P. Bolley

J. Camus
 The Lai Pham
 On a Class of Weighted Sobolev's Spaces

Publications des séminaires de mathématiques et informatique de Rennes, 1978, fascicule 3
«Séminaire d'analyse fonctionnelle», , exp. n ${ }^{\circ}$ 1, p. 1-23
http://www.numdam.org/item?id=PSMIR_1978__3_A1_0
© Département de mathématiques et informatique, université de Rennes, 1978, tous droits réservés.
L'accès aux archives de la série «Publications mathématiques et informatiques de Rennes» implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

P. BOLIEY	J. CAMUS	PHAM THE LAI
Institut de Mathématiques	UER Mathématiques §	Institut de Mathématiques
et Informatique	Informatique	et Informatique
Université de Nantes	Université de Rennes	Université de Nantes
$44000-$ NANTES	$35000-$ RENNES	$44000-$ NANTES

I - CASE OF THE HALF-LINE \mathbb{R}_{+}.

For an integer $m \in \mathbb{N}$, two real numbers α and $\beta \geqslant 0$ and an interval I of \mathbb{R}_{+}, we consider the space :

$$
v_{\alpha, \beta}^{m}(I)=\left\{u \in D^{\prime}(I) ; t^{\alpha} u \in L^{2}(I), t^{\beta} D_{t}^{m} u \in L^{2}(I)\right\}
$$

equipped by the canonical norm.

Proposition I.1 :

If $u \in v_{\alpha, \beta}^{m}(0, T)$, where T is a real number strictly positive, we have :
(i) $t^{\beta-j_{D}}{ }_{t}^{m-j} j_{u} \in L^{2}(0, T)$ for $0 \leqslant j \leqslant \operatorname{Min}\left(j_{0}, m\right)$ with $j_{o}=\left[\beta+\frac{1}{2}\right]_{-}$;
(ii) $t^{\beta-j_{o}} D_{t}^{m-j} u \in L^{2}(0, T)$ for $j_{o}+1 \leqslant j \leqslant m$ if $j_{o}+1 \leqslant m$;
(iii) $u \in H^{m-\beta}(0, T)$ if $\beta-\mathrm{m} \neq$ integer $+\frac{1}{2}$.

The notation $[A]$ _ means the greatest integer <A.

Proof : Let φ be an indefinitely differentiable function such that $\psi(t)=1$ if $t \leqslant \frac{T}{2}$ and $\Psi(t)=0$ if $t \geqslant 3 \frac{T}{4}$. Put $v=\psi u$; then $v \in v_{\alpha, B}^{m}\left(\mathbb{R}_{+}\right)$with bounded support.

Using the Hardy's inequality, we obtain (i).
Again for (ii) : we have $t^{\beta-j}{ }_{o} D_{t}^{m-j}{ }_{o} v \in L^{2}\left(\mathbb{R}_{+}\right)$, also $t^{\beta-j} o_{o}^{+1 m-j} D_{t}{ }_{v}$ $E L^{2}\left(\mathbb{R}_{+}\right)$and by the Hardy's inequality, we get $t^{\beta-j} 0 D_{t}^{m-j-1}{ }_{v} \in L^{2}\left(\mathbb{R}_{+}\right)$; repeating the same argument, we obtain (ii).

If $\beta>m$, it results from (i) that $t^{\beta-m} u \in L^{2}\left(\mathbb{R}_{+}\right)$and consequently
if $\beta-\mathrm{m} \neq$ integer $+\frac{1}{2}$, we have $([4]) u \in H^{m-\beta}\left(\mathbb{R}_{+}\right)$.
If $\beta \leqslant m$, then $j_{o} \leqslant m$ and $-\frac{1}{2}<\beta-j_{o} \leqslant \frac{1}{2}$. Then, two cases must be distinguish according to $-\frac{1}{2}<\beta-j_{o} \leqslant 0$ and $0<\beta-j_{o} \leqslant \frac{1}{2}$.

First case :
 $0<\beta-j_{o}$ and $\beta \leqslant m$ implies $j_{o}^{+1} \leqslant m$). Then, we have $t^{1 / 2} n_{t}^{m-j_{o}^{+1}} v$ and $t^{1 / 2} D_{t}^{m-j} o_{v \in L^{2}}\left(\mathbb{R}_{+}\right)$, and now we prove that these two conditions imply $D_{t}{ }^{m-j_{o}^{t}-1} v \in L^{2}\left(\mathbb{R}_{+}\right)$.

Lenma I-1 :
$([1])$. If $u \in v_{1 / 2,1 / 2}^{1}\left(\mathbb{R}_{+}\right)$, then $u \in L^{2}\left(\mathbb{R}_{+}\right)$.

Proof :
If $u \in \mathcal{X}\left(\mathbb{R}_{+}\right)$, we can write :

$$
|u(t)|^{2}=2 \operatorname{Re} \int_{t}^{+\infty} u(\sigma) \overline{u^{\top}(\sigma)} d \sigma
$$

and using the Fubini's theorem, it comes :
$\int_{0}^{+\infty}|u|^{2} d t \leqslant-2 \operatorname{Re} \int_{0}^{+\infty} \sigma u(\sigma) \overline{u^{\prime}(\sigma)} d \sigma \leqslant \int_{0}^{+\infty} t|u(t)|^{2} d t+\int_{0}^{+\infty} t\left|u^{\prime}(t)\right|^{2} d t$.
At last, by the density of $\mathcal{D}\left(\mathbb{R}_{+}\right)$in the space $v_{1 / 2,1 / 2}^{1}\left(\mathbb{R}_{+}\right)$, we get the lemma I. 1.

Now, we prove that $D_{t}^{m-j_{o}^{-1}} v \in H^{\varepsilon}\left(\mathbb{R}_{+}\right)$with $\varepsilon=1-\left(\beta-j_{o}\right)$. For that, put $D_{t}^{m-j} O_{o}^{-1} v=f$ and $D_{t}^{m-j}{ }_{o} v=F$ and compute :

$$
\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{|f(x)-f(y)|^{2}}{|x-y|^{2 \varepsilon+1}} d x d y=\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{|f(x+t)-f(x)|^{2}}{t^{2 \varepsilon+1}} d x d t
$$

But,

$$
f(x+t)-f(x)=\int_{0}^{t} F(x+\sigma) d \sigma
$$

Then,

$$
\int_{0}^{+\infty} \frac{|f(x+t)-f(x)|^{2}}{t^{2 \varepsilon+1}} d t=\int_{0}^{+\infty} \frac{1}{t^{2 \varepsilon+1}}\left|\int_{0}^{+\infty} F(x+\sigma) d \sigma\right|^{2} d t
$$

and using the Hardy's inequality,

$$
\leqslant C \int_{0}^{+\infty} \frac{1}{t^{2 \varepsilon-1}}|F(x+t)|^{2} d t
$$

(C is a constant).
But,

$$
\begin{aligned}
\int_{0}^{+\infty} \frac{1}{t^{2 \varepsilon-1}}|F(x+t)|^{2} d t & =\int_{x}^{+\infty} \frac{1}{|y-x|^{2 \varepsilon-1}}|F(y)|^{2} d y \\
& =x^{-2(\varepsilon-1)} \int_{1}^{+\infty} \frac{1}{|\sigma-1|^{2 \varepsilon-1}}|F(\sigma x)|^{2} d \sigma
\end{aligned}
$$

and using the Fubini's theorem, it comes :
$\int_{0}^{+\infty} x^{-2(\varepsilon-1)}\left(\int_{1}^{+\infty} \frac{1}{|\sigma-1|^{2 \varepsilon-1}}|F(\sigma x)|^{2} d \sigma\right) d x=\int_{1}^{+\infty} \frac{\sigma^{2(\varepsilon-1)-1}}{|\sigma-1|^{2 \varepsilon-1}} d \sigma \cdot \int_{0}^{+\infty} y^{-2(\varepsilon-1)}|F(y)|^{2} d y$
then, $D_{t}^{m-j_{o}^{-1}} v \in H^{\varepsilon} \quad\left(\mathbb{R}_{+}\right)$and $v \in H^{m-\beta}\left(\mathbb{R}_{+}\right)$.

Second case :
$-\frac{1}{2}<\beta-j_{o} \leqslant 0$. The case $\beta-j_{o}=0$ being trivial, we can assume that
$-\frac{1}{2}<\beta-j_{o}<0$. Then, $\frac{1}{2}<\beta-j_{o}+1<1$ and we have $D_{t}^{m-j_{o}}{ }_{v \in L^{2}\left(\mathbb{R}_{+}\right)}$ and $t^{\beta^{-j_{0}+1}} D_{t}^{m-j_{o}^{+1}} v \in L^{2}\left(\mathbb{R}_{+}\right)$. By the same calculus as before we get that $D_{t}^{m-j} o_{v \in H^{\varepsilon}}\left(\mathbb{R}_{+}\right)$with $\varepsilon=-\left(\beta-j_{0}\right)$ and finally $v \in H^{m-\beta}\left(\mathbb{R}_{+}\right)$.

The proposition I.l is proved.

Remark I. 1 :

We can improve the result of the proposition $I . l$ when $\beta-\alpha>m$, in fact we have : if $\beta-\alpha>m$ and if $u \quad V_{\alpha, \beta}^{m}(0, T)$, then $t^{\alpha+\frac{i}{n}(\beta-\alpha)} D_{t}^{j} u \in L^{2}(0, T)$ for $j=0, \ldots, m$. The proof is analogous to that of the following proposition I. 2.

Proposition I. 2 :
If $\beta-\alpha<m$ and if $u \in V_{\alpha, \beta}^{m}(T,+\infty)$ where T is a real number >0, then :

$$
t^{\alpha+\frac{j}{m}(\beta-\alpha)}{ }_{D}^{j_{t}}{ }_{u \in L^{2}(T,+\infty)} \quad \text { for } \quad j=0, \ldots, m
$$

Proof :

It will be made in two steps.

First step :

Reduction to the case $\alpha=0$.

Lemma I. 2 :
If $u \in V_{\alpha, \beta}^{m}(T,+\infty)$, then $: t^{\beta-m+j_{D}}{ }_{t}^{j} u \in L^{2}(T,+\infty)$.

Proof :

If $\beta \leqslant \frac{1}{2}$, obviously we have $u \in H^{m}(T,+\infty)$ and then $t^{\beta-j_{n}} D_{t}^{m-j} u \in L^{2}(T,+\infty)$ for $j=0, \ldots, m$.

If $\beta>\frac{1}{2}$, then, as in the proposition $I .1$, we get that $t^{\beta^{-j}} D_{t}^{m-j} u \in L^{2}\left(T,+_{\infty}\right)$ for $0 \leqslant j \leqslant \operatorname{Min}\left(j_{0}, m\right)$ with $j_{0}=\left[\beta+\frac{1}{2}\right]_{-}$. At last, since $D_{t}^{m-j} u \in L^{2}(T,+\infty)$ for $j=0, \ldots, m$, we get that $t^{\beta-j_{D}^{m-j}}{ }_{t}^{m} \in L^{2}(T,+\infty)$ for $j=j_{0}+1, \ldots, m$ if $j_{0}+1 \leqslant m(\beta-j$ is negative $)$.

Lemma I. 3 :
The map $u \longrightarrow t^{\alpha} u$ is an isomorphism from $V_{\alpha, \beta}^{m}(T,+\infty)$ onto $V_{0, \beta-\alpha}^{m}(T,+\infty)$.

Proof :
Let u be an element of $v_{\alpha, \beta}^{m}(T,+\infty)$, we put $v=t^{\alpha} u$; then $t^{\beta-\alpha} D_{t}^{m} v(t)=$ $\sum_{j=0}^{m} a_{j} \cdot t^{\beta-j_{D}^{m-j}}{ }_{t}(t)$ and by the lemma $I .2$, it results that $v \in v_{o, \beta-\alpha}^{m}(T,+\infty)$.

Conversely, let v be an element of $V_{o, \beta-\alpha}^{m}(T,+\infty)$, we put $u=t^{-\alpha} v$; then $t^{\beta} D_{t}^{m} u(t)=\sum_{j=0}^{m} a_{j} \cdot t^{\beta-\alpha-j} D_{t}^{m-j} v(t)$ and by the lemma I.2, it results that $u \in V_{\alpha, \beta}^{m}(T,+\infty)$.

Seconde step :

We assume $\alpha=0$.
We use the change of variable $y=t^{\frac{m-\beta}{m}}$ and of function $w(y)=$ $y^{\beta / 2(m-\beta)} u(t)$.

By induction on p, we show that, for $0 \leqslant p \leqslant m$, we have :

$$
D_{y}^{p} w(y)=y^{\beta / 2(m-\beta)} \sum_{j=0}^{p} a_{j p} \cdot t^{j-p+p \frac{\beta}{m}} D_{t}^{j} u(t) .
$$

where $a_{p p} \neq 0$. By the lemma $I .2$, we get $D_{y}^{m} \in L^{2}(Y,+\infty)$ where $Y=T^{\frac{m-\beta}{m}}$ and consequently $w \in H^{m}(Y,+\infty)$ since $w \in L^{2}(Y,+\infty)$. Then, $D_{y}{ }_{y}{ }^{m} \in L^{2}(Y,+\infty)$ for $p=0, \ldots, m$ and using the precedent formula, we get, by induction on p and since $j-p+p \frac{\beta}{m}<j_{m}$ for $j<p$, that $t \frac{1}{T}_{D_{t}} j_{u} \in L^{2}(T,+\infty)$ for $j=0, \ldots, m$. The proposition 1.2 is proved.

We now apply these results to a sub-class of Sobolev spaces with weights which we will be useful for the following : let be $m \in \mathbb{N}$, $-\sigma$ and δ two real numbers >0 such that $\sigma+m \geqslant 0$ and $\sigma+\delta m \geqslant 0$, we consider the space:
$W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)=\left\{u \in H^{-\sigma}\left(\mathbb{R}_{+}\right) ; t^{\sigma+\delta k+j} D_{t} j_{u} \in L^{2}\left(\mathbb{R}_{+}\right)\right.$for $\sigma+\delta k+j \geqslant 0$ and $\left.k+j \leqslant m\right\}$ equipped by the canonical norm.

By the propositions $I .1$ and $I .2$, this space coincide with the space $\mathrm{V}_{\sigma+\delta \mathrm{m}, \sigma+\mathrm{m}}^{\mathrm{m}}\left(\mathbb{R}_{+}\right)$.

We now give the Sobolev's theorem for the spaces $W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$.

Proposition I. 3 : we have :
i) If $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, u is continuous on \mathbb{R}_{+}and there exists a constant $C>0$ such that for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, for every $t>0$, we have :

$$
\begin{equation*}
|u(t)| \leqslant\left. c \cdot t^{-\frac{\sigma+m}{2 m}}| | u\right|_{W_{\sigma, \delta}^{m}} ^{1 / 2 m}| | u \|_{L^{2}}^{1-1 / 2 m} \tag{1.1}
\end{equation*}
$$

(ii) We assume $-\sigma>\frac{1}{2}$, then : if $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, u is continuous and bounded on \mathbb{R}_{+}and there exists a constant $C>0$ such that for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, for every $t>0$, we have :
(1.2) $|u(t)| \leqslant C .\left||u|_{W_{\sigma, \delta}^{m}}^{-1 / 2 \sigma}\right||u|_{L^{2}}^{1+\frac{1}{2 \sigma}} ;$
(1.3) $|u(t)| \leqslant C .\left.t^{-(\sigma+\delta m)+\frac{1}{2}(\delta-1)}| | u\right|_{W_{\sigma, \delta}^{\mathrm{m}}}$.

Proof:

(i) At first, we apply the usual Sobolev's theorem : if $v \in H^{m}\left(\mathbb{R}_{+}\right)$with $m \geqslant 1$, then v is continuous on $\overline{\mathbb{R}_{+}}$and there exists a constant $C>0$ such that for every $v \in H^{m}\left(\mathbb{R}_{+}\right)$, for every $t \geqslant 0$, we have :

$$
|v(t)|^{2} \leqslant c\left\{\int_{0}^{+\infty}\left|D_{t}^{m} v(\tau)\right|^{2} d \tau+\int_{0}^{+\infty}|v(\tau)|^{2} d \tau\right\}
$$

If $w \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, the function v defined by $v(\tau)=w(\tau+t)$ belongs to $H^{\dot{m}}\left(\mathbb{R}_{+}\right)$for every $t>0$. Since $-\sigma>0$ and $\sigma+m \geqslant 0$, then $m \geqslant 1$ and for every $w \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, for every $t>0$, we have :

$$
|w(t)|^{2} \leqslant c .\left\{\int_{t}^{+\infty}\left|D_{t^{w}}^{m}(\tau)\right|^{2} d \tau+\int_{t}^{+\infty}|w(\tau)|^{2} d \tau\right\}
$$

Now, let u be an element of $W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}\right)$and we apply the precedent inequality to the function w defined by $w(\tau)=u(\lambda \tau)$ where λ is a positive constant. Then, there exists a constant $C>0$ such that, for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, for every $t>0$, for every $\lambda>0$, we have :

$$
\text { (1.4) }|u(t)|^{2} \leqslant c / \lambda\left\{\int_{t}^{+\infty}\left|\lambda^{m} D_{t}^{m} u(\tau)\right|^{2} d \tau+\int_{t}^{+\infty}|u(\tau)|^{2} d \tau\right\} \text {, }
$$

and since $t \leqslant \tau$, we get :

$$
|u(t)|^{2} \leqslant c / \lambda\left\{\int_{t}^{+\infty} \lambda^{2 m} t^{-2(\sigma+m)}\left|\tau^{\sigma+m} D_{t^{m}}^{m}(\tau)\right|^{2} d \tau+\int_{t}^{+\infty}|u(\tau)|^{2} d \tau\right\}
$$

Choosing $\lambda=t^{\frac{\sigma+m}{m}}$, a fortiori we obtain :

$$
|u(t)|^{2} \leqslant C . t^{-\frac{\sigma+m}{m}}\left\{\int_{0}^{+\infty}\left|\tau^{\sigma+m_{D}^{m}} t^{m}(\tau)\right|^{2} d \tau+\int_{0}^{+\infty}|u(\tau)|^{2} d \tau\right\} .
$$

Now, we apply this inequality to the function v defined by $v(\tau)=u(\lambda \tau)$ where λ is a constant >0 :

$$
|u(\lambda t)|^{2} \leqslant \operatorname{c.t} \frac{-\frac{\sigma+m}{m}}{\lambda}\left\{\int_{0}^{+\infty} \lambda^{-2 \sigma}\left|\tau_{\tau}^{\sigma+m_{D}} \mathrm{D}_{\mathrm{t}}\right|^{2} d \tau+\int_{0}^{+\infty}|u(\tau)|^{2} d \tau\right\}
$$

Putting $\lambda=r^{1 / 2 \sigma}$, we get for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, for every $t>0$, for every r > 0 , we have :

$$
\left.\mid u\left(t r^{1 / 2}\right)_{\sigma}\right)\left.\right|^{2} \leqslant c_{i}\left(t r^{1 / 22_{\sigma}}\right)^{-\frac{\sigma+m}{m}} r^{\frac{1}{2 m}}-1\left\{\int_{0}^{+\infty}\left|\tau^{\sigma+m_{D}^{m}} t^{u}\right|^{2} d \tau+\left.\left.r \int_{0}^{+\infty}\right|_{u}(\tau)\right|^{2} d^{\tau}\right\}
$$

Finally, there exists a constant $C>0$ such that, for every $t>0$, for every $r>0$, for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, we have :

$$
|u(t)|^{2} \leqslant C . t^{-\frac{\sigma+m}{m}} r^{\frac{1}{2 m}-1}\left\{\left.| | u\right|_{W_{\sigma, \delta}^{m}} ^{2}+\left.r| | u\right|_{L^{2}} ^{2}\right\}
$$

Taking $r=\|u\|_{W_{\sigma, \delta}}^{2} /\|u\|_{L^{2}}^{2}$, we obtain the inequality (1.1).
(ii) If $-\sigma>\frac{1}{2}$, the Sobolev's theorem imply that if $v \in H^{-\sigma}\left(\mathbb{R}_{+}\right)$, then v is continuous and bounded on $\overline{\mathbb{R}}_{+}$and there exists a constant $C>0$ such that for every $v \in H^{-\sigma}\left(\mathbb{R}_{+}\right)$, for every $t \geqslant 0$, we have :

$$
|v(t)|^{2} \leqslant C .| | v \|_{H^{-\sigma}\left(\mathbb{R}_{+}\right)}^{2}
$$

But, from the proposition $I .1$, the space $V_{o, \sigma+m}^{m}\left(\mathbb{R}_{+}\right)$is continuously imbedded in $H^{-\sigma}\left(\mathbb{R}_{+}\right)$, then, for every $t \geqslant 0$, for every $v \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, we have :

$$
|v(t)|^{2} \leqslant C .\left\{\int_{0}^{+\infty}\left|\tau^{\sigma+m_{1} m_{u}}\right|^{2} d \tau+\int_{0}^{+\infty}|u(\tau)|^{2} d \tau\right\}
$$

Using the same change of functions as before, we get that for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, for every $t>0$, for every $r>0$, we have :

$$
|u(t)|^{2} \leqslant C . r^{-1-\frac{1}{2 \sigma}}\left\{\left.| | u\right|_{w_{\sigma, \delta}} ^{2}+r| | u \|_{L^{2}}^{2}\right\}
$$

We obtain the inequality (1.2) in taking $r=\|u\|_{W_{\sigma, \delta}}^{2} /\|u\|_{L^{2}}^{2}$.

To have the inequality (1.3), we start from the inequality (1.4) in which we choose $\lambda=\left(\int_{t}^{+\infty}|u(\tau)|^{2} d \tau\right)^{1 / 2 m}\left(\int_{t}^{+\infty}\left|D_{t}^{m} u(\tau)\right|^{2} d \tau\right)^{-1 / 2 m}$, that gives :

$$
|u(t)|^{2} \leqslant c . \quad\left(\int_{t}^{+\infty}\left|D_{t}^{m}\right|^{2} d \tau\right)^{1 / 2 m}\left(\int_{t}^{+\infty}|u(\tau)|^{2} d \tau\right)^{1-1 / 2 m}
$$

after that, we remark that, since $t \leqslant \tau$, we have :

$$
\int_{t}^{+\infty}\left|D_{t}^{m} u\right|^{2} d \tau \leqslant t^{-2(\sigma+m)} \int_{t}^{+\infty} \tau^{2(\sigma+m)}\left|D_{t}^{m} u\right|^{2} d \tau \leqslant\left. t^{-2(\sigma+m)}| | u\right|_{W_{\sigma, \delta}^{m}} ^{2}
$$

and

$$
\int_{t}^{+\infty}|u(\tau)|^{2} d \tau \leqslant t^{-2(\sigma+\delta m)} \int_{t}^{+\infty} \tau^{2(\sigma+\delta m)}|u(\tau)|^{2} d \tau \leqslant t^{-2(\sigma+\delta m)}| | u| |_{W_{\sigma, \delta}^{m}}^{2}
$$

hence the inequality (1.3).

II - CASE OF THE HALF SPACE $\mathbb{R}_{+}^{\mathrm{n}}, \mathrm{n}>1$.

Let m be an integer, $-\sigma$ and δ two real numbers >0 such that $\sigma+m \geqslant 0$ and $\sigma+\delta m \geqslant 0$, we consider the space :
$W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)=\left\{u \in L^{2}\left(\mathbb{R}_{+}^{n}\right) ; t^{\sigma+\delta|\alpha|+j_{j}} D_{t}^{j} D_{x}^{\alpha} u \in L^{2}\left(\mathbb{R}_{+}^{n}\right)\right.$ for $\sigma+\delta|\alpha|+j \geqslant 0$ and $\left.|\alpha|+j \leqslant m\right\}$
equipped by the canonical norm.
The space $\bar{D}\left(\overline{R_{+}^{n}}\right)$ is dense in the space $W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)(c f[2]$ for example) and also we have :
$W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)=\left\{u \in D^{\prime}\left(\mathbb{R}_{+}^{n}\right) ; t^{M a x(0, \sigma+\delta|\alpha|+j)} D_{t}^{j} D_{x}^{\alpha} \mathcal{L}^{2}\left(\mathbb{R}_{+}^{n}\right)\right.$ for $\left.|\alpha|+j \leqslant m\right\}$.

Proposition II. 1. we have:
i) if $m>n / 2$ and if $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, then u is continuous on \mathbb{R}_{+}^{n} and there exists a constant $C>0$ such that, for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{\mathfrak{n}}\right)$, for every $(t, x) \in \mathbb{R}_{+}^{n}$, we have :
(2.1) $|u(t, x)| \leqslant C . t^{-\frac{T^{+m}}{2 m}-\frac{n-1}{2 m}(\sigma+\delta m)}| | u\left\|_{W_{\sigma}, \delta}^{n / 2 m}| | u\right\|_{L^{2}}^{1-n / 2 m} ;$
(ii) If $\left.\operatorname{Min}\left(-\sigma,-\sigma / \delta_{\delta}\right)\right\rangle \mathfrak{n} / 2$ and if $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, then u is continuous and bounded on \mathbb{R}_{+}^{n} and there exists a constant $C>0$ such that for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, for every $(t, x) \in \mathbb{R}_{+}^{n}$, we have :
(2.2) $|u(t, x)| \leqslant c .\left||u|_{W_{\sigma, \delta}^{m}}^{-\frac{1+\delta(n-1)}{2 \sigma}} \| u\right|_{L}^{1+\frac{1+\delta(n-1)}{2 \sigma}}$.

Proof :

The proof is analogous to those made in the chapter I. (i) ; at first, we apply the usual Sobolev's theorem: if $v \in H^{m}\left(\mathbb{R}_{+}^{n}\right)$ with $m>n / 2$ then v is continuous on $\overline{\mathrm{R}_{+}^{\mathrm{n}}}$ and there exists a constant $\mathrm{C}>0$ such that for every $v \in H^{m}\left(\mathbb{R}_{+}^{n}\right)$, for every $(t, x) \in \mathbb{R}_{+}^{n}$, we have :

$$
|u(t, x)|^{2} \leqslant C .\left\{\sum_{j+|\alpha|=m} \int_{\mathbb{R}_{+}^{n}}\left|D_{t}^{j_{x}} D_{x} v(\tau, y)\right|^{2} d \tau d y+\int_{\mathbb{R}_{+}^{n}}|v(\tau, y)|^{2} d \tau d y\right\}
$$

If $w \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, the function v defined by $: v(\tau, y)=w(\tau+t, y)$ belongs to $H^{m}\left(\mathbb{R}_{+}^{n}\right)$ for every $t>0$. Hence, for every $w \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, for every $(t, x) \in \mathbb{R}_{+}^{n}$, we have :
$|w(t, x)|^{2} \leqslant C .\left\{\sum_{|\alpha|+j=m} \int_{t}^{+\infty} \int_{\mathbb{R}}\left|D_{n-1}^{j} D_{x}^{\alpha}{ }_{x}(\tau, y)\right|^{2} d \tau d y+\int_{t}^{+\infty} \int_{\mathbb{R}}|w(\tau, y)|^{2} d \tau d y\right\}$.
Let now u an element of $W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$ and apply the precedent inequality to the function w defined by $: w(\tau, y)=u(\lambda \tau, \mu y)$ where λ and μ are two constants. Hence, there exists a constant $C>0$ such that, for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)$, for every $(t, x) \in \mathbb{R}_{+}^{n}$, for every λ and $\mu>0$, we have :

$$
\begin{aligned}
|u(t, x)|^{2} \leqslant C / \lambda_{\bullet} \mu^{n-1} \in\left\{\sum_{|\alpha|+j=m} \int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}}\right. & \lambda^{2 j} \mu^{2(m-j)}\left|D_{t}^{j_{D}}{ }_{x}^{\alpha} u(\tau, y)\right|^{2} d \tau d y \\
& \left.+\int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}}|u(\tau, y)|^{2} d \tau d y\right\}
\end{aligned}
$$

and since $t \leqslant \tau$, that gives:
$|u(t, x)|^{2} \leqslant C / \lambda \cdot \mu^{n-1} x$

$$
\begin{aligned}
& x\left\{\sum_{|\alpha|+j=m} \int_{t}^{+\infty} \int_{\mathbb{R}^{n-1}} \lambda^{2 j_{\mu} 2(m-j)} t^{-2(\sigma+\delta(m-j)+j)} \mid \tau^{\sigma+\delta|\alpha|+\left.j_{D} j_{t} D_{x}^{\alpha} u\right|^{2} d \tau d y}\right. \\
& \left.+\int_{t}^{+\infty} \int_{R^{n+1}}|u(\tau, y)|^{2} d \tau d y\right\}
\end{aligned}
$$

choosing $\lambda=t^{\frac{\sigma+m}{m}}$ and $\mu=t^{\frac{\sigma+\delta m}{m}}$, a fortioti we get :

$$
\begin{aligned}
&|u(t, x)|^{2} \leqslant C . t t^{-\frac{\sigma+m}{m}-\frac{n-1}{m}(\sigma+\delta m)}\left\{\sum_{|\alpha|+j=m} \int_{\mathbb{R}_{+}^{n}}\left|\tau^{\sigma+\delta|\alpha|+j_{D}} j_{t_{x}} D_{x}^{\alpha}\right|^{2} d \tau d y\right. \\
&\left.+\int_{\mathbb{R}_{+}^{n}}|u(\tau, y)|^{2} d \tau d y\right\}
\end{aligned}
$$

We now apply this inequality to the function v defined by $: v(\tau, y)=$ $u(\lambda \tau, \mu x)$ where λ and μ are some constants :

$$
\begin{aligned}
& |u(\lambda t, \mu x)|^{2} \leqslant C x \\
& x \frac{t^{-\frac{\sigma+m}{m}}-\frac{n-1}{m}(\sigma+\delta m)}{\lambda \cdot \mu^{n-1}}\left\{\sum_{\alpha \mid+j=m_{\mathbb{R}_{+}}} \lambda^{-2(\sigma+\delta(m-j))} \mu^{2(m-j)}\left|\tau^{\sigma+\delta|\alpha|+j} D_{t} j_{D}^{\alpha} D_{x}^{\alpha}\right|^{2} d \tau d y\right. \\
& \left.+\int_{\mathbb{R}_{+}}|u|^{2} d \tau d y\right\} .
\end{aligned}
$$

Putting $\lambda=r^{1 / 2 \sigma}$ and $\mu=\lambda^{\delta}$, we deduce that for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, for every $(t, x) \in \mathbb{R}_{+}^{n}$, for every $r>0$, we have :

$$
\begin{aligned}
& \left|u\left(t r^{1 / 2 \sigma}, x r^{\delta / 2 \sigma}\right)\right|^{2} \leqslant C x \\
& x_{\left(\operatorname{tr}^{1 / 2 \sigma}\right)} \begin{array}{l}
-\frac{\sigma+m}{m}-\frac{n-1}{m}(\sigma+\delta m) \\
r^{n / 2 m-1}\left\{\sum_{|\alpha|+j=m} \int_{\mathbb{R}_{+}^{n}} \mid \tau^{\sigma+\delta|\alpha|+\left.j_{D_{t}} j_{D_{x}}^{\alpha} u\right|^{2} d \tau d y}\right. \\
\\
\left.\quad+r \int_{\mathbb{R}_{+}^{n}}|u|^{2} d \tau d y\right\}
\end{array}
\end{aligned}
$$

Finally, there exists a constant $C>0$ such that, for every $(t, x) \in \mathbb{R}_{+}^{\mathrm{n}}$, for every $r>0$, for every $u \in W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)$, we have :

$$
|u(t, x)|^{2} \leqslant C . t^{-\frac{\sigma+m}{m}-\frac{n-1}{m}(\sigma+\delta m)} r^{n / 2 m-1}\left\{\|u\|_{W_{\sigma, \delta}^{m}}^{2}+r\|u\|_{L}^{2}\right\}
$$

The inequality (2.1) results form this in choosing $r=\|u\|_{W_{\sigma, \delta}^{m}}^{2} /\|u\|_{L_{2}}^{2}$.
(ii), we begin to show the

Lemma II-1 :
We have the algebraic and topologic imbedding :

$$
W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}^{\mathrm{n}}\right) \subset \mathrm{H}^{\operatorname{Min}(-\sigma,-\sigma / \delta)}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)
$$

Proof :
By the chapter I, we know $V_{\sigma+\delta m, \sigma+m}^{m}\left(\mathbb{R}_{+}\right) \subset H^{-\sigma}\left(\mathbb{R}_{+}\right)$, hence, there exists a constant $C>0$ such that, for every $v \subset W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, we have :

$$
\int_{-\infty}^{+\infty}\left(1+\tau^{2}\right)^{-\sigma}|F(P v)|^{2} d \tau \leqslant C .\left\{\int_{0}^{+\infty}\left|t^{\sigma+m_{D} m}{ }_{t}^{m}\right|^{2} d t+\int_{0}^{+\infty}\left|t^{\sigma+\delta m} v\right|^{2} d t\right\}
$$

where F means the Fourier transform in the variable t and P a linear and continuous extension operator from $H^{-\sigma}(\mathbb{R})$ (for example, P can be taken as the Babitch extension).

If $v \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, the function $u(t)=v\left(t \Lambda^{-1 / \delta}\right)$, where Λ is positive constant, belongs to $W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$; for every $\Lambda>0$, we have :

$$
\int_{-\infty}^{+\infty}\left(\Lambda^{2 / \delta}+\tau^{2}\right)^{-\sigma}|F(P v)|^{2} d \tau \leqslant C .\left\{\int_{0}^{+\infty}\left|t^{\sigma+m_{t}^{m}} v^{m}\right|^{2} d t+\Lambda^{2 m} \int_{0}^{+\infty}\left|t^{\sigma+\delta m} v\right|^{2} d t\right\}
$$

Let now u be an element of $D\left(\overline{R_{+}^{n}}\right)$ and for every $\xi \in \mathbb{R}^{n-1}\{o\{$, we consider the function $v(t)=\widehat{u}(t, \xi)$, where Λ means the Fourier transform in the variable $x \in \mathbb{R}^{n-1} ;$ then $F(\operatorname{Pv})(\tau)=\mathcal{F}_{\operatorname{Pu}}(\tau, \xi)$, where \mathcal{F} means the Fourier transform in the variable (t, x) in \mathbf{R}^{n} and from the precedent inequality, we deduce, taking $\Lambda=|\xi|$ and after integrate in ξ over \mathbb{R}^{n-1}, that there exists a constant $C>0$ such that for allu $u \in \mathcal{D}\left(\overline{\mathrm{R}_{+}^{\mathrm{n}}}\right)$, we have : putting $\sigma^{*}=\operatorname{Min}(-\sigma,-\sigma / \delta)$,

$$
\left||\mathrm{Pu}|_{\mathrm{H}^{-\sigma}}{ }_{\left(\mathbf{R}_{\mathrm{n}}\right)} \leqslant \mathrm{C} \cdot\right||\mathrm{u}|_{W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)}
$$

and then :

$$
\left||u|_{H^{-\sigma}}{ }_{\left(\mathbb{R}_{+}^{n}\right)} \leqslant \mathrm{C} \cdot\right||\mathrm{u}|_{W_{\sigma, \delta}^{m}}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)
$$

The space $\mathscr{D}\left(\overline{\mathbb{R}_{+}^{\mathrm{n}}}\right)$ being dense in the space $W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}^{\mathrm{n}}\right)$, we have proved the lemma II-1.

Now, if $\operatorname{Min}(-\sigma,-\sigma / \delta)>n / 2$ and if $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, then u is continuous and bounded on $\overline{\mathbb{R}_{+}^{n}}$ and there exists a constant $C>0$ such that for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, for every $(t, x) \in \mathbb{R}_{+}^{n}$, we have :

$$
\begin{aligned}
&|u(t, x)|^{2} \leqslant C .\left\{\sum_{|\alpha|+j=m} \int_{\mathbb{R}_{+}} \tau^{2(\sigma+\delta(m-j)+j)}\left|D_{t}^{j} D_{x}^{\alpha} u(\tau, y)\right|^{2} d \tau d y\right. \\
&\left.+\int_{\mathbb{R}_{+}^{n}}|u(\tau, y)|^{2} d \tau d y\right\}
\end{aligned}
$$

Then, we do the change of variable of (i), that gives :

$$
\begin{aligned}
|u(t, x)|^{2} & \leqslant \sum_{\lambda \mu}^{C} n^{n-1} x \\
& x\left\{\sum_{|\alpha|+j=m R_{R_{+}}} \lambda^{-2(\sigma+\delta(m-j)) \mu_{\mu} 2(m-j)}\left|\tau_{\tau}^{2(\sigma+\delta(m-j)+j)} D_{t}^{j_{t}} D_{x}^{\alpha} u(\tau, y)\right|^{2} d \tau d y\right. \\
& \left.+\int_{R_{+}^{n}}|u(\tau, y)|^{2} d \tau d y\right\}:
\end{aligned}
$$

we choose $\lambda=r^{1 / 2 \sigma}$ and $\mu=\lambda^{\delta}$, that gives :

$$
|u(t, x)|^{2} \leqslant C . r^{-\frac{2 \sigma+1+\delta(n-1)}{2 \sigma}}\left\{\left.| | u\right|_{W_{\sigma, \delta}^{m}} ^{2}\left(\mathbb{R}_{+}^{n}\right) \quad+r| | u \|_{L^{2}\left(\mathbb{R}_{+}^{n_{1}}\right)}^{2}\right\}
$$

and taking $r=\|u\|_{W_{\sigma, \delta}}^{2}\|u\|_{L^{2}}^{2}$, we get the inequality (2.2).

Proposition II. 2 :
Let ℓ be an integer, $0 \leqslant \ell<-\sigma-\frac{1}{2}$; then the map $u \longrightarrow \gamma_{\ell} u=D_{t}^{\ell} u(t=0)$: $\mathcal{L}\left(\overline{R_{+}^{n}}\right) \longrightarrow\left(R^{n-1}\right)$ can be extended in a linear and continuous map from $W_{\sigma, \delta}^{\mathrm{m}}\left(\mathrm{R}_{+}^{\mathrm{n}}\right)$ into $\mathrm{H}^{-\frac{2(\sigma+\ell)+1}{2 \delta}}\left(\mathrm{R}^{\mathrm{n}-1}\right)$.

Proof :
It comes, by the chapter I, that there exists a constant $C>0$ such that, for every $v \in W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}\right)$, we have:

$$
\left|D_{t}^{\ell} v(o)\right|^{2} \leqslant C .\left\{\int_{0}^{+\infty}\left|t^{\sigma+m_{n}^{m}} v^{m}\right|^{2} d t+\int_{0}^{+\infty}\left|t^{\sigma+\delta m} v\right|^{2} d t\right\}
$$

If $v \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, the function $u(t)=v\left(t \Lambda^{-\frac{1}{\sigma}}\right)$, where Λ is a positive constant, belongs to $W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}\right)$; hence here exists a constant $C>0$ such that for every
$v \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, for every $\Lambda>0$, we have :
 the function $v(t)=\hat{u}(t, \xi)$, where \wedge is the Fourier transform in the variable $x \in \mathbb{R}^{n-1}$; as in lemma $I I-1$, we deduce that :

$$
\left|\left|r_{\ell} u\right|_{H}-\frac{2(\sigma+\ell)+1}{2 \delta} \leqslant C .\left||u|_{W_{\sigma, \delta}^{m}} .\right.\right.
$$

It will be very useful for the following to have an inequality of type "compacity" for the spaces $W_{\sigma, \delta}^{\mathrm{m}}$:

Proposition 11. 3.

Let m be an integer $\geqslant 1$ and put $\delta_{1}=\operatorname{Min}(1, \delta)$. There exists a constant $C>0$ such that, for every $\varepsilon>0$, for every $u \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, with $\operatorname{supp} u \subset\{|t| \leqslant 1\}$, we have :
(2.3) $\left|\mid u \|_{W_{\sigma+\delta_{1}}^{m-1}, \delta} \leqslant C .\left\{\varepsilon \cdot| | u\left\|_{W_{\sigma, \delta}^{m}}+\varepsilon^{-(m-1)}\right\| u \|_{L}^{2}\right\}\right.$.

Proof:

We begin to establish a lemma :

Lemma II-2 :

Proof :

Let k and j be some integers such that $\sigma+\delta k+j \geqslant 0$ and $k+j \leqslant m$. From the chapter I, it results that if $v(t) \in W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right)$, then $t^{\sigma+\delta k+j_{n}} j_{t} \equiv L^{2}\left(\mathbb{R}_{+}\right)$ and :

$$
\int_{0}^{+\infty}\left|t^{\sigma+\delta k+j} D_{t}^{j} v\right|^{2} d t \leq C .\left\{\int_{0}^{+\infty}\left|t^{\sigma+m_{D}^{m}} v^{2}\right|^{2} d t+\int_{o}^{+\infty}\left|t^{\sigma+\delta m} v\right|^{2} d t\right\}
$$

where C is a constant >0 which does not depend on v.

$$
\text { If } v \equiv W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}\right) \text {, the function } u(t)=v\left(t \Lambda^{-1 / \sigma}\right) \text {, where } \Lambda \text { is a }
$$ positive constant belongs to $W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}\right)$; hence, there exists a constant $C>0$ such that for every $v \in W_{\sigma, \delta}^{\mathrm{m}}\left(\mathbb{R}_{+}\right)$, for every \wedge, we have :

$$
\begin{equation*}
\Lambda^{2 k} \int_{0}^{+\infty}\left|t^{\sigma+\delta k+j_{D}} \mathrm{j}_{\mathrm{t}} v\right|^{2} d t \leqslant C .\left\{\left.\int_{0}^{+\infty}\left|t^{\sigma+m_{D}^{m}} \mathrm{t}^{2} d t+\Lambda^{2 m} \int_{0}^{+\infty}\right| t^{\sigma+\delta m} v\right|^{2} d t\right\} \tag{2.4}
\end{equation*}
$$

Let now u be an element of $D\left(\overline{R_{+}}\right)$and for every $\xi \approx \mathbb{R}^{n-1}\{o\}$, we consider the function $v(t)=\hat{u}(t, \xi)$, where Λ means the Fourier transform in the variable $x \equiv \mathbb{R}^{n-1}$, and from the precedent inequality, we deduce, taking $\Lambda=|\xi|$ and after integration in ξ over \mathbb{R}^{n-1}, that there exists a constant $C>0$ such that for every $u=D\left(\overline{R_{+}^{n}}\right)$, we have:

The space $D\left(\overline{R_{+}^{n}}\right)$ being dense in the space $W_{\sigma, \delta}^{m}\left(\mathbb{R}_{+}^{n}\right)$, the lemma II-2 is a consequence of this inequality and the Banach's theorem.

Proof of the proposition II-3:
From the inequality (2.4) in which we take $j=m-1, k=1$ and $\Lambda^{-1}=\varepsilon>0$, we deduce that :

$$
\begin{aligned}
& \int_{0}^{+\infty}\left|t^{\sigma+\delta+m-1} D_{t}^{m-1} v\right|^{2} d t \leqslant C x \\
& \left.\quad x \varepsilon^{2} \int_{0}^{+\infty}\left|t^{\sigma+m} D_{t}^{m} v\right|^{2} d t+\varepsilon^{-2(m-1)} \int_{0}^{+\infty}\left|t^{\sigma+\delta m} v\right|^{2} d t\right\}
\end{aligned}
$$

We apply this inequality to the function $v(t)=\hat{u}(t, \xi)$ for $u \in \mathcal{D}\left(\overline{R_{+}^{n}}\right)$ and $\xi \in \mathbb{R}^{\mathrm{n}-1}\{0\}$, we integrate in ξ over $\mathbb{R}^{\mathrm{n}-1}$, that gives :
if $\operatorname{supp} u c\{|t| \leqslant 1\}$.

Besides, we know that there exists a constant C > 0 such that for every $\varepsilon>0$, for every $v(x) \in H^{m}\left(R^{n-1}\right)$, we have :

$$
\begin{equation*}
|\alpha|=m-1 \int_{R^{n-1}}\left|D_{x}^{\alpha} v\right|^{2} d x \leqslant \operatorname{c} .\left\{\varepsilon^{2} \sum_{|\alpha|=m} \int_{R^{n-1}}\left|D_{x}^{\alpha} v\right|^{2} d x+\varepsilon^{-2(m-1)} \int_{R^{n-1}}|v|^{2} d x\right\} \tag{2.6}
\end{equation*}
$$

Then, we use this inequality to the function $v(x)=u(t, x), t>0$, where $u \in \mathcal{D}\left(\overline{R_{+}^{n}}\right)$; we multiply by $t^{\sigma+\delta m}$, and we integrate in $t>0$ over R_{+}, that gives :

$$
\begin{aligned}
& \left.+\varepsilon^{-2(\mathrm{~m}-1)}\|\mathrm{u}\|_{\mathrm{L}^{2}\left(\mathrm{R}_{+}^{\mathrm{n}}\right)}^{2}\right\} .
\end{aligned}
$$

if $\operatorname{supp} u \subset\{|t| \leqslant 1\}$.
The inequality (2.3), for $\delta \leqslant 1$, is a consequence of (2.5) and (2.7).
For $\delta \geqslant 1$, we replace the inequality (2.5) by the inequality :
if supp $u \subset\{|t| \leqslant 1\}$. This inequality is easy to prove like for (2.5).

After, in (2.7), we multiply by $\mathrm{t}^{2(\sigma+1+\delta(m-1))}$ and we choose $\varepsilon=n t^{\delta-1}, \eta>0$, and we achieve as before.

III - CASE OF A BOUNDED OPEN SET Ω OF $\mathbb{R}^{n}, n>1$.
Let Ω be a bounded open set of \mathbb{R}^{n}, with boundary Γ. We assume that Ω is a compact C^{∞} manifold. We give $\varphi: \mathbb{R}^{\mathfrak{n}} \longrightarrow \mathbb{R}$ a C^{∞} function such that :
(3.1) $\left\{\begin{array}{l}\Omega=\left\{x \in \mathbb{R}^{n} ; f(x)>0\right\}, \\ \Gamma=\left\{x \in \mathbb{R}^{n} ; \varphi(x)=0\right\}, \\ \operatorname{grad}(x) \neq 0 \text { for } x-\Gamma,\end{array}\right.$

Where grad $:(x)=\left(\frac{\partial}{\partial x_{1}}(x), \ldots, \frac{\partial}{\partial x_{n}}(x)\right.$ is the gradient vector associated to φ. Let $\left(X_{i}\right)$ be some vector fields with C^{∞} coefficients on \mathbb{R}^{n} such that :

$$
\begin{equation*}
X_{0} \text { is transversal to } \Gamma \text { on } \Gamma \text {, ie }:\left(X_{0}\right)(x) \neq 0 \text { for } x \in \Gamma ; \tag{3.2}
\end{equation*}
$$

(3.3) $\quad X_{i}$ is tangent to Γ on Γ for $i=1, \ldots, q$, ie : $\left(X_{i}, \gamma\right)(x)=0$ for $x \in \Gamma ;$ for every $x \in \bar{\Omega}$, the rank of the system $\left(X_{i}(x)\right)_{o \leqslant i \leqslant q}$ is equal to n .

Let m be an integer, $-\sigma$ and δ two real numbers >0 such that $\sigma+m \geqslant 0$ and $\sigma+\delta m \geqslant 0$, we consider the space:

$$
W_{\sigma, \delta}^{\mathrm{m}}(\Omega)=\left\{\mathrm{u} \in \mathrm{~L}^{2}(\Omega) ; \varphi^{\operatorname{Max}\left(o, \sigma^{+\langle\delta, \alpha>)} X_{u}^{\alpha} \in L^{2}(\Omega) \text { for }|\alpha| \leqslant m\right\}}\right.
$$

equipped by the canonical nolm. We have used the notation $x^{\alpha}=x_{o}{ }^{\alpha}{ }_{0} \ldots x_{q}{ }_{q}{ }^{\alpha}$ for $\alpha=\left(\alpha_{0}, \ldots, \alpha_{q}\right) \in \mathbb{N}^{q+1}$ and $\langle\delta, \alpha\rangle=\delta \sum_{i=1}^{q} \alpha_{i}+\alpha_{0}$.

Proposition III-1.
With the precedent assumptions, we have :
(i) $\quad W_{\sigma, \delta}^{\mathrm{m}}(\Omega) \subset \mathrm{H}_{\mathrm{loc}}^{\mathrm{m}}(\Omega)$;
(ii) for every $\phi \in C^{\infty}(\bar{\Omega})$ and for every $u \vDash W_{\sigma, \delta}^{\mathrm{m}}(\Omega)$, we have : $\phi u \equiv W_{\sigma, \delta}^{\mathrm{m}}(\Omega)$.

Proof:
(i) With the assumption (3.4), for every $x_{0} \in \Omega$, there exists a neighbourlood $V\left(x_{0}\right)$ of x_{0} in Ω in which we can write :

$$
\frac{\partial}{\partial x_{k}}=\sum_{i=0}^{q} \beta_{i}^{k}(x) x_{i}
$$

for $k=1, \ldots, n$ with some convenient functions β_{i}^{k} which are C^{∞} in $V\left(x_{0}\right)$ and we can easily get (i).
(ii) Let ϕ be a C^{∞} function on $\bar{\Omega}$ and $u \in W_{\sigma, \delta}^{m}(\Omega)$. Then $\phi u \in L^{2}(\Omega)$ and for $|\alpha| \leqslant m$, we have :

$$
\mathrm{x}^{\alpha}(\phi \mathrm{u})=\sum_{\beta \leqslant \alpha}\binom{\alpha}{\beta}\left(\mathrm{x}^{\beta} \phi\right)\left(\mathrm{x}^{\alpha-\beta} \mathrm{u}\right)
$$

it results that $4^{\operatorname{Max}(0, \sigma+\langle\delta, \alpha\rangle)} X^{\alpha}(\emptyset u) \in L^{2}(\Omega)$, that is to say $\phi u \in W_{\sigma, \delta}^{m}(\Omega)$.

Remark III-1:

It is easy to prove that the space $W_{\sigma, \delta}^{m}(\Omega)$ does not depend of the choice of the vector fields $\left(X_{i}\right)_{o \leqslant i \leqslant q}$ satisfying the conditions (3.2), (3.3), (3.4).

Proposition III-2:

We have :
(i) If $m>n / 2$ and if $u \in W_{\sigma, \delta}^{m}(\Omega)$, then u is continuous on Ω and there exists a constant $C>0$ such that, for every $u \in W_{\sigma, \delta}^{m}(\Omega)$, for every $\mathrm{x} \subseteq \Omega$, we have :
(3.5) $|u(x)| \leq C . \quad f(x)^{-\frac{\sigma+m}{2 m}-\frac{n-1}{2 m}(\sigma+\delta m)}| | u\left\|_{W_{\sigma, \delta}^{m}}^{n / 2 m}| | u\right\|_{L^{2}}^{1-n / 2 m} ;$
(ii) if $\operatorname{Min}(-\sigma,-\sigma / \delta)>n / 2$ and if $u \in W_{\sigma, \delta}^{m}(\Omega)$, then u is continuous and bounded on Ω there exists a constant $C>0$ such that for every $u=W_{\sigma, \delta}^{m}(\Omega)$, for every $\mathrm{x} \in \Omega$, we have :
(3.6) $\left.|u(x)| \leqslant C .\left||u|_{W_{\sigma, \delta}^{m}}^{-\frac{1+\delta(n-1)}{2 \sigma}}\right| \right\rvert\, u \|_{L^{2}}^{1+\frac{1+\delta(n-1)}{2 \sigma}}$.

Proof :

(i) With the proposition III-1 and by a partition of unity the inequality (3.5) can be only obtained for functions $u \in W_{\sigma, \delta}^{m}(\Omega)$ with support in a neighbourhood of the boundary Γ of Ω.

Let x_{0} be a point of Γ; from the properties (3.1), we see that there exists a neighbourhood $V\left(x_{0}\right)$ of x_{0} in R^{n} and a diffeomorphism $=\left(\theta_{1} \ldots, \theta_{n}\right)$ with $\theta_{n}=' f$ from $V\left(x_{0}\right)$ on to the unit ball of \mathbb{R}^{n} such that :
(3.7) $\left\{\begin{array}{l}\text { (H) }(V \cap \Omega)=B_{+}=\left\{y \in R^{n} ;|y| \leqslant 1, y_{n}>0\right\} ; \\ (V \cap \Gamma)=B_{0}=\left\{y E R^{n} ;|y| \leqslant 1, y_{n}=0\right\} ; \\ X_{0}\left(\theta_{k}\right)=0 \text { in V for } k=1, \ldots, n-1 .\end{array}\right.$

In these conditions, if $u E W_{\sigma, \delta}^{m}(\Omega)$ with $\operatorname{supp} u=V$ and if $v=u:(H)^{-1}$, then $v \in W_{\sigma, \delta}^{m}\left(R_{+}^{n}\right)$ with $\operatorname{supp} v \subset \overline{B_{+}}$. In fact, it suffices for that to remark that by the diffeomorphism (1), the vector fields (X_{i}) ${ }_{O_{0} \leqslant i \leqslant q}$ are become the vector fields $\left(I_{i}\right)_{o \leqslant i \leqslant q}$ with :

$$
\begin{equation*}
I_{o}=\alpha \frac{\partial}{\partial y_{n}}, \alpha(y) \neq 0 \text { for } y \in B=\left\{y \in \mathbb{R}^{n} ;|y| \leqslant 1\right\} ; \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
I_{i}=I_{i}^{t}+\left[\left(x_{i} \varphi\right) \cdot \oplus^{-1}\right] \frac{\partial}{\partial y_{n}} \text { for } i=1, \ldots, q, \tag{3.9}
\end{equation*}
$$

where I_{i}^{t} means an homogeneous differential operator of order 1 , with C^{∞} coefficients in the variables y_{1}, \ldots, y_{n-1};
(3.10) for every $y \in B=\left\{y \in \mathbb{R}^{n} ;|y| \leqslant 1\right\}$, the rank of the system $\left(I_{i}\right)_{o \leqslant i \leqslant q}$ is equal to n.

Hence, the inequality (3.5) comes from the inequality (2.1) and the proposition [I-1.
(ii) In the same way, the inequality (3.6), at the boundary comes from the inequality (2.2) of the proposition II-1.

In the interior, it comes from the fact that if $u \in W_{\sigma, \delta}^{m}(\Omega)$, then $u \equiv H_{10 c}^{m}(\Omega)$ and then too belongs to $\mathrm{H}_{\mathrm{loc}} \mathrm{m}^{\prime}(\Omega)$ where $\mathrm{m}^{\prime}=-\frac{\sigma \mathrm{n}}{1+\delta(\mathrm{n}-1)}$; in fact, since $\sigma+\mathrm{m} \geqslant 0$ and $\sigma+\delta m \geqslant 0$, we have $m^{\prime} \leqslant m$. Then, the inequality (3.6), in the interior, is a consequence of the classical inequality :

$$
|u(x)| \leqslant c .\|u\|_{H^{m^{\prime}}}^{n / 2 m^{\prime}}\|u\|_{L^{2}}^{1-n / 2 m^{\prime}} .
$$

Proposition III-3 :

Let ℓ be an integer, $0 \leqslant \ell<-\sigma-\frac{1}{2} ;$ then, the map $u \longrightarrow \gamma_{\ell} u=\left.\frac{\partial^{\ell} u}{\partial n^{\ell}}\right|_{\Gamma}: D_{(\Omega)} \longrightarrow$
$\ell(\Gamma)$ can be extended in a linear and continuous map from $W_{\sigma, \delta}^{m}(\Omega)$ into $\mathrm{H}^{-\frac{2(\sigma+\ell)+1}{2 \delta}}(\Gamma)$.
($\frac{\partial}{\partial n}$ means the derivative along that unit normal vector to Γ, interior in Ω). This proposition comes from the proposition II-2.

Proposition III-4 :

Let m be an integer $\geqslant 1$ and $\delta_{1}=\operatorname{Min}(1, \delta)$. There exists a constant $C>0$ such that, for every $\varepsilon>0$, for every $u \in W_{\sigma, \delta}^{\mathrm{m}}(\Omega)$, we have :
(3.11) $\left|\mid u \|_{W_{\sigma+\delta_{1}, \delta}^{m-1}} \leq C .\left\{\varepsilon\|u\|_{W_{\sigma, \delta}^{m}}+\varepsilon^{-(m-1)}\left\|_{u}\right\|_{L_{2}}\right\}\right.$.

Proof :
As before, we see that the inequality (3.11) at the boundary comes from the inequality (2.3) and, in the interior, from the classical inequality for the usual Sobolev spaces :

$$
\left|\mid u \|_{H^{m-1}} \leqslant C .\left\{\varepsilon| | u\left\|_{H^{m}}+\varepsilon^{-(m-1)}| | u\right\|_{L^{2}}\right\}\right.
$$

[1] : M.S. BAOUENDI - C. GOULAOUIC -Régularité et théorie spectrale pour une classe d'opérateurs elliptiques dégénérés. Arch. Rat. Méc. Anal. 34, n. 5 (1969), pp. 361-379.
[2] : P. BOLLEY - J. CAMUS - "Espaces de Sobolev avec poids" - Fascicule des séminaires du Laboratoire d'Analyse Fonctionelle Rennes 1968-1969.
[3] : A. KUFNER - O. JOHN - S. FUCIK - Function spaces - Academia Prague 1977
[4] : J.L. LIONS - E. MAGENES - Problèmes aux limites non homogènes et applications - Tome I - Dunod, Paris 1968.

