisfy the no-cycle property and we re-index so that $\Lambda_{i} \leq \Lambda_{j}$ when $1 \leq j$.

If Λ_{1} is a basic set of $f: M \rightarrow M$ then we define the index u_{1} of Λ_{1} with respect to f to be the fiber dimension of $E\left(\Lambda_{1}\right)$.

We review briefly the filtrations of [12] associated with a diffeomorphism which satisfies Axiom A and the no-cycle property. In fact the purpose of imposing the no-cycle condition is to obtain this filtration. It is possible to find submanifolds (with boundary and of the same dimension as M),

$$
\begin{aligned}
& M=M_{2} \supset \cdots \supset M_{1} \supset M_{0}=\emptyset \text { such that } \\
& M_{1-1} \cup f\left(M_{1}\right) \subset \text { int } M_{1}, \\
& \Lambda_{1}=\bigcap_{m \in Z} f^{m}\left(M_{1}-M_{1-1}\right), \text { and } \\
& W^{u}\left(\Lambda_{1}\right) \cup M_{1-1}=M_{1-1} \cup \bigcap_{m \geq 0} f^{m}\left(M_{1}\right) .
\end{aligned}
$$

Henceforth $f: M \rightarrow M$ W111 be θ diffeomorphism of n :..upact manifold satisfying $A x i o m A$ and the no-cycle property and $M=M_{\ell} \supset M_{\ell-1} \supset \cdots \supset M_{0}=\varnothing$ will be a filtration for f.
(2.1) Definition: If $\Lambda_{1} \subset M_{1}-M_{1-1}$ is a basic set of f then we
define $n_{1}(f)=\prod_{j=0}^{n} \operatorname{det}\left(I-f_{*} j^{t}\right)^{(-1)^{j+1}}$ where $f_{*}: H_{j}\left(M_{1}, M_{1-1} ; R\right) \rightarrow$ $H_{j}\left(M_{i}, M_{i-1} ; R\right)$ is the map induced by f. Alternatively $n_{1}(f)=\tilde{\zeta}\left(f_{*}\right)$ where $f_{*}=\oplus f_{*}{ }^{\prime \prime}$

The function n_{i} is sometimes called the homology or false zeta function of f on λ_{1} because (as the following proposition shows) it can be obtained by taking the definition of the zeta function and replacing the number of fixed points of f^{m} by the number of fixed points seen by homology, 1.e., the Lefschetz number of f^{m}.
(2.2) Proposition: $n_{1}(f)=\exp \sum_{m=1}^{\infty} \frac{1}{m} \tilde{N}_{m} t^{m}$ where $\tilde{N}_{m}=L\left(f^{m} ; M_{1}, M_{1-1}\right)=$ $\Sigma(-1)^{j} \operatorname{tr}^{f_{* j}}$ and $f_{* j}: H_{j}\left(M_{1}, M_{1-1} ; R\right) p$ 1s the map induced by f.

Proof: We compute

$$
\begin{aligned}
\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} \tilde{N}_{m} t^{m}\right) & =\exp \left(\sum_{m=1}^{\infty} \frac{1}{m}\left(\Sigma(-1)^{j} t r f_{* f}^{m}\right) t^{m}\right) \\
& =\prod_{j=0}^{n} \exp \left[(-1) \sum_{m=1}^{\infty} \frac{1}{m} \operatorname{tr} f_{*}^{m} t^{m}\right] \\
& =\prod_{j=0}^{n} \operatorname{det}\left(I-f_{* j} t\right)^{(-1)^{j+1} \text { by proposition (1.6 }} \\
& =n_{1}(f) .
\end{aligned}
$$

We remark that \tilde{N}_{m} is equit to $\Sigma I\left(p ; f^{m}\right)$ where the in is taken over all fixed points of f^{m} n Λ_{1} and $I\left(p ; f^{m}\right)$ is the Iaschetz index of the fixed point p under f^{m} (see [3] and Lemma 3 of [4] for this). This shows than \tilde{N}_{m} is independent of the choice of filtration elements M_{1} and M_{1-1} so we have the following.
(2.3) Corollary: $n_{1}(5)$ is independent of the choice of filtration for f.

It should be noted however that γ_{1} is not an invariant of Λ_{1} and f restricted to Λ_{1}, but depends on how Λ_{1} is embedded in M and how I extends to M.
(2.4) Definition: If \wedge is a basic set of f we say f preserves (or reverses) a u-orientation on Λ if the bundie $E^{u}(\Lambda)$ is orientable and Df preserves (or reverses) this orientation.

When f preserves or reverses a u-orientation on a basic set there is a close relationship between η and the zeta function of f restricted to the basic set.
(2.5) Theorem (Smale): Suppose A_{1} is a basic set of f and ζ_{1} denotes $G\left(f \mid \Lambda_{1}\right)$, then

$$
n_{1}=\left\{\begin{array}{l}
\zeta_{1}(t) \text { if } i \text { preserves a u-orientation on } \Lambda_{1} \\
\zeta_{1}(-t) \text { if } i \text { reverses a u-orientation on } \Lambda_{1}
\end{array}\right.
$$

where $\pi=(-1)^{u_{1}}$ and $u_{1}=$ fiber dim $E^{u}\left(\Lambda_{1}\right)$ 1s the index of Λ_{1}.

Proof: Smale [11] actually proved this result only for Anosov diffeomorphisms (1.e. when $\Lambda_{1}=M$), but the proof is the same for this case. Since it is short we give it. By a result of Smale [11, p. 767], if peFix $\left(f^{m}\right) \cap \Lambda_{1}$ then the index of $p I\left(p ; f^{m}\right)=\Lambda_{m}(-1)^{u_{1}}=$ Λ_{m} where $\Lambda_{m} 1 s \pm 1$ depending on whether or not f^{m} preserves or reverses u-orientation on Λ_{1}. Thus if N_{m} is the cardinaiter of

Fix $\left(f^{m}\right) \cap \Lambda_{1}$ and $\tilde{N}_{m}=\Sigma I\left(p ; f^{m}\right)$ with the sum taken over all preFix $\left(f^{m}\right) \cap \Lambda_{1}$ we have $N_{m}=\Lambda_{m} \overbrace{m}$. Now if f preserves umorientatron on Λ_{1} then $\Lambda_{m}=1$ for all m so

$$
\begin{aligned}
\zeta_{1}(t) & =\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} N_{m} t^{m}\right) \\
& =\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} \tilde{N}_{m} t^{m}\right) \\
& =r_{1}^{n}
\end{aligned}
$$

On the other hand if f reverses umorientation on A_{1} then $\Delta_{\mathrm{m}}=(-1)^{\mathrm{m}}$ so,

$$
\begin{aligned}
\zeta_{1}(-t) & =\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} N_{m}(-1)^{m_{t}} t^{m}\right) \\
& =\exp \left(a_{m=1}^{\infty} \frac{1}{m} \ddot{N}_{m} \Lambda_{m}(-1)^{m_{m}} t^{m}\right) \\
& =\exp \left({ }_{0}^{\infty} \sum_{m=1}^{\infty} \frac{1}{m} \tilde{N}_{m} t^{m}\right)=n_{1}^{\theta}
\end{aligned}
$$

(2.6) Proposition: Let i: $M \rightarrow M$ be a diffeomorph1sm with all periodic points hyperbolic, then as formal power series,
a) $\zeta\left(f^{\prime}\right)=\Pi\left(1-t^{p(y)}\right)^{-1}$ where the product is taken over all. periodic orbits γ and $p(\gamma)$ denotes the least period of γ.
b) $n(f ; R)=\Pi\left(1-\Delta_{\gamma} t^{p(\gamma)}\right)(-1)^{u(y)+1}$ where Δ_{ψ} is 1 if $D f_{x}^{p(\gamma)}: E_{x}^{u} \rightarrow E_{x}^{u}$ preserves orientation for $x \in v$ and -1 otherwise, and $u(v)=$ fiber $d i m E_{v}^{u}$.

If f satisfies Axiom A the same formulas hold for C_{1} and η_{1} if the product is taken over all periodic orbits $y \subset \Lambda_{1}$.

Proof: Since every periodic point is hyperbolic and we assume M is compact it follows that $\{x \mid x \in y$ and $p(y) \leq n\}$ is finite for any fixed n. If y is a single periodic orbit of period p then it is easy to check $\zeta\left(\left.f\right|_{y}\right)=\left(1-t^{p}\right)^{-1}$. We now fix an integer n and let $\left(\gamma_{1}, \ldots, v_{s}\right)$ be the set of periodic orbits with period $p\left(v_{1}\right) \leq n$ and $K=\bigcup_{1=1}^{S} v_{1}$, then $\zeta\left(\left.f\right|_{K}\right)=\prod_{i=1}^{s}\left(1-t^{p\left(r_{1}\right)}\right)^{-1}$.

But $N_{n}(f)$ is equal to $N_{n}\left(\left.f\right|_{K}\right)$ since any fixed point of f^{n} is in K. Thus the coefficient of t^{n} in $\zeta(f)=\exp \left(\Sigma \frac{1}{m} N_{m}(f) t^{m}\right)$ is the same as the coefficient of t^{n} in $\zeta\left(\left.f\right|_{K}\right)=\exp \left(\Sigma \frac{1}{m} N_{m}\left(\left.f\right|_{K}\right) t^{m}\right)=$ II $\left(1-t^{p\left(r_{1}\right)}\right)^{-1}$. However, since $\left(1-t^{p}\right)^{-1}=1+t^{p}+t^{2 p}+\cdots$, $1=1$ the coefficient of t^{n} in $\mathbb{S}_{n}\left(1-t^{p\left(\gamma_{1}\right)}\right)^{-1}$ is the same as the coefficient of t^{n} in $\prod_{\psi}\left(1-t^{i=1} p(\gamma)\right)^{-1}$ where the product is taken over all periodic orbits γ. Thus we have shown the coefficient of t^{n} in $\zeta(f)$ and $\Pi\left(1-t^{p(\gamma)}\right)^{-1}$ are the same, so this proves e).

The proof of b) is similar; we use the result of Smale [11, p. 767] that if v has period p and $x \in y$ then the Lefschetz Index $I\left(x, f^{p}\right)$ is $(-1)^{u(\gamma)} \Delta_{\psi}$ where $\Delta_{\gamma}=+1$ if $D f^{p}: E_{x}^{u} p$ preserves orientation and $\Delta_{\gamma}=-1$ if orlentation is reversed. Now $n(f ; R)=\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} L\left(f^{m}\right) t^{m}\right)$ and $L\left(f^{m}\right)=\Sigma I\left(x, f^{m}\right)$ where this sum is over all xffix $\left(f^{m}\right)$. Let K be as above and define $\rho=\exp \left(\Sigma \frac{1}{m} I_{m}(K) t^{m}\right)$ where $L_{m}(K)$ is the sum of $I\left(x, f^{m}\right)$ for all $x \in F i x\left(f^{m}\right) \cap K$. Then for $m \leq n$ we have $L_{m}(K)=L\left(f^{m}\right)$ since all points of period $\leq n$ are in K. Thus the coefficient of t^{n} in ρ is the same as the coefficient of t^{n} in $n(f ; R)$.

But $I_{m}(K)=\sum_{1=1}^{3} L_{m}\left(\gamma_{1}\right)$ where $L_{m}\left(y_{1}\right)=\sum I\left(x, I^{m}\right)$ where the sum is over xe $\gamma_{1} \cap \operatorname{Fix}\left(f^{m}\right)$. Hence $\rho=\prod_{1=1}^{s} \exp \left(\sum_{m=1}^{\infty} \frac{1}{m} L_{m}\left(\gamma_{1}\right) t^{m}\right)$. Since $L_{m}(v)= \begin{cases}0 \text { if } m \neq 0 \bmod p(v) & \text { one checks } \\ p(v)(-1)^{u(v)} \Delta^{m / p}(v) & \text { if } m \equiv 0 \bmod p(v),\end{cases}$ easily that $0=\prod_{i=1}^{s}\left(1-\Delta_{\gamma_{1}} t^{p\left(\gamma_{i}\right)}\right)^{(n)}$. Thus, as before, the coefficient of t^{n} in ${ }^{n}$ is also the same as the coefficient of t^{n} in
 to a single basic set is similar.

83. The Relative Double Cover for a Basic Set

In the case when the bundle $E^{u}(N)$ is orientable and Df preserves or reverses this orientation the zeta function is calculable from homological information using Theorem (2.5). However for many important examples things are not so nice and one must resort to other techniques. This problem was handied first by Guckenheimer [5] in his proof of the rationality of the zeta function for Axiom A diffeomorphsims satisfying the no-cycie property which was based on previous work of Williams [14].

The idea of Guckenheimer was to try to work in a double cover which orients E^{u} and where f has a lift which preserves u-orientation. Such a double cover exists over a neighborhood of A but this neighborhood is not f invariant. Hence to define a lift of f it is necessary to add to the double cover all points in filtration levels below Λ and let them cover themselves singly. The precise result we need is the following theorem implicit in [5] and explicitly worked out in the very rice appendix of [10].
(3.1) Theorem: Suppose Λ is a basic set of a diffeomorphism f satisfying Axiom A and the no-cycle property. Then there is a relative manifold (\bar{X}, \bar{A}) and a relative double cover $\Pi:(\bar{X}, \bar{A}) \rightarrow(X, A)$ such that

1) There exists a filtration for f with $X=M_{1}, A=M_{1-1}$ for some i and $\Lambda \subset X-A$.
2) The bundle $E^{u}(\Lambda)$ extends to a bundle E^{u} over $X-f(A)$ and Df extends to a bundle map

Where E_{l}^{U} is the restriction of F^{u} to X - A.
3) There is a map $\bar{f}:(\bar{X}, \bar{A}) \rightarrow(X, A)$ covering f.
4) The bundle F^{u} on X - A lifts to an oriented bundze E^{4} on $X-$ A and for any $x \in \Pi^{-1}(N) D f_{x}^{*}: F_{X}^{u} \rightarrow E^{U}(x)$ preserves orientation.
5) Then there 1s a unique covering transformation T of the double cover $\Pi: \bar{X}-\widetilde{A} \rightarrow X-A$ which reverses the orientation of E .

We will also need the following lemma.
(3.2) Lemma: Suppose Λ is a basic set and $I:(X, T) \rightarrow(X, A)$ is a relative double cover as above. Then if $x \in A \cap F i x(f)$, fixes the two points of $n^{-1}(x)$ if and only if Df preserves the orientation of E_{x}^{u}, otherwise it sultches them.

Proof: Let $y \in \Pi^{-1}(x)$ and suppose $F^{\prime}(y)=y$. Then $D \Pi$: $F_{y}^{u} \rightarrow E_{x}^{u}$ satis. fles $D \Pi \cdot D f^{F}=D f \cdot D \Pi$ so $D \bar{T}$ and $D f$ restricted to \vec{E}_{y}^{U} and E_{X}^{U} are conjugate. Since $D \bar{f}$ preserves orientation of $\bar{E}^{\mathbf{U}}$ (by (4) of Theorem (3.1)) It follows that $D f_{x}$ also preserves orientation.

Conversely if Df_{x} preserves the orientation of E_{X}^{u} then $f(y)=y$
because, if not we can define $\hat{f}=\vec{f} \cdot T$ where T is the nontrivial deck transformation and then $\hat{f}(y)=y$ and $D \hat{f}_{y}$ will reverse the orientation of F, Since $\hat{\mathrm{f}}$ also covers f the same argument used above to show $D f_{x}$ preserves orientation, now shows $D f_{x}$ reverses orientation which is a contradiction.
q.e.d.
(3.3) Proposition: Suppose A is a basic set for f and II: $(X, X) \rightarrow(X, A)$ is a relative double cover for A. Then if $f_{*}: H_{*}(X, A ; R) \circlearrowright$ and $\vec{f}_{*}: H_{*}(X, \bar{A} ; R) P$ are the maps induced by f and $\bar{f}, u=f i b e r$ dim $E^{u}(\Lambda)$, and $\bar{\Lambda}=\Pi^{-2}(\Lambda)$, the following equalities hold:

$$
\zeta\left(\left.f\right|_{\Lambda}\right)^{m}\left(f_{*}\right)^{(-1)^{u}}=\tilde{\zeta}\left(\vec{x}_{*}\right)^{(-1)^{u}}=\zeta(\bar{f} \mid \bar{\Lambda})
$$

Proof: The proof of the equality $\tilde{\zeta}\left(\bar{f}_{*}\right)^{(-1)^{u}}=\zeta(\vec{f} \mid \pi)$ is exactly the same as the proof of Theorem (2.5) (recall that \bar{f} preserves u-orientation on $\bar{\lambda}$). To prove the other equality we note that if $\Lambda=\Lambda_{1}$ then $\tilde{\zeta}\left(f_{*}\right)=\eta_{1}(f)($ definition (2.1)) and hence by Proposition 2.2 and the remark following $\zeta\left(f_{*}\right)=\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} \bar{N}_{m} t^{m}\right)$ where \tilde{N}_{m} is sum of indexes of the $f 1 x e d$ points of f^{m} restricted to A. Thus if we let $N_{m}=$ cardinality of $F i x\left(f^{m}\right) \cap \wedge$ and $N_{m}=$ cardinality of $F 1 x\left(\mathrm{f}^{\mathrm{m}}\right)$ ก $\bar{\Lambda}$, we have

$$
\begin{aligned}
\zeta\left(\left.f\right|_{\Lambda}\right) \tilde{\zeta}\left(f_{*}\right)^{(-1)^{u}} & =\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} N_{m} t^{m}\right) \cdot \exp \left(\sum_{m=1}^{\infty} \frac{1}{m}(-1)^{u_{N}} N_{m}^{m} t^{m}\right) \\
& =\exp \left(\sum_{m=1}^{\infty} \frac{1}{m}\left(N_{m}+(-1)_{N_{m}}^{u_{m}}\right) t^{m}\right) \\
\text { and } \zeta(\tilde{f} \mid-) & =\exp \left(\sum_{m=1}^{\infty} \frac{1}{m} N_{m} t^{m}\right)
\end{aligned}
$$

So it suffices to prove $\mathbb{R}_{m}=N_{m}+(-1) u_{N_{m}}$.
By the result of Smale [11, p. 767] the index $I\left(p, f^{m}\right)$ of a fixed point of $f^{m}=\Delta(-1)^{u}$ where A is ± 1 depending on whether or not $D f^{i n}$ preserves or reverses orientation. Thus if we let N_{m}^{+}be the number of fixed points of f^{m} where Df preserves orientation and $N_{m}^{-}=N_{m}-N_{m}^{+}$then since $\tilde{N}_{m}=\Sigma I\left(p, r^{m}\right)$ we have $(-I)^{U_{N}} \tilde{N}_{m}=N_{m}^{+}-N_{m}^{-}$. since $N_{m}=N_{m}^{+}+N_{m}^{-}$it follows that $N_{m}+(-1) U_{N_{m}}^{\sim}=2 N_{m}^{+}$.

On the other hand Lemma (3.2) applied to \widehat{f}^{m} says that $\mathbb{N}_{m}=2 N_{m}^{+}$, and hence we have $N_{m}+(-1) U_{N_{m}}^{\sim}=\mathbb{N}_{m}$ as desired. q.e.d.

As a by-product we have essentially proved the following result of Guckenheiner (Indeed by a method very close to that of [5] and [24]; see also Manning [8]).
(3.4) Corollary (Guckenheimer): If $f: M \rightarrow M$ satisfies Axiom A and the no-cycle condition then $6(f)$ is a rational function. In fact it is a quotient of polymomials with integer coefficients and constant term 1. The same is true for the zeca function of f restricted to a basic set.

Proof: One checks easily (or see [11, p. 766]) that $\zeta(f)=\prod_{i=1}^{\ell} \zeta\left(\left.f\right|_{\Lambda_{1}}\right)$ so it suffices to prove the result for $\Lambda=\Lambda_{1}$. But since it is clear from the definftion that $\bar{\zeta}\left(f_{*}\right)$ and quotients of integer polynomials with constant terms 1, it then follows from Proposition (3.3) that $6\left(\left.f\right|_{\Lambda}\right)$ also has this property. q.e.d.
84. The Reduced Zeta Function

We can now relate the reduced zeta function of a basic set to homological invariants of f. Since this is really the heart of all our results we give two quite different proofs. As before if Λ_{1} Is a basic set, then M_{1} and M_{1-1} will denote the elements of a filetraction for $£$ such that $\Lambda_{1} \subset M_{1}-M_{1-1}$.
4.1 Theorem: Suppose $f: M \rightarrow M$ satisifes Axiom A and the no-cycle property and n_{1} is a basic set of index u, then the following are equal:
a) $\zeta\left(\left.f\right|_{\Lambda_{1}(-1)^{u}} \quad\right.$ with all coefficients reduced mod 2 , i.e.
b) The function obtained by reducing mod 2 all coefficients
of $n_{1}(f ; R)=\prod_{j=0}^{n_{0}} \operatorname{det}\left(I-f_{*} f^{t}(-1)^{J+I}\right.$ where $f_{* j}: H_{j}\left(M_{1}, M_{1} ; R\right) \Longrightarrow 1 s$ induced by f.
c) The function $\eta_{1}\left(f ; z_{2}\right)=\prod_{j=0}^{n} \operatorname{det}\left(I-f_{*} j^{t}\right)^{(-1)^{j+1}}$ where $f_{* j}: H_{j}\left(M_{1}, M_{1-1} ; Z_{2}\right) p 1 s$ induced by f.

Topological proof: The fact that b) $1 s$ equal to c) was proved in Proposition (1.6), hence it suffices to show that a) is equal to e)

We first choose a relative double cover for Λ_{1}, as in $\$ 3$, II: $(X, \bar{A}) \rightarrow(X, A)$ and then a filtration such that $M_{1}=X, M_{1-1}=A$. The pair (X, A) can be triangulated and the triangulation lifted to a triangulation of (\bar{X}, \bar{A}) so that each simplex π which intersects
X - A is covered by two simplices $\bar{\pi}$ and Tr where T is the covering transformation which reverses orientation of E^{4}.

Let C be the oriented simplicial chain complex for the pair (X, A) and let \mathbb{C} the oriented simplicial chain complex for the pair (\bar{X}, \bar{A}). The map π induces a chain map $\Pi_{*}: \bar{C} \rightarrow C$. Let $D=$ er Π_{*} so we have the short exact sequence of chain complexes $0 \rightarrow D \rightarrow C \xrightarrow{\Pi_{+}} C \rightarrow 0$. The chain maps induced on C and C by f and \bar{f} will be denoted by τ and \bar{T} respectively. We then define

$$
\begin{aligned}
& \alpha=\bar{T} \mid D^{Q 1 d: D Q R \rightarrow D Q R} \\
& 0=\bar{T} Q 1 d: C Q R+C \theta R \\
& y=T O 1 d: C Q R \rightarrow C \theta R
\end{aligned}
$$

Now $H_{*}(\bar{C} \otimes R)=H_{*}\left(X, \bar{A}_{;}, R\right), H_{*}(C \otimes R)=H_{*}(X, A ; R)$ and, ρ and γ represent \bar{f}_{*} and f_{*} on the chain level. Since $0 \rightarrow D_{j} \otimes R \rightarrow \bar{C}_{j} \otimes R \rightarrow C_{j} \otimes R \rightarrow 0$ is exact an application of Corollary (1.3) shows $\operatorname{det}\left(I-a_{j} t\right)\left(\operatorname{det}\left(I-\rho_{j} t\right)\right)^{-1} \operatorname{det}\left(I-y_{j} t\right)=I$ so $\operatorname{det}\left(I-\rho_{j} t\right)=\operatorname{det}\left(I-a_{j} t\right) \operatorname{det}\left(I-\gamma_{j} t\right)$ and it follows that

$$
\tilde{\zeta}(\rho)=\tilde{\zeta}(\alpha) \tilde{\zeta}(v) .
$$

Since $\tilde{\zeta}(\rho)=\tilde{\zeta}\left(\tilde{F}_{*}\right)$ and $\tilde{\zeta}(y)=\tilde{\zeta}\left(f_{*}\right)$, by (1.2) it follows from Proposition 3.3 that $\tilde{\zeta}(a)=\tilde{\zeta}\left(\left.f\right|_{\Lambda_{1}}\right)^{(-1)^{u}}$ where $u=$ fiber dim $E^{u}\left(\Lambda_{i}\right)$ Is the index of Λ_{1}. Thus $\zeta\left(\left.f\right|_{\Lambda_{1}}\right)^{(-1)^{u}}$ reduced mod 2 is equal to $\tilde{\zeta}(a)$ reduced mod 2 which by Lemma (1.4) is equal to $\tilde{\zeta}(B)$ where $\varepsilon=\left.T\right|_{D} \otimes i d: D \otimes Z_{2} \rightarrow D \otimes z_{2}$. So it will suffice to show that
$\tilde{\zeta}(\beta)=\eta_{1}\left(f ; z_{2}\right)$.
To prove this we note that chains in D are precisely those chains in C which satisfy the condition that the coefficient of $\bar{\sigma}_{j}$ equals minus the coefficient of $T\left(\bar{\sigma}_{j}\right)$. Hence chains in $D * Z_{2}$ are the chains with the coefficient (in Z_{2}) of $\bar{\sigma}_{j}$ equal to the coefficient of $T\left(\bar{\pi}_{f}\right)$. It is now easy to see that the map o: $C \otimes Z_{2} \rightarrow D \otimes Z_{2}$ defined by $\sigma\left(\sigma_{j}\right)=\bar{\sigma}_{j}+T\left(\bar{\sigma}_{j}\right)$ is a chain 1som morphism. Also it is clear that $B \circ m=C \cdot T^{\prime}$ where $T^{\prime}=T \otimes 1 d: C \otimes Z_{2}{ }^{\circ}$ Thus $\tilde{\zeta}(\beta)=\tilde{\zeta}\left(t^{\prime}\right)$ but by Lemma (1.2) $\bar{\zeta}\left(T^{\prime}\right)=\tilde{\zeta}\left(f_{*}\right)$ where $f_{*}: H_{*}\left(X, A ; Z_{2}\right)$ and this is precisely $\eta_{1}\left(f ; Z_{2}\right)$. q.e.d.

Algebraic Proof: We again appeal to Proposition (1.6) for the equality of b) and c) and then show directly that a) is equal to b). By Proposition (2.6) we have
$\eta_{1}(f ; R)^{(-1)^{u}}=\prod_{v \in \Lambda_{1}}\left(1-\Delta_{v} t^{p(\gamma)}\right)^{-1}$ and $\epsilon_{1}\left(\left.f\right|_{\Lambda_{1}}\right)=\prod_{v \in \Lambda_{1}}\left(1-t^{p(v)}\right)^{-1}$
where both products are taken over all periodic orbits in Λ_{1}. Clearly these should be the same when reduced mod 2 if we can make an of the infinite products. We do this by considering formal power series.

Let $Z[t]$ be the ring of integer polynomials and let S be the multiplicative set $1+t Z[t]$. Then $s^{-1} Z[t]$ will denote the ring of fractions of $Z[t]$ by S. Since for the inclusion $Z[t] \rightarrow Z[[t]]$ into formal power series the image of each element of S is invertible there is a unique extension of the inclusion to a homomorphism

Similarly we have $Z_{2}[t], \ldots-1.0 c a l m a t+n$ nt $(t), Z_{n}[t], a t$ and an extension of the inclusion $Z_{2}[t] \rightarrow Z_{2}[\{t]]$ to $\beta: Z_{2}t \rightarrow Z_{2}[[t]$ The homomorphism β is injective since it is injective on polynomtals.

Let $\theta: z[t] \rightarrow z_{2}[t] \rightarrow z_{2}[t], t: s^{-1} z[t] \rightarrow z_{2}t$ and $\theta: Z[[t]] \rightarrow Z_{2}[[t]]$ all denote reduction of coefficients mod 2. Then we have the following commutative diagram of homomorphisms

where the unlabelled arrows are the natural inclusions. The diagram is commutative because it commutes for polynomials. By (2.4) and (3.4) the rational functions ξ_{1} and η_{1} are in $s^{-1} Z[t]$. The assertion of our theorem is that $\left\|\left(\eta_{1}\right)=\right\|\left(\sigma_{1}(-1)^{u}\right)$. Considering the diagram and the fact that B is infective, it suffices to show that $\theta \cdot \alpha\left(\eta_{1}(-1)^{u}\right)=\theta \cdot \alpha\left(\zeta_{1}\right)$.

To do this we show they have the same coefficient of t^{n}. Let $\left\{\gamma_{1}, \ldots, \gamma_{s}\right\}$ be the set of periodic orbits in Λ_{1} with $p\left(\gamma_{1}\right) \leq n$. Then the coefficient of t^{n} in $\alpha\left(n_{1}(-1)^{u}\right)$ is the same as that in $\alpha(\rho)$ where $\rho=\prod_{1=1}^{s}\left(1-\Delta_{v_{1}} t^{p\left(v_{1}\right)}\right)^{-1}$. Likewise the coefficient of t^{n} in $\alpha\left(\zeta_{i}\right)$ is the same as that in $\alpha(\hat{p})$ where $\hat{\rho}=\prod_{i=1}^{s}\left(1-t^{p\left(\gamma_{i}\right)}\right)^{-1}$. But $\psi(\rho)=\phi(\hat{\rho})$, so $\theta \cdot \alpha(\rho)=\beta \cdot \psi(\rho)=\beta \cdot \psi(\hat{\rho})=\theta \cdot \alpha(\hat{\rho})$ and it follows that the coefficient of t^{n} in $\theta \cdot \alpha\left(\eta_{1}^{(-1)^{u}}\right.$) is equal to the coefficient of t^{n} in $\theta \cdot \alpha\left(\sigma_{1}\right)$.
q.e.d.
(5.1) Definition: We define the partial homology zeta function $\tilde{\zeta}_{q}=\tilde{\zeta}_{q}\left(f_{*}\right)$ to be $\operatorname{det}\left(I-f_{* q} t\right)^{-1}$ where $f_{* q}: H_{q}(M ; R) \rightarrow H_{q}(M ; R)$. Thus $\tilde{\delta}=\tilde{\zeta}\left(f_{*}\right)=\prod_{q=0}^{n} \tilde{\sigma}_{q}^{(-1)^{q}}$ where $n=\operatorname{dim} M$.

In order to prove Morse inequalities we will need a standing hypothesis on the dimension of the basic sets (or on the dimension of the global unstable manifolds). Recall that the index u_{1} of a basic set $\Lambda_{1}=$ fiber dim $E^{u}\left(\Lambda_{1}\right)$.
(5.2) Definition: If $f: M \rightarrow M$ satisfies Axiom A and the no-cycle property we will say that the basic sets of f satisfy the dimension requirements for an integer q if it is true that each basic set Λ_{1} with index $u_{i} \leq q$ satisfies dim $W^{u}\left(\Lambda_{1}\right) \leq q$ and each basic set Λ_{j} with $u_{j}>q$ satisfies dim $W^{S}\left(\Lambda_{j}\right)<n-q$ where $n=d i m M$.
(5.3) Remark: It is shown in Lemma 5 of [4] that $\operatorname{dim} \Lambda_{1}+u_{1} \geq \operatorname{dim} W^{u}\left(\Lambda_{1}\right)$ and similarly dim $\Lambda_{j}+\left(n-u_{j}\right) \geq \operatorname{dim} W^{s}\left(\Lambda_{j}\right)$. Hence the dimension requirements above are satisfied if $\operatorname{dim} \Lambda_{1} \leq q-u_{i}$ when $u_{i} \leq q$ and $\operatorname{dim} \Lambda_{j}<u_{j}-q$ when $u_{j}>q$. From this it is clear the dimension requirements are satisfied for all q if $\operatorname{dim} \Lambda_{1}=0$ for all 1 .

$f_{* j}: H_{j}\left(M_{1}, M_{1-1} ; R\right) P$ and $\Lambda_{1} \subset M_{1}-M_{1-1}$. We wish now to relate these functions to the partial homology zeta functions $\tilde{\zeta}_{q}$.
(5.4) Proposition: Suppose $f: M \rightarrow M$ satisfies Axiom A and the no-cycie property and the basic sets of f satisfy the dimension
requirements (5.4) for q. Then $p^{(-1)^{q}} \cdot \prod_{u_{i} \leq q}{ }^{\Pi_{1}}=\prod_{k=0}^{q} \tilde{\sigma}_{k}^{(-1)^{k}}$
where $P(t)$ is a polynomial with integer coefficients and constant term 1.

Proof: Suppose $M=M_{l} \supset M_{l-1} \supset \cdots \supset M_{1} \supset M_{0}=\varnothing$ is a filtration for f. Define $\eta^{q}\left(M_{i}, M_{j}\right)=\prod_{k=0}^{q} \operatorname{det}\left(I-f_{* k}\right)^{(-1)^{k+1}}$ where $f_{* k}: H_{k}\left(M_{1}, M_{j} ; R\right) P$ is the map induced by f. Consider now the exact sequence $0 \rightarrow B \rightarrow H_{q}\left(M_{f}\right) \rightarrow H_{q}\left(M_{i}\right) \rightarrow H_{q}\left(M_{i}, M_{j}\right) \rightarrow H_{q-1}\left(M_{j}\right) \rightarrow \cdots$ where $B=\operatorname{ker}\left(I_{*}: H_{q}\left(M_{j}\right) \rightarrow H_{q}\left(M_{1}\right)\right)$ and the remainder of the sequince is the exact sequence of the pair $\left(M_{1}, M_{j}\right)$. Note $f_{* q}(B) \subset B$ and let $P_{1 j}=\operatorname{det}\left[I-\left(f_{* q} \mid B\right) t\right]$. Then applying Corollary (1.3) to this exact sequence and the endomorphisms of its elements induced by f we obtain $P_{1, j}^{(-1)^{q+1}} \cdot \eta^{q}\left(M_{j}\right)^{-1} \cdot \eta^{q}\left(M_{i}\right) \cdot \eta^{q}\left(M_{1}, M_{j}\right)^{-1}=1$. Thus, if we set $j=1-1$ and denote $P_{1, i-1}$ by P_{i} we have,

Taking a product over $0 \leq 1 \leq \ell$ we get $\prod_{1=1}^{\ell} \eta^{q}\left(M_{1}, M_{1-1}\right)=$ $\eta^{q}\left(M_{\ell}\right) \cdot \eta^{q}\left(M_{0}\right)^{-1} \prod_{1=1}^{\ell} p_{1}^{(-1)^{q+1}}=n^{q}(M) \cdot p^{(-1)^{q+1}}$ where $p=\prod_{1=1}^{\ell} p_{1}$, since $M_{l}=M$ and $M_{0}=\varnothing$. Notice P is a polynomial with integer coefficients and constant term 1.

By hypothesis if Λ_{1} is a basic set with $u_{1} \leq q$ then $\operatorname{dim} W^{u}\left(A_{1}\right) \leq q$ so by Lemma 6 of [4], $f_{* k}: H_{k}\left(M_{1}, M_{1-1} ; R\right) \circlearrowright$ is nilpotent if $k>q$. That is, $\operatorname{det}\left(I-f_{*}{ }^{t}\right)=1$ if $k>0$ (the characteristic polynomial of a matrix A is $t^{k} h\left(\frac{1}{f}\right)$ for some k where $h(t)=\operatorname{det}(I-A t)$). It follows that $n^{q_{1}}\left(M_{1}, M_{1-1}\right)=$
$n_{1}=\prod_{k=0}^{n} \operatorname{det}\left(I-f_{* k} t\right)^{(-1)^{k+2}}$, whenever $u_{i} \leq q$.
On the other hand when $u_{j}>q, \operatorname{dim} W^{s}\left(\Lambda_{f}\right)<n-q$ so, again by Lemma 6 of [4], we have $f_{* k}$ is nilpotent if $k \leq q$. So a similar argument shows $n^{q}\left(M_{j}, M_{j-\lambda}\right)=1$ if $u_{j}>q$.

Thus

Since by definition,

$$
n^{q}(M)=\prod_{k=0}^{q} \operatorname{det}\left(I-f_{* k} t\right)^{(-1)^{k}}=\prod_{k=0}^{q} \tilde{\zeta}_{k}^{(-1)^{k}}
$$

we have the desired result:

$$
p^{(-1)^{q}} \prod_{u_{1} \leq q}^{n_{1}}=\prod_{k=0}^{q} \sum_{k}^{(-1)^{k}} \quad \text { q.e.d. }
$$

(5.5) Corollary: If $f: M \rightarrow M$ satisfies Axiom A and the no-cycle
property and has basic sets $\Lambda_{1}, \cdots, \Lambda_{2}$, then

$$
\prod_{i=1}^{\ell} n_{1}=\tilde{\zeta}\left(f_{*}\right)=n(f ; R)
$$

Proof: This is easily proved directly, however as remarked in (5.1), $\tilde{\zeta}\left(f_{*}\right)=\prod_{k=0}^{n} \tilde{\sigma}_{k}^{(-1)^{k}}$ where $n=\operatorname{dim} M$, and if we now apply Proposition (5.4) with $q=n$ and $a=n+1$ we see that there are polynomials P_{1} and P_{2} such that

It follows that $P_{1}=P_{2}=1$ so we have the desired result. Note the dimension requirements are always satisfied. q.e.d.
(5.6) Corollary: If $f: M \rightarrow M$ satisfies Axiom A and the no-cycle property and its basic sets satisfy the dimension requi rements

Proof: Take the equality of (5.4) for q and divide by the equality of (5.4) for $q-2$. q.e.d.

We can now obtain the Morse inequalities for the reduced zeta functions Z_{i}. The following result is analagous to Theorem 2 of [4], but uses the reduced zeta functions and thereby obviates the necessity of the hypothesis about orientability.
(5.7) Theorem: Suppose $f: M \rightarrow M$ satisfies Axiom A, the no-cycle property and the dimension requirements (5.2) for q . Then there is a polynomial $p \in Z_{2}[t]$ such that $p u_{1} \leq q_{i}^{i}$ is equal to the mod 2 reduction of $\frac{\tilde{\delta}_{q} \cdot \tilde{\delta}_{q-2} \cdots}{\tilde{\delta}_{q-1} \cdot \tilde{\delta}_{q-3} \cdots}$, where $\tau_{1}=(-1)^{q+u_{1}}$ and $u_{i}=f i b e r \operatorname{dim} E^{u}\left(\Lambda_{i}\right)$.

Before giving the proof we comment on the relation of this to the Morse inequalities for a Morse function. If f is the timeone map of the flow obtained by integrating minus the gradient of a Morse function then f satisfies Axiom A, the no-cycle property and the dimension requirements for all q. The equality above then implies that the degree of ${ }_{u_{1}<q^{\prime}} z_{i}^{\top}$ is less than or equal to the
degree of the mod 2 reduction of $\frac{\bar{\sigma}_{q} \cdot \bar{\delta}_{q-2} \cdots}{\bar{\sigma}_{\mathrm{q}-1} \cdot \tilde{\bar{\delta}}_{\mathrm{q} 3} \cdots}$. One checks that these inequalities are exactly the classical Morse inequalities relating the Betti numbers of M and the number of critical points of a Morse function.

Proof of (5.7): If we take the equality of (5.4) and raise it to the power $(-1)^{\mathrm{q}}$ we obtain

$$
p_{u_{1} \leq q} \eta_{1}^{(-1)^{q}}=\prod_{k=0}^{q} \tilde{\sigma}_{k}^{(-1)^{k+q}}=\frac{\tilde{\zeta}_{q} \cdot \tilde{\delta}_{q-2} \cdots}{\tilde{\zeta}_{q-1} \cdot \tilde{\delta}_{q-3} \cdots}
$$

By Theorem (4.1), n_{1} with coefficients reduced mod 2 is equal to

Applying the same type of argument to the equality of (5.5) we obtain the second of our main theorems.
(5.8) Theorem: Suppose $f: M \rightarrow M$ satisfies Axiom A and the nocycle property, and has $\&$ basic sets, then the following are equal:
a) $\prod_{1=1}^{\ell} z_{i}^{(-1)^{u_{1}}}$ where $u_{1}=$ fiber dim $E^{u}\left(\wedge_{1}\right)$.
b) The reduction mod 2 of $\eta(f ; R)=\prod_{k=0}^{n} \operatorname{det}\left(I-f_{*} t\right)(-1)^{k+1}$ where $f_{* k}: H_{k}(M ; R) \longmapsto 1 s$ induced by f.
c) $n\left(f ; Z_{2}\right)=\prod_{k=0}^{n} \operatorname{det}\left(I-f_{* k} t\right)^{(-I)^{k+1}}$ where $f_{* k} ;\left(M ; Z_{2}\right) \longmapsto$
is induced by f.

Proof: The fact that b) is equal to c) is a consequence of Corollary (1.6). From (5.5) we have $\prod_{1=1} n_{1}=n\left(f_{i} R\right.$) and from Theorem (4.2) n_{1} reduced mod 2 is equal to $Z_{i}^{(-1)^{U_{1}}}$. It follows that
a) is equal to
b).
q.e.d.
(5.9) Proposition: If f satisfies the dimension requirements for q and q - 1 (E.g. if all basic sets of f have dimension
$0)$ then there is a polynomial $p \in Z_{2}[t]$ such that
$p \prod_{u_{i}=q} Z_{i}=\bmod 2$ reduction of $\operatorname{det}\left(I-f_{* q} t\right)^{-1}$ where $f_{* q}: H_{q}(M ; R) \longmapsto$ is induced by f.

Proof: If $u_{1}=q$ then by (4.1) z_{i} is the mod 2 reduction of $n_{1}^{(-1)^{q}}$. By (5.6) there is an integer polynomial P such that $\mathrm{P} \cdot \Pi_{\eta_{i}}(-1)^{q}=\tilde{\delta}_{q}=\operatorname{det}\left(I-f_{* q} t\right)^{-1}$. Reducing mod 2 gives the resuit. q.e.d.

The following proposition elves a necessary condition for a collection of "abstract" basic sets to be embedded as the basic sets of any diffeomorphism f of M (no matter what the homotopy class of f). By the degree of a rational function we mean, of course, the numerator minus the degree of the denominator. The following result was inspired by the remark of Smile [11] that the degree of the homology zeta function (our $n(f ; R)$) is minus the Euler characteristic of M.
(5.10) Proposition: If $f: M \rightarrow M$ satisfies Axiom A and the nocycle property, $\frac{\text { and has basic sets }}{u_{1}} \Lambda_{1} \cdots, \Lambda_{2}$ with $u_{i}=$ fiber dim $F^{u}\left(\Lambda_{1}\right)$, then $\sum_{i=1}^{\ell}(-1)^{u_{1}} \operatorname{deg}_{Z_{1}}=-x(M)$ where $x(M)$

Is the Euler characteristic of M.

Proof: From Theorem (5.8) we have

$$
\prod_{i=1}^{2} z_{1}(-1)^{u_{i}}=\prod_{k=0}^{n} \operatorname{det}\left(I-f_{* k} t\right)^{(-1)^{k+1}}
$$

where $f_{*}: H_{k}\left(M ; Z_{2}\right)$ Pis induced by f. The degree of the left hand side of this equation is $\sum_{1=1}^{\ell}(-1)^{u_{1}} \operatorname{deg} z_{1}$. Now $f_{*}: H_{k}\left(M ; Z_{2}\right) \rightleftharpoons$ is an isomorphism so the degree of $\operatorname{det}\left(I-f_{* k} t\right)$ is rank $H_{k}\left(M ; Z_{2}\right)$. So the degree of $\prod_{k=0}^{n} \operatorname{det}\left(I-f_{*} k^{t}\right)^{(-1)^{k+1}}$ is $-\sum_{k=0}^{n}(-1)^{k} \operatorname{rank} H_{k}\left(M ; Z_{2}\right)=-x(M)$ and the result follows. q.e.d.

86. The Global Bifurcation Problem: Examples and Questions

We are interested in the problem of how the basic sets can change when one Axiom A, no-cycie diffeomorphism is isotoped (or even homotoped) to another. From Theorem (5.8) we have that $\Pi z_{i}^{(-1)^{u_{i}}}=n\left(f ; z_{2}\right)$ and since $m\left(f ; z_{2}\right)$ depends only on the homotopy type of f, it follows that if f and g are homotopic then

$$
\pi z_{1}(f)^{(-1)^{u_{1}}}=\pi z_{j}(g)(-1)^{u_{j}}
$$

Several special cases of this give partial answers to interesting questions:

1) When can an isotopy remove a basic set Λ_{1} of f while leaving all others unchanged? A necessary condition is that $Z_{1}(f)=1$
2) When can an isotopy "cancel" two basic sets Λ_{i} and Λ_{y} leaving all others unchanged? A necessary condition is $z_{i}^{(-1)^{u_{i}} \cdot z_{j}^{(-1)^{u}}=1}=1$
3) When can an 1sotopy of f to g change a basic set $f: \Lambda_{1} \rightarrow \Lambda_{1}$ to a different basic set $f: \Lambda_{1}^{\prime} \rightarrow \Lambda_{1}^{\prime}$, leaving others unaltered? A recpssary condition is $z_{1}(f)^{(-1)^{u_{1}}}=z_{1}(g)^{(-1)^{u_{i}}}$.

In order to give several examples with zero dimensional basic sets we review briefly the structure of these basic sets.

If G is an $n \times n$ matrix of zeroes and ones we define $\Sigma_{A} \subset \|\{1,2, \ldots, n\}$ by $\Sigma_{A}=\left\{x_{1}^{\prime}\right\}_{1=\infty}^{\infty}\left\{x_{1} \in\{1, \ldots, n\}\right.$ and
$A_{x_{1} x_{1+1}}=1$ for all 1). If $\{1, \ldots, n\}$ is given the discrete topology and Σ_{A} a topology as a subset of the product then Σ_{A} is a compact metrizable space.

The shift homomorphism $\cap: \Sigma_{A} \rightarrow \Sigma_{A}$ is defined by $\sigma\left(\left(x_{i}\right)\right)=\left(x_{i}^{\prime}\right)$ where $x_{1}^{\prime}=x_{1+1}$ (here $\left(x_{1}\right)$ denotes the bi-infinite sequence whose ith element is x_{1}).

A result of Bowen [2] shows that on any zero-dimensional basic set n, f is topologically conjugate to some shift $n: \Sigma_{A} \rightarrow \Sigma_{A}$ (the matrix A is not unique however).

It is not difficult to check that $N_{m}(\sigma)$, the number of fixed points of $\pi^{m}: \Sigma_{A} \rightarrow \Sigma_{A}$ is $\operatorname{tr} A^{m}$. Hence we have $\zeta(\pi)=\exp \left(\Sigma \frac{1}{m} N_{m} t^{m}\right)=\exp \left(\Sigma \frac{1}{m} \operatorname{tr} A^{m} t^{m}\right)=\frac{1}{\operatorname{det}(I-A t)}$ by (1.7). (6.1) The Full Shift: If A is the $n \times n$ matrix with all entries 1 then $n: \Sigma_{A} \rightarrow \Sigma_{A}$ is called the fulin n-shift. This can be embedded as a basic set of diffeomorphism of S^{2}. Figures I and 2 illustrate this for $n=2$ and 3 .

In both cases a disk is mapped into itself. In Figure I the diffeomorphism will have as basic sets a fixed point source (not
shown), the fixed point sink p, and a full two shift (see [11] for an analysis of this). This diffeomorphism can be isotoped to remove the two shift without disturbing the fixed points by altering it so the disk is mapped into itself and everything tends to p. One checks easily that if if is the 2-shift homeomorphism $\zeta(\pi)=\frac{1}{1-2 も}$ so $Z(\pi)=1$ as 1 s necessary. Exactiy the same analysis works for the full $n-s h i f t$ if n is even.

Figure 2

For the full 3-shift the basic sets are two fixed point ainks q_{1}, q_{2}, the $3-s h i f t$ and a fixed point source (not shown). In this case an isotopy can replace the shift by a single hyperbolic fixed point (Figure 2) without disturbing the fixed point source and sinks.

Also $\zeta(\sigma)=\frac{1}{1-3 t}$ so $Z(\sigma)=\frac{1}{1+Z}$, the same as the reduced zeta function of a single point. For any full n-shift with n odd one can do the same kind of construction and isotopy.
(6.2) Example: We give now an example of a shift which occurs a basic set of a diffeomorphism of S^{2}, but which cannot occur with all other basic sets as fixed points. Let σ be the shift based on the matrix $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, i.e. the square of the shift based on $\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. One computes easily that $Z(\sigma)=\frac{1}{1+t+t^{2}}$. Since for any diffeomorphism f of $s^{2} \eta\left(f ; z_{2}\right)=\frac{1}{(1+t)^{2}}$, it is not difficult to see that we cannot have $n\left(f ; Z_{2}\right)=\| z_{i}^{ \pm 1}$ if one of the Z_{i} 's is $Z(n)$ and all others are $\frac{1}{I+t}$ (the reduced zeta function of a fixed point). The simplest way to have $\frac{1}{(1+t)^{2}}=\pi z_{i}^{(-1)^{u_{i}}}$ is as follows:

Let $z_{1}=\frac{1}{1+t^{3}}, u_{1}=0 \quad($ a sink of period 3)

$$
\begin{array}{ll}
z_{2}=\frac{1}{1+t+t^{2}}, u_{2}=1 & \left(\text { the subshift for }\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\right) \\
z_{3}=\frac{1}{1+t}, u_{3}=2 . \quad \text { (a fixed point source). }
\end{array}
$$

Then $\pi z_{i}^{(-1)^{u_{i}}}=\frac{1}{(1+t)^{2}}$, since $(1+t)^{3}=(1+t)\left(1+t+t^{2}\right)$.
In [1I] Smale gives a picture of a realization of this differmorphism which we reproduce in Figure 4.

The disk is mapped into itself as shown. The points p_{1}, p_{2}, p_{3} are an orbit of period 3 which is an attractor. The other basic sets are a point source (not shown) and the shift described (some Indication of this can be found in [11]).
(6.3) Example: In [15] R. F. W1lliams showed that any shift $\pi: \Sigma_{A} \rightarrow \Sigma_{A}$ which is topologically transitive can be realized as a basic set of a diffeomorphism of S^{3}. We give an example of a shift which cannot be realized as a basic set of a diffeomorphism of any s^{n} in such a way that all other basic sets are finite (i.e. periodic orbits).

If

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

then $\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$ is a topologically transitive shift and $Z(n)=\frac{1}{1+t^{2}+t^{3}}$. It fs easy to check that in $Z_{2}[t],\left(1+t^{2}+t^{3}\right)$ Is an irreducible factor of $I+t^{\prime}$, and hence in the algebraic closure of Z_{2} its roots are three of the seven seventh roots of unity. On the other hand if Λ_{1} is a basic set which is a point of period p then $Z_{1}=\frac{1}{1+t^{p}}$. In the algebraic closure of Z_{2}, $I+t^{p}$ must have as roots, elther no seventh roots of undty or all seven of them. Hence it is impossible to have
 conjugate to $\sigma: \Sigma_{A} \rightarrow \Sigma_{A}$, because $n\left(f ; Z_{2}\right)=\frac{1}{(1+t)^{2}}$ or 1 for any diffeomorphism $\mathrm{f}: \mathrm{S}^{n} \rightarrow S^{n}$.

(6.4) Shoes (after Zeeman [26])

We have emphasized the reduced zeta function because it is an invariant of an abstract basic set, that is, the topological conJugacy type of f restricted to the basic set and does not depend on the embedding of the basic set or the extension of f to M. However, if one knows extra data it may be possible to compute the functions $\eta_{i}(f ; R)$ which are stronger invariants and (5.7) and (5.8) can then be replaced by (5.4), (5.5) and (5.6). For example from (5.5) we have $\eta(f ; R)=\prod_{1=1}^{\eta} \eta_{i}$ which shows that a necessary condition for an isotopy to cancel basic sets Λ_{1} and Λ_{j} is that $\eta_{1} \eta_{j}=1$, or if a basic set λ_{1} can be removed, then $\eta_{1}=1$, etc.

In [16] zeeman describes a framework for studying diffeomorphisms with zero dimensional basic sets, and a simple way of describing what amounts to the germ of an extension of f on the basic sets. What he calls a shoe is determined by two positive integer matrices A^{+}(the positive intersection matrix) and $A^{-(}$(the negative intersection matrix) and the index u of the basic set. The diffeomorphism on the basic set is topologically conjugate to the shift $\pi: \Sigma_{A} \rightarrow \Sigma_{A}$ where $A=A^{+}+A^{-}$(see [16] for more detali). Also from (2.2), $n_{1}=\exp \left(\sum_{m=1}^{\infty} \frac{1}{\sqrt{n}} \tilde{N}_{m} t^{m}\right.$) where \tilde{N}_{m} is $\Sigma I\left(p, f^{m}\right)$ and the sum is over all $\operatorname{p\in Fix}\left(f^{m}\right) \cap \lambda_{1}$. It is not difficult to show that $\tilde{N}_{m}=(-1)^{U} \operatorname{tr} \tilde{A}^{m}$ where $\tilde{A}=A^{+}-A^{-}$, and hence $\eta_{1}(f ; R)=$ $\operatorname{det}(I-\tilde{A} t)^{(-1)^{u+1}}$ by (1.7). Thus in this framework, where one knows both A^{+}and A^{-}, the functions η_{1} are easily computable and it is more appropriate to use them than the reduced zeta functions.

References

1. M. Artin and B. Mazur, On Periodic Points, Annals of Math. (2) 81 (2965), 82-99.
2. R. Bowen, Topological Entropy and Axiom A, Proc. Sympos. Pure Math. 14, Amer. Math. Soc., Providence, R. I., 23-42.
3. A. Dold, Fixed Point Index and Fixed Point Theorem for Euclidean Ne1ghborhood Retracts, Topology 4(1965), 1-8.
4. J. Franks, Morse Inequalities for Zeta Functions, to appear In Annals of Math.
5. J. Guckenheimer, Axiom A and no cycles imply $\zeta\left(f^{\prime}\right)$ rational, Bull. Amer. Math. Soc. 76(1970), 592-594.
6. M. Hirsch and C. Pugh, Stable Manifolds and Hyperbolic Sets, Proc. Symp. Pure Math. $14(1970), 133-163$.
7. S. Lang, Algebra, Addison-Wesley, 1965.
8. A. Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3(1971), 215-220.
9. M. Shub, Structurally Stable Diffeomorphisms are Dense, Bull. A.M.S. $78(1972)$, 817.
10. M. Shub and R. Williams, Entropy and Stability, to appear.
11. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73(1967), 747-817.
12. \qquad , The Sastablifty Theorem, Proc. Symp. Pure Math., 14(1970), 289-297.
13. \qquad , Stability and Isotopy in Discrete Dynamical Systems,

Proceedings of the Symposium on Dynamical Systems, Salvador, Brazil, Academic Presi, 1971.
14. R. F. Williams, The Zeta function of an attractor, Conference on the Topology of Manifolds (Michigan State 1967). Prindle, Weber and Schmidt, 1968.
15. R. F. Williams, Classification of subshifts of finite type, Annals of Math. 98(1973), 120-153.
16. E. C. Zeeman, C^{0} Density of Stable Diffeomorphisms and Flows, University of Southampton Colloquium on Smooth Dynamical Systems, 1972 (mimeographed notes).

[^0]: * Research supported in part by NSF Grant GP42329X. AMS subject classification number 58 F 20 .

