Gerhard Keller

Piecewise Monotonic Transformations and Exactness

Publications des séminaires de mathématiques et informatique de Rennes, 1978, fascicule 1
«Séminaire de probabilités », , p. 1-32
http://www.numdam.org/item?id=PSMIR_1978__1_A6_0
© Département de mathématiques et informatique, université de Rennes, 1978, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Piecewise monotonic transformations and exactress

Gerhard Keller
§0) Introduction and notati,ns

The goal of the following pages is to describe the structure of the tail-field of piecewise monotonic transformations on [u,1] (pw.m.t.) as they have Leen considered before dy Lasota and Yorke [1], Dowen [2], ariu nowalski [3-5], and to derive from this description sufiticient conditions for exactness.

In §1) we will $\begin{gathered}\text { ive some definitions and state the results, in }\end{gathered}$ §2) we will study some special properties of the invariant measures of pw.m.t.'s, and in §3) we will describe some basic properties of such transformations, that similarly can be found in the papers of most of the autrors having vealt with them, and give a construction of a set of points with a certain "good" behaviour with regard to the singularibies of the transformation. Hogether with a rather special lenma of Levesgue-density-theorem-type, that is proved in 84), the results of 82) and (3) will allow us in (8) to "expand" the hich density that a set of the tail-field possesses in a small interval to bigger intervals with a certain minimal length. Ihis leads us to the desired result. 86) finally contains some results (without proof) for piecewise expanding transfomations of hisher dimensional spaces that can be proved by applying the smae basic ideas.

In the sequel, $\left([0,1], B, \lambda^{1}\right)$ always denotes the unit-interval equipped with Lebesgue-measure.
For a set $M \in[0,1], \operatorname{dia}(m):=\sup \{|x-y| \mid x, y \in N\}$, and for $x \in[0,1]$, $r>0$, we will ienote by $\Delta_{r}(x):=\{y \in[0,1]| | x-y \mid<r\}$ the open unit-ball with radius r centered at x.
Let $\operatorname{Int}(A)=A$ be the interior of a set $A \leq[0,1]$, and for $r>0$ let $\operatorname{Int}_{r}(A):=\left\{x \in A \mid S_{r}(x) \leq A\right\}$. \dot{I} is the derivat. ve of a function I on $[0,1]$.

for $\mathrm{H}:[0,1] \rightarrow \boldsymbol{f}$ we anote by $\mathrm{h}\left(\mathrm{x}^{+}\right):-\operatorname{lin} \mathrm{h}(\mathrm{y})$ and by $h\left(x^{-}\right):=\lim _{y \rightarrow x} h(y)$. $y \rightarrow x$
$y+x$
$y<x$
§1) Lefinitions and results

Definition:

$T:[0,1] \rightarrow[0,1]$ i: called a piecewise monotonic transformation (pw.m.l.), if there exists a partition $\mathcal{P}=\left\{P_{1}, \ldots, P_{N}\right\}$ of $[0,1]$ into subintervals such that for each $P_{i} \in J$:
i) T is C^{1} on P_{i},
ii) $\left|\mathrm{I}_{\mathrm{P}_{i}}\right| \geqslant \alpha>1$ for a constian α,
iii) ${ }_{1} \mu_{i}$ is Lipschitz-continuous,
iv) (as a consequence on if cad iii):)

$$
\left.H_{i}:=\sup (x)|x \in|_{1}^{N} \operatorname{Int}\left(P_{i}\right)\right\}<\infty
$$

A result of Lasota ard lowke [1] shows, that each pw.m.t. I on $[0,1]$ has an invaria:l measure $\mu=h \cdot \lambda^{1}$ with a density function h that can be chosen to be of bounded variation.

Denoting by $O l_{\infty}\left(I^{\prime}\right):=\left\{\operatorname{SC} \mid \Gamma^{-k}\left(I^{k}(A)\right)=A \quad(k \in \mathbb{N})\right\}$ the tailfield of the transtormstion I, we can now state the main result:

Theorem:

Let $I:[0,1] \rightarrow[0,1]$ be a piecewise monotonic transformation and $\mu=h \cdot \lambda^{1}$ the above mentioned 1 invariant measure. Then

1) h can be chosen to be lower semi-continuous and can be bounded below on its support by a positive constant.
2) $\left.\Pi_{a d} T\right)$ is generated $\mu-\bmod O$ by a finite number of atoms, each of which is μ-mod 0 a finite union of open intervals.
3) The number of atoms of $O_{a}(1 x)$ is $\leqslant(i-1) \cdot \min \left\{\frac{1}{\log _{2} \alpha}, \frac{1}{\alpha-1}\right\}$, where N is the number of elements of the partition .

Corollary 1:

There is a power T^{p} of T such that $\mathrm{T}^{\mathrm{p}}(\dot{A})=\mathrm{A} \mu$-mod 0 for each $A \in \Pi_{\omega}(I)$ and $\left.{ }^{\prime} I^{\prime}\right|_{A}$ is exact for each atom A of $O_{\omega}(T)$.

Some immediate consequences of the theorem have been proved by Kowalski before: Theorem b of [5] gives an analogous description of the ergodic aloms of T.

With some additional considerations we can derive the following corollary:

Corollary 2:

a) for N oda (i.e. ive 3) and $\frac{1+1}{2}$, H is exact, while for $\alpha=\frac{N+1}{2}$ i $n \in e d$ not even be ergodic (example 1).
b) For in even we have: $\alpha>\frac{N}{2} \Rightarrow$ Rergodic, while for $\alpha=\frac{1 N}{2}$ I need not be ergodic (ex.2).
 be exact (example 3).
c) For $N=2, p \in \mathbb{N}$, and $\alpha=\mathbb{E} \sqrt{2}, O_{\omega}(\mathbb{I})$ hus at most $p-1$ atoms, while for $\alpha=\sqrt[p]{2}$ O. (í) may have p atoms (example 4). (For $\mathrm{N}=2$ and $\mathrm{p}=2 \mathrm{ct}$. Bowen [2_.)

The counterexamples mentioned in this corollary are given now:

Example 1:

N odd, $N \geqslant 3, \alpha=\frac{N+1}{2}$

$$
\begin{gathered}
\lambda\left(P_{i}\right)=\frac{1}{N+1} \text { for } \\
i \neq \frac{N+1}{2} \text { and } \\
\lambda^{\wedge}\left(P_{i}\right)=\frac{2}{N+1} \text { for } \\
i=\frac{N+1}{2}
\end{gathered}
$$

The Levesgue-measure is the invariant measure.

Example 2:

For N ever, $N \geqslant 4$, and $\alpha=\frac{N}{2}$, the same construction can serve as a counterexample for ergodicity by introducing an arbitrary additional (unnecessary!) singularity (e.g. at $\frac{1}{2}$).

Example 3: Nevin, $N=4, \alpha=\sqrt{\frac{N}{2}\left(\frac{N}{2}+1\right)}$, put $n:=\frac{N}{2}$.

$$
\begin{aligned}
& a_{i}= \begin{cases}i \cdot \frac{1 \ldots \cdot \frac{\alpha}{n+1} n+\alpha}{1-(N-i) \frac{1}{n} \cdot \frac{n}{\alpha+n}} & (i=0, \ldots, n) \\
1-n+1, \ldots, N)\end{cases} \\
& T(x)= \begin{cases}1-\left(x\left(x-a_{i}\right)\right. & \left(a_{i} \leqslant x<a_{i+1} \quad \text { and } i \leqslant n\right) \\
\frac{\alpha}{\alpha+n}-\alpha\left(x-a_{i}\right) & \left(a_{i} \leqslant x<a_{i+1} \quad \text { and } i \geqslant n+1\right.\end{cases}
\end{aligned}
$$

The invariant measure $\mu=h \cdot \lambda$ is given by

$$
n(x)=\left\{\begin{array}{cc}
\frac{\alpha+n+1}{N+1} & \left(x<\frac{\alpha}{\alpha+n}\right) \\
\frac{\alpha+n}{1+1} & \left(x-\frac{\alpha}{\alpha+n}\right)
\end{array}\right.
$$

(Picture for $N=6$)

Example 4a: $N=2, p=2, \alpha=\sqrt{2}$.

$$
T(x)= \begin{cases}2-\sqrt{2}+\sqrt{2} \cdot x \quad & \left(0 \leq x \leq 1-\frac{1}{\sqrt{2}}\right) \\ 1-\sqrt{2} \cdot\left(x-1+\frac{1}{\sqrt{2}}\right) & \left(1-\frac{1}{\sqrt{2}} \leq x \leq 1\right)\end{cases}
$$

The invariant measure is $\mu=h \cdot \lambda^{1}$ with

$$
h(x)= \begin{cases}\frac{1}{2(2-\sqrt{2})} & (0 \leq x \leq 2-\sqrt{2}) \\ \frac{1}{2(\sqrt{2}-1)} & (2-\sqrt{2} \leq x \leq 1)\end{cases}
$$

Example 4b: $N=2, p>2, \mathcal{Q}=2^{1 / p}$

$$
T(x)=\left\{\begin{array}{cl}
\left(2^{1 / p}-1+x \cdot 2^{1 / p}\right) \bmod 1 & \left(0 \leqslant x<\frac{1}{2^{1 / p}}\right) \\
\left(2^{1 / p} \cdot x\right) \bmod 1 & \left(\frac{1}{\left.2^{1 / p} \leqslant x<1\right)}\right.
\end{array}\right.
$$

Although this is not really an example for $\mathrm{N}=2$, we can consider it as $N=2$ by identifying the unitinterval with the unit-circle, since $T(0)=2^{1 / p}-1=T(1)$ and $T(0)=2^{1 / p}=\dot{T}(1)$. 'the invariant measure $\mu=h \cdot \lambda^{4}$ is given by $h(x)=\frac{1}{p\left(2^{i / p}-2^{(i-1) / p}\right)}$ for $2^{(i-1) / p}-1 \leqslant x<2^{i / p}-1$

(The picture is for $p=5$)
§2) On the density function
from now on let I be a piecewise monotonic transformation. As already mentioned, Lasota arld Yorke proved in $[1]$ the existence of a 1 -invariant measure $\mu=h \cdot \lambda^{1}$ for which the density function h can be chosen to be of bounded variation. ihat means that $h\left(x^{+}\right)$and $h\left(x^{-}\right)$exist for each $x \in[0,1]$ and $h\left(x^{+}\right)=h\left(x^{-}\right)=h(x)$ İor all bui at most countably many $x \in[0,1]$. Therefore, by changing the value of hat the at most countably many discontinuities, we may assume that
i) h is lower seni-continuous with $h(x)=\min \left\{h\left(x^{+}\right), h\left(x^{-}\right)\right\}$ for all $x \in[0,1]$, and
ii) h is bounded, i.e. h.
(In fact, these two propesties of h are the only ones we will refer to lister on.)

Kemark: secause of the r-invariance of μ, we have for each $A \subset B: \mu(A) \leqslant \mu\left(L^{-1}(N(A))\right) \mu(A(A))$.

Let us denote by $0=a_{0}<a_{1}<\ldots<a_{N}=1$ the points generating the partition P, and without loss of Eunerality we will assume that $\operatorname{Int}\left(p_{i}\right)=\left(a_{i-1}, a_{i}\right) \quad(i=1, \ldots, N)$.
Fut $\mathrm{X}:=\operatorname{supp}(\mathrm{h}):=\{x,[0,1] \mid \mathrm{h}(x)>0\}$.

Lemran 1:

$$
\begin{aligned}
& \text { i) } I\left(x \backslash\left\{a_{0}, \ldots, a_{N} j\right) \subseteq x\right. \\
& \text { ii) } \lambda\left(x \backslash T\left(X \backslash\left\{a_{0}, \ldots, a_{N}\right\}\right)\right)=0
\end{aligned}
$$

Proof: Let $x+x \backslash\left\{a_{0}, \ldots, a_{i j}\right\}$ arid w.l.o.g. $x \in \operatorname{Int}\left(P_{i}\right)$. Then there exists an $\varepsilon=0$ such that $S_{\varepsilon}(x) \subseteq F_{i}$ and $h(y)>\frac{1}{2} \cdot h(x)>0$ for all $y \in S_{q}(x)$, sisce his lower semi-continuous. W.l.o.g. we car assume that $h(T x)=h\left((T x)^{+}\right)$. Then for $\delta, 0<\delta<\varepsilon$, either
$T([x, x+\delta)$) or $T((x-\delta, x])$ is of the kind $[T x, T x+\delta)$, and we will call that one PV . W.l.o.g. again, lut us assume that $V_{\delta}=[x, x+\delta)$. Ihen a) $\mathrm{IX}_{\mathrm{I}} \in \mathrm{IV}_{\delta}, \operatorname{dia}\left(\mathrm{IV}_{\delta}\right) \longrightarrow 0 \quad(\delta \rightarrow 0)$ and

$$
\text { b) } \int_{T V V_{\delta}} h d \lambda^{\wedge}=\mu\left(I V_{\delta}\right) \geqslant \mu\left(V_{\delta}\right)=\int_{V_{c}} h d \lambda^{1} \geqslant \frac{1}{2} \cdot h(x) \cdot \lambda^{1}\left(V_{\delta}\right)
$$

$$
\geqslant \frac{1}{2} \cdot h(x) \cdot M^{-1} \cdot \lambda^{-7}\left(T V_{\delta}\right),
$$

ard since $T V_{\delta}=[T x, T x+\delta)$ and $h(T x)=h\left((T x)^{+}\right)$, we can conclude that $h(1 x x)>0$, i.e. Tx $\in X$. proving i).

From i) it follows that
$\mu(x)=\mu\left(X,\left\{a_{0}, \ldots, a_{i v}\right\}\right) \leqslant \mu\left(T\left(x \backslash\left\{a_{0}, \ldots, a_{i}\right\}\right)\right) \leqslant \mu(x)$
which prove ii), sime h is the support of μ.

Lemma 2: $X=\operatorname{supp}(h)$ is afinite union of open intervals.
(Ste Kowaloki 4 .)
Yroof: X is upen since h is lower semi-whtimous. Therefore X is an at most countable disjoint union of open intervals:
$X=\sum_{I \in J} I$. we must show that J is finite.
Let $y_{0}:=\left\{I \in J \mid \operatorname{In}\left\{a_{0}, \ldots, a_{i N}\right\} \neq \notin\right\}$. Jo is finite and $\bigcup_{0} \backslash\left\{a_{0}, \ldots, a_{N}\right\}$ is a inite union of open intervals: $\bigcup J_{0} \backslash\left\{a_{0}, \ldots, a_{i v}\right\}=\sum_{I E J_{1}} I, J_{1}$ finite. with $\hat{J}:=\left(J \backslash J_{0}\right) \cup J_{1}$, I is continuously differentiable on each IE $\hat{\jmath}$, and $I I$ again is an open interval with $\lambda^{1}(I I) \geqslant \alpha \cdot \hat{\lambda}(I), \alpha>1$, for each $I \epsilon \hat{\jmath}$. wince $I \subseteq X \backslash\left\{a_{0}, \ldots, a_{i v}\right.$ for $I \in \hat{3}$, the open interval $I I$ is contained in X (see lemal 1), such that there is an I'e J with $I \subseteq I^{\prime}$.
Now let $c:=\min \left\{\hat{\lambda}(I) \mid I \in J_{1}\right\}>0$ and $y_{c}:=\left\{I \in \hat{j} \mid \lambda^{1}(I) \geqslant c\right\}$. Then
i) $J_{1} \subseteq J_{c} \subseteq y_{1}$,
ii) J_{c} is finite, and
iii) $T\left(U J_{c}\right) E\left(J_{0} \quad\right.$ since $I \in J_{c} \Rightarrow \lambda^{-1}(P I) \geqslant a \cdot c>c \Rightarrow T I \leq U J_{c}$.

Assume now that $\mathcal{J}_{\mathrm{c}} \neq \hat{\mathrm{J}}$. Choose $\tilde{I} \in \hat{\mathcal{Y}} \backslash \mathcal{J}_{\mathrm{c}}$ in such a way that $\lambda^{1}(\tilde{I})$ is maximal in $\hat{\mathcal{S}} \mathrm{J}_{\mathrm{c}}$. Since $\tilde{I} \in \hat{\mathcal{J}}, \quad \lambda^{1}(\mathbb{T} \tilde{\mathrm{I}}) \geqslant \alpha \cdot \lambda^{1}(\tilde{I})>\lambda^{1}(\tilde{I})$, and therefore the interval I'c \mathcal{J} containing $4 \tilde{I}$ is not an element of \hat{j}, \jmath_{c} 。

$\Rightarrow T \tilde{I} \subseteq I \prime \subseteq U_{0} \cup U J_{c} \subseteq U \mathcal{J}_{1},\left\{a_{0}, \ldots, a_{N}\right\} \cup U J_{c}$
$r U J_{c} "\left\{a_{0}, \ldots, a_{N}\right)$ since $J_{1} \subseteq \operatorname{J}_{\mathrm{c}}$
$\Rightarrow \mu\left(U 7_{c} \backslash i=0\right.$
$\Rightarrow \mu\left(\tilde{I} \cup \cup \bigcup_{c}\right) \leqslant \mu\left(T\left(\tilde{I} \cup J_{c}\right)\right) \leqslant \mu\left(\mathbb{I} \cup U J_{c}\right)$ $\left.=\mu\left(U^{\prime}\right]_{c}\right)$
$\Rightarrow \mu(\tilde{I})=0 \quad$ since $\tilde{I} \in J \cdot J_{c}$ such that $\tilde{I}: U J_{c}=\phi$
$\Rightarrow \lambda^{1}(\tilde{I})=0 \quad$ since $I \subseteq \operatorname{supp}(h)$,
which is a contradiction to $\tilde{\mathrm{I}}$ being an open interval.
So we have $j_{c}=\hat{y}$, and since \hat{J}_{c} is rinite, \hat{y} is finite and so is J.

Lemna 3: There is a constaf. $c>0$ such that $h_{X}>0$. (This proves pret 1 of the theorem.)

Proof: Let $x=\sum_{1 / 3}$ I be finite disjoint union of open intervals, $\hat{x}:=X \backslash\left\{_{0}, \ldots, a_{N}\right\}$, and $\hat{X}=\sum_{\mathcal{J} \mathcal{j}} J$ be a finite union of open intervals, tou.
T is continuously difierentiable on each $J \in \mathcal{J}$, and, by the same arguments as in the preceding proof, for each $J \in \mathcal{F}$ there exists an It'J with TJ $\leq I$.

Letting (c, d) be ary interval in J or \mathcal{J} we will associate to its endpoints two classes of "standard intervals" (c.o.s.i.) $\varphi_{c}=\{(c, c+\varepsilon) \mid \varepsilon>0\}$ and $\varphi_{d}=\{(d-\varepsilon, d) \mid \varepsilon>0\}$ and call c and d the "endpoints" of $\mathcal{\epsilon}_{\mathrm{c}}$ and ℓ_{d} respectively.

Between these classes we establish a relation "m m :
Let $\varphi, \varphi^{\prime}$ be classes of standard intervals.
$\ell \leadsto \leadsto \varphi^{\prime}$ iff $I \cup \in \varphi^{\prime}$ for each sutificiently small $U \in \ell$.
Whis relation has the following properties:

1) If e^{\prime} is a c.o.s.i. iscociated to an endpoint of an interval
 Proof: let $L \in J$ be arbitrary and φ^{\prime} be a c.o.s.i. associated to an enapoint of I. For each $J \in g$ either $T J \subseteq I$ or $T J \cap I=\phi$. Since $\lambda^{\prime}(I \backslash \mu \hat{X}) \leqslant \lambda^{\prime}(X \backslash T \hat{X})=0$ (see lemma 1), there must be a $J \in \mathscr{G}$ with $\|^{\prime} \in \Psi^{\prime}$, and the assertion follows immediately.
2) If $I \in J, c^{\prime}$ an enapoint of $I, \lim _{\substack{x \rightarrow c^{\prime} \\ x \in J}} h(x)=0, Q^{\prime}$ the c.o.s.i. associated to $c^{\prime}, \quad \cdots \cdots \varphi^{\prime}$, und c the endpoint of φ, then $\lim h(x)=U$ for each $U \in \varphi$.
$x \cdots$
xev
The proof works with the same arguments used in the proof of lemma 1.
3) In the siluation of 2) the lower semicontinuity of h implies that $h(c)=0$, i.e. $c \notin X$, and this in turn implies that c is an endpoint of an interval $I \in\}$. Denoting by $K_{o}:=\{\varphi \mid t c o . s . i . a s s o c i a t e d$ to an endpoint c of an $I \in\}$ with $\left.\lim _{\substack{x \rightarrow 0 \\ x}} h(x)=0\right\}$
we can conclude thut:

Now let us assume that $\kappa_{0} \neq \varnothing$.
Combining 1) and 4) we see that for each $\mathcal{U}^{\prime} \in K_{o}$ there is at least one $\psi \in k_{o}$ with $e m \rightarrow \psi^{\prime}$.

On the other hand it is trivial that for each $e \in K_{0}$ there can be at most one $\ell^{\prime} \in K_{0}$ with $\varphi \rightarrow \sim \varphi^{\prime}$, such that, since K_{o} is finite, " $س>$ " is a bijective relation on K_{0}.

Let ℓ be any element of K_{o}. Then there are $\varphi_{0}, \ldots, \varphi_{n} \epsilon K_{o}$ uniquely determined, such that $e=e_{0} \leadsto \rightarrow \varphi_{1} \leadsto \rightarrow \ldots . . m \varphi_{n}=e$. Choosing $U \in \mathbb{E}=\ell_{\mathrm{n}}$ small enough we can achieve that $\mathrm{T}^{-i} U$ is an open interval with $T^{-i} U \in \varphi_{n-i}$ and $\mathrm{T}^{-i} U \subseteq X \quad(i=0, \ldots, n)$. In particular we have $T^{-n} U=\ell_{0}=\ell$ with $\lambda^{1}\left(T^{-n} U\right)<\alpha^{-n} \cdot \lambda^{1}(U)$, such that, by induction, we get a sequence of intervals $\left(T^{-k \cdot n} U\right)_{k \in \mathbb{N}}$ in with $\lambda^{A}\left(T^{-k \cdot n} U\right)<\alpha^{-k \cdot n} \cdot \lambda^{1}(U)$ yielding the following chain of inequalities:
$\mu(U)=\mu\left(T^{-k \cdot n} U\right) \leqslant\|h\|_{\infty} \cdot \lambda^{-1}\left(I^{-k \cdot n} U\right)<\|h\|_{\infty} \cdot \alpha^{-k n} \cdot \lambda^{\prime}(U) \quad(k \in \mathbb{N})$
$\Rightarrow \mu(U)=0 \Rightarrow \hat{\lambda}(U)=0 \quad$ since $U \subseteq X$,
contradicting the fact that $U \in \mathscr{E}$ is an open interval.
liheretore the assumption $k_{0} \neq \varnothing$ must be false, and we can conclude that lim $h(x)>0$ for each of the finitely many end$\mathrm{X} \rightarrow \mathrm{c}$ $x \in I$
points of intervals If J. Because of this and since h is lower semi-continuous, a compactness-aryument shows that there is a $\mathrm{c}>0$ with $\mathrm{h}_{1 \mathrm{X}}>\mathrm{C}$.
§3) On partitions generated by T and \mathcal{P}

Remember that $\mathcal{P}=\left\{\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{N}}\right\}$ is the partition of $[0,1]$ into intervals of smoothness of \mathbb{T}. By $?_{n}$ we will denote the partition of $[0,1]$ into intervals on wrich T^{n} is C^{1}, i.e. $\rho_{n}=\sum_{k=0}^{n-1} T^{-k} \rho$ for $n \geqslant 1$. Elements of \mathcal{P}_{n} can be written as

$$
\Delta_{n}\left(j_{1}, \ldots, j_{n}\right):=P_{j_{1}} \cap T^{-1} P_{j_{2}} \cap \ldots \ldots \cap T^{-(n-1)} P_{j_{n}}, \quad j_{v} \in\{1, \ldots, N\} .
$$

(Remark: We will use the symbol $\Delta_{n}\left(j_{1}, \ldots, j_{n}\right)$ to denote the above intersection even if it is void.)
Define $\Delta_{0}:=[0,1]$ and $\mathcal{F}_{0}:=\{[0,1]\}=\left\{\Delta_{0}\right\}$.
Sometimes, we will write elements of ρ_{n} simply as Δ, but only if this does not cause any confusion.

Since for each $n \in \mathbb{N}_{0}: L_{L \in} \backslash \Delta=U F_{n}=[0,1]$, the symbol $\Delta_{n}[x]$ can be defined for each $x \in[0,1]$ to denote that $\Delta \in \mathcal{P}_{n}$ for which $x \in \Delta$.

Lenma 4:

1) For $m, n=0$, $x \in[0,1]$ holds:

$$
\Delta_{m+n}[x]=\Delta_{m}[x] n T^{-m} \Delta_{n}\left[T^{I n} x\right]
$$

2) For $0 \leqslant 1 \leqslant n$ and $x \in[0,1]$ is $Y^{1}\left(\Delta_{n}[x]\right) \leqslant \Delta_{n-1}\left[r^{1} x\right]$.
3) Let $M \subseteq\{u, 1], \Delta \in P_{n}$, and $x, y \in \Delta n^{-n} M$. Then $|x-y|<\alpha^{-n} \cdot\left|T^{n} x-P^{n} y\right| \leqslant \alpha^{-n} \cdot d i a(M) \quad$.
4) There is a constant $S>0$ such that for all $A, B \in \mathbb{B}$ and all $\Delta \in P_{n}$ with $\hat{\lambda}(\operatorname{A} \cap B)>0$:

$$
\frac{\hat{\lambda}^{1}\left(T^{r}(\Delta \cap A)\right)}{\lambda^{1}\left(T^{r}(\Delta \cap B)\right)} \leqslant S \cdot \frac{\lambda^{1}(\Delta \cap A)}{\lambda^{-1}(\Delta \cap B)}
$$

5) If $P \in \therefore$ and $A \subset 0,1$ is a closed set with $A \leq T P$, then $\mathrm{P}^{-1}(\mathrm{~A}) \cap \mathrm{P}$ is closed.

Froof: 1), 2), and 3) are immediate.
4) is established by a straightforward computation using the exponential expansion of T^{r} on sets $\Delta \in \mathcal{P}_{\mathrm{n}}$ and the Lipschitzcontinuity of the restrictions $T_{P_{i}}$. (Compare the proof of lemma 3/ii) in Bowen [2].)

To show 5) observe that P and $T P$ are intervals and that T_{T} is a homeomorphism between them. As a closed subset of $[0,1]$, A is compact. Therefore $\left(T_{\mid P}\right)^{-1}(A)$ also is compact, but $\left(\mathbb{T}_{\mid P}\right)^{-1}(A)=T^{-1}(A) \cap P$, such that this set is closed in $[0,1]$.

Later on it will be essential to find, given a fixed $k_{0} \in \mathbb{N}$, as many points $x \in[0,1]$ as possible satisfying for arbitrary $k \geqslant k_{0}$ not only the inclusion $I_{1}{ }^{k-k_{o}}\left(\Delta_{K}[x]\right) \subseteq \Delta_{k_{0}}\left[l^{\left.k-k_{o_{o}}\right]}\right.$ (see lemma 4/2) but also the inversion.
the following construciton will provide us with such points x :

Construction: Let $M \in B$ and $k_{0} \in \mathbb{N}$ be so that $T^{-k_{o}} \cap \Delta$ is closed (it may be empty!) for each $\Delta \epsilon P_{\mathrm{k}_{0}}$. Then we define sets $M_{k_{0}}, M_{k_{0}+1}, \ldots .$. inductively by

$$
\begin{array}{ll}
\text { i) } M_{k_{0}}:=I^{-k_{0}} M & \text { and } \\
\text { ii) } M_{I+1}:=T^{-1}\left(M_{1} \cap I\left(\alpha^{-1} \cdot \operatorname{dia}(M)\right)\right) & \left(I \geqslant k_{0}\right), \\
\text { where } I(r):=\int(\underbrace{}_{P \in \mathcal{P}}\left(T P \backslash \operatorname{Int} t_{r}(T P)\right) & (r>0) .
\end{array}
$$

Remark: In the inductive step of this construction we first cut off from Ni_{1} those points being too close to the endpoints of any $T P$ they are contained in, and then take the preimage under T.

Lemma 5: For the sets obtained in the above construction the following is true:

1) $T^{I-k}\left(\mathbb{N G}_{l}\right) \subseteq M_{k} \subseteq T^{-k}(M)$ for $l \geqslant k \geqslant k_{0}$
2) Let $I \geqslant k_{0}$ and $x \in M_{1}$. then for each $A \leq T^{-k_{0}}(N)$ holds $\mathrm{T}^{1-\mathrm{k}_{\mathrm{o}}}\left(\Delta_{1}[\mathrm{x}] \cap \mathrm{T}^{-\left(1-\mathrm{k}_{\mathrm{o}}\right)}(\mathrm{A})\right)=\Delta_{\mathrm{k}_{0}}\left[\mathrm{I}^{\left.1-\mathrm{k}_{o_{\mathrm{o}}}\right]} \cap \mathrm{A}\right.$
3) There is a constant $H>0$ for which

$$
\mu\left(M_{1}\right) \geq \mu(\mathbb{M})-H \cdot \operatorname{dia}(M) \cdot \alpha^{-k_{0}} \quad\left(I \geqslant k_{0}\right)
$$

4) $\Delta_{1}[x] \cap_{1}^{-1}(M)$ is closed for $I \geqslant k_{0}$ and $x \in H_{I}$.

Remark: Assertion 3) gives a hint, why things change in dimensions >1: In higher dimensions, Lebesgue-measure and diameter of an interval are not so closely related as in the one-dimensional case.

Proof of the lemma:

1) is obvious.
2) is proved by induction oll 1 :
$\underline{I=k_{0}}$: is trivial
$1 \Rightarrow 1+1: \quad \mathrm{T}^{1+1-k_{\circ}}\left(\Delta_{I+1}[\mathrm{x}] \cap \mathrm{T}^{-\left(1+1-k_{\circ}\right)}(\mathrm{A})\right)$

$$
\begin{aligned}
& =T^{1+1-k_{c}}\left(\Delta_{1}[x] \cap T^{-1} \Delta_{1}[T x] \cap T^{-1}\left(T^{-\left(1-K_{0}\right)}(A)\right)\right) \\
& \text { (see lemma 4/1) } \\
& =L^{1-k_{\omega}}\left(T \Delta_{1}[x] \cap \Delta_{1}[T x] \cap T^{-\left(1-k_{0}\right)}(A)\right) \\
& \text { (*) } \varsigma T^{1-k_{0}}\left(\Delta_{1}[T X] \cap T^{-\left(1-k_{0}\right)}(A)\right) \\
& =\Delta_{k_{o}}\left[I^{I+1-k_{0}} x\right] \cap A \quad \text { by inductive hypothesis, since } \\
& T X \in T\left(M_{1+1}\right) \leq M_{1} .
\end{aligned}
$$

Ho show the revers inclusion of (*) let $z \in \Delta_{1}\left[\max ^{\prime} \cap \mathbb{T}^{-\left(I-k_{0}\right)}(A)\right.$. From lemma $4 / 3$ it follows that $|z-T x|<\alpha^{-1}$. dia(M) ,

and we obtain: $\quad z \in S_{\alpha^{-1}} \cdot \operatorname{dia}(M)^{(T x)}$.
Additionally we have:
$\Rightarrow \quad x \in \mathbb{M}_{I+1}$
$\Longrightarrow \quad \operatorname{Tx} \in I\left(\alpha^{-1} \cdot \operatorname{dia}(M)\right)$
$\Rightarrow \quad \forall \mathrm{P} \in \mathcal{\rho}: \operatorname{Tx} \notin \mathrm{IP} \backslash \operatorname{lnt}_{\alpha^{-1} \cdot \operatorname{dia}(\mathrm{~N})}(\mathrm{TP})$
$\Longrightarrow \operatorname{Ix} \in \operatorname{Int}_{\alpha-1} \cdot \operatorname{dia}(M)\left(T \Delta_{1}[x]\right), \quad$ since $\Delta_{1}[x] \in P$,
and we can conclude that $z \in T \triangle_{1}[x]$, thus obtaining
immediately the desired reversion of (*).
3) For $I \geqslant k_{0}$ we have

$$
\begin{aligned}
& \mu\left(\mathbb{N}_{I+1}\right)=\mu\left(\mathbb{M}_{I} n I\left(\alpha^{-1} \cdot \operatorname{dia}(M)\right)\right) \\
& \geqslant \mu\left(M_{1}\right)-\mu(\underbrace{}_{P \in \mathcal{P}}(\operatorname{TP} \backslash \operatorname{Int} \\
& \alpha-1 \cdot \operatorname{dia}(M) \\
&\left.\geqslant \mu\left(M_{1}\right)-1 \cdot 2 \cdot\|h\|_{\infty} \cdot \alpha^{-1} \cdot \operatorname{dia}(M)\right)
\end{aligned}
$$

and by induction:

$$
\begin{gathered}
\mu\left(M_{1}\right) \geqslant \mu\left(M_{k_{0}}\right)-N \cdot 2 \cdot\|h\|_{\infty} \cdot \operatorname{dia}(M) \cdot \sum_{i=k_{0}}^{1-1} \alpha^{-i} \quad \text { since } \mathbb{M}_{k_{0}}=T^{-k_{0}(M)} \\
\geqslant \mu(M)-H \cdot \operatorname{dia}(M) \cdot \alpha^{-k_{0}} \quad \\
\text { where } H=N \cdot 2 \cdot\|h\|_{\infty} \frac{\alpha}{\alpha-1} .
\end{gathered}
$$

4) is proved again by induction on 1 :
$1=k_{0}$: is valid by assumption.
$1 \Leftrightarrow 1+1$: for $x \in \mathbb{N}_{1+1}$ is $T x \in M_{I}$ and

$$
\begin{aligned}
& \Delta_{I+1}[\mathrm{x}] \cap \mathrm{L}^{-(1+1)}(\mathrm{M}) \\
= & \Delta_{1}[\mathrm{x}] \cap \mathrm{I}^{-1}\left(\Delta_{1}[1 \mathrm{X}] \cap \mathrm{T}^{-1}(M)\right),
\end{aligned}
$$

where $\Delta_{\mathbb{L}}[T x] \cap \mathbb{I}^{-1}(\mathbb{N})$ is closed by inductive hypothesis. Because of lema $4 / 5$) it suffices to show that $\Delta_{1}[T \mathrm{X}] \cap \mathrm{T}^{-1}(\mathrm{M}) \subseteq \mathrm{T}\left(\Delta_{1}[\mathrm{x}]\right)$. But this follows directly from the following two facts:
a) $\operatorname{dia}\left(\Delta_{1}[\mathrm{IX}] \cap \mathrm{P}^{-1}\left(\mathrm{~F}_{\mathrm{i}}\right)\right)<\alpha^{-1} \cdot \operatorname{dia}(\mathrm{M}) \quad$ (Iemma 4/3)
b) $x \in \mathrm{M}_{l+1} \Rightarrow \operatorname{lx} \in \operatorname{Int}_{\alpha-1} \cdot \operatorname{dia}(M)\left(M\left(\triangle_{1}[x]\right)\right)$, what already has been proved under 2). End of proof of lemma 5.

Denoting by $\partial(I P):=\underbrace{}_{P \in \mathcal{P}} \partial(T P)$ the finite set of endpoints of the intervals $\mathrm{PF}(\mathcal{P} \in \mathcal{P}), \quad Z_{k_{0}}:=\int_{k=0}^{k_{0}-1} T^{k}\left(\partial\left({ }^{\prime} P\right)\right)$ is a finite set for all $k_{0} \in \mathbb{I N}$.
Since $X=\operatorname{supp}(h)$ is a finite union of open intervals, $X \backslash Z_{k_{0}}$ also can be written as a finite disjoint union of open intervals: $X \backslash Z_{k_{o}}=\bigcup_{i=1}^{r} R_{i}, R_{i}$ open intervals.

Lemma 6:

Let $M \subseteq R_{i}$, $i \in\{1, \ldots, r\}$, be a compact interval, and $0 \leqslant 1 \leqslant k_{c}$. Then for each $\Delta \epsilon \rho_{1}$ with $\Delta \cap M^{-1}(M) \neq \varnothing, \Delta \cap T^{-1}(M)$ is a compact interval and $T^{1}\left(\Delta \cap I^{-1}(M) \cap T^{-1}(A)\right)=M \cap \hat{A}$ for each $\mathrm{A} \subseteq[0,1]$.
Prouf by induction on 1:
$\underline{I=0}$: is trivial since $\Delta \epsilon \mathcal{P}_{0} \Longrightarrow \Delta=[0,1]$
$1 \Rightarrow 1+1:\left(1 \leqslant k_{0}-1\right)$
Assume that $\Delta \in \rho_{1+1}, \Delta \cap T^{(I+1)}(M) \neq \phi$. There are $P \in \mathcal{P}$ and $\Delta^{\prime} \in \mathcal{P}_{1}$ with $\Delta=F \cap I^{-1} \Delta^{\prime} \quad \Rightarrow \Delta^{\prime} \cap \mathrm{P}^{-1}(M) \neq \phi$.
\Longrightarrow (by inductive hypothesis): $\Delta^{\prime} \cap T^{-1}(\mathbb{N})$ is a compact interval with $T^{1}\left(\Delta^{\prime} \cap T^{-1}(\mathbb{M})\right)=M$. Moreover we have

1) $\Delta^{\prime} \cap \mathbb{P}^{-1}(\mathbb{M}) \cap O(L F)=\phi$, since $M \cap Z_{k_{0}}=\phi$.
2) $\mathbb{T P} \cap \Delta^{\prime} \cap \mathbb{T}^{-1}(\mathbb{M}) \neq \phi$, since $P \cap \mathrm{I}^{-1}\left(\Delta^{\prime} \cap \mathrm{T}^{-1} \mathbb{M}^{\prime}\right)=\Delta \cap \mathbb{T}^{-(1+1)} \mathbb{M} \neq \phi$. From 1) and 2) follows: $\Delta^{\prime} \cap T^{-1}(M) \subseteq T P$.

Since $\mathbb{T}_{\mid p}$ is a homeomorphism between P and $T P$, $\Delta \cap T^{-(I+1)}(H)=T_{1 F}^{-1}\left(\Delta^{\prime} \cap T^{-1}(M)\right)$ is a compact interval and $T^{1+1}\left(\Delta \cap T^{-(1+1)}(M)\right)=T^{1}\left(\Delta^{\prime} \cap T^{-1}(M)\right)=M$.
For $A \subseteq[0,1]$ we finally have: $T^{1+1}\left(\Delta \cap \mathrm{~T}^{-(l+1)} M \cap T^{-(1+1)} A\right)=T^{l+1}\left(\Delta \cap T^{-(l+1)} M\right) \cap A=M \cap A$.
§4) Something similar to a Lebestue-density theorem

As indicated in the introduction, the main idea to prove exactness-properties is the following:

Imagine that for a measurable set A, a small interval $U \subseteq \Delta \in \rho_{n}$, and a small $\delta>0$ holds: (*) $\quad \lambda^{\wedge}(U \backslash A)<\delta \cdot \lambda^{\wedge}(U)$.

Then $\lambda^{\hat{\lambda}}\left(T^{n} U \backslash T^{n} A\right)<S \cdot \delta \cdot \lambda^{\wedge}\left(T^{n} U\right)$, where $T^{n} U$ is an interval much biڤger than U. For sets A of the tail-field of I, such a property will be enough to prove that $\mu(A)$ is "sufficiently" large. What we have to show is that situations as described by (*) really occur. This is done in the following lemma:

Lemma 7:

Let $J \subseteq \mathbb{N}$ be an infinite index set, $\mathcal{Q}_{1}, \widetilde{Q}_{1} \in \mathbb{B}$ with $\mathcal{Q}_{1} \subseteq \tilde{Q}_{1}$ (I $\in J$), and $d>0$ a constant, such that for all $l \in J$ and $x \in Q_{1}$ the following holds:
i) $\Delta_{1}[x] \cap \tilde{Q}_{I}$ is closed,
ii) $\lambda^{\hat{1}}\left(\Delta_{1}[x] \cap \tilde{Q}_{1}\right) \geqslant d \cdot \lambda\left(\Delta_{1}[x]\right)$.

Then for each $A \in \mathbb{B}$ with $\hat{\lambda}^{*}\left(Q^{*} \cap A\right)>0$ and $\varepsilon>0$ there is an $x \in \mathcal{W}^{*} \cap A$ such that

$$
\forall I_{0} \in \mathbb{N}_{0} \exists 1 \in J, 1 \geq I_{0}:\left\{\begin{array}{l}
x \in Q_{1} \quad \text { and } \\
\lambda^{1}\left(\Delta_{1}[x] \cap \widetilde{Q}_{1} \cap[A) \leqslant \varepsilon \cdot \hat{\lambda}^{\hat{\lambda}}\left(\Delta_{1}[x] \cap \tilde{Q}_{1}\right)\right.
\end{array}\right.
$$

Proof: Let us assume that the statement of the lemma is false. Then there is an $A \in \mathbb{B}$ with $\lambda^{\wedge}\left(Q^{*} \cap A\right)>0$ and an $\varepsilon>0$ such that $\forall x \in Q^{*} \cap A \exists I_{0} \in \mathbb{N} \forall I \in J, I \geqslant I_{0}:$

$$
x \in Q_{1} \Longrightarrow \lambda^{\wedge}\left(\Delta_{1}\left[x_{\square} \cap \tilde{Q}_{1} \cap \hat{l}\right)>\varepsilon \cdot \lambda^{\wedge}\left(\Delta_{1}[x] \cap \tilde{Q}_{1}\right)\right.
$$

By v we denote
$v:=\bigcup_{1 \in J} \mathcal{J}\left\{\Delta \in P_{1} \mid \Delta \cap U^{*} \cap A \neq \phi, \quad \Delta \cap \mathcal{Q}_{1} \neq \phi, \hat{\lambda}\left(\Delta \cap \tilde{Q}_{1} \cap C A\right)>\varepsilon \cdot \hat{\lambda}\left(\Delta r_{i} \tilde{Q}_{1}\right)\right\}$ and by $\rho_{\infty}:=\sum_{n=0}^{\infty} \rho_{n}$.

Assertion 1:

If $O \subseteq[0,1]$ is open and $v_{\theta}:=\left\{\Delta \epsilon \mathcal{P}_{\infty} \mid \triangle \subseteq \theta\right\}$, then there is an at most countable set $f \subseteq v_{n} v_{\theta}$ of pairwise disjoint sets for which **NAのO s Ufso.

Proof: Since $v_{n} v_{G} \leq F_{a x}$ is partially ordered by inclusion, it makes sense to define $f:=\left\{\Delta \epsilon v_{n} v_{\theta} \mid \Delta\right.$ maximal in $\left.v a v_{\theta}\right\}$, and the following are valid:

1) $f \subseteq v \cap v_{\theta} \subseteq P_{\infty}$, consequently f is at most countable.
2) $\Delta_{1}, \Delta_{2} \in f, \Delta_{1} \cap \Delta_{2} \neq \phi \Rightarrow \Delta_{1} \leqslant \Delta_{2}$ or $\Delta_{2} \leqslant \Delta_{1}$ (a property of ...)

$$
\Rightarrow \Delta_{1}=\Delta_{2} \quad \text { since } \Delta_{1}, \Delta_{2} \epsilon f
$$

So the elements of f are pairwise disjoint.
3) $U_{f}=U\left(v_{n} v_{\theta}\right):$

Uf $\subseteq U\left(v_{n} v_{\theta}\right)$ is trivial.
On the contrary let $\Delta \epsilon v \cap v_{\theta}$. Since $\Delta \subseteq \Delta^{\prime}$ for at most finitely many $\Delta^{\prime} \epsilon \mathcal{P}_{x_{x}}$, there exists a maximal $\Delta^{\prime} \in v_{n} v_{G}$ with $\Delta \subseteq A^{\prime}$, such that $\triangle \subseteq \Delta \subseteq U f$. That means $U\left(v_{n} v_{\theta}\right) \subseteq U_{f}$.
4) From 3) it follows that $U_{f}=U\left(v_{\cap} v_{\theta}\right) \subseteq \theta$ by definition of v_{C}.
5) Let $x \in \mathcal{G}^{*} \cap \mathrm{~A} \cap \theta_{\text {. When }}$
a) $\exists_{0} \in \mathbb{I N} \forall I \in J, 1 \geq I_{0}: x \in \mathcal{Q}_{1} \Rightarrow \hat{\lambda}^{\hat{1}}\left(\Delta_{1}[x] \cap \tilde{Q}_{1} \cap\lceil A)>\varepsilon \cdot \lambda^{\prime}\left(\Delta_{1}[x] \cap \tilde{v}_{1}\right)\right.$ (by assumption)
b) $\forall I \in \mathbb{N}: \quad x \in Q^{*} \cap A \cap \Delta_{1}[x]$
c) $\forall I \in \mathbb{N} \exists I^{\prime} \in J, I \geq I: x \in Q \mathcal{I}^{\prime} \quad$ since $x \in Q^{*}$
d) $x \in \theta, \quad \theta$ open $\Rightarrow \exists I_{1} \in \mathbb{N} \forall I \geq 1_{1}: \Delta_{1}[x] \subseteq \theta$

That is why there is a $k \geqslant l_{0}, I_{1}$ with $k \in J$ and
a') $\lambda^{\wedge}\left(\Delta_{k}[x] \cap \tilde{Q}_{k} \cap[A)>\mathcal{E} \cdot \lambda^{1}\left(\Delta_{k}[x] \cap \tilde{Q}_{k}\right)\right.$
$\left.b^{\prime}\right)\left(Q^{*} \cap A \cap \Delta_{k}[x] \neq \varnothing\right.$
$\left.c^{\prime}\right) x \in Q_{k}$, i.e. $\Delta_{k}[x] \cap Q_{k} \neq \varnothing$
d') $\Delta_{k}[x] \subseteq \theta$,
such thiat $\Delta_{k}[x] \in v \cap v_{\sigma}$, what in turn implies that $x \in \Delta_{K}[x] \subseteq U\left(\operatorname{vav_{\theta }}\right)=U f$.
Since $x \in Q^{*} \cap A \cap \theta$ has been arbitrarily chosen, the proof of assertion 1 is complete.

Now let $\hat{v}:=\bigcup_{l \in J}\left\{\Delta \cap \tilde{Q}_{1} \mid \Delta \epsilon v \cap P_{1}\right\}$. By assumption, all $\hat{\Delta} \in \hat{v}$ are closed, since $\Delta \epsilon \vee \cap P_{I} \Longrightarrow \Delta \cap Q_{I} \neq \varnothing$.

Assertion 2:

For each $\delta>0$ there is an at most countable set $\hat{g} \subseteq \hat{\mathbf{v}}$ of pairwise disjoint sets with the following properties:
i) $\hat{\lambda}^{\hat{1}}\left(\left(Q^{*} \cap A\right) \backslash U \hat{g}\right)=0$,
ii) $\hat{\lambda}(U \hat{g}) \leqslant(1+\delta) \cdot \lambda^{\hat{\lambda}}\left(Q^{*} \cap A\right)$.

Proof: We will construct the family \hat{g} inductively: By regularity of λ^{\wedge} we can find an open set $\theta \geq Q^{*} \cap A$ in such a way that $\hat{\lambda}^{1}(\theta) \leqslant(1+\delta) \cdot \hat{\lambda}\left(Q^{*} \cap A\right)$.
$\underline{\mathrm{n}=0}: \operatorname{Let} \hat{\mathrm{E}}_{\mathrm{o}}:=\phi$
$\underline{n} \Rightarrow n+1$: We will assume that $\hat{g}_{n} \leq \hat{v}$ has been constructed with the following properties:

1) \hat{g}_{n} is a finite (or void) collection of pairwise disjoint sets.
2) $U \hat{g}_{n} \subseteq \theta$
3) $V \hat{g}_{n}$ is closed.
4) $0<\lambda^{1}\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right) \leqslant\left(1-\frac{d}{4}\right)^{n} \cdot \lambda^{1}\left(Q^{*} \cap A\right)$
(These 4 conditions are trivially satisfied by \hat{E}_{0}.)
In case $\hat{\lambda}^{\hat{\prime}}\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right)=0$ the construction can be finished
here by setting $\hat{g}:=\hat{g}_{n}$.

Otherwise we choose an open set $U \subseteq \theta$ with $Q^{*} \cap A \subseteq U$ and $\lambda^{1}\left(U \backslash\left(Q^{*} \cap A\right)\right) \leqslant \frac{d}{2} \cdot \lambda^{1}\left(\left(Q^{*} \cap A\right) \backslash U \hat{G}_{n}\right)$.
Then for $\sigma_{n+1}:=U \backslash \hat{g}_{n}$ the following holds:
i) θ_{n+1} is open, $\theta_{n+1} \subseteq \theta$
ii) $\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n} \leq \theta_{n+1}$
iii) $\lambda^{1}\left(\theta_{n+1} \backslash\left(\left(Q^{*} \cap A\right) \backslash \bigcup \hat{E}_{n}\right)\right) \leqslant \frac{d}{2} \cdot \lambda^{\wedge}\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right)$

Let $v_{\sigma_{n+1}}:=\left\{\Delta \epsilon P_{\infty} \mid \Delta \subseteq \sigma_{n+1}\right\}$. By ussertion 1 , there is an at most countable collection $f_{n+1} \subseteq v_{n} v_{\sigma_{n+1}}$ of pairwise disjoint sets, for which $Q^{*} n A n \theta_{n+1} \subseteq U_{f+1} \subseteq \theta_{n+1}$. Putting $\hat{f}_{n+1}:=\varliminf_{l \epsilon J}\left\{\Delta \cap \tilde{Q}_{1} \mid \Delta \epsilon f_{n+1} \cap \mathcal{P}_{1}\right\}$, we have
a) $\hat{f}_{n+1} \leqslant \hat{v}$ consists of at most countably many pairwise disjoint, closed sets,
b) $U \hat{f}_{n+1} \subseteq \bigcup f_{n+1} \subseteq \theta_{n+1}$
c) $\lambda^{\hat{1}}\left(U \hat{f}_{n+1}\right)=\sum_{\Delta n \widetilde{Q}_{1} \in \hat{f}_{n+1}} \lambda^{1}\left(\Delta_{n} \widetilde{Q}_{1}\right) \geqslant d \cdot \sum_{\Delta \in \mathrm{I}_{n+1}} \lambda^{1}(\Delta)$

$$
\begin{aligned}
& \begin{array}{l}
\text { by assumption ii) of the lemma, since } \\
\Delta \epsilon f_{n+1} \subseteq v \Longrightarrow \Delta n Q_{1} \neq \phi .
\end{array} \\
&= d \cdot \lambda^{1}\left(U f_{n+1}\right) \geqslant d \cdot \lambda^{1}\left(Q^{*} n A \cap \theta_{n+1}\right) \\
&= d \cdot \lambda^{1}\left(Q^{*} \cap A \cap\left(U \backslash U \hat{g}_{n}\right)\right) \\
&(*) \quad=d \cdot \lambda^{\wedge}\left(\left(Q^{*} \cap A\right) \backslash U \hat{g}_{n}\right) \quad \text { since } Q^{*} \cap A \subseteq U,
\end{aligned}
$$

and we get the following estimation:

$$
\lambda^{1}\left(\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right) \backslash U \hat{\mathrm{f}}_{n+1}\right)
$$

$\leqslant \lambda^{1}\left(\sigma_{n+1} \backslash \hat{f}_{n+1}\right) \quad$ by ii) above
$=\lambda^{1}\left(\theta_{n+1}\right)-\lambda^{1}\left(U \hat{f}_{n+1}\right) \quad$ by b) above
$=\lambda^{1}\left(\theta_{n+1} \backslash\left(\left(Q^{*} \cap A\right) \backslash U \hat{g}_{n}\right)\right)+\hat{\lambda}\left(\theta_{n+1} \cap\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{\xi}_{n}\right)\right)-\hat{\lambda}\left(U \hat{f}_{n+1}\right)$
$\leqslant\left(\frac{d}{2}+1-d\right) \cdot \lambda^{*}\left(\left(Q^{*} \cap A\right) \backslash \bigcup \hat{g}_{n}\right) \quad$ by $(*)$ and iii) above $=\left(1-\frac{d}{2}\right) \cdot \lambda^{\prime}\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right)$

Therefore, there exists a finite subset $\hat{\mathrm{h}}_{\mathrm{n}+1} \subseteq \hat{\mathrm{f}}_{\mathrm{n}+1}$ with
a') $^{\prime} \hat{h}_{n+1} \subseteq \hat{v}$ consists of finitely many pairwise disjoint, closed sets,
$\left.b^{\prime}\right) \cup \hat{h}_{n+1} \subseteq \theta_{n+1}=U \backslash U \hat{g}_{n} \subseteq \theta$,
c') $\lambda^{\wedge}\left(\left(\left(Q^{*} \cap A\right) \backslash U \hat{g}_{n}\right) \backslash \cup \hat{h}_{n+1}\right) \leqslant\left(1-\frac{d}{4}\right) \cdot \lambda^{\wedge}\left(\left(Q^{*} \cap A\right) \backslash U \hat{g}_{n}\right)$,
d^{\prime}) as a finite union of closed sets, $\bigcup_{\hat{h}}^{n+1}$ itself is closed.
Put $\hat{g}_{n+1}:=\hat{g}_{n} \cup \hat{h}_{n+1}$. Ihen
1') $\hat{\mathrm{g}}_{\mathrm{n}+1} \subseteq \hat{\mathrm{v}}$ is a finite collection of pairwise disjoint sets.
2') $U \hat{E}_{n+1} \leqslant \theta$
3') $\cup \hat{g}_{n+1}$ is closed,
$\left.4^{1}\right) \lambda^{1}\left(\left(Q^{*} \cap A\right) \backslash U \hat{g}_{n+1}\right)=\lambda^{1}\left(\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right) \backslash U \hat{h}_{n+1}\right)$

$$
\begin{aligned}
& \leqslant\left(1-\frac{d}{4}\right) \cdot \lambda^{\wedge}\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right) \\
& \leqslant\left(1-\frac{d}{4}\right)^{n+1} \cdot \lambda^{1}\left(Q^{*} \cap A\right)
\end{aligned}
$$

5') $U \hat{g}_{n} \subseteq U \hat{g}_{n+1}$
Putting $\hat{g}:=\bigcup_{n \in \mathbb{N}} \hat{\mathrm{~g}}_{\mathrm{n}}$ we get:
1') $\hat{g} \leq \hat{v}$ is an at most countable collection of pairwise disjoint sets.

2") $U \hat{g} \leq \theta$ implying that $\hat{\lambda}(U \hat{g}) \leqslant \hat{\lambda}(\sigma) \leqslant(1+\delta) \cdot \hat{\lambda}\left(Q^{*} \cap A\right)$ 4") $\hat{\lambda}^{\wedge}\left(\left(Q^{*} \cap A\right) \backslash U \hat{g}\right)=\lim _{n \rightarrow \infty} \hat{\lambda}^{\wedge}\left(\left(Q^{*} \cap A\right) \backslash \cup \hat{g}_{n}\right) \leqslant \lim _{n \rightarrow \infty}\left(1-\frac{d}{4}\right)^{n}=0$ thus accomplishing the proof of assertion 2 .

Now, the assumption that the statement of the lemma is false can easily be led to a contradiction:

Applying assertion 2 with $\delta=\frac{\varepsilon}{2}$ guarantees the existence of a set $\hat{g} \subseteq \hat{v}$ with the properties listed there, and we can conclude:

$$
\begin{aligned}
& \left(1+\frac{\varepsilon}{2}\right) \cdot \hat{\lambda}^{1}\left(Q^{*} \cap A\right) \geqslant \lambda^{1}(U \hat{g})=\hat{\lambda}(U \hat{g} \cap A)+\lambda^{\hat{1}}(U \hat{g} \cap \hat{} \cap) \\
& \geqslant \lambda^{\wedge}\left(Q^{*} \cap A\right)+\sum_{\Delta \cap \widetilde{Q}_{1} \epsilon \hat{g}} \lambda^{\prime}\left(\Delta \cap \tilde{Q}_{1} \cap\{A)\right. \\
& \geqslant \lambda^{\wedge}\left(Q^{*} \cap A\right)+\sum_{\Delta n \widetilde{Q}_{\perp} \epsilon \hat{g}} \varepsilon \cdot \hat{\lambda}\left(\Delta \cap \widetilde{Q}_{1}\right) \\
& \text { since } \Delta \Omega \tilde{Q}_{1} \in \hat{g} \Rightarrow \Delta \epsilon V, \\
& =\hat{\lambda}\left(Q^{*} \cap A\right)+\varepsilon \cdot \lambda^{\prime}(U \hat{g}) \geqslant \lambda^{1}\left(Q^{*} \cap A\right)+\varepsilon \cdot \lambda^{\prime}\left(Q^{*} \cap A\right) \\
& =(1+\varepsilon) \cdot \lambda^{*}\left(Q^{*} \cap A\right) \text {, }
\end{aligned}
$$

contradicting $\varepsilon>0$ and $\lambda^{\wedge}\left(W^{*} \cap A\right)>0$, and the proof of the lemma is complete.
§ら) The tajl-field of a piecewise monotonic transformation

Remember that $\mathcal{O}_{\infty}(\mathbb{I})=\left\{A \in \mathbb{Q} \mid \mathbb{T}^{-k}\left(T^{k}(A)\right)=A \quad(k \in \mathbb{N})\right\}$ is the tail-field of T and the notation introduced at the end of $\oint 3$: $Z_{k_{0}}=\underbrace{k_{0}-1}_{k=0} T^{k}(\partial(T \mathcal{P})), \quad X \backslash Z_{k_{0}}=\underbrace{r}_{i=1} R_{i}, R_{i}$ open intervals.

Lemma 8:

$k_{0} \in \mathbb{N}$ can be chosen in such a way that for each component R_{i} of $X \backslash Z_{k_{。}}$ as above and each $A \in O_{\infty}(T)$ the following holds: For each $\varepsilon>0$ and each infinite index set $J \subseteq \mathbb{N}$ there is an infinite subset $J(\varepsilon) \subseteq J$ such that for each $j \in J(\varepsilon)$

$$
\lambda^{1}\left(R_{i} \cap T^{j_{A}}\right) \leqslant \varepsilon \cdot \lambda^{\hat{1}}\left(K_{i}\right) \quad \text { or } \quad \lambda^{\wedge}\left(R_{i} \cap T^{j}(A) \leqslant \varepsilon \cdot \lambda^{1}\left(R_{i}\right)\right.
$$

Proof: Choosing $k_{0} \in \mathbb{N}$ so big that $H \cdot \alpha^{-k_{0}} \leqslant \frac{1}{2} \cdot C$ (where C and H are the constants from lemmas 3) and 5) respectively,) and a compact, nonvoid interval $M \leqslant R_{i}$ with $\hat{\lambda}\left(R_{i} \backslash M\right) \leqslant \frac{\varepsilon}{2} \cdot \hat{\lambda}\left(R_{i}\right)$, lemma 6) tells us that $\mathrm{T}^{-\mathrm{K}_{\mathrm{om}}}$ satisfies the assumptions of the construction in 83 , which gives us sets $M_{k_{0}}, M_{k_{0}+1}, M_{k_{0}+2}, \ldots$. with the properties listed in lemma 5).

Without loss of generality we will assume that $J s\left\{k_{0}, k_{0}+1, k_{0}+2, \ldots\right\}$. In order to apply lemma '7) to this situation for the case $Q_{1}=M_{1}$ and $\tilde{Q}_{1}=T^{-1} M \quad(I \in J)$ we first must check that the conditions of lemma 7) are satisfied:
a) $\mathrm{M}_{1} \subseteq \mathrm{~T}^{-1} \mathrm{M}$ by Lemma $5 / 1$).
b) $\Delta_{1}[x] \cap T^{-1} M$ is closed for each $x \in M_{1}$ (l \mathcal{M}) by lemma 5/4).
c) Let $I \in J, x \in \mathbb{H}_{1}$. If $\hat{\lambda}\left(\Delta_{1}[x]\right)>0$, we have

$$
\frac{\hat{\lambda}\left(\Delta_{1}[x] \cap T^{-1} M\right)}{\lambda^{1}\left(\Delta_{1}[x]\right)} \geqslant \frac{1}{S} \cdot \frac{\lambda^{1}\left(T^{1}\left(\Delta_{1}[x] \cap T^{-1} M\right)\right)}{\lambda^{1}\left(T^{1}\left(\Delta_{1}[x]\right)\right)} \quad \text { by lemma 4/4) }
$$

$$
\begin{aligned}
& \geqslant \frac{1}{S} \cdot \lambda^{1}\left(T^{k_{0}}\left(\Delta_{K_{0}}\left[T^{1-k_{0}} x\right] \cap T^{-k_{o}}{ }_{M I}\right)\right) \quad \text { by lemma 5/2) } \\
& =\frac{1}{S} \cdot \lambda^{1}(M) \quad \text { by lemma 6), since }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{K_{0}}\left[T^{l-k} \cdot x\right] \cap T^{-k_{o}} M \neq \phi . \\
& >0 \quad \text { since } \mathrm{H} \text { is a nonempty interval. }
\end{aligned}
$$

Therefore we can take for the constant d in lemma 7): $d=\frac{1}{S} \cdot \lambda^{\top}(\mathbb{N})$.
d) by 3) of lemma 5) we have for each $1 \boldsymbol{\epsilon J}$:

$$
\begin{aligned}
\mu\left(\mathbb{N}_{I}\right) & \geqslant \mu(M)-H \cdot d i a(M) \cdot \alpha^{-k_{0}} & & \\
& \geqslant C \cdot \lambda^{n}(M)-H \cdot \lambda^{\prime}(M) \cdot \alpha^{-k_{0}} & & \text { since } M \subseteq X \text { and } h_{\mid X} C, \\
& >\frac{C}{2} \cdot \lambda^{A}(\mathbb{M}) & & \text { by choice of } k_{0}, \\
\text { Hor } M^{*} & :=\bigcap_{k \in J} \bigcup_{\substack{l \geq k \\
l \in J}} M_{I}, \text { consequently } & & \mu\left(M^{*}\right) \geqslant \frac{C}{2} \cdot \lambda^{n}(M)>0 .
\end{aligned}
$$

So, for $A \in \mathcal{O}_{\infty}(T)$ two cases, not mutually excluding, can arise:
Case I: $\lambda^{\wedge}\left(\mathbb{M}^{*} \cap A\right)>0 \quad$ Case II: $\lambda^{\hat{1}}\left(M^{*} \cap\{\mathrm{~A})>0\right.$

Both are treated in the same way, so, without loss of generality we will have a closer look at case I:

Lemma 7) tells us that for each $\varepsilon>0$ there is an $x \in d^{*} \cap A$ such that $\quad \forall I_{0} \in \mathbb{N} \exists I \in J, I \geqslant I_{0}$:

Since for each $1 \in J$

$$
\begin{aligned}
& \frac{\lambda^{1}\left(M \cap T^{1}[A)\right.}{\lambda^{1}(M)} \\
= & \frac{\lambda^{1}\left(T^{k_{o}}\left(\Delta_{k_{o}}\left[I^{1-k_{o}} x\right] \cap T^{-k_{o}} M \cap T^{-k_{o}}\left(T^{1}[A)\right)\right)\right.}{\lambda^{1}\left(\eta^{1 k_{o}}\left(\Delta_{k_{0}}\left[T^{1-k_{o}} x\right] \cap T^{-k_{o}} M\right)\right)}
\end{aligned}
$$

$=\frac{\lambda^{1}\left(\mathrm{~T}^{1}\left(\Delta_{1}[\mathrm{x}] \cap \mathrm{T}^{-1} \mathrm{H} \cap[\mathrm{A})\right)\right.}{\lambda^{1}\left(\mathrm{~T}^{1}\left(\Delta_{1}[\mathrm{x}] \cap \mathrm{I}^{-1} \mathrm{M}\right)\right)}$.
by Leman $5 / 2$)
$\leqslant S \cdot \frac{\lambda^{1}\left(\Delta_{1}[x] \cap T^{-1} M \cap[A)\right.}{\lambda^{1}\left(\Delta_{I}[x] \cap T^{-1} l_{M_{i}}\right)}$
ky lena 4/4),
 such that $\quad \lambda^{\hat{\lambda}}\left(\mathbb{M} \cap I^{1} A\right) \leqslant \frac{t}{2} \cdot \hat{\lambda}^{1}(\mathbb{M})$.

Since $M \subseteq R_{i}$ with $\hat{A}\left(R_{i}, M\right) \leqslant \frac{t}{2} \cdot \hat{\lambda}\left(R_{i}\right)$, the proof of the lemma is complete.
now we can turn to the
proof of the theorem:

Applying Lemma 8) imutively to all F_{i} we san obtain:
Let $A \in \mathcal{U}_{\omega}(T)$. then

$$
\forall \varepsilon>0 \forall J \in \mathbb{N},|J|=\infty] \perp I(\varepsilon) \epsilon d \forall i=1, \ldots, r:
$$

(*) $\left\{\begin{array}{cl}\text { either } & \lambda^{\prime}\left(R_{i}, i^{1} A\right)<\varepsilon \lambda^{*}\left(R_{i}\right) \\ \text { or } & \lambda^{\prime}\left(R_{i} n I^{I}[A)\right.\end{array}\right\} \lambda^{A}\left(R_{i}\right)$
Since $k_{i} \leqslant X$ for all R_{i} and $C \cdot \lambda^{\prime}(B) \leqslant \mu(B) \leqslant\|h\|_{\infty} \gamma^{\prime}(B)$ for all measurable bs X, we as u have:
(**) (*) is valid for μ instead of λ^{\wedge}.
but for $\mu(A)=0$ and $\delta \mu(A)$ it is impossible, because of the
I-invariance of μ, that $f o r$ all $k_{i}, i=1, \ldots, r$, holds

$$
\mu\left(K_{i} \cap I^{L_{R}}\right)<\varepsilon \cdot \mu\left(K_{i}\right)
$$

Wherefore, for each $\varepsilon>0$ there is at least ont R_{i} with

$$
\mu\left(k_{i} \cap \mu^{I}(\varepsilon)(A)<\quad\left(R_{i}\right), \quad\right. \text { such that }
$$

$$
\mu\left(\mathrm{I}^{I(\varepsilon)} A\right)>(1-\varepsilon) \cdot \lambda^{1}\left(R_{i}\right),
$$

and since: $\mu\left(\mathbb{T}_{A}\right)=\mu(A) \quad\left(l \in \mathbb{N}, A \in \sigma_{\infty}(T)\right)$, we have for each $A \in O_{o d}(I)$ with $\mu(A)>0$:

$$
\mu(A) \geqslant \min \left\{\lambda^{1}\left(R_{i}\right) \mid i=1, \ldots, r\right\}>0
$$

So $O l_{\infty}(T)$ is generated μ-mod u by a finite number of atoms.

Let in $\epsilon \mathrm{M}_{\text {ad }} \dot{\prime}$) be such an atom.
Then $T^{I_{A}} \operatorname{col}_{\infty}(T)$ are atoms too ($I \in \mathbb{N}$), and consecuently the e exists a $p=p(A)$ div with $T^{p_{A}}=A \quad \mu-\bmod 0$.
Applying (**) with the special index set $J:=p \cdot \mathbb{N}$ shows
immediately that fur each $\mathrm{R}_{i}(i=1, \ldots, r)$

$$
\text { either } \mu\left(K_{i} \cap A\right)=0 \quad \text { or } \quad \mu\left(R_{i} \backslash A\right)=0 \text {, }
$$

thus proving that A is $\mu-\bmod 0$ a finite union or open intervals (wart 2 of the theorem).
denote by L_{i} the biggest open interval contained μ-mod 0 ir $\mathrm{r}^{i}{ }_{A}(\mathrm{i}=0, \ldots, \mathrm{p}(\mathrm{A})-1)$ and $b y \mathrm{n}_{\mathrm{i}}$ the number of singularitiza from $\left\{a_{1}, \ldots, i_{N-1}\right\}$ contained in L_{i}. For each $i=0, \ldots, p-1$, n_{i} must satisfy

$$
\frac{x \cdot \lambda^{1}\left(L_{i}\right)}{n_{i}+1} \leqslant \lambda^{1}\left(L_{i+1}\right)
$$

since n_{i} singularities divide L_{i} into $n_{i}+1$ open subinterrals at least one of which has length $\geqslant \frac{\lambda^{1}\left(L_{i}\right)}{n_{i}+1}$, such that the image under 1 l of such an interval is an interval with len m_{E} th $\geqslant 0 \cdot \frac{\therefore\left(L_{i}\right)}{a_{i}+1}$ contained in $\mathrm{H}^{i+1} \mathrm{~A} \quad, \bmod 0$.
From the relations
(§)

$$
s_{i} \cdot \alpha \leqslant\left(n_{1}+1\right), \quad \zeta_{i}=\frac{\lambda^{\prime}\left(L_{i}\right)}{\lambda^{\prime}\left(L_{i+1}\right)} \quad(i=0, \ldots, p-1)
$$

with $\prod_{i=0}^{p-1} \rho_{i}=1$ (since $L_{p}=L_{o}$), we can independently deduce two estimates for p :

1) $\alpha^{p} \leqslant \prod_{i=0}^{p-1}\left(n_{i}+1\right) \longrightarrow p \cdot \log _{2} \alpha \leqslant \sum_{i=0}^{p-1} \log _{2}\left(n_{1}+1\right) \leqslant \sum_{i=0}^{p-1} n_{i}$

$$
\Rightarrow \quad p \leqslant \frac{1}{\log _{2} \alpha} \cdot \sum_{i=0}^{p-1} n_{i}
$$

2) $p+\sum_{i=0}^{p-1} n_{i}=\sum_{i=0}^{p-1}\left(n_{i}+1\right) \geqslant \alpha \cdot \sum_{i=0}^{p-1} \rho_{i} \geqslant p \cdot x$, since $\prod_{i=0}^{p-1} \rho_{i}=1$

$$
\Longrightarrow p: \frac{1}{\alpha-1} \cdot \sum_{i=0}^{p-1} n_{i}
$$

both estimates are valid for each cycle $A, T A, \ldots, \ldots,{ }^{n} p(A)-1_{A}$ of atoms of $X_{w}(i)$. Thus, since there are only $\mathbb{N}-1$ singularities of T, we have
$\left\lvert\, \operatorname{atoms}\left(\sigma_{\infty}(I)\right) \leqslant \frac{N-1}{\log _{2} \sigma}\right.$ and $\left|\operatorname{atoms}\left(O_{\infty}(T)\right)\right| \leqslant \frac{N-1}{X-1}$. This is statement3)ot the theorem.

Corollary 1) iullows imediately from 2) of the treo..em.

For the proof of corollary 2) we need another estima e thet can be obtained in an analogous way as the one above, on y much simpler (see nowalski [3]):

Let $[\alpha]:=\min \{n \in \mathbb{I}\{n \geqslant \alpha\}$. Then the number of ereodic itoms of 1 is $\leq(N-1) \cdot \frac{1}{[\alpha]-1}$.
In order to show exactness of 1 F we need \mid amoms $\left(O X_{m}(I)\right) \mid<2$, for which - by 3) of the theorem - a sufficient condition is: $\alpha=\frac{N+1}{2}$. This proves a) of corollary 2).
Now let us assume $N \geq 4$, N even, and $\alpha>\sqrt{\frac{N}{2}\left(\frac{N}{2}+1\right)}$. Then $[\alpha] \geq \frac{N}{2}+1$ and by the estimation of the number of ergodic atcms above we see that T is ergodic. similarly, 3) of the theorem tells us that the number oi atoms of $0 l_{\infty}(\mathbb{I})$ is $\leqslant 2$. Assumirg that this
number is $=2$ we could specialise (§) on p. 28 to the following relation:
$\left.[\xi \cdot \alpha] \leq n_{0}+1, \quad \frac{1}{\xi} \cdot \alpha\right] n_{1}+1, \quad n_{0}+n_{1}=\mathbb{N}-1$ for a suitable; \cdot
$\Rightarrow[\rho \cdot \alpha]+\left[\frac{1}{6} \cdot \alpha\right] \leqslant N+1$
sut simple consiaeration show that this is impos:ible for $x>\sqrt{\frac{10}{2}\left(\frac{1}{2}+1\right)}$ and arbitrary $y>0$. wo is exact, and b) of corollary 2) is proved for $\mathbb{N} \neq 2$. the case $\mathrm{N}=2$ is provea toge iner with c):
3) of the theorem tells us that fur $i=2$ and $\alpha: \sqrt[p]{2}$ nolds: \mid atoms $\left(\mathrm{O}_{\infty}(I)\right) \left\lvert\, \leqslant \frac{1}{\log _{2} x}<p \quad\right.$ thus proving c), ard for $p=$? we also have the remaining case from part b).
§6) Remark on higher dimensions

With the same basic idea we can prove results for higher dimensional spaces too, for example the followin; one for transformations on $E^{2}:=\left\{\left(x_{1}, x_{2}\right) \mid 0 \leqslant x_{1}, x_{2} \leqslant 1\right\}$.

Let $\beta=\left\{P_{1}, \ldots, P_{N}\right\}$ be a finite partition of E^{2}. le call j smooth, if the boundary of each of the P_{i} consists of fininely many c^{1}-curves. Ihen we can state.

Proposition:

Let P be a smooth partition of $E^{2}, \alpha>1$, and $T: Q^{2} \rightarrow E^{2}$
a transformation satisfying:
i) For each $P \in \mathcal{P}, \mathbb{T}_{\mid P}$ is $C^{1}, \forall x \in \dot{F}:\left\|\left(D_{\mid P}(x)\right)^{-1}\right\| \leqslant x^{-1}$, and the Jacobian of $D \Psi{ }^{P}(x)$ as a function of x is Lipschitzcontinuous on $\stackrel{\circ}{P}$.
i1) T posseses an invariant measure $\mu=h \cdot \lambda^{1}$ with $\|h\|_{\infty}<\alpha$. Then:
I) If there is a set $M \subseteq E^{2}$ with the properties
a) $\mu(\overline{\mathrm{M}})-0$ and
b) $\forall x \in \mathbb{M} \quad \forall s>0: \mu\left(\bigcup_{n \in \mathbb{N}} I^{n}\left(S_{\delta}(x)\right)\right)=1$, then (T, μ) is ergodic.
II) If there is a set $M \subseteq E^{2}$ with the properties
a) $\mu(N)>0$ and
b) $\forall x \in \mathbb{H} \forall \delta>0: \sup _{n \in \mathbb{N}} \mu\left(\mathbb{1}^{n}\left(S_{\delta}(x)\right)\right)=1$,
then (I, μ) is exact.

Analogous results hold for trasformations in n-aimes sional spaces. (For dimension 1 cf. wen [1].)

References:

[1] R.bowen; ernoulli Naps of the Interval; lsr.Math, J. 28(1977)161
[2] Lasota \& Yorke; On the Existence of Invariant Measures for Fiecewise Monotonic Transformations; 'lransact. A1S 106(1973)481-488
[3] L.Kowaluki; Inviriant Heasures for Piecewise Honotonic Transformations;

Lecture fotes rath. 472, 77-94
[4] Z.Kowalski; Some nemarks about Invariant Neasures for Piecewise monotoric Transformations;
bull.Acad.tolon. 25(1)(1977)7-12
[5] Z.Kowalski; Ergodic roperties of piecewise Monotonic Transformations;

Astérisque $49(1977) 145-149$

