Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods
Publications mathématiques et informatique de Rennes, no. S4 (1978), article no. 10, 16 p.
@article{PSMIR_1978___S4_A10_0,
     author = {Mercier, Bertrand and Rappaz, J.},
     title = {Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods},
     journal = {Publications math\'ematiques et informatique de Rennes},
     eid = {10},
     publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes},
     number = {S4},
     year = {1978},
     language = {en},
     url = {http://archive.numdam.org/item/PSMIR_1978___S4_A10_0/}
}
Mercier, B.; Rappaz, J. Eigenvalue Approximation via Non-Conforming and Hybrid Finite Element Methods. Publications mathématiques et informatique de Rennes, no. S4 (1978), article  no. 10, 16 p. http://archive.numdam.org/item/PSMIR_1978___S4_A10_0/

[1] Babuska, I., Aziz, A.K., Survey lectures the mathematical foundations of the finite element method, Academic Press, New York and London,1972. | MR 421106 | Zbl 0268.65052

[2] Babuska, I., The finite element method with lagrangian multipliers, Numer. Math., 20 (1973), 179-192. | EuDML 132183 | MR 359352 | Zbl 0258.65108

[3] Bramble, J.H., Osborn, J.E. , Rate of convergence estimates for non-self-adjoint eigenvalue approximations, Math. Comp., 20., (1973), 527-549. | MR 366029 | Zbl 0305.65064

[4] Brezzi, F. On the existence, uniqueness and approximation of saddlepoint problems arising from the lagranglan multipliers, RAIRO R2, (1974), 129-151. | EuDML 193255 | Numdam | MR 365287 | Zbl 0338.90047

[5] Brezzi, F., Raviart, P.A. . Mixed finite element methods for 4th order elliptic equations, Rapport Interne n°9, Centre de Mathématiques Appliquées de l'Ecole Polytechnique, 91128 PALAISEAU CX, FRANCE. | Zbl 0434.65085

[6] Canuto, C. Eigenvalue approximations by mixed methos, RAIRO, Analyse Numérique, 12 ( 1978 ), 27-50. | EuDML 193309 | Numdam | MR 488712 | Zbl 0434.65032

[7] Crouzeix, M. Raviart , P.A., Conforming and non conforming finite element methods for solving the stationary Stokes equations I, RAIRO,Analyse Numérique, R3 (1973), 33-76. | EuDML 193250 | Numdam | MR 343661 | Zbl 0302.65087

[8] Descloux, J., Nassif, N., Rappaz, J., On spectral approximation, Part 1 : the problem of convergence; Part 2 : Error estimates for the Galerkin method, RAIRO, 12, 2 (1978). | Numdam | Zbl 0393.65025

[9] Fix, G.. Eigenvalue approximation by the finite element method, Adv. in Math., 10 (1973) ,300-316. | MR 341900 | Zbl 0257.65086

[10] Kato, T., Perturbation theory for linear operators, springer verlag. New York INC., 1966. | MR 203473 | Zbl 0435.47001

[11] Kikuchi, F.. Convergence of the ACM finite element scheme for plate bending problems, Publ. R.I.M.S., Kyoto Univ., 11 (1975), 247-265. | MR 391540 | Zbl 0326.73065

[12] Kolata, Communication at the finite element circus, univ. of Maryland, Nov. 12 , 1977 .

[13] Osborn, J.E., Spectral approximation for compact operators, Math. comp. 29 (1975), 712-725. | MR 383117 | Zbl 0315.35068

[14] Rappaz, J.. Approximation of the spectrum of a non-compact operator given by the magnetohydrodynamic stability of a plasma, Numer. Math., 28 (1977), 15-24. | EuDML 132472 | MR 474800 | Zbl 0341.65044

[15] Raviart, P.A., Thomas, J.M., A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, n° 606 , Springer Verlag, 1977 , 292-315 . | MR 483555 | Zbl 0362.65089

[16] Strang, G., Fix , G.J., An analysis of the finite element method, Prentice Hall, New York, 1973. | MR 443377 | Zbl 0356.65096

[17] Thomas, J.M., Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes, Thèse de l'Université Pierre et Marie Curie, Paris, 1977 .

[18 ] Wilkinson, J.H., The algebraic eigenvalue problem, oxford university Press, 1965. | MR 184422 | Zbl 0626.65029