
PUBLICATIONS MATHÉMATIQUES ET INFORMATIQUES DE RENNES

GERHARD KELLER
Piecewise Monotonic Transformations and Exactness
Publications des séminaires de mathématiques et informatique de Rennes, 1978, fasci-
cule 1
« Séminaire de probabilités », , p. 1-32
<http://www.numdam.org/item?id=PSMIR_1978___1_A6_0>

© Département de mathématiques et informatique, université de Rennes,
1978, tous droits réservés.

L’accès aux archives de la série « Publications mathématiques et informa-
tiques de Rennes » implique l’accord avec les conditions générales d’utili-
sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=PSMIR_1978___1_A6_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Pieoewise monotonie transformations and exactness 

Gerhard Keller 

§0) Introduction and notations 

The goal of the following pages is to describe the structurée 

of the tail-field of piecewitn: monotonie transformations on 

(pw.ni.t.) as they have been considered before by Lasota 

^nd Yorke [l] , howen [2J , ana r*owalsKi [3-5J , ana to derive from 

this description sufficient conditions for exactness. 

'In <j1) we will give some del initions and state the results, in 

§2) we will study some special properties of the invariant 

measures of pw.in.t.fs, and in § 3 ) we will describe some basic 

properties of such transformations, that similarly can be found 

in the papers of most of the authors having uealt with them, 

and give :i construction of a set of points with a certain "good" 

behaviour with regard to the singularities of the transformation. 

Together with a rather special lemma of Lebesgue-density-

theorem-type,that is proved in j*4)* the results of §2) and v,3) 

will allow us in § 5 ) to "expand" the high density that a set of 

the tail-field possesses in a small interval to bigger intervals 

with a certain minimal length. This leads us to the desired 

result. ^6) finally contains some results (without proof) for 

piecewise expanding transformations of higher dimensional spaces 

that can be proved by applying the same basic ideas. 
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In the sequel, ([0,1] , < B , V ) always denotes the unit-interval 

equipped with Lebesgue-measure. 

For a set M J O , l] , dia(M):= sup jjx-y| jx,yew] , and for x£<0,l] , 

r->0, we will denote by br(x):-~ [ye[o,l] J |x-y|-rj the open 

unit-ball with radius r centered at >c. 

Let Int(A) = A be the interior of a set A £ [ G , I ] , and for r>0 

let Int (A):-fx€A S (x)£Af . 
r I r j 

T is the dérivai, ve of a function i on [0,1J. 

For a system,// of set.. , UM := ?' xj jHt-i/f : X C K j> . 

ij'or n : [O , 1 ] •> 3R we annote by h(x"f);-~ lira h(y) and by 
y~>x 

h(x ):= lim h(y) . y>x 
y-rx 
y<x 
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§1) Definitions and results 

Definition: 

T : [ 0 , l ] — i : called a piecewise monotonie transformation 

(pw.m.i.J, if there exists a partition P =JP^,...,P^j of [0,lj 

into suMntervals such that for each P^c j J : 

i) T is C 1 on P ± , 

ii) j 1 jp̂  ^ oc > 1 for a constat;. ce . 

iii) iJ-jp^ i s Lipsehitz-eontinuous, 

iv) ( as a consequence oi ii) a.ùd iii):) 

fci — aup MT(x)j J x£ J Jlnt(P i)j <: 

A result of Lasota and icrke [1J shows, that each pw.m.t. 

T on [0,1.J has an invaricuvi measure yu = h-a1 with a density 

function h that can be chosen to be of bounded variation. 

Denoting by O I ^ Ï ) : - [ AC iB j T~ k(ï K(A))= A (k£]N)J the tail-

field of the transformation we can now state the main result: 

Theorem: 

Let T : [b, lj—>[o , 1 j be a piecewise monotonie transformation and 

yti= h-2
1 the above mentioned '^-invariant measure. Then 

1) h can be chosen to be lower semi-continuous and can be 

bounded below on its support by a positive constant. 

2) OlcrfT) is generated U-mod 0 by a finite number of atoms, 

each of which is yu -mod 0 a finite union of open intervals. 

3 ) The number of atoms of Clv,(T) is £ ) - minj^^--^- , #4~fJ » 
where N is the number of elements of the partition 
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Corollary 1 : 

There is a power T p of T such that T P ( Â ) = A yU-mod 0 for each 

keOt^T) and T P| A is exact for each atom A of O L ^ T ) . 

Some immediate consequences of the theorem have been proved by 

Kowalski before: Theorem b of [5/ give^ an analogous description 

of the ergodic atoms of T. 

With some additional considerations we can derive the following 

corollary: 

Corollary 2 : 

a) For h oda (i.e. Li>?) una ^ > - ™ , T is exact, while for 

a - — - I* need not even be ergodic (example 1;. 

b) i'or ki even we have: 

a > | = > T ergodic. while f or oc = -| T need not be ergodic (ex.2). 

^ > f | ( | ^ I ) * -r""> Ï exact, while for a - " | | ( § + 1 ) T need not 

be exact (example 3 ) . 

c) For N=2> peJN, and a > P / F , Ql*>(T) ha,; at most p-1 atoms, 

while for a = 

Oltto(-1-) m a y have p atoms, (example 4 ) . 

(For U=2 and p-2 cf. bo wen [2 .) 

The counterexamples mentioned in this corollary are given now: 
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I T / , 
Example 1 ; j / J 

N odd, IÙ3, oc = ̂ l j / / 

•A - si", for I / / 

^ ¥ -»* ,/ / / / 

for '/ / / / 

i -ifL $ j / ••• ' < ' -

The Lebesgue-measure / I \ 
I j , 

is the invariant / / : 

measure* < / 

/ / \ 

! I I : 

/ h : — i 1 
- * — ' ' \ / 

2 

Example 2 : 

N 

Eor W even, N M » and jc= ̂  , the same construction can serve as 

a counterexample fur ergodicity by introducing an arbitrary 

additional (unnecessary!) singularity (e.g. at ^ ) • 
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Example 3: N.,even. M c 4 . OL = ~\'f(i + 1 ) , put n : = | . 

a = I"1* n!l ' n f ^ (i=0,...,n) 

I 1 " ^ - i > (i=n+1,...,N.) 

i 1 - d:.{x - a.. ) (a. ̂  x <a, ,. and i in ) 
T(x) = \ 1 1 1 + 1 

I —~ - ce(x - a . ^ ) ( a ^ x <. a i + 1 and i i n + 1 N 

The invariant measure ^ - h - ^ i s given by 

Z LAAJ 
(Picture for N=6) 
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Example 4a: N=2, p=2, OL = . 

[ 1 - Y?.(x - 1 ) (1 

The invariant measure is yu = h-a*with. 

/ _ \ 

I \ 

i \ ^ 
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Example 4b; M=2. p> 2 , < X = 2 1 / p 

f ( 2 1 / p - 1 + x - 2 1 / p ) rood 1 (Oix<L-~j-) 

[ ( 2 1 / p - x ) mod 1 Hjyj « x < 1) 

Although this is net really an example for N=2, 

we can consider it as Ë-2 by identifying the unit-

interval with the unit-circle, since 

1(0) = 2 1 / p - 1 = 1>(1) and 'i'(O) = 2 1 / p *T ( 1 ) . 
'i'he invariant measure yu h-* is given by 

/ / 

o 2 v s - / ( 2 v « M z V s-ï 'd's-A 

(The picture is for p=5) 
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§ 2 ) On the density function 

Prom now on let T be a piecewise monotonie transformation. As 

already mentioned, Lasota and Yorke proved in f 1 ] the existence 

of a T-invariant measure yu=h-^ for which the density function 

h can be chosen to be of bounded variation. That means that 

h(x r) and h(x~) exist for each xe[u,lj and h(x + ) = h(x~) = h(x) 

for all but at most countably many xg[o,l] • Therefore, by 

changing the v^iue of h at the at most countably many discon

tinuities, we miy assume that 

i) h is lower semi-continuous with h(x) = min|h(x4") , h(x"")j 

for all x c jo , 1J , and 

ii) h is bounded, i.e. ;h!j,,<co. 

(In fact, these two properties of h are the only ones we will 

refer to later on.) 

Remark : iiecause of the T-invariance of fx , we have for each 

AC© : M(/w * / A ( Ï ~ 1 ( T U ) ) ) ~yU(ïU)). 

Let us denote by û ~ a^ < a^ < ... . < a^ - 1 the points generating 

the partition P , and without loss of generality we will assume 

that Int(P t) - ( a i ^ 1 ,a j [) (i = 1 ,. .. • 

Put X:^ supp(h) := f x v [û , 1} j h{x) > 0 j . 

Lemma 1 : i) i(X\{a , . . . ,a^ j) Ç X 

ii) ;^(X\ f(X\(a o,. . . ,a w] )) = 0 

Proof: Let x \.• X\Ja , • • • ,a^] and w.l.o.g. x t Int(P. ) . Then there 

exists an £ > 0 such that S ^ x ) ^ ! ^ and h(y ) > ̂ -h(x) > 0 for 

a l l y e S f ( x ) , since h is lower semi-continuous. W.l.o.g. we can 

assume that h(Tx) = h((Tx) + ) . Then for S , Q<&< £ , either 
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T([x fx+S)) or T((x~&,x]) is of the kind [ Ï X , T X + Ô ) , and we will 

call that one TV^ . W.l.o.g. again, lot us assume that = [x,x+o). 

Then a) ï x f N p dia(TV A )—> 0 ( < 5 — » 0 ) and 

B ) J h d V = u(i'VC ) * yu(V 4) = 5 h d } " $ i-h(x)- ^ ( V C ) 

TV* V* 

> £-h(x)- jiTlj ^ ( T V * ) , 

and since TV^ = [ïx fTx+£) and h(Tx) = h((Tx) + ) , we can 

conclude that h(Tx)>0, i.e. T x e X . proving i ) . 

From i) it follows that 

/A(X) =/A(X\|a o, .. . ,a.J ) <: yu(T(X\{a o, •. . ,aMJ )) < /*(X) 

which prove:; ii), since X is the support of fx . 

Lemma 2 : X = supp(h) is a finite union of open intervals. 

(bee Kowalski 4 •) 

Proof: X is upon since h is lowc-r semi-cuii cinuous • Therefore X 

is an at most countable disjoint union of open intervals: 

X = XIZ I . We must show that '3 is finite. 

Let tJ 0

: = : | I £ 3 I In\a.Q f • • • >
a

rj + ̂ } • 3 Q is finite and 

U t J Q \ {a f . . • ,a^] is a finite union of open intervals: 

U ' J 0 \ { a 0 a^j - I I I , ^ finite. With 3 : - OV3 ) u ̂  , 

T is continuously uifferentiable on each Iej » and !TI again is 

an open interval with A T I ) ^oc-?C(I) , > 1, for each I e 3 . 

iiince I €X\{a ,... j for I O , the open interval TI is 

contained in X (see lemma 1 ) , such that there is an I ' O with 

!TI £ I ' . 

Now let c:= m i n J M l ) | 1 6 'J.,} > 0 and f 3 c : = { l « î | ^ ( l ) ï c | . Then 

i) tf1 ̂  J c C 'j » ii) tJc

 i s finite, and 

iii) T ( U : J C ) ï~ U')C

 S I N C E I 6 ' J C ^ ^ ( T D ^ o i - o c = t T i t U D C . 
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Assume now that 3,*5» Choose I e S VD i n s u c n a w a y t n a t ^ ( I ) 
o c 

is maximal in '^"3 . Since le 3 , ?f(TÏ) i a• 7f( I) > X'(I), and 

therefore the interval I 3 containing II is not an element of 

5 \ n 
l'e Cj L / ; ) N ?j. 

• > Ti s i' C U-J0u u:i cc UDI ̂  ( v - ' a u J * W o 
R U 3 C u(a o,...,a N; since ^ £ D c 

••••> /^(ï w U j c ) * / *uc iU'J C)) * yudïo U : j c ) 

-~-r:r~> M-(I) = 0 since I e j -/Jc such tnat I n U jl = 

> X * ( I ) = 0 since I ç supp(h), 

which is a contradiction to I being an open interval. 

So we have 'J - j , and since '] is ïinite, D is finite 
c c 

and so is D . 

Lemma 5; There is a cons ta,. ... C>0 such that hj^>C. 

(This proves prt 1 of the theorem.) 

Proof: Let X = /" I Le a finite disjoint union of open 
IO 

intervals, X:= X\(a , ...,a n"i f and X = 5" J be a finite union 

of open intervals, too. 

T is continuously differentiate on each , and, by the same 

arguments as in the preceding proof, for each J*% there exists 

an IT J with TJ cl, 

Letting (c,d) be any interval in '0 or } we will associate 

to its endpoints two classes of "standard intervals" (c.o.s.i.) 

£ c = )(c,c+£) J £ > OJ and F d = { ( d - £ f d ) | £ > 0 ; and call c and 

d the "endpoints" of f and respectively. 
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Between these classes we establish a relation "I-—*" : 

Let be classes of standard intervals. 

£i~^>£' iff iu £ for each sufficiently small Vet. 

This relation has the following properties: 

1) If is a c.o.s.i. .^sociated to an endpoint of an interval 

l t d , then there is at least one c.o.s.i. V? such that t^^f1. 

Proof: Let it'j be arbitrary and be a c.o.s.i. associated 

to an enapoint of I. For each J t £j either TJ Ç I or TJ n I = <f>. 

Since ^(iv'rX) ^ X \ x \ T X ) = 0 (see lemma 1 ) , there must be 

a Jt'^ with iJtv?', and the assertion follows immediately. 

2) If 16 3, c f an enapoint of I, lim h(x) = 0, the c.o.s.i. 
x->c 1 

xei 
associated to c f, V ; ^ ^ 1 , and c the endpoint of v£ , 

then lim h(x) = 0 for each U e ^ ( 

x c 
xt U 

The proof works with lhe same arguments used in the proof 

of lemma 1. 

3) In the situation of 2) the lower semicontinuity of h implies 

that h ( c ) - 0 , i.e. c ^ X , and this in turn implies that c is 

an endpoint of an interval Ie'3 • Denoting by 

K q:= £ | x 0 • 0 • s • i • associated to an endpoint c of an led 

with lim h(x) ~ 0 } 
x->c 
x. 1 

we can conclude that : 

î ow let us assume that + p • 

Combining 1) and 4) we see that for each f'eK there is at 
least one H e K with t? 

o ^ 
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On the other hand it is trivial that for each t £ K Q there can 

he at most one "£\)Lo with such that, since K Q is 

finite, is a bijective relation on K Q . 

Let be any element of K Q . Then there are ^ 0»*«»> ^ n

€ & 0 

uniquely determined, such that €= *—^f^^^ r^ J» yé 7

n= € • 

Choosing U e Ï: = >(? small enough we can achieve that T^^U is an 

open interval with T~ IU € ^ n - i and T ^ U Ê X (i=0,...,n). 

In particular we have T~ nU t 0 = £ with ^(T"" nU) < pc~ n ^ ( U ) , 

such that, by induction, we get a sequence of intervals 

( T ~ k * n U ) k € ] N in with ^ ( ï ~ k n U) < cx~ k' n. a \ U ) yielding the 

following chain of inequalities: 

^ ( U ) = /x(T- k nLJ)< ilh|ioo^
1(T-k'nU)< ]ih|( o o.cx-

k n^(U) (k^JN) 

/^(U) = 0 -~—> ^(U) = 0 since U £ X , 

contradicting the fact that Ue Ç is an open interval. 

Therefore the assumption K Q * ^ must be false, and we can 

conclude that lim h(x) > 0 for each of the finitely many end-
x >c 
xel 

points of intervals I e'J , Because of this and since h is lower 

semi-continuous, a compactness-argument shows that there is a 

C > 0 with h p ^ C 
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§3) On partitions generated by T and 3> 

Remember that ^ ={P^,..•.P^j is the partition of [0,l] into 

intervals of smoothness of Ï . By T> we will denote the partition 

of [0,1 J into intervals on wnich T n is C 1 , i.e. 3> = \y/ T P 
n k=0 

for n > 1 . elements of 3* can be written as 

^ ( ^ F ...f J nJ:= ïi n I ,"' 1P i n ..... nlr(n""1)P. , jye{l , . . . fNj . 
n 1 n J-] J 2 ^n 

(Remark: We will use the symbol A R ( j .j ,... , J n) to denote the 

above intersection even if it is void.) 

Define A o:=(b,l] and 0 >

o : = {[O>l]]= \aJ . 

Sometimes, we will write elements of y simply as A , but only 

if this does not cause any confusion. 

Since for each n€l\i : L_ J A = U I " N = [O, L], the symbol A N ( X J can be 

0,1) to denote that /\ £ J for which XTZL . 

Lemma 4: 

1) Por m , n ; 0 , X E J O J ] holds: 

2 ) For 0 $ 1 •< n and x€ fû , l] is 'S1 (à Jx]) £ ̂ n_ 1fï
1x] . 

3) Let Mç|u,1j , A c p n , and x,yc A n T ~ n M . 

Then |x-yj< a(~ n- JT nx - T ny | < < x~
n•dia(M) . 

4) There is a constant S > 0 such that for all A,B^(Q and 

all û t: Pri with '/( fx r. B) > 0 : 

A t E U / Ï A ) ) < s . A j W i 
X'(^UnB)) s X'(AnB) 

5) If iJ £and A'.:[u,1j is a closed set with A£ÎP, 

then ï (A ) n P is closed. 

Proof: 1 ) , 2 ) , and 3) are immediate. 
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4) is established by a straightforward computation using the 

exponential expansion of T n on sets 4 e ^ n
 a n d t h e Lipschitz-

continuity of the restrictions T j p . (Compare the proof of 

lemma 3/ii) in Bowen [ 2 ] . ) 

To show 5) observe that P and TP are intervals and that T,T) is 

a homeomorphism between them. As a closed subset of [o , l] , A 
— 1 

is compact. Therefore (Tjp) ( A) also is compact, but 

(fi|p)~1(A) = T " 1 ( A ) o P , such that this set is closed in [ o,l]. 

Later on it will be essential to find, given a fixed k 0£]N, as 

many points xe(o,l] as possible satisfying for arbitrary k> k Q 

not only the inclusion T k ~ K ° (A k rx j ) c A k [ T k ~ k ° x ] (see lemma 4/2) 

but also the inversion. 

The following construction will provide us with such points x: 

„ _v 
Construction: Let Mt(o and k0€H be so that T °Mn A is 

closed (it may be empty!) for each A e p v • 

Then we define sets M k ,M k + 1 , inductively 

by 
i) M v := T""k°M and 

ii) M l + 1 : = T " 1 ( M l n Koc^-diaCM))) ( l > k j , 

where I(r):= P(L_J (TP\Int (TP))| ( r > 0 ) . 

Remark: In the inductive step of this construction we first cut 

off from M 1 those points being too close to the endpoints of 

any TP they are contained in, and then take the preimage under T. 
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Lemma 5 : For the sets obtained in the above construction the 

following is true: 

1) T 1"" k(M 1) c M k £ T~
k(M) for l i k * k 0 

2) Let l^k 0 and x e M 1 # Then for each A c f k ° ( M ) holds 

3) There is a constant H > 0 for which 

) > ,"(M) - H-dia(M)- e T k ° ( l * k 0 ) • 

4) A j x l n T""X(M) is closed for 1 * k^ and xeM 1 # 

Remark: Assertion 3) gives a hint, why things change in 

dimensions > 1 : In higher dimensions, Lebesgue-measure and 

diameter of an interval are not so closely related as in the 

one-dimensional case• 

Proof of the lemma: 

1) is obvious. 

2) is proYed by induction on 1: 

l=k 0: is trivial 

lc=»l+1 : T l + 1- k<>( A l + 1 [ x ] n T ~ ( l + 1 ~ k c ^ ( A ) ) 

= T l + 1~ k°( A-jFx] o f 1 A j T x ] n T - 1 ( T - ( l - k 0 ) ( A ) ) ) 

(see lemma 4/1) 

= T ^ l ï Z i ^ x j ' n Z\lL

rTxJ n T" ( 1~ k o )(A)) 

(*) Q ^ ( A ^ T x I n T ^ 1 ^ 0 ^ ) ) 

r i+1-k i 
= tfx HA by inductive hypothesis, since 

Txt ï ( M l + 1 ) £n± . 

To show the revers inclusion of (*) let zt A ^ T x ] n T""̂  1 " - k ° \ A ) . 

From lemma 4/3 it follows that |z-Tx| < < xT 1 -dia(M) , 

since T x e l ^ f ï" 1(h) and z £ T " ^ " k ^ ( H ) by assumption, 



- 17 -

and we obtain: z e S _i (Tx) . 
* 1-dia(M) 

Additionally we have: 

= * x * M l + 1 

Tx € I( (X ~ 1-dia(M)) 

= > \ / P Ê ^ - * Ï X 4 ï ï s m t n (TP) 
v T oc-J-diaCK) 

Tx £ Int n ( T A J x ] ; , since &Jx}e£, 
1 d i a ( M ) 1 1 1 

and we can conclude that zeTA.|[x], thus obtaining 

immediately the desired reversion of (-fc). 

3 ) Por 1 > k 0 we have 

/u-(M l + 1) = n I( ot"1- dia(M))) 

* ^ ( M , ) - r ( ^ ( T P x I n V l - d i a ( M ) ( T P ) ) 

^ /^(Mj,) - iJ-2 •||h||oo-a"
1-dia(M) , 

and by induction: 
1-1 , 

y U L(M 1) >• /u(M k o) - W - - d i a ( M ) - 2 Z ct - 1 

£ yu(M) - H-dia(M)- oL~k° ° since M k = T~ k<<M), 

where H = N • 2 • Hhj^ ~ ^ . 

4) is proved again by induction on 1: 

l=k r / : is valid by assumption. 

1«=»,1+1 : For x e M l + 1 is T x e l ^ and 

A l + 1 [ x j n T " U + 1 ) ( M ) 

= A ^ x ] n T" 1( A X W O T _ 1(M)) , 

where A-^LTx] n
 T ~ ^ ( M ) is closed by inductive hypothesis. 

Because of lemma 4/5) it suffices to show that 

A ^ T x ] o Ï - 1(M) ç T l A ^ x ] ; . But this follows directly from 

the following two facts: 

a) diaCAjlTx] n T - 1 ^ ) ) < Œ dia(M) (lemma 4/3) 

b) x c M , ^ Tx £ Int -i , ,(T(AJx])) what already 
!+' oC^-diaCM) 1 

has been proved under 2 ) . End of proof of lemma 5. 
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Denoting by d(T3>):= d(^) the finite set of endpoints of 
P e : P k0-1 

the intervals TP (Pe3>), Z, T k(d(TP)) is a finite set 
K ° k=0 

for all k 0£]W. 

Since X=supp(h) is a finite union of open intervals, X^Z-^ 

also can be written as a finite disjoint union of open intervals: 
r 

X~^Z, = R. , R. open intervals. 
° i=1 

Lemma 6; 

Let M S R ^ ie{l,...,r] , be a compact interval , and 0^1^ k 0. 

Then for each & eV± with A n T - 1 ( M ) * jz$ , A n T ~ 1 ( M ) is a 

compact interval and T 1 ( A r » T ~ 1 ( M ) n T - 1 ( A ) ) = M n A for 

each Aç [o, l] . 

Proof by induction on 1: 

1=0: is trivial since A e P 0 ^ 6 ^[o,l] 

1«=»1+1 ; (l^k 0-1) 

Assume that A e ? 1 + r A n T ~ ^ 1 + 1 ^ (M) There are P e J> and 

A'ey± with A = P o T"1A' . =$> A ' n l r l ( M ) * . 

/>(by inductive hypothesis): A ' a T _ 1 ( M ) is a compact 

interval with T 1 ( A 1 n T - 1(M)) = M. i-ioreover we have 

1 ) A* n T - 1 ( M ) n 0( it) = since M n Z^= <f>. 

2) T P n û ' n l r l ( M ) ^ , since PnT~ 1(A'f> T _ 1 M ) = A n T " ( 1 + l ) M * fi . 

From 1) and 2 ) follows: A n Ï _ 1 ( M ) ÇTP . 

Since T|p is a homeomorphism between P and TP, 

A n T " ^ l + ^ ( w ) = T j p '
1 ( A , n T " l ( M ) ) is a compact interval and 

T 1 + 1 ( A n T - ( 1 + 1 ) ( M ) ) = l ^ A ' n f ^ M ^ M. 

For AS[p,1j we finally have: 

1 1 + 1 ( A . T " U + 1 ) M n T " ( 1 + 1 ) A ) = T 1 + 1 ( A n T ^ 1 + 1 > M ) A A = M n A . 
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§4) Something similar to a Lebesgue-density theorem 

As indicated in the introduction, the main idea to prove 

exactness-properties is the following: 

Imagine that for a measurable set A, a small interval U - A e'"?n> 

and a small £ > 0 holds: (*) ?f(lJ\A) *6-?C(U) • 
Then A(T nU \ T n A ) < S-A-X 1(T nU), where T nU is an interval much 

bigger than U. For sets A of the tail-field of T, such a property 

will be enough to prove that /x(A) is 11 sufficiently" large. 

What we have to show is that situations as described by 

really occur. This is done in the following lemma: 

Lemma 7 : 

Let J & U be an infinite index set, Q^.Q-^e© with ^ (l € J ) , 

and d > 0 a constant, such that for all le J and xeQ-^ the 

following holds: 

i) Aj[x]n^ is closed, 

ii) X( A2_W n Q x ) » d • **( A-Jxj). 

Let </ := r~\ U Q n . 
keJ l*k x 

le J 
Then for each A«Q5 with /T(Q*nA) > 0 and <£ > 0 there is an 

xt y*nA such that 
f xeQ-, and 

VlClN 3le J,l >1 : I . x „ 
V ° ° J ° I ^ ( A j x J n Q ^ [A) ^ . ^ ( A i f x J n Q i ) 

Proof: Let us assume that the statement of the lemma is false. 

Then there is an Ae(& with ?f(Q*nA) > 0 and an { > 0 such that 

V x e Q*nA ] B ^ 16 J.l»^: 

x 6 Q 1 = = > } ( A JX; N Q-l N (a) > f • A* ( A Jx'J r Q ^ . 
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By v we denote 

v: = I ; f Ac?-. A n g V A A o W n 4= ̂ , 7\{ A n Q-,n £a) > £ • pC( A r, Q, )] 
If J ' ' x 

and by ? c oi= l~j '? . 
n=0 

Assertion 1 : 

If 09[0,1] is open and v 0:= { A e { A ë 0"} , then there is an at 

most countable set f ç v n v ^ of pairwise disjoint sets for which 

l/"An© £ Uf S Or . 

Proof: Since vnv^sî»- is partially ordered by inclusion, it 

makes sense to define f : = J A c v n v^j A maximal in VnV^j, ana the 

following are valid: 

1) f £ v nVQ. ç. , consequently f is at most countable. 

2) A - , , A 2 t f , A 1 rùz ± ^ = > A - | £ A 2

 o r A 2 ~ ^ 1 ( a P r ° P e r t v 0 1 > -• 

•••> A 1 = A 2 since A 1, A 2

 6" f • 

So the elements of f are pairwise disjoint. 

5) Uf = U(vnv &): 

U f £ VJ(voV e) is trivial. 

On the contrary let A e v n v ^ . Since A £A* f ° r a - t most finitely 

many A'C î*^ , there exists a maximal A'e V n Y ^ with A s A ' , 

such that A £ A £ U f . ïhat means U(vnV^.) ç Uf. 

4) Prom 3) it follows that Uf = U(v nv e) £0- by definition of v^. 

5) Let X E T A A N T F . 'i'hen 

a) 3 V 1 * V 1 £ J' 1 j ]d : x ^ ^ x ^ -jjxln û^n £a) > £• A x[x] r-.'̂ } 

( by assumption) 

b) Vie IN: x e Q*n A n A ^ x ] 

c) ]/lem Jl* £ J,ïïl: x é Q l t since xc Q* 

d) xeO, <y open 3 ^ e ^ V1 - 1-j : A ^"xj ë 

That is why there is a k»-3^,l1 with ktJ and 
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a') ^( A ^ x ] n Q k n [A) > £.??(A ktx]rxQ k) 

b') Q*nAoû k[x] * 

c f ) x 6 Q k , i.e. A k[x] n Q k * 

<*') A k Mcer , 

such that A ^ x ] t v n v & , what in turn implies that 

* « A J X I 5 U ( V / » V E ) = Uf . 

Since u Q * n A n ? has been arbitrarily chosen, the proof 

of assertion 1 is complete. 

Wow let v:= (AOQ, J A £ v n ? ] . 

lej c 1 1 1 J 

By assumption, all AGV are closed, since û e v n ? ^ = ^ AnQ-^ * 

Assertion 2: 

For each & > 0 there is an at most countable set g c v of pairwise 

disjoint sets with the following properties: 

i) M ( Q*nA ) \ U g ) = 0 , ii) ^ ( U g ) < (1 + 6)- *(Q*"A) . 

Proof: We will construct the family g inductively: 
By regularity of } we can find an open set 82 Q A A in such a 

way that 3?(or) 4 '(1 + 6)" }(Q*nA) . 

n = 0 : Let g Q: = j) 

NC^n+ 1 : We will assume that g n ç v has been constructed with 

the following properties: 

1 ) g n is a finite (or void) collection of pairwise disjoint sets. 

2) U g n c 0 

3) U g n is closed. 

4) 0 < ?f((Q*nA)\Uên) 0 - f)*- a W n A ) 

(These 4 conditions are trivially satisfied by g Q.) 

In case A((Q*nA) \ U g n ) = 0 the construction can be finished 

here by setting g : = g n . 
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Otherwise we choose an open set U £ & with Q*nAÇU and 

* ( U \ ( W % r > A ) ) $ § • rf((QVA)\Ugn) ' 

Then for ® n + - \ : = U x O g n "the following holds: 

i) 0 n + 1 is open, Cf n + 1 £ » 

ii) ( Q * n A ) \ U g n ç 0 n + 1 

iii) ^ ( ç r n + l N ( ( Q * « A ) \ U g n ) ) c § • A ( C Q * o A ) \ U G N ) 

Let v ( y n + 1

: = { A 6 & | A £• 6 r

n + 1 } •
 B v assertion 1, there is an 

at most countable collection f . s . v n „ of pairwise 
n+i un+1 

disjoint sets, for which Q*r>A n 6 r

n + 1 £ U f n + 1 £ O n + 1 . 

Putting f n + 1 : = { A n ^ | A £ f n + 1 ^ ^ w e h a y e 

a) f ^ £ v consists of at most countably many pairwise disjoint, 

closed sets f 

b) U f n + 1 c U f n + 1 £tf n + 1 

c) ^ ( U f n + 1 ) = > „ r AAOQ.) £ d- 7\{A) 

A o Q l Ê f n + 1 A c t n + 1 

by assumption ii; of the lemma, since 

A c f n + 1 £ v = ^ &nQ± * ̂  . 

= d- ? C ( U f n + 1 ) H . ^ Q ^ A n ^ ) 

= d" rf(Q*nAn (U \ U g n ) ) 

(*) = d- A ( ( Q ^ A ) \ U g n ) since Q*n A é U, 

and we get the following estimation: 

X ' ( ( ( Q * « A ) \ U g n ) \ U f n + 1 ) 

* ^ ( C f n + 1 x U ^ n + 1 ) ^ 1 1 } a b o v e 

= ^^n+l) " *(U*n+^ b y b ) a b o v e 

= ^ ( e f n + 1 \ ( ( Q * n A ) \ U g n ) ) + A ( t f n + 1 n ( ( Q * n A ) \ U g n ) ) ~ A ( U f n + 1 ) 

$ ( f + 1 - d ) - A ( ( Q * n A ) \ \ J g n ) by (*) and iii) above 

= (1 - § ) * ^ ( ( W * n A ) \ U g n ) 
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Therefore, there exists a finite subset h ^ è ^ n + i
 w i"tk 

a 1 ) h n + 1 £v consists of finitely many pairwise disjoint, closed 

sets, 

c«) X ' ( ( ( Q V A ) \ U g n ) \ U Î n + 1 ) < O - f ) - ?T((Q*nA) \Ug n ) , 

d') as a finite union of closed sets, U h n + 1 itself is closed. 

Put g n u h n + 1 . Then 

1 1) g^+-j £ v is a finite collection of pairwise disjoint sets. 

2 ' ) U g n + 1 ^ 

3') l / g n + i
 i s closed, 

4') A \ ( Q * n A ) \ U g n + 1 ) = ^ ( ( ( Q * o A ) \ U g n ) \ U h n + 1 ) 

« (1 - f ) ' A ( Q ^ A ) \ U g n ) 

s< (1-f ) n + 1 . 7 C(Q*nA) 

5') U g n c U g n + 1 

Putting g: = g we get: 
neJN n 

1") g çv is an at most countable collection of pairwise 

disjoint sets. 

2") {Jg<L& implying that >"(Ug)i ?T(Cf) £ ( 1+5) • sC(Q*n A) 

4") * ( ( Q*nA ) \ U g ) = lim X'((Q*nA)\Ug n) 4 lim (1 - f ) * = 0 

thus accomplishing the proof of assertion 2. 

Wow, the assumption that the statement of the lemma is false 

can easily be led to a contradiction: 

Applying assertion 2 with £= ^ guarantees the existence of 

a set g ç v with the properties listed there, and we can conclude: 
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Aq'«A) » a*(Ug) = 7C(Wg n A) + MUS nÇ*-) 

\ ?T(Q*oA) + XL, A û n Q , n 11 A) 

> ?f( Q*n A) + X I Z Z . é - ^ û n Q J 

4«Q,CG 1 

since AnQ-^ <r G —> A t v , 

= TT(Q*oA) + £-?C( UG ) » 7 i ( Q*oA) + £-*"(Q*nA) 

= (1+ £)' *(Q*nA) , 

contradicting £ > 0 and a (Q n A) > 0 , and the proof of the 

lemma is complete. 
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§5) The tail-field of a piecewise monotonie transformation 

Remember that C X ^ T ) = { a ^ T~ k(T k(A)) = A (kel)] is the 

tail-field of T and the notation introduced at the end of §3: 

Z, = T (9(T?)) , X\Z, = U R. , R. open intervals. 
K ° k=0 K * i=l 1 1 

Lemma 8: 

k 0£]N can be chosen in such a way that for each component R^ 

of X \ Z k as above and each AeOlJiT) the. following holds: 

For each t > 0 and each infinite index set J£]N there is an 

infinite subset J(£)£J such that for each jeJ(t) 

^ ( R ^ ^ ) ^ <£'*(*.) or ^(R.nT JtA),< € - ?C(fl±) . 

Proof: Choosing k0£'M so big that H- of k* ^ (where C and H 

are the constants from lemmas 3) and 5) respectively,) and a 

compact, nonvoid interval M £ R^ with ^(R^sM) ^ ^ • A ( R i ) , 

lemma 6) tells us that T~k°M satisfies the assumptions of the 

construction in §3, which gives us sets + ^ ,81̂  + g » • • • • • 

with the properties listed in lemma 5 ) . 

Without loss of generality we will assume that J *{k a ,kD+1 ,k 0+2, • • •] • 

In order to apply lemma 7) to this situation for the case = 

and = T M (I eJ) we first must check that the conditions 

of lemma 7) are satisfied: 

a) M x c T - 1M' by lemma 5/1). 

b) Z^fxlnT""-^! is closed for each xeM 1 (lej) by lemma 5/4). 

c) let lej, xei^. If * ( &-J*]) * 0 9 we have 

" v t z - J X I R " * S — V I ^ t T T ? ; . ) ' " b y l e m m a 4 / 4 ) 
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1 • A*(T k o( A k f T
1 " k # x ] a T' k"M)) by lemma 5/2) 

= -g - 9\*(M) by lemma 6 ) , since 

T i _ k o x e T1""k"M-1 ç M, & T~ k°M such that 

> 0 since fa is a nonempty interval. 

Therefore we can take for the constant d in lemma 7 ) : d = £-;C(M). 

d) By 3) of lemma 5) we have for each 1«J: 

/x(M 1) * ya(M) - H-dia(M)-of k* 

* G-^(M) - H• a(M)-of k* since M e X and h| X C, 

> ^(M) by choice of k 0 f 

Jb'or M*:= M. , consequently /a(M*) S - ^ C M ) > 0 • 
kej l>k 1 7 ^ 

]e J 

So, for ACCTl^CT) two cases, not mutually excluding, can arise: 

Case I: M I ^ A ) > 0 Case II: A (M*o [a) >0 

Both are treated in the same way, so, without loss of 

generality we will have a closer look at case I: 

Lemma 7) tells us that for each £>0 there is an x e 1*1*0A such 

that \/l^]N ~] leJ,1>.1 ; 
o *-* o 

fxeNL and 

( § ) 

[ ^ ( A ^ o r t n [a) < |g- A A ^ N R T ) . 

Since for each Itj 

X'(M) 

7\ (T k°(A k Jl'
1"^ x] n T " k o M n T~ k° ( T 1 £ A ))) 

= ... kv lemma 6) 
(T «( A x ] n T ° M)) 
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, 4..... b y leuma 5 / 2 ) 

> T A n [x] n Ï
_ 1 M N fA) 

$ S T ly lemma 4/4), 

it follows from (§) that for .-uch l 0€l^ there its an lCo, 1 * 1 Q 

such that MMfl iAa) i ^- M M ) . 

Since M ^ R i with ^(li^M) ^ |* ^ 1 ( R i ) , the proof of the 

lemma is complete. 

i*ow we can turn to the 

proof of the theorem: 

Applying lemma 8) inu uolively to all we Jan obtain: 

Let Aeut^(T). Then 

V £ >0 V J^» f iJ| = or/)l -:. 1(6 )t'j\/i-1 f f t #4,r: 

(*) feither Aiii^n i^A) < f ^(R±) 

\ or "/(RJ/I I 1 [ A ) < f • > 

Since R ^ X for all R ± and C-/(B) * ̂ ( B ) / ||h||̂ -;/(B) for all 

measurable B^X, we ai^o have : 

(*) is valid for ^ instead of . 

but for yu(A)^0 and £</a(A) It is impossible, because of the 

T-invariance of , that for all R^, i~1,...,r, holds 

/UL(Rin <£1K) < ,f (R i) . 

•Therefore, for each £ > 0 there is at least one R i with 

aa (ft. n T 1 ^ ^JA) < . '(H. ) , such thaô 

/ 1 « ^ 
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^ ( Ï 1 U ) A ; > (1 - O • ̂ (Rjl) , 

and since / A ( T
1 A ) = y* (A) ( I Ê I , A e O Z ^ T ) ) , we have for 

each A c C X ^ T ) with yu(AJ>0: 

yiA ( A) > min { ^(R ±) | i-1,...,rj > 0 • 

So OI^CT) is generated ^u-moci u by a finite number of atoms. 

Let JUOI^ï) be such an atom. 

Then l ^ A c O ^ T ) are atoms too ( l e i ) , and consequently there 

exists a p = p ( A ) < IN with T^A = A jj - mod 0. 

Applying (**) with the special index set J:~p*IN shows 

immediately that for each (i~1,...,r) 

either ^(K.n A ) = 0 or JJL A) = 0 9 

thus proving that A is -mod 0 a finite union of open intervals 

( yart 2 of tiu; theorem). 

denote by the biggest open interval contained yu -mod 0 ii 

T XA (i~0,...,p(A)-1) and by n.. the number of singularities 

from [a^ • • . >a _̂i \ contained in L^. For each i=0 , • . . tP-1 ? 

n. must satisfy l W \. JLL < ^U^.-I) > 

since n. singularities divide L. into n.+1 open subintervals 

"A ( L ' ) 
at least one of which has length > ~ - - - ^ V ^ . such that the ima^a r ^ n. H- 1 ' 

under T of such an interval is an interval with length > o ' ' — V 

i+1 
contained in T A ;.t-mod 0. 

/ 
From the rela t i ons 

( § ) ? r d < 1 ) , VJ ( i = 0 , . . . , p - 1 ) 

with f~\ ç. = 1 ( since L = 1 ) , we can indepondently 
i=0 P ° 

deduce two estimates for p: 
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i=0 1 i=0 i=0 

1 P z l 

p-1 p-1 p-1 p-1 
2) P + H ni = II 1)> <*• Z Z ^ P - . x , since T T ?j = 1 

i=0 i=0 i=0 i=0 

v 1 £ = I 

p(A)-1 

Loth estimates are valid for each cycle A,TA, . . . . . , ? ? ^ V 7 A 

of atoms of (X Thus, since there are only N-1 singularities 

of Ï, we have 

Jatoms(a^(TJ)| ^ j — J j and | atoms( 01^1 T ))j <c • 

This is statement3)of the theorem. 

Corollary 1 ) follows immediately from 2 ) of the tJreo:?em. 

For the proof of corollary 2) we need another estimate that can 

be obtained in an analogous way au the one above, only much 

simpler (see Kowalski [3]): 

Let Jeu]:- min {n *-IN \nta\ . Then the number of er&od.Lc atoms 

of T is s {h- 1 > f ^ ™ i • 

In. order to show exactness of 1 we need auoms( Ot^XT))| < 2 , 

for which - by 3) of the theorem - a sufficient condition is: 

c A > — g — . This proves a) of corollary 2 ) . 

Wow let us assume ft* 4, K even , and <*> + 1) • Then [a] > ~ + 1 

and by the estimation of the number of ergodic ate ras above we 

see that T is ergodic. Similarly* 3) of the theorem tells us 

that the number of atoms of 01/JC)(T) is ^ 2 . Assumirg that this 
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number is ^ 2 we could specialise (§) on p. 28 to the 

following relation: 

R ^ - O C U N + 1 T i cT'c?(!.< n.-f l , ii + N 4 = N - 1 for a suitable ? . 
L * ^ x o f S. V j " 1

 9 o 1 

±yut simple considerations show that this is impossible for 

CA > ( f + 1 ) a n d arbitrary > 0. 

ùû T is exact, and b) of corollary 2) is proved for N f 2. 

The case N = 2 is proved togetner with c ) : 

3) of the theorem tells us chat iVr 1* - 2 and ex. > QyfçT holds: 

|atoms( G:LAO(T))l ^ iô4^"T < P thus proving c;, and for p- ? 

we also have the remaining case from part b ) . 
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§6) Remark on higher dimensions 

With the same basic idea we can prove results for higher 

dimensional spaces too, for example the following one for 

transformations on £ 2 := {(x1 ,x 2) JO £ x^ ,x 2 < l} • 

Let J = { 1 ^ ,. •. ,P^} be a finite partition of E . .Ve call 3 

smooth, if the boundary of each of the P^ consists of finitely 

1 

many C -curves. Then we can state 

Proposition: 
2 2 2 

Let ? be a smooth partition of E , ot > 1 , and T:'.S — > E 
a transformation satisfying: 

i) For each P^'î, T ( p is C 1 , V xcp: ||(l)T|pCx))""
1|j N̂  <x~ 1 » a ^ d ^ 

Jacobian of I)T|p(x) as a function of x is Lipschitz-

continuous on P. 
ii) T posseses an invariant measure yU=h- a 1 with < oc . 

Then: 

2 
I) If there is a set M tE with the properties 

a) / A ( M ) > 0 and 

b) V « M V i > 0 : M ( U l n ( S , ( x ) ) ) = 1 , 
7 neB b 

then (T,yO is ergodic. 

II) If there is a set M c E^ with the properties 

a) yu (M) > 0 and 

b) V ^ i ^ V ^ Û î sup u(l | n(S< (x))) = 1 , 
iu]N r 6 

then (!Tfym) is exact. 

Analogous results hold for trinformations in n-dimei sional 

spaces. (For dimension 1 cf. -en [l J • ) 
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