Tomoyasu Nakagawa
 Teruo Ushijima
 Numerical Analysis of the Semi-Linear Heat Equation of Blow-up Type

Publications des séminaires de mathématiques et informatique de Rennes, 1976, fascicule S5
«Journées « éléments finis » », , p. 1-24
http://www.numdam.org/item?id=PSMIR_1976__S5_A13_0
© Département de mathématiques et informatique, université de Rennes, 1976, tous droits réservés.

L'accès aux archives de la série « Publications mathématiques et informatiques de Rennes » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numerical Analysis of the Semi-linear Heat Equation of Blow-up Type

by

Tomoyasu NAKAGAWA

Teruo USHIJIMA

Information Processing
Research Center
Central Research Institute of
Electric Power Industry
Otemachi Bldg.
1-6-1, Otemachi, Chiyoda-k:
Tokyo, Japan, 100
§1 Introduction.
Let Ω be a bounded open set in \mathbb{R}^{n} with a smooth boundary $\Gamma=\partial \Omega$. We take the continuous problem of

$$
\left\{\begin{array}{ll}
\frac{\partial u}{\partial t}=\Delta u+f(u), & x \varepsilon \Omega \\
u(t, x)=0, & x \varepsilon \Gamma
\end{array}\right\} \quad t>0
$$

For simplicity we assume that f is twice continuously differentiable satisfying that
(1) $\quad f(u)$ and $f^{\prime \prime}(u) \geq 0$ for any $u \in R^{1}$
and that for some positive γ and C
(2) $\quad f(u) \geq C u^{1+\gamma} \quad$ as $u \rightarrow \infty$.

The initial data $a(x)$ is continuous on $\bar{\Omega}$ vanishing at Γ, the totality of such functions is denoted by $C_{0}(\bar{\Omega})$. By Kaplan's classical argument [6], the solution $u(t, x)$ tends to infinity at a finite time T for some $a(x)$. This fact is called the blowing-up of solution, and the time T is called the blowing-up time or the finite escape time. Fujita studied extensively this problem in [3], [4].and so forth. There are also some works based on different.criteria by other authors, for example, Tsutsumi [9], [10], Ito [5], among others.

The purpose of this paper is to provide a numerical method of (E) by making use of the finite element approximation of lumped mass type, based on Kaplan-Fujita's criterion. One of the authors already investigated an algorithm for the difference approximation to (E) based on Tsutsumi's criterion in [7]. The present work is one of its continuations and based on the recent work of the other author [11]. The finite element
version of the algorithm in [7] will be justified in the forthcoming paper.

In Section 2, a reformulation of Kaplan-Fujita's criterion will be presented so that it is appropriate to our purpose. The approximate problem will be stated in Section 3, and an algorithm for controlling time steps will be described in Section 4. The rigorous justification will be done in Sections 5 and 6. Finally in Section 7 some numerical illustrations will be given. Details of numerical results will be reported elsewhere.

We remark that it is straightforward to modify the present result to the case of the condition (1) holding only $u \geqslant 0$ under the restriction of the initial data $a(x) \geq 0$.

We should like to express our sincere thanks to Mr. Y. Yuzurihara for his help in the computation of our model problem.
§2 Kaplan-Fujita's criterion.
Let λ denote the smallest eigenvalue of $-\Delta$ with the Dirichlet boundary condition, and let $\phi(x)$ denote the eigenfunction associated with $\lambda, \phi(x)$ being normalized as

$$
\left\{\begin{array}{l}
\phi(x)>0 . \quad x \varepsilon \Omega, \\
\int_{\Omega} \phi(x) \mathrm{dx}=1 .
\end{array}\right.
$$

Denote by $J(t)$ the inner product of $u(t, x)$ and $\phi(x)$, i.e.,

$$
J(t)=(u(t, x), \phi(x))_{L}^{2}(\Omega)=\int_{\Omega} u(t, x) \phi(x) d x .
$$

Definition 1. The classical solution $u(t, x)$ of (E)
J-blows up at $t=T$ if and only if

$$
\left\{\begin{array}{l}
u(t, x) \in C\left([0, T), C_{0}(\bar{\Omega})\right) \text { satisfies }(E) \tag{3}\\
\lim _{t \uparrow T} J(t)=\infty
\end{array}\right.
$$

Let J^{1} be the largest positive root of the equation of $-\lambda J+f(J)=0$.
If the equation has no positive roois, then let $J^{1}=0$.
Proposition 1. The solution $u(t, x)$ J-blows up at a finite time T if and only if there exists a $t_{0} \geq 0$ such that

$$
\left\{\begin{array}{l}
u(t, x) \varepsilon C\left(\left[0, t_{0}\right], C_{0}(\bar{\Omega})\right) \text { satisfies }(E) \tag{4}\\
J\left(t_{0}\right)>J^{1}
\end{array}\right.
$$

Proof. The necessity of the condition (4) is obvious. The sufficiency criterion due to Kaplan is as follows. Let $[0, T)$ be the maximal existence interval of $u(t, x)$. By Jensen's inequality, we have the following differential inequality for I (t) :

$$
\begin{equation*}
\frac{d}{d t} J(t) \geqq-\lambda J(t)+f(J(t)) \quad t \in[0, T) \tag{5}
\end{equation*}
$$

on account of the convexity of f and the normalization
condition of ϕ. This inequality implies first that
(6) $\frac{d}{d t} J(t)>0$ for $t \geq t_{0}$.

In fact, unless this were true, there would be $t_{1}>t_{0}$ such that $\frac{d}{d t} J\left(t_{1}\right)=0$ and $\frac{d}{d t} J(t)>0$ for $t_{0} \leq t<t_{1}$. The first condition and the inequality. (5) shows

$$
0 \geq-\lambda J\left(t_{1}\right)+f\left(J\left(t_{1}\right)\right)
$$

Since the quantity - $\lambda J+f(J)$ is nonnegative for $J \geq J^{1}$, we have

$$
J\left(t_{1}\right) \leq J^{1}<J\left(t_{0}\right)
$$

But this is impossible since

$$
J\left(t_{1}\right)-J\left(t_{0}\right)=\int_{t A}^{\dot{t}_{1}} \frac{d J(s)}{d s} d s>0
$$

The condition (6) implies that

$$
-\lambda J(t)+f(J(t))>0 \text { for any } t \geq t_{0}
$$

which in turn implies

$$
\begin{equation*}
t-t_{0} \leq \int_{J\left(t_{0}\right)}^{J(t)} \frac{d J}{-\lambda+f(J)} \text { for any } t \geq t_{0} \tag{7}
\end{equation*}
$$

Since we assumed that $f(u) \geq \mathrm{Cu}^{1+\gamma}$ for $u \rightarrow \infty$, the right. hand side of (7) is uniformly bounded. Hence we have that the solution $u(t, x)$ blows up at finite T.

Corollary 2. The blowing-up time T is bounded from above
as

$$
T \leq t_{0}+\int_{J\left(t_{0}\right)}^{\infty} \frac{d J}{\lambda J+f(J)}
$$

Proof. This follows from the estimate (7).
§3 Setting of the approximating problem.
Let $\left\{\Omega_{h} ; h>0\right\}$ be the family of polyhedral open domains contained in Ω satisfying

$$
\left\{\begin{array}{l}
\Omega_{h}>\Omega_{h}, \quad \text { if } h^{\prime} \leq h^{\prime}, \tag{8}\\
\max _{x \in \Gamma_{h}} \operatorname{dist}(x, \Gamma)+0 \quad \text { as } h \rightarrow 0
\end{array}\right.
$$

Here Γ_{h} is the boundary of Ω_{h}.
Definition 2. The set $\mathbb{S}_{h}=\left\{S^{(k)}\right\}$ is a triangulation of the polyhedral open domain Ω_{h} if and only if

$$
\left\{\begin{array}{l}
\text { (i) } \quad S^{(k)}, k=1,2, \cdots, \text { are nondegenerate closed } \\
\text { (ii) } \quad \bar{\Omega}_{h}=S_{S}(k) \frac{U}{\varepsilon} S_{h} S^{(k)}, \\
\text { (iii) the face of } S^{(k)} \text { is either a face of another } \\
\\
\text { n-simplex of }\left(S_{h}\right. \text { or else is a portion of the } \\
\text { boundary of } \Omega_{h} .
\end{array}\right.
$$

In the following, we shall omit the superscript (k) of $S^{(k)}$ for simplicity of notation. Let b_{0}, \cdots, b_{n} denote $n+1$ vertices (or nodal points) of an n-simplex S. In terms of the
barycentric coordinates $\left(\lambda_{0}(x), \cdots, \lambda_{n}(x)\right), x \varepsilon S$, define the barycentric subdivision $B_{b_{0}}(S)$ of b_{0} in S such that

$$
\mathrm{B}_{\mathrm{b}_{0}}(\mathrm{~S})=\left\{x ; 1 \geqq \lambda_{0}(x) /\left(\lambda_{0}(x)+\lambda_{i}(x)\right)>1 / 2,-1 \leq i \leq n\right\}
$$

The "lumped mass region" B_{b} associated with node b is given as

$$
B_{b}={\underset{S}{U}} B_{b(S)}
$$

in which $\underset{S}{U}$ denotes the union. with respect to all n-simplices S
having b as their vertex. The characteristic function of B_{b} is denoted by $\bar{w}_{b}(x)$.

By appropriate renumbering of all nodal points of all simplices in S_{h}, let $b_{1}, \cdots ; b_{N}$ denote the interior nodal points of Ω_{h}, and let b_{N+1}, \cdots, b_{N+M} denote the boundary nodal points of Ω_{h}. Define the two functions $\hat{w}_{j}(x)$ and $\bar{w}_{j}(x), j=1 ;: \cdot, N$, such that

$$
\left\{\begin{array}{l}
\hat{w}_{j}(x) \text { is a linear function on each S satisfying } \\
\\
\hat{w}_{j}\left(b_{k}\right)=\delta_{j k} \text { for } k=1, \cdots, N+M
\end{array}\right.
$$

Let $\hat{\mathrm{V}}_{\mathrm{h}}$ and \vec{V}_{h} be the sets of linear combinations of $\hat{w}_{j}(x)$ and $\bar{w}_{j}(x)$ for $j=1, \cdots, N$, respectively, i.e.,

$$
\left\{\begin{array}{l}
\hat{v}_{h}=\left\{\hat{u}_{h} ; \hat{u}_{h}=\sum_{j=1}^{N} \alpha_{j} \hat{w}_{j}\right\}, \\
\bar{v}_{h}=\left\{\bar{u}_{h} ; \bar{u}_{h}=\sum_{j=1}^{N} \alpha_{j}^{\prime} \bar{w}_{j}\right\}
\end{array}\right.
$$

The two functions $\hat{u}_{h} \varepsilon \hat{V}_{h}$ and $\bar{u}_{h} \varepsilon \nabla_{h}$ specified by the same coefficients $\alpha_{j}=\alpha_{j}{ }^{\prime}, j=1,2, \cdots, N$, are said to be associate each other. Introduce the mappings K_{h} and $K_{h}{ }^{-1}$
such that

$$
\begin{cases}K_{h}: & \bar{u}_{h}+\hat{u}_{h}, \\ K_{h}^{-1}: & \hat{u}_{h} \rightarrow \bar{u}_{h},\end{cases}
$$

where $\hat{u}_{h} \varepsilon \hat{\mathrm{~V}}_{\mathrm{h}}$ and $\bar{u}_{\mathrm{h}} \varepsilon \bar{\nabla}_{\mathrm{h}}$ are associate each other. Introduce the space X which is the space $C_{0}(\bar{\Omega})$ normed with the maximum norm. Similarly, introduce the finite dimensional spaces \hat{X}_{h} and X_{h} which are \hat{V}_{h} and \bar{V}_{h}, respectively, normed with the maximum norm. Define the operator $\hat{\mathrm{P}}_{\mathrm{h}}$ by

$$
\left(\tilde{P}_{h} u\right)(x) \equiv \sum_{j=1}^{N} u\left(b_{j}\right) \hat{w}_{j}(x) \quad \text { for } u \varepsilon X
$$

Clearly the mapping $P_{h}=K_{h}{ }^{-1 \tilde{P}_{h}}$,

$$
P_{h}: \quad X+X_{h}
$$

is the projection of X onto X_{h}.
In terms of the above defined concepts and notations,
define the operator A_{h} in X_{h} by

$$
\begin{array}{r}
\left(A_{h} \bar{u}_{h}, \bar{v}_{h}\right)_{L}^{2}{\left(\Omega_{h}\right)}=-\left(\nabla \hat{u}_{h}, \nabla \hat{v}_{h}\right)_{L}^{2}\left(\Omega_{h}\right) \\
\text { for } \bar{u}_{h} \varepsilon X_{h}, \bar{v}_{h} \varepsilon X_{h} \\
\hat{u}_{h}=K_{h} \bar{u}_{h}, \hat{v}_{h}=K_{h} \bar{v}_{h},
\end{array}
$$

and the nonlinear mapping f. in X_{h} by

$$
f\left(\bar{u}_{h}\right)=\sum_{j=1}^{N} f\left(\alpha_{j}\right) \bar{w}_{j} \quad \text { for } \bar{u}_{h}=\sum_{j=1}^{N} \alpha_{j} \bar{w}_{j}
$$

Let π denote the ordered set $\left(\tau_{0}, \tau_{1}, \tau_{2}, \cdots\right)$ with elements $\tau_{n}>0, n=0,1,2, \cdots$. The set x will be called the time mesh vector. Now we state our approximating scheme.
$\left(E_{h}{ }^{\tau}\right) \quad\left\{\begin{array}{l}t_{n+1}=t_{n}+\tau_{n} ; t_{0}=0,{ }_{\tau_{n}}>0, \\ u_{h}(t)=u_{h}\left(t_{n}\right), t_{n} \leqq t<t_{n+1}, \\ \frac{u_{h}\left(t_{n+1}\right)-u_{h}\left(t_{n}\right)}{\tau_{n}}=A_{h} u_{h}\left(t_{n}\right)+f\left(u_{h}\left(t_{n}\right)\right), n=0,1,2, \cdots, \\ u_{h}(0)=a_{h},\end{array}\right.$ where $a_{h}=P_{h} a$.

Proposition 3. If $\left(\nabla \hat{\mathbf{w}}_{i}, \nabla \hat{w}_{j}\right)_{L^{2}\left(\Omega_{h}\right)} \leqq 0$ for i $\neq j$,
$1 \leqq i \leqq N, 1 \leqq j \leqq N+M$, then it holds that the smallest eigenvalue λ_{h} of $-A_{h}$ is simple, and that there is the associated
eigenfunction $\phi_{h}(x)$ normalized as $\phi_{h}(x) \geqq 0\left(x \in \Omega_{h}\right)$ and $\int_{\Omega_{h}} \phi_{h}(x) d x=1$.

Proof. As is well known, the operator A_{h} is invertible. By the criterion due to Ciarlet-Raviart [1], the operator $\left(-A_{h}\right)^{-1}$ is a nonnegative element of $L\left(X_{h}\right)$. Namely we have that $\left(-A_{h}\right)^{-1} u_{h} \geq 0$ for any $u_{h} \in X_{h}$ with $u_{h} \geq 0$. Consider the matrix expression of the eigenvalue problem $-A_{h} \phi_{h}=\lambda_{h} \phi_{h}$. The problem is reduced to $-\mathbb{A} \phi=\lambda M \notin$ where A and \mathbb{M} are the stiffness matrix and the mass matrix, respectively, and is an N -vector. Applying Frobenius' Theorem to the nonnegative matrix ($-\mathbb{A})^{-1} \mathbb{M}$, we have the conclusion.
§4 An algorithm for controlling time steps.
Define $J_{h}(t)$, the discrete analogue to $J(t)$, by

$$
J_{h}(t)=\left(u_{h}(t, x), \phi_{h}(x)\right) L_{L}^{2}\left(\Omega_{h}\right)
$$

Let $J_{h}{ }^{1}$ denote the largest positive root of the equation of

$$
-\lambda_{h} J+f(J)=0
$$

If the equation has no positive roots, then let $J_{h}^{1}=0$. Define τ_{h} by the formula,
(10) $\quad \tau_{h}=\min _{1 \leq i \leq N}\left\|\bar{w}_{i}\right\|^{2} /\left\|\nabla \hat{w}_{i}\right\|^{2}$.

Choose a fixed value of τ which is not greater than τ_{h}. Then our algorithm for controlling the time step ${ }^{\imath} n$ is given by

$$
\left[\begin{array}{l}
\tau_{0}=\tau, \text { and } \tag{11}\\
\tau_{n}= \begin{cases}\tau & \text { if } J_{h}\left(t_{n-1}\right)<J_{h} 1 \\
\min \{\tau, & \left.\frac{J_{h}\left(t_{n}\right)-J_{h}\left(t_{n-1}\right)}{-\lambda_{h} J_{h}\left(t_{n}\right)+f\left(J_{h}\left(t_{n}\right)\right)}\right\} \text { otherwise, } \\
& \text { for } n=1,2,3, \cdots .\end{cases}
\end{array}\right.
$$

Fig. 1 shows the general flow chart to calculate $u\left(t_{n}\right)$ by ($\mathrm{E}_{\mathrm{h}}{ }^{\boldsymbol{\tau}}$) with (11).

Definition 4. The solution $u_{h}(t, x)$ of ($E_{h}{ }^{\pi}$) where π is the time mesh vector obtained by the algorithm described above, J_{h}-blows up at $t=T_{h}$ if and only if

$$
T_{h}=\sum_{n=0}^{\infty} T_{n}<\infty
$$

Proposition 4. The solution $u_{h}(t, x) J_{h}$-blows up at at finite time T_{h} if and only if there is a $t_{n} \geqq 0$ such that (12) $\quad J_{h}\left(t_{n}\right)>J_{h}{ }^{1}$.

Proof. The necessity of the condition (12) is obvious.

The sufficiency criterion, in parallel to the proof of
Proposition 1, is as follows. By Jensen's inequality we have

$$
\begin{equation*}
\frac{J_{h}\left(t_{k+1}\right)-J_{h}\left(t_{k}\right)}{{ }^{\tau} k} \geq-\lambda_{h} J_{h}\left(t_{k}\right)+f\left(J_{h}\left(t_{k}\right)\right) \tag{13}
\end{equation*}
$$

$$
\text { for } k=0,1, \cdots
$$

The convexity of f and the condition (12) imply that

$$
J_{h}^{1}<J_{h}\left(t_{n}\right)<J_{h}\left(t_{n+1}\right)<J_{h}\left(t_{n+2}\right)<\cdots
$$

Let k be an integer greater than or equal to $n+1$. Then our algorithm implies

$$
\begin{aligned}
\tau_{k} & \leq \frac{J_{h}\left(t_{k}\right)-J_{h}\left(t_{k-1}\right)}{-\lambda_{h} J_{h}\left(t_{k}\right)+\frac{f\left(J_{h}\left(t_{k}\right)\right)}{}} \\
& =\int_{J_{h}\left(t_{k-1}\right)}^{J_{h}\left(t_{k}\right)} \frac{d J}{-\lambda_{h} J_{h}\left(t_{k}\right)+f\left(J_{h}\left(t_{k}\right)\right)} \\
& \leq \int_{J_{h}\left(t_{k-1}\right)}^{J_{h}\left(t_{k}\right)} \frac{d J}{-\lambda_{h} J+f(J)},
\end{aligned}
$$

where the last inequality follows from the convexity of f. Therefore we have

$$
\begin{aligned}
T- & t_{n}-\tau_{n}=\sum_{k=n+1}^{\infty} \cdot \tau_{k} \\
& \leqq \int_{J_{h}\left(t_{n}\right)^{-\lambda_{h} J+f(J)}}^{\infty}<\infty .
\end{aligned}
$$

Corollary 5. The blowing-up time T_{h} is bounded from above as

$$
T_{h} \leqq t_{n}+\tau_{n}+\int_{J_{h}\left(t_{n}\right)^{-\lambda_{h} J+f(J)}}^{\infty}
$$

55 Convergence of the blowing up time

Theorem 1. Assume the following two conditions:
(i) $\quad \lambda_{h} \rightarrow \lambda$ and $\phi_{h} \rightarrow \phi \quad$ in $L^{2}(\Omega)$ as $h \rightarrow 0$.
(ii) Let the solution u of (E) J-blow up at a finite time T. For any T^{\prime} < T^{\prime} and for any sufficiently small h, there is a solution $u_{h}(t)$ of $\left(E_{h}{ }^{T} h\right)$ for $0 \leqq t \leq T$, satisfying $\max _{0 \leq t \leq T^{\prime}}\left\|\cdot \dot{u}_{h}(t)-u(t)\right\| L^{2}(\Omega) \rightarrow 0$ as $h \rightarrow 0$. Here τ_{h} is the time mesh vector obtained by (11).
Then it holds that

$$
T_{h} \rightarrow T \text { as } h \rightarrow 0
$$

provided that $\left\|\pi_{h}\right\|_{\infty} \rightarrow 0$ as $h \rightarrow 0$.
Proof. Fix $T^{\prime}<T$ arbitrarily. Then we have from the conditions of Theorem 1

$$
\begin{equation*}
\lim _{h \rightarrow 0} J_{h}(t)=J(t) \tag{14}
\end{equation*}
$$

uniformly in $t \varepsilon\left[0, T^{\prime}\right]$. This implies that $T^{\prime} \leq \underset{h \rightarrow 0}{\lim } \inf T_{h}$. Since T^{\prime} is arbitrarily close to T, we have

$$
T \leqq \underset{h \rightarrow 0}{\lim \inf } T_{h} .
$$

Suppose next that $T^{\prime \prime}=1 \mathrm{im}$ sup $\mathrm{T}_{\mathrm{h}}>\mathrm{T}$ would hold. By Condition (i) we can find numbers J^{2} and h_{0} in such a way that $\mathrm{J}^{2}>\mathrm{J}_{\mathrm{h}}{ }^{1}$ and $\quad \int_{j^{2}}^{\infty} \frac{d J}{-\lambda_{h} J+f(J)} \leq \frac{T^{\prime \prime}-T}{2}$ hold for any $h \leq h_{0}$. By (14) there is a number $t^{\prime}<T$ such: that $J_{h}\left(t^{\prime}\right)>J^{2}$ for any $h \leqq h_{0}$. We may assume that $t_{n}^{h} \leqq t^{\prime}<t_{n+1}^{h}<T$ for $h \leqq h_{0}$. Then $J_{h}\left(t^{\prime}\right)=J_{h}\left(t_{n}^{h}\right)$. By Corollary 5 , it holds that

$$
T_{h}-t_{n}^{h} \leqq \tau_{n}^{h}+\int_{J_{h}\left(t_{n}\right.}^{\infty} \frac{d J}{-\lambda_{h} J+f(J)}
$$

Hence we have

$$
\begin{aligned}
T_{h} & \leqq t_{n}^{h}+\tau_{n}^{h}+\frac{T^{\prime \prime}-T}{2} \\
& \leq T+\frac{T^{\prime \prime}-T}{2}=T^{\prime \prime}-\frac{T^{\prime \prime}-T}{2}
\end{aligned}
$$

Therefore we have $\underset{h \rightarrow 0}{\lim \sup } \mathrm{~T}_{\mathrm{h}}<\mathrm{T}=\underset{\mathrm{h} \rightarrow 0}{\lim \sup } \mathrm{~T}_{\mathrm{h}}$, which is a contradiction.
§6 Convergence of the approximate solution.
Let $\left\{\tau_{h}: h>0\right\}$ be a sequence tending to zero as h tends to zero, and satisfying $\bar{\tau}_{h} \leqq \tau_{h}$ where τ_{h} is defined by the formula (10). Let T^{\prime} be a positive number specified in Theorem 1. Consider a family $\lambda=\left\{\mathbb{T}_{h}: h>0\right\}$ of time mesh vectors τ_{h} satisfying that

$$
\left\|\pi_{h}\right\|_{\infty}=\sup \left\{\tau: \tau \varepsilon \pi_{h}\right\} \leq \bar{\tau}_{h}
$$

and that

$$
\left\|\pi_{h}\right\|_{1}=\underset{\tau \varepsilon \mathbb{T}_{h}}{\Sigma}>T^{\prime}
$$

We can construct a family of solutions $\left\{u_{h}^{\lambda}(t, x): 0 \leqq t \leqq T\right\}$ of $\left(E_{h}{ }^{\tau^{2}}\right)$ choosing τ_{h} as the time mesh vector for each h. Let Λ be the totality of the above index λ. Let $h(S)$ denote the diameter of an n-simplex S, and let $\rho(S)$ denote the maximum of diameters of the inscribed spheres of S.

Theorem 2. Assume (8) and the following three conditions
(i)

$$
\left(\nabla \hat{w}_{i}, \nabla \hat{w}_{j}\right) \leqq 0 \text { for } i \neq j, 1 \leqq i \leqq N, 1 \leqq j \leqq N+M
$$

$$
\max _{S \varepsilon \mathcal{S}_{h}} h(S) \leqq h
$$

If the unique classical solution $u(t, x)$ of (E) exists in $t \in\left[0, T^{\prime}\right]$ then

$$
\lim _{h \rightarrow 0} \max _{0 \leqq t \leqq T} \max _{x \in \Omega_{h}}\left|u_{h}^{\lambda}(t, x)-u(t, x)\right|=0
$$

uniformly in $\lambda \varepsilon \Lambda$
Proof. This is a slight variant of Theorem 1.2 of [1], in which the uniform dependence of λ was not discussed. If one checks its proof, the present result can be obtained. As in [11],
we have the expression

$$
u_{h}^{\lambda}(t)=U_{h}^{\lambda}(t, 0) a_{h}+\int_{0}^{-\hat{U}_{h}}(t, s) f\left(u_{h}^{\lambda}(s)\right) d s
$$

regarding $u_{h}{ }^{\lambda}(t, x)$ as an X_{h}-valued step function where $U_{h}{ }^{\lambda}(t, s)$ and $\hat{\mathrm{U}}_{\mathrm{h}}{ }^{\lambda}(\mathrm{t}, \mathrm{s})$ are suitably defined approximating operators of $e^{(t-s) A_{h}}$. It is to be noted that the proof of Theorem 1.2 in [11] implies that the families of operator valued sequences $\left\{U_{h}{ }^{\lambda}(t, s): h>0\right\}_{0 \leq s \leq t \leq T^{\prime}}, \lambda \in \Lambda$ and $\left\{\hat{U}_{h}{ }^{\lambda}(t, s): h>0\right\}_{0 \leq s \leq t \leq T}, \lambda \in \Lambda$ K-converge to $e^{(t-s) A}$ as h tends to 0 uniformly with respect to the parameters s, t, and λ. Here, the operator A is the generator of the semi-group $e^{(t-s) A}$ in $X=C_{0}(\bar{\Omega})$ corresponding to the heat equation in Ω with the Dirichlet boundary condition. This fact assures the validity of the present Theorem.

Remark. Although the twice differentiability of f was

 assumed in [11], the local Lipshitz continuity is sufficient for the present conclusion apart from the assurance of the unique existence of the smooth solution of (E). See [8].Now we establish the condition (ii) of Theorem 1 to our solution $u_{h}(t)$ obtained by the algorithm described in Section 4. Because of Theorem 2, it suffices to show that for any fixed T < T one can choose h_{0} in such a way that $u_{h}(t)$ never blows-up within the interval $\left[0, \mathrm{~T}^{\prime \prime}\right.$ if $h \leqq h_{0}$. This fact is also implied by Theorem 2. In fact, let h_{0} be such that

$$
\max _{0 \leqq t \leqq T} \max _{x \in \Omega}\left|u_{h}^{\lambda}(t, x)-u(t, x)\right| \leqq 1
$$

for any $\lambda \varepsilon \Lambda$ and $h \leq h_{0}$ in the situation of Theorem 2. This
implies that there is a finite number M satisfying

$$
\text { (15) } \quad 0 \leq t \leq T^{\prime}, \lambda \varepsilon \Lambda, h<h_{0}\left\|u_{h}^{\lambda}(t)\right\|_{L^{2}(\Omega)}=M<\infty \text {. }
$$

Assume that there is a solution $u_{h}(t) J_{h}$-blowing $u p$ at $t=T_{h}<T^{\prime}$. Then there is a mesh point t_{n} such that
$\left\|u_{h}\left(t_{n}\right)\right\|>M$ since $\left\|\phi_{h}\right\|\left\|u_{h}(t)\right\| \geq J_{h}\left(\phi_{n}\right) \uparrow \infty$. This contradicts the condition (15), since there is a λ containing the tine mesh vector in the form

$$
\tau_{h}=\left(\tau_{0}, \tau_{1}, \cdots, \tau_{n-1}, \tau_{n-1}, \cdots\right)
$$

where $\tau_{j}, 0 \leq j \leqq n-l$, are the mesh lengths determined by our algorithm.

It is seemingly well known that the condition (i) of Theorem 1 holds under the same conditions of Theorem 2. We skip its proof though we have not known literatures containing its proof.

Finally we remark the following two Propositions in the literature which concern the conditions of Theorem 2.

$$
\begin{gathered}
\text { Proposition 6. (Ciarlet-Raviart }[1] .) \quad \text { Define } \sigma_{s} \text { by } \\
\sigma_{s}=\max _{i \neq j}\left\{\left(\nabla \lambda_{i}, \nabla \lambda_{j}\right)_{R} n^{n} /\left|\nabla \lambda_{i}\right|_{R}{ }^{n} \cdot\left|\nabla \lambda_{j}\right|_{R^{n}}\right\}
\end{gathered}
$$

in which $\lambda_{i}=\lambda_{i}(x)$ is the barycentric coordinate of point $x \in S$ with respect to vertex P_{i} of S, and $(,)_{R^{n}}$ and $\left|\left.\right|_{R} n\right.$ respectively denote the Euciidean scalar product and the Euclidean norm in R^{n}. It $\sigma_{S} \leq 0$ for any $S \varepsilon S_{h}$, then Condition (i) of Theorem 2 holds.

$$
\frac{\text { Proposition } 7 .}{k_{h}=\min _{\operatorname{Sos}_{h}}^{k_{S}}} \quad \text { (Fujii }[2] . \text {) Define } k_{h} \text { by }
$$

in which ${ }_{\mathrm{k}}^{\mathrm{S}}$ is given as

$k_{S}=\min _{b_{i} \varepsilon S}$ dist $\left(b_{i}\right.$, the face of S not containing b_{i})

then τ_{h} is estimated as
$\tau_{h} \geq \kappa_{h}^{2} /(n+1)$.
§7 Numerical Examples.
As an numerical illustration, we take a spatially
1 dimensional problem with $f(u)=u^{2}$. Let $\Omega=(0,1)$. And $S_{h}=\left\{[j h,(j+1) h]: 0 \leqq j<2^{-N}\right\}$ for $h=2^{-N}$ with positive integer N. Then our approximate equation ($E_{h}{ }^{\tau}$) is nothing but the usual explicit difference scheme in which $\frac{d^{2}}{d x^{2}} u(x)$ is
approximated by the central difference: $\frac{u(x+h)-2 u(x)+(x-h)}{h^{2}}$.
As an initial value we take the function

$$
u(x)=A \sin \pi x
$$

In Figure 2, a comparison between the controlling time mesh algorithm and the fixed time mesh algorithm is shown in the case of $h=2^{-3}, \tau_{0}=2^{-7}$ and $A=12$. We denote by., and x, the values of $u(t, x)$ at $x=1 / 2$, calculated : by the controlling mesh algorithm and the fixed mesh algorithm, respectively. We obtained $t_{n}=0.307$ as the approximate value of T_{h} when the controlling mesh algorithm stopped by the condition of ${ }^{1} n<2^{-20}$, whereas the fixed mesh algorithm worked until $t_{n}=0.367$ when the calculation became unable because of machine overfiow. $\left(u_{\text {max }}>10^{65}\right)$.

In Figure 3 , the convergence of $u_{h}(t, 1 / 2)$ as $h \rightarrow 0$ is shown for $A=12$; with $\tau_{0}=2^{-1} h^{2}$. The stopping criterion is that $T_{n}<2^{-20}$. Seemingly the round off error might effect the calculation in the case $h=2^{-6}$.

Our calculation was performed by the HITAC 8250, a mediumsized machine, in single precision arithmetic with a 23 bit mantissa.

Finally in Figure 4, we present the result of a numerical
search for the threshold of blowing up by changing the coefficient A of the initial data $a(x)$, in the case of $h=2^{-4}$ and $\tau_{0}=2^{-9}$. Numerically the solution decays exponentially if $\mathrm{A} \leqq 11.47417$, and blows up. at. finite time if $\mathrm{A} \geqq 11.47418$. It is worth recalling that if $J(0)>J^{1}$ the solution of (E) blows up at finite time. In our sampie problem, $J(0)>J^{1}$ is equivalent to the condition of $A>4 \pi=12.56637$.

References

[1] Ciarlet, P. G. and P. A. Raviart, Maximum principle and uniform convergence for the finite element method,
Computer methods in applied mechanics and engineering, 2, 17-31 (1973).
[2] Fujii, H., Some remarks on finite element analysis of time-dependent field problems, Theory and practice in finite element structural analysis, (Tokyo Univ. Press, Tokyo, 1973).
[3] Fujita, H., On the blowing up of solutions to the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo, 13, 109-124 (1966).
[4] Fujita, H., On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Proc. Symposium in Pure Math., AMS, 18, 105-113 (1970).
[5] Ito, S., on the blowing up of solutions for semi-1inear parabolic equations (in Japanese), Sugaku, 18, 44-47 (1966).
[6] Kaplan, S., On the growth of solutions of quasilinear parabolic equations, Comm. Pure Appl. Math., 16, 305-330 (1963) .
[7] Nakagawa, T., Blowing up of a finite difference solution to $u_{t}=u_{x x}+u^{2}$, 1974-annual report of the trial research in large scale computation supported by Japanese Ministry of Education, 47-58 (1975).
[8] Nakagawa, T. and T. Ushijima, on numerical analysis of the semi-1inear heat equation of blow-up type, Symposium on evolution systems and free boundary problems held at RIMS, Kyoto Univ. in Nov. 1975.
[9] Tsutsumi, M., Existence and nonexistence of global solutions for nonlinear parabolic equations, Publ. RiMS, Kyoto Univ., 8, 211-229 (1972).
[10] Tsutsumi, M., Existence and nonexistence of global solutions of the first buundary value problem for a certain quasilinear parabolic equation, Funkcialaj Ekvacioj, 17, 13-24 (1974).
[11] Ushijima, T., On the finite element approximation of semi-1inear parabolic equations (pre-print).

Fig. 1 Flow chart for computing $u_{h}\left(t_{n}\right)$ by controlled time steps ${ }^{\tau} n$.

Fig. 2 The computed value of u by the variable time-step algorithm and the fixed-time step algorithm in the case of $a(x)=12 \sin \pi x$. Parameters: $h=2^{-3}$ and $\tau_{0}=2^{-7}$.
$u_{\max }=u(t, 1 / 2)$

Fig. 3 Convergence of profile of u as $h \rightarrow 0$ in the case of $a(x)=12 \sin \pi x$.

Fig. 4 Numerical search for the threshold of blowing-up in the case of $a(x)=A \sin \pi x$.
Parameters: $h=2^{-4}$ and $\tau_{0}=2^{-9}$.

